
Title EXTRINSIC CIRCULAR TRAJECTORIES ON GEODESIC
SPHERES IN A COMPLEX PROJECTIVE SPACE

Author(s) Bao, Tuya; Adachi, Toshiaki

Citation Osaka Journal of Mathematics. 54(4) P.735-P.745

Issue Date 2017-10

Text Version publisher

URL https://doi.org/10.18910/67011

DOI 10.18910/67011

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University



Bao, T. and Adachi, T.
Osaka J. Math.
54 (2017), 735–745

EXTRINSIC CIRCULAR TRAJECTORIES
ON GEODESIC SPHERES

IN A COMPLEX PROJECTIVE SPACE

Tuya BAO and Toshiaki ADACHI

(Received March 22, 2016, revised September 23, 2016)

Abstract
We say a trajectory for a Sasakian magnetic field on a geodesic sphere in a complex projective

space to be extrinsic circular if it can be seen as a circle in the ambient space. We study how
the moduli space of extrinsic circular trajectories behaves in the moduli space of all circles in
the ambient complex projective space. As an application we characterize the geodesic sphere
of special radius which lies on the boundary position of the family of Berger spheres among
all geodesic spheres and that has a characteristic properties from the viewpoint of lengths of
circles.

1. Introduction

1. Introduction
A smooth curve σ parameterized by its arclength on a Riemannian manifold N is said to

be a circle if there is a nonnegative constant k and a field Y of unit tangent vectors along
σ satisfying the system of differential equations ∇σ̇σ̇ = kY, ∇σ̇Y = −kσ̇. This constant k
is said to be the geodesic curvature of σ, and {σ̇, Y} to be its Frenet frame. Since circles
of null geodesic curvature are geodesics, from the viewpoint of Frenet formula, there is no
doubt that circles are simplest curve next to geodesics. On a real space form, which is one
of a standard sphere, a Euclidean space and a real hyperbolic space, lengths of closed circles
depend smoothly on their geodesic curvatures. But the situation is different on a complex
projective space CPn. When we consider lengths of closed circles on CPn, circles whose
Frenet frame forms a complex line at each point have different properties from others ([2]
and see §2). In order to explain this, in [4] the second author took trajectories on geodesic
spheres in CPn, which are curves closely related with almost contact metric structures on
these geodesic spheres. He considered them as curves in CPn, and showed that every circles
on CPn is obtained from some trajectory on some geodesic sphere.

In this paper we refine the study on trajectories which can be seen as circles in CPn given
in [4]. We investigate how the moduli space, the set of all congruence classes, of these tra-
jectories on a given geodesic sphere is contained in the moduli space of circles in CPn. We
find that circles of geodesic curvature

√
2c/4 in CPn(c) of constant holomorphic sectional

curvature c have a singular property compared with other circles from the viewpoint of ex-
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trinsic shapes of trajectories. These circles are also obtained as images of geodesics through
a parallel isometric embedding (S 1 × S n−1)/∼ → CPn given by Naitoh [14], and are charac-
teristic circles from the viewpoint of length spectrum of circles (see §2 and [6]). As an ap-
plication of our study we characterize a geodesic sphere G(r0) of special radius r0 satisfying
cot
(√

c r0/2
)
= 1/
√

2 among real hypersurfaces in CPn(c). It contains all these characteristic
circles as trajectories. We note that geodesic spheres of radius satisfying cot

(√
c r/2
)
< 1/
√

2
are so-called Berger spheres (see [17]). Sectional curvatures of the geodesic sphere G(r0)
lie in the interval [K/9,K] with K = 9c/8, and the length of its shortest closed geodesic is
2π/
√

K. This geodesic can be seen as a circle in CPn(c). Thus our result shows that not only
the shortest closed geodesics but also trajectories on this geodesic sphere which can be seen
as circles in CPn have characteristic properties.

The authors are grateful to the referee who read their manuscript very carefully.

2. Circles on a complex projective space

2. Circles on a complex projective space
In order to explain the background of our study, we shall start by recalling the moduli

space of circles on a complex projective space CPn. For a circle σ on CPn which satisfies
∇σ̇σ̇ = kσY, ∇σ̇Y = −kσσ̇, we set τσ = 〈σ̇, JY〉 with the complex structure J on CPn, and
call it the complex torsion of σ. Since J is parallel, we see that τσ is constant along σ.
We say two smooth curves σ1, σ2 on a Riemannian manifold N which are parameterized by
their arclengths to be congruent to each other if there is an isometry ϕ of N and a constant
tc satisfying ϕ ◦σ1(t) = σ2(t + tc) for all t. It is known that circles on CPn are classified into
congruence classes by their geodesic curvatures and complex torsions (see [13]). Hence, the
moduli space (CPn) of circles of positive geodesic curvature on CPn, which is the set of
all congruence classes of such circles, is set theoretically congruent to the band (0,∞)×[0, 1]
in R2.

A smooth curve σ parameterized by its arclength is said to be closed if there is a positive
constant t0 satisfying σ(t + t0) = σ(t) for all t. The minimum positive t0 with this property
is said to be the length of σ. For an open curve, a curve which is not closed, we consider
that its length is infinity. Since two smooth curves which are congruent to each other have
the same length, we can define a function  : 

(
CPn(c)

) → (0,∞] which shows lengths
of circles. On CPn(c), circles of geodesic curvature

√
2c/4 have characteristic properties.

For k > 0 and τ with 0 ≤ τ ≤ 1, we denote by [σ(k, τ)] the congruence class of circles of
geodesic curvature k and of complex torsion τ on CPn(c). We put k =

{
[σ(k, τ)]

∣∣∣ 0 ≤
τ < 1

} (⊂
(
CPn(c)

))
for a positive k. Then we have an injective map Φk : k →√

2c/4

given as [γ(k, τ