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Abstract
In this paper we show that there exist infinitely many Mazur type manifolds and corks with

shadow complexity one among the 4-manifolds constructed from contractible special polyhedra
having one true vertex by using the notion of Turaev’s shadow. We also find such manifolds
among 4-manifolds constructed from Bing’s house. Our manifolds with shadow complexity
one contain the Mazur manifolds W±(l, k) which were studied by Akbulut and Kirby.

1. Introduction

1. Introduction
The study of corks is crucial to understand smooth structures on 4-manifolds due to the

following theorem: For every exotic (i.e. homeomorphic but non-diffeomorphic) pair of sim-
ply connected closed 4-manifolds, one is obtained from the other by removing a contractible
submanifold of codimension 0 and gluing it via an involution on the boundary. Furthermore,
the contractible submanifold and its complement can always be compact Stein 4-manifolds.
The contractible 4-manifold has since been called a cork. This theorem was first proved in-
dependently by Matveyev [22] and Curtis, Freedman, Hsiang and Stong [15], and strength-
ened by Akbulut and Matveyev [5] afterward. The first cork was found by Akbulut in [1]
among Mazur manifolds. Here a Mazur manifold is a contractible 4-manifold which is not
bounded by the 3-sphere and has a handle decomposition consisting of a single 0-handle,
a single 1-handle and a single 2-handle. Akbulut and Yasui generalized the example in [1]
and constructed many exotic pairs of 4-manifolds by using the corks Wn,Wn in [6, 7].

On the other hand, Turaev introduced the notion of a shadow for the purpose of study of
quantum invariants of 3- and 4-manifolds in 1990s. A shadow is an almost-special poly-
hedron P which is locally flat and properly embedded in a compact oriented 4-manifold
W with boundary and a strongly deformation retract of W. By the study of Turaev, W is
uniquely recovered from the shadow P with a coloring assigned to each region of P. This
operation is called Turaev’s reconstruction. The coloring is a half-integer, called a gleam.
By this reconstruction, a shadow with gleam provides a differential structure of W uniquely.
We refer the reader to [12, 13], in which Costantino studied Stein structures, Spinc structures
and complex structures on 4-manifolds by using shadows.

In this paper, we focus on the shadow complexity to align all corks according to their
complexities. The shadow complexity of a 4-manifold W is defined by the minimal number
of true vertices among all shadows of W, which was introduced by Costantino in [11]. See
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Fig. 1. The abalone has only one true vertex
and two regions. Let e1 be the disk region in
the upper part of the figure, and let e2 be the
other region. We can check that e2 is a disk
easily.

Fig.2. This polyhedron has only one true ver-
tex and two disk regions. This can not be em-
bedded in R3.

Definition 3.5 for details. A classification of closed 4-manifolds with shadow complexity
zero had been studied by Costantino in [11] and Martelli in [21]. As a subsequent project,
we study 4-manifolds constructed from contractible special shadows with complexity 1 or
2 and find infinitely many Mazur type manifolds and corks. As a related topic, Costantino
asked in [11] what pair of exotic 4-manifolds has the minimal special shadow complexity
and pointed out that the complexity is at most 3.

We first focus on the shadows with one vertex. In [17, 18], Ikeda classified acyclic special
polyhedra with one true vertex and showed that there exist just two such polyhedra. One is
called the abalone, shown in Figure 1, and the other is a polyhedron shown in Figure 2. We
denote by A the abalone, and by Ã the other one. They are contractible since they are acyclic
and simply connected. To find corks with special shadow complexity 1, we have only to
study A and Ã, by the above classification. Let A(m, n) be the compact oriented 4-manifold
obtained by Turaev’s reconstruction from A with gleams gl(e1) = m, gl(e2) = n (see Figure
1), and let Ã(m, n − 1

2 ) be the one constructed from Ã with gleams gl(ẽ1) = m, gl(ẽ2) = n − 1
2

(see Figure 2). Note that the above n and m are integers. The main results of this paper in
the case of complexity 1 are the following.

Theorem 1.1. If m � 0, A(m, n) is Mazur type. Moreover, A(m, n) and A(m′, n′) are not
homeomorphic unless m = m′.

Theorem 1.2.
(1) If m � 0, Ã(m, n− 1

2 ) is Mazur type. Moreover, Ã(m, n− 1
2 ) and Ã(m′, n′ − 1

2 ) are not
homeomorphic unless m = m′.

(2) The pair (Ã(m,− 3
2 ), f̃m) is a cork if m < 0.

Here f̃m is an involution on ∂Ã(m,− 3
2 ), which will be defined in Section 3.

The following is a straightforward consequence of Theorem 1.1, 1.2 and [17].

Corollary 1.3.
(1) There are no corks with special shadow complexity 0.
(2) A cork with special shadow complexity 1 is either A(m, n) or Ã(m, n − 1

2 ). In par-
ticular, there are infinitely many corks with shadow complexity 1 since there are
infinitely many corks among Ã(m, n − 1

2 ).
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Fig. 3. Bing’s house has two true vertices and three disk regions. Let e4 and e5 be the disk regions
which are partitions put first and second floor respectively, and let e3 be the last region. We can check
that e3 is a disk easily.

Next we study Bing’s house, which is a special polyhedron with two true vertices as
shown in Figure 3. Bing’s house was introduced by Bing in [9]. We denote it by B and let
B(l,m, n) be the compact oriented 4-manifold obtained by Turaev’s reconstruction from B
with gleams gl(e3) = l, gl(e4) = m, gl(e5) = n, where l,m, n are integers. For B(l,m, n), we
get the following.

Theorem 1.4.
(1) If |m| ≥ 3 and |n| ≥ 3, then B(l,m, n) is Mazur type.
(2) The pair (B(0,m, n), f(m,n)) is a cork if m and n are negative.

Here f(m,n) is an involution on ∂B(0,m, n), which will be defined in Section 3.
Many corks Wn and Wn (n ≥ 1) had been found by Akbulut and Yasui in [6]. It can be

checked that the shadow complexities of Wn and Wn are at most 2n−1 and 4n−2 respectively.
We can verify A(1,−5) � Ã(−1,− 3

2 ) � W1 and B(0,−1,−1) � W1 though we don’t know if
the other Wn’s and Wn’s appear in our corks or not.

Main tool in the proofs is Kirby calculus. To distinguish topological types of A(m, n)’s
and of Ã(m, n − 1

2 )’s in Theorem 1.1 and 1.2 respectively, we compute the Casson invariants
of their boundaries. To find corks among Ã(m, n − 1

2 ) and B(l,m, n), we check their Stein
structures. The strategy is same as one used in [6].

In Section 2 we introduce the notions of shadows, Mazur manifolds, Stein surfaces and
corks, and how to interpret from a Kirby diagram to a shadow. We give the proofs of our
theorems in Section 3.

2. Preliminaries

2. Preliminaries
Throughout this paper, we work in smooth category unless otherwise mentioned.
Let Y be a topological space, and X a subspace of Y . Assume that there exists a triangula-

tions (L,K) of the pair (Y, X). By a regular neighborhood of X in Y we mean the underlying
space of the star neighborhood of K in the barycentric subdivision of L. We denote it by
Nbd(X; Y). We say that Y collapses onto X if there exists a triangulation (L0,K0) of (Y, X)
such that L0 collapses onto K0.

2.1. Shadows.
2.1. Shadows. A compact topological space P is called an almost-special polyhedron if

each point of P has a regular neighborhood which is homeomorphic to one of the five local
models shown in Figure 4. A point whose regular neighborhood is of type (iii) is called a
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Fig.4. The local models of an almost-special polyhedron.

true vertex. We denote the set of true vertices by V(P). The singular set of P is the set of
points whose regular neighborhoods are of type (ii), (iii) or (v). We denote it by S ing(P).
The boundary ∂P of P is the set of points whose regular neighborhoods are of type (iv) or (v).
Each component of P \ S ing(P) is called a region of P. If a region R contains points of type
(iv) then R is called a boundary region, and otherwise it is called an internal region. Each
region is a surface. If each region of P is homeomorphic to an open disk and any connected
component of S ing(P) contains at least one true vertex, then P is said to be special. Each
connected component of S ing(P) \ V(P) is called a triple line.

Definition 2.1. Let W be a compact oriented 4-manifold and let T be a (possibly empty)
trivalent graph in the boundary ∂W of W. An almost-special polyhedron P in W is called a
shadow of (W, T ) if the following hold:

• W collapses onto P,
• P is locally flat in W, that is, for each point p of P there exists a local chart (U, φ) of

W around p such that φ(U ∩ P) ⊂ R3 ⊂ R4 and
• P ∩ ∂W = ∂P = T .

It is well-known that any compact oriented 4-manifold having a handle decomposition
without 3- or 4-handles has a shadow [10].

Let R be an internal region of an almost-special polyhedron P and let R̄ be a compact
surface such that the interior of R̄ is homeomorphic to R. The inclusion i : R → P can
extend to a continuous map ī : R̄ → P such that ī|Int(R̄) is injective and its image is the
closure of R in P. For each point x ∈ ī(∂R̄), we can see that, locally, two regions are attached
to R̄ along ∂R̄. Under this identification, for each boundary component of R̄, there exists an
immersed annulus or a Möbius band in Nbd(ī(∂R̄); P). Let N be the number of the Möbius
bands as above. For each internal region R, we choose a half integer gl(R) such that the
following holds:

gl(R) − 1
2

N ∈ Z.
We call gl(R) a gleam of R and the correspondence gl a gleam of P.

An almost-special polyhedron P endowed with a gleam is called an integer shadowed
polyhedron, and denoted by (P, gl) (or simply P) .
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Fig.5. The first figure indicates a crossing point of a projection of
a link component on an almost-special polyhedron. Then we can
take the framing with respect to this almost-special polyhedron as
in the second figure.

Fig.6. The framing is the
hatched band.

Turaev showed that there exists a canonical mapping associating to an integer shadowed
polyhedron (P, gl) a compact oriented smooth 4-manifold, denoted by MP, in [28]. This is
called Turaev’s reconstruction. The method of this reconstruction is analogous to a process
of attaching handles. Conversely, if a 4-manifold M has a shadow P then P can be equipped
with the canonical gleam gl such that the 4-manifold MP reconstructed from (P, gl) is dif-
feomorphic to M.

2.2. Interpretation from a Kirby diagram to a shadow.
2.2. Interpretation from a Kirby diagram to a shadow. Now we introduce a method to

obtain a shadow of a 4-manifold which is given by a Kirby diagram. We follow the method
in [28, Chapter IX. 3.2.] and [10].

Let  = (
⊔k

i=1 L1
i ) � (

⊔l
j=1 L2

j) ⊂ S 3 be a Kirby diagram, where L1
i (i = 1, . . . , k) is

a dotted circle of a 1-handle and L2
j ( j = 1, . . . , l) is a attaching circle of a 2-handle with

framing coefficient n j. We arbitrarily take an almost-special polyhedron Q in S 3 \ (
⊔k

i=1 L1
i )

such that S 3 \ (
⊔k

i=1 L1
i ) collapses onto Q. By isotopy in S 3 \ (

⊔k
i=1 L1

i ), we project
⊔l

j=1 L2
j

to Q \ V(Q) such that each crossing point is a double point and not on S ing(Q). We denote
the image by C =

⋃l
j=1 C j. We then assign an over/under information to each crossing point

such that the link restored from C according to the over/under information is isotopic to⊔l
j=1 L2

j .

Definition 2.2.
(1) We call the framing with respect to Q of C j an embedded annulus or Möbius band

in S 3 obtained by taking a small regular neighborhood of C in Q and splitting it at
each crossing point according to the over/under information as in Figure 5. Here if
C runs over a triple line, we cut off the part which C does not lie from Nbd(C; Q) as
in Figure 6.

(2) Let F j be the framing with respect to Q of C j. If F j is an annulus, the twist number
of F j is defined by the linking number of the link S 1 � S 1 = ∂F j ⊂ S 3 whose
orientations are chosen to be parallel. If F j is a Möbius band, the twist number
of F j is defined by the half of the linking number of the link S 1 � S 1 = ∂F j �
(a core of F j) ⊂ S 3 whose orientations are chosen to be parallel. We denote the
twist number of F j by tw(C j).

Let P be the almost-special polyhedron obtained from Q by attaching a disk Dj to each
curve C j along its boundary. Note that P is not necessarily embedded in S 3. We define the
gleam gl of P in the following way.
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Fig. 7. The local contributions to gleams: The left figure indicates the local contributions at s self-
crossing point of C, and the right one indicates those at a crossing point of C and S ing(Q).

• Let R be an internal region of P in the subdivision of Q by C ∪ S ing(Q). To four
separated regions in a small regular neighborhood of each self-crossing point of C
or each crossing point of C and the triple line of Q, we assign rational numbers
as shown in Figure 7 (cf. [10, 28]). We define gl(R) by the sum of these local
contributions for all crossing points of C ∪ S ing(Q) to which R is adjacent.
• The gleam of the region Int(Dj) is defined by n j − tw(C j).

Thus we get an integer shadowed polyhedron (P, gl).

Lemma 2.3. The 4-manifold reconstructed from (P, gl) is diffeomorphic to the 4-manifold
given by the Kirby diagram .

Proof. We only give a sketchy proof of this lemma. For details we refer the reader to
[28] and [10]. We only verify that the gleam of the region Rj, which is the interior of Dj, is
compatible with attaching the 2-handle. The framing of the 2-handle corresponding to L2

j is
represented by a knot L̂2

j parallel to L2
j . Let Bj be an annulus whose boundaries are L2

j and
L̂2

j . If Bj can embed in the framing F j with respect to Q of C j by isotopy sending L2
j to C j,

the gleam of Rj is 0 by [28]. Since the framing coefficient n j is defined by lk(L2
j , L̂

2
j) and the

gleam of Rj increases by the number of the twists of Bj with respect to F j, we conclude that
the gleam of Rj is given by n j − tw(C j). �

Note that, “the gleam of a boundary region” can be defined as above but it does not affect
the reconstruction. Therefore, if the boundary region of P can collapse to the singular set
S ing(P), the resulting polyhedron is also a shadow of MP. Two or more regions may be
connected by this collapsing. In this case the gleam of the new region is given by the sum
of the original gleams before connecting.

2.3. Mazur manifolds and Akbulut’s corks.
2.3. Mazur manifolds and Akbulut’s corks.

Definition 2.4. A compact contractible 4-manifold which is not a 4-ball is called a Mazur
manifold if it is obtained by attaching a 2-handle to D3 × S 1. If a Mazur manifold is not
bounded by the 3-sphere then it is said to be Mazur type.

In [23], Mazur introduced Mazur manifolds W±(l, k), described in Figure 8, which were
studied by Akbulut and Kirby in [3]. Remark that any compact contractible 4-manifold
is bounded by a homology 3-sphere. In particular, if a shadow is contractible then its 4-
manifold is also. Therefore such a 4-manifold always becomes a candidate of a Mazur
manifold.
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Fig.8. Kirby diagrams of the Mazur manifolds W±(l, k).

Now we introduce the definition of a cork, which was first found by Akbulut among
Mazur manifolds in [1].

Definition 2.5. Let C be a contractible Stein domain and let τ : ∂C → ∂C be an involution
on the boundary of C. The pair (C, τ) is called a cork if τ extends to a self-homeomorphism
on C, but can not extend to any self-diffeomorphism on C.

Here a Stein manifold is a complex manifold X such that X can be embedded into CN by a
proper holomorphic map. A compact 4-manifold W with boundary is called a Stein domain
if there exists a Stein 4-manifold X with a plurisubharmonic function f : X → [0,∞) and a
regular value a of f such that f −1([0, a]) � W.

Example 2.6. Akbulut and Yasui constructed many corks (Wn, fn) (n ≥ 1) in [6]. Note
that W1 is just W−(0, 0). They defined fn : ∂Wn → ∂Wn by the involution obtained by first
surgering S 1 × B3 to B2 × S 2 in the interior of Wn, and then surgering the other embedded
B2 ×S 2 back to S 1 × B3. We notice that the Kirby diagrams of Wn in [6] is a symmetric link,
and the involution can be done by replacing the dot and “0” in the diagram.

Remark 2.7. We introduce an useful observation to detect a cork in [4] (cf. [2]). Let C
be a compact oriented smooth 4-manifold whose Kirby diagram consists of a dotted unknot
K1 and a 0-framed unknot K2 and assume that the following hold.

(1) The link K1�K2 is symmetric. Namely, the components K1 and K2 can be exchanged
by isotopy in S 3.

(2) The linking number of K1 and K2 is ±1.
(3) Exchange the notation of 1-handle to the ball notation. Then K2 can be deformed to a

Legendrian knot with respect to the standard contact structure on ∂(D4∪1-handle) =
S 1 × S 2 such that the Thurston-Bennequin number is at least +1.

Let ϕ be the involution obtained by first surgering S 1 × B3 to B2 × S 2 in the interior of C,
and then surgering the other embedded B2 × S 2 back to S 1 × B3. Then it is known that the
pair (C, ϕ) is a cork, which is called a cork of Mazur type in [7].

3. Proofs

3. Proofs
This section separates into two parts. In the former part we give the proofs of Theorem

1.1 and 1.2, and we give the proof of Theorem 1.4 in the latter part.
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Fig.9. Kirby calculus in the proof of Lemma 3.1.

Fig.10. The pair of pants QA with immersed curves C1 and C2.

3.1. The case of 1 true vertex.
3.1. The case of 1 true vertex.

Lemma 3.1. The 4-manifold A(m, n) is represented by the Kirby diagram shown in Figure
9 (c).

Proof. Consider the pair of pants QA shown in Figure 10, where ∂1, ∂2 and ∂3 are its
boundary components, and C1 and C2 are immersed curves on QA equipped with over/under
information at each double point. We note that the pair of pants QA is divided into 6 regions
R1, . . . ,R6 by C1 and C2.

We next consider the almost-special polyhedron obtained from QA by attaching two an-
nuli along their boundaries to C1 and C2, as shown in Figure 11 (a). By collapsing along
the boundary regions R1,R2,R3 as indicated by the arrows in the figure, it becomes a new
almost-special polyhedron, denoted by PA, as shown in Figure 11 (b). We note that these
figures are described as immersed in R3. In fact the polyhedron PA can be emdedded in R3

as shown in Figure 11 (c) and it is homeomorphic to a regular neighborhood of S ing(A) in
A. We note that PA is also described as shown in Figure 12. The above fact can be verified
by seeing how the regions are glued along the singular set. As in Ikeda [17, Fig 8.(i)], the
polyhedron A is decomposed into two regions as shown in Figure 13.
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Fig.11. The almost-special polyhedron obtained from QA by attaching two annuli along their bound-
aries to C1 and C2 is described in (a). This can collpase into another one shown in (b) as indicated by
the arrows in (a). The resulting polyhedron can be embedded into R3 as shown in (c).

Fig. 12. The almost-special polyhedron PA.
A similar figure can be seen in [19, Figure
27(i)].

Fig.13. A cell decomposision of A.

Let Q′A be the almost-special polyhedron obtained from QA by attaching two disks D1 and
D2 to C1 and C2 along the boundaries respectively. From the above observation, it follows
that the almost-special polyhedron obtained from Q′A by collapsing along the three boundary
regions R1,R2,R3 is homeomorphic to A. Under this identification, we have e1 = D1 ∪ R4

and e2 = D2 ∪ R5 ∪ R6.
We next consider the Kirby diagram shown in Figure 9 (a), where L1 and L2 are attaching

circles of 2-handles, whose framing coefficients are represented by M and N respectively.
We can see that QA can be embedded in the Kirby diagram in Figure 9 (a) such that S 3 \
(dotted circles) collapses to QA and L1 and L2 are projected onto C1 and C2 respectively. We
can also see that the 4-manifold given by Figure 9 (a) has a shadow Q′A, and then also A.

What is left is to compute the relation between M,N and gleams m = gl(e1), n = gl(e2).
Let Fi (i = 1, 2) be the framing with respect to QA of Ci. Both F1 and F2 are annuli and their
twist numbers are tw(C1) = 0 and tw(C2) = 1. Therefore,

gl(D1) = M − tw(C1) = M

gl(D2) = N − tw(C2) = N − 1
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Fig.14. Kirby moves in Lemma 3.2.
Fig.15. The link in Lemma 3.2.

by Lemma 2.3. By the local contributions to gleams as in Figure 7, we have

gl(R4) = 1 · 1
2
+ 1 · (−1

2
) = 0

gl(R5) = 1 · 1
2
+ 2 · (−1

2
) = −1

2

gl(R6) = 3 · 1
2
+ 2 · (−1

2
) =

1
2
.

We recall the earlier-mentioned identifications: e1 = D1 ∪ R4 and e2 = D2 ∪ R5 ∪ R6. Con-
sidering the changes of the gleams after collapsing along the boundary regions R1,R2,R3,
we have

gl(e1) = gl(D1) + gl(R4),

gl(e2) = gl(D2) + gl(R5) + gl(R6).

Hence M = m and N = n + 1. Thus we get the Kirby diagram of A(m, n) in Figure 9 (a).
Since the pair of the left 1-handle and the 2-handle corresponding to L1 is a canceling pair,
we can erase this pair and get Figure 9 (b). By isotopy, we get the Kirby diagram of A(m, n)
as in Figure 9 (c). �

Lemma 3.2. There exists a sequence of Kirby moves from the left to the right in Figure
14 for any m, where the tangle d satisfies the following properties:

(1) the linking number of the link shown in Figure 15 is |m| and
(2) the link component with framing coefficient ε in Figure 14 is an unknot,

where ε = −1 if m > 0 and ε = +1 if m < 0.

Proof. We first prove for the case m > 0 by induction on m. It is easy for m = 1.
See Figure 16. We assume that this lemma holds for m and prove it for m+1. We slide the

2-handle and get Figure 16 (b). The isotopy gives Figure 16 (c). Since the link component
with framing coefficient ε is not moved, it is still an unknot. Let d′ be the tangle shown
in Figure 16 (c). In Figure 16 (b) and (c), the link component with framing coefficient n′

intersects the vertical sides of the tangle d and is running parallel to the other strand with
framing coefficient ε inside of d. Note that these two parallel strands in d have no crossing
because of the condition (2). Hence there is no change of crossing number in d. On the other
hand, out of d in d′, we can see two positive crossings. Then computing the linking number
of the link obtained by setting d′ instead of the tangle d in Figure 15, we get m + 1.

The proof for the case m < 0 is similar. See Figure 17. �
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Fig.16. The proof of the case m > 0.

Fig.17. The proof of the case m < 0.

Proof of Theorem 1.1. The 4-manifold A(m, n) is contractible since A is contractible. By
the Kirby diagram in Figure 9 (c), A(m, n) satisfies the condition of the handle decomposition
for a Mazur manifold. We will compute the Casson invariant of the boundary of A(m, n) to
verify whether A(m, n) is Mazur type.

Let us blow-up and apply Lemma 3.2 to the diagram shown in Figure 18 (a), and we get
Figure 18 (b). Sliding the 2-handle with framing coefficient ε another 2 times, we get Figure
18 (c). We erase the canceling pair and get Figure 18 (d). Now we focus on the boundary
of A(m, n) and regard Figure 3.2 (d) as a surgery diagram of ∂A(m, n). Note that the two
strands in the tangle d, intersecting two horizontal sides of d, are parallel. Moreover, the
strand in the tangle d, intersecting two vertical sides of d has no self-intersection. Hence the
knot in Figure 18 (d) is a ribbon knot. We denote this knot by K(m,n). Next we compute the
Alexander polynomial of K(m,n) by using the method in [27], in which Terasaka computed
the Alexander polynomials of ribbon knots. We get

ΔK(m,n) (t) = t|m|+1 − t|m| − t + 3 − t−1 − t−|m| + t−|m|−1.

Then the Casson invariant of ∂A(m, n) can be computed by using the surgery formula for the
Casson invariant as follows:

λ(∂A(m, n)) = λ(S 3 +
1
ε
· K(m,n))

= λ(S 3) +
ε

2
Δ′′K(m,n)

(1)

= 0 +
ε

2
· 4|m|

= −2m.
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Fig.18. Kirby calculus in the proof of Theorem 1.1.

Fig.19. Kirby calculus in the proof of Lemma 3.3.

Hence ∂A(m, n) is not homeomorphic to S 3 for m � 0, and A(m, n)’s are mutually not
homeomorphic for different m. �

Next we study the compact oriented 4-manifold Ã(m, n − 1
2 ) whose shadow is Ã. We first

describe Ã(m, n − 1
2 ) by the Kirby diagram to prove Theorem 1.2.

Lemma 3.3. The 4-manifold Ã(m, n − 1
2 ) is represented by the Kirby diagram shown in

Figure 19 (c).

Proof. The proof is similar to Lemma 3.1. Let QÃ be a once-punctured torus with im-
mersed curves C̃1 and C̃2 on it as shown in Figure 20. we note that the curves are equipped
with over/under information at each double point and QÃ is divided into two regions R7,R8

by C̃1 and C̃2.
As we observed in the proof of Lemma 3.1, a regular neighborhood of Sing(Ã) in Ã can

be obtained from QÃ by attaching annuli and collapsing. First we attach two annuli along
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Fig.20. The once-punctured torus QÃ and im-
mersed curves C̃1 and C̃2.

Fig.21. The almost-special polyhedron PÃ.

their boundaries to C̃1 and C̃2, and then let it collapse along the boundary region R7. The
resulting polyhedron is homeomorphic to Nbd(Sing(Ã); Ã), which is shown in Figure 21. It
can be checked by seeing how the regions are glued along the singular set. See Figure 2.

Let Q′
Ã

be the almost-special polyhedron obtained from QÃ by attaching two disks D̃1

and D̃2 to C̃1 and C̃2 along the boundaries respectively. It can be seen that the almost-special
polyhedron obtained from Q′

Ã
by collapsing along the boundary region R7 is homeomorphic

to Ã. Note that ẽ1 = D̃1 and ẽ2 = D̃2 ∪ R8 under this identification.
Next we consider the Kirby diagram shown in Figure 19 (a). In the figure, L̃1 and L̃2 are

attaching circles of 2-handles, whose framing coefficients are represented by M and N as in
the figure respectively. We can see that QÃ can be embedded in the Kirby diagram in Figure
19 (a) such that S 3 \ (dotted circles) collapses to QÃ and L̃1 and L̃2 are projected onto C̃1 and
C̃2 respectively. We can also see that the 4-manifold given by Figure 19 (a) has a shadow
Q′

Ã
and also Ã.

Let F̃i (i = 1, 2) be the framing with respect to QÃ of C̃i. Both F̃1 and F̃2 are annuli, and
we get the twist numbers tw(C̃1) = 0 and tw(C̃2) = 1. Therefore, by Lemma 2.3

gl(D̃1) = M − tw(C̃1) = M,

gl(D̃2) = N − tw(C̃2) = N − 1.

By the local contributions to gleams as in Figure 7, we have

gl(R8) = 3 · 1
2
+ 4 · (−1

2
) = −1

2
.

We recall that ẽ1 = D̃1 and ẽ2 = D̃2 ∪ R8. Considering the changes of the gleams by
collapsing along R7, we have

gl(ẽ1) = gl(D̃1),

gl(ẽ2) = gl(D̃2) + gl(R8).

Hence M = m and N = n + 1. Thus we get the Kirby diagram of Ã(m, n − 1
2 ). We erase the

canceling pair and get Figure 19 (b). By isotopy, we get Figure 19 (c). �

Remark 3.4. It is easy to check that A(±1, n) � Ã(∓1, n ± 7
2 ) by isotopies in their Kirby

diagrams. We don’t know whether or not there are other diffeomorphisms between A(m, n)
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Fig.22. Kirby calculus in the proof of Theorem 1.2.

and Ã(m′, n′ − 1
2 ).

We now define

f̃m : ∂Ã(m,−3
2

)→ ∂Ã(m,−3
2

)

by the involution obtained by first surgering S 1 × B3 to B2 × S 2 in the interior of Ã(m,− 3
2 ),

then surgering the other embedded B2 × S 2 back to S 1 × B3. We notice the Kirby diagram of
Ã(m, n− 1

2 ) in Figure 19 (c) is a symmetric link, and the involution can be done by replacing
the dot and “0” in the diagram.

Proof of Theorem 1.2. (1) The proof is similar to Theorem 1.1. First the 4-manifold
Ã(m, n − 1

2 ) is contractible since Ã is contractible. By the Kirby diagram, Ã(m, n − 1
2 ) has a

handle decomposition satisfying the condition for a Mazur manifold.
We next compute the Casson invariant of the boundary of Ã(m, n − 1

2 ). Let us blow-up
and apply Lemma 3.2 to the diagram as shown in Figure 22 (a), and we get Figure 22 (b).
We slide the 2-handle with framing coefficient ε another 2 times, and we get Figure 22 (c).
We erase the canceling pair and get Figure 22 (d). We notice the knot in Figure 22 (d) is a
ribbon knot. We denote this knot by K̃(m,n). By using the method in [27] again, we get

ΔK̃(m,n)
(t) = −t|m| + t|m|−1 − t + 3 − t−1 + t−|m|+1 − t−|m|.

Then the Casson invariant of ∂Ã(m, n− 1
2 ) can be computed by using the surgery formula for

the Casson invariant as follows:
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λ(∂Ã(m, n − 1
2

)) = λ(S 3 +
1
ε
· K̃(m,n))

= λ(S 3) +
ε

2
Δ′′K̃(m,n)

(1)

= 0 − ε
2
· 4|m|

= 2m.

Fig.23. The attaching circle of the 2-handle of Ã(m,− 3
2 ) in Legendrian position.

Hence ∂Ã(m, n − 1
2 ) is not homeomorphic to S 3 for m � 0, and Ã(m, n − 1

2 )’s are mutually
not homeomorphic for different m.
(2) Set n = −1 and m < 0. To show that (Ã(m,− 3

2 ), f̃m) is a cork, we use the notion in Remark
2.7. By Lemma 3.3, it is easy to check that Ã(m,− 3

2 ) has a Kirby diagram consisting of a
dotted unknot and 0-framed unknot such that the link is symmetric and its linking number
is ±1. Therefore, it remains only to check the condition of the Thurston-Bennequin number.
Deform the attaching circle of the 2-handle in the Kirby diagram of Ã(m,− 3

2 ) to a Legendrian
knot with respect to the canonical contact structure on S 1 × S 2 as shown in Figure 23 (in
which we denote the 1-handle by 3-balls instead of dotted circle notation). Then we get its
Thurston-Bennequin number as

tb = wr − �{left cusps} = (2|m| + 1) − (2|m| − 1) = 2.

Thus we are done. �

We recall the definition of the (special) shadow complexity of a 4-manifold.

Definition 3.5. (1) If M admits a handle decomposition without 3- or 4-handles,
its (special) shadow complexity is defined by the minimal number of true vertices
among all (special) shadows of M.

(2) If M admits no handle decomposition without 3- or 4-handles, its (special) shadow
complexity is defined by the minimal number of (special) shadow complexities of 4-
manifolds to which we can attach 3- and 4-handles such that the resulting manifold
are diffeomorphic to M.

Proof of Corollary 1.3. By [17], there are no acyclic special polyhedra without true ver-
tices, and acyclic special polyhedra with only one true vertex are just A and Ã. A cork is de-
fined as a Stein domain, which admits a handle decomposition without 3- or 4-handles [16].
Thus there are no corks with special shadow complexity 1 other than A(m, n) or Ã(m, n− 1

2 ).
�
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Now we compare our results and previous works.

Corollary 3.6. For any integers l and k, W±(l, k) � Ã(±1, l + k − 3
2 ) holds.

Proof. Set m = ±1 and n = k − 1 in the Kirby diagram of Ã(m, n − 1
2 ) shown in Figure 19

(c), and we get W±(0, k) � Ã(±1, k− 3
2 ). Akbulut and Kirby showed W±(l, k) � W±(l+1, k−1)

in [3], and then W±(l, k) � W±(0, l + k) � Ã(±1, l + k − 3
2 ). �

Remark 3.7. If (P, gl) is a shadow of a 4-manifold M, then the 4-manifold constructed
from the pair (P,−gl) is diffeomorphic to −M, where −gl is the gleam gl with the opposite
sign. We apply this as follows:

W−(l, k) �Ã(−1, l + k − 3
2

)

� − Ã(1,−l − k +
3
2

)

= − Ã(1, (−l + 2) + (−k + 1) − 3
2

)

� −W+(−l + 2,−k + 1).

Hence W−(l, k) � −W+(−l + 2,−k + 1). Note that this assertion has been proven by Akbulut
and Kirby in [3]. Their proof is done by Kirby calculus.

The following is a corollary of Remark 3.4.

Corollary 3.8. For any integers l and k, W−(l, k) � A(1, l+k−5) and W+(l, k) � A(−1, l+
k + 2) hold.

3.2. The case of 2 true vertices.
3.2. The case of 2 true vertices. Next we study the compact oriented 4-manifold

B(l,m, n) whose shadow is Bing’s house B. We first describe B(l,m, n) by the Kirby dia-
gram and then prove Theorem 1.2.

Lemma 3.9. The 4-manifold B(l,m, n) is represented by the Kirby diagram shown in
Figure 24 (c).

Proof. The proof is similar to Lemma 3.1 and 3.3. Let QB be a twice-punctured torus with
immersed curves C3,C4,C5 equipped with over/under information at each double point, as
shown in Figure 25. Note that C3,C4 and C5 divide QB into 4 regions R9, . . . ,R12.

A regular neighborhood of Sing(B) in B can be obtained from QB by first attaching three
annuli along their boundaries to C3,C4,C5 and then collapsing along the boundary region
R9 and R10. It is shown in Figure 26. As in Ikeda [18, Fig 4.], B decomposes as shown in
Figure 27.

Let Q′B be the almost-special polyhedron obtained from QB by attaching three disks
D3,D4 and D5 to C3,C4 and C5 along the boundary respectively. It is easy to check that
the almost-special polyhedron obtained from Q′B by collapsing along the boundary regions
R9 and R10 is homeomorphic to B. Note that e3 = D3 ∪ R11 ∪ R12, e4 = D4 and e5 = D5

under this identification.
Next we consider the Kirby diagram shown in Figure 24 (a). In the figure, L3, L4 and L5

are attaching circles of 2-handles, whose framing coefficients are represented by L,M and
N as in the figure respectively. We can see that QB can be embedded in the Kirby diagram
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Fig.24. Kirby calculus in the proof of Lemma 3.9.

Fig. 25. The twice-punctured torus QB and
immersed curves C3,C4 and C5. Fig.26. The almost-special polyhedron PB.

Fig.27. A cell decomposition of B.

in Figure 24 (a) such that S 3 \ (dotted circles) collapses to QB and Li is projected onto Ci for
i = 3, 4, 5. We can also see that the 4-manifold given by Figure 24 (a) has a shadow Q′B, and
then also B.

Let Fi (i = 3, 4, 5) be the framing with respect to QB of Ci. Each Fi is an annulus. We get
the twist number tw(Ci) = 0 for each i = 3, 4, 5. By Lemma 2.3, we have

gl(D3) = L − tw(C3) = L,

gl(D4) = M − tw(C4) = M,

gl(D5) = N − tw(C5) = N.

By the local contributions to gleams as in Figure 7, we have

gl(R11) = 4 · 1
2
+ 3 · (−1

2
) =

1
2
,

gl(R12) = 3 · 1
2
+ 4 · (−1

2
) = −1

2
.



496 H. Naoe

Fig.28. The attaching circle of the 2-handle of B(0,m, n) in Legendrian position.

We recall that e3 = D3 ∪ R11 ∪ R12, e4 = D4 and e5 = D5, and we have

gl(e3) = gl(D3) + gl(R11) + gl(R12),

gl(e4) = gl(D4),

gl(e5) = gl(D5).

Hence L = l,M = m and N = n. Thus we get the Kirby diagram of B(l,m, n). By isotopy,
we get Figure 24 (b). We erase the canceling pairs and get Figure 24 (c). �

We now define

f(m,n) : ∂B(0,m, n)→ ∂B(0,m, n)

by the involution obtained by first surgering S 1 × B3 to B2 × S 2 in the interior of B(0,m, n),
then surgering the other embedded B2 × S 2 back to S 1 × B3. We notice the Kirby diagram of
B(l,m, n) is a symmetric link, and the involution can be done by replacing the dot and “0” in
the diagram.

Proof of Theorem 1.4. (1) Bing’s house is a special polyhedron, that is, each region is
a disk. By Turaev’s reconstruction, the 4-manifold B(l,m, n) is obtained from 	3S 1 × D3 by
attaching three 2-handles correspomding to the regions e3, e4 and e5. Let L be the attaching
link of these 2-handles in ∂(	3S 1 × D3) = �3S 1 × S 2. As in Costantino and Thurston [14,
Proposition 3.33], the complement of L in �3S 1×S 2 has a complete finite volume hyperbolic
structure. Hence the boundary of B(l,m, n) may have a hyperbolic structure by Dehn filling
(�3S 1 × S 2) \ L suitably. The slope length of the Dehn filling corresponding to each region
of a special polyhedron as follows. Let R be a region of a special polyhedron P. The slope
length sl(R) corresponding to R is given by

√
4gl(R)2 + k(R)2, where k(R) is the number of

times R is adjacent to the true vertices of P with multiplicity (cf. Ishikawa and Koda [19,
Lemma 5.3]). In our case, the values of sl’s on the three regions are

sl(e3) =
√

4gl(e3)2 + k(e3)2 =
√

4l2 + 100,

sl(e4) =
√

4gl(e4)2 + k(e4)2 =
√

4m2 + 1,

sl(e5) =
√

4gl(e5)2 + k(e5)2 =
√

4n2 + 1.

Note that, from Figure 27, k(e3) = 10 and k(e4) = k(e5) = 1. If |m|, |n| ≥ 3, these values
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sl(e3), sl(e4) and sl(e5) are greater than 6. Then the boundary of B(l,m, n) has a hyperbolic
structure by the 6-Theorem, due to Agol [8, Theorem 6.2] and Lackenby [20, Theorem
3.1], and the Geometrization theorem by Perelman [24, 25, 26]. Since Bing’s house is
contractible, B(l,m, n) is contractible. B(l,m, n) satisfies the condition of a handle decompo-
sition of a Mazur manifold by the Kirby diagram shown in Figure 24 (c). Hence B(l,m, n) is
Mazur type.
(2) The proof is similar to the proof of Theorem 1.2 (cf. Remark 2.7). Set l = 0 and
m, n < 0. The Kirby diagram of B(0,m, n) in Figure 24 (c) consists of a dotted unknot and
0-framed unknot such that the link is symmetric and its linking number is ±1. Let us deform
the attaching circle of B(0,m, n) to a Legendrian knot with respect to the canonical contact
structure on S 1 × S 2 as shown in Figure 28 (in which we adopt the ball notation for the
1-handle). Then we can get the Thurston-Bennequin number

tb = wr − �{left cusps} = (2|m| + 2|n|) − ((2|m| − 1) + (2|n| − 1)) = 2.

By Remark 2.7, the proof is now completed. �

Corollary 3.10. If m and n are the same sign, then B(0,m, n) is Mazur type.

Proof. Suppose m, n < 0. If ∂B(0,m, n) � S 3, then f(m,n) is isotopic to the identity.
Hence f(m,n) extend to a self-diffeomorphism of B(0,m, n) as the identity map. This is a
contradiction since B(0,m, n) is a cork. Therefore B(0,m, n) is Mazur type.

If m, n > 0, since

∂B(0,m, n) � ∂(−B(0,−m,−n)) � −∂(B(0,−m,−n)),

the assertion holds by the same argument. �

Remark 3.11. The 4-manifold B(0,−1,−1) is diffeomorphic to W1, which is a cork in-
troduced by Akbulut and Yasui in [6].
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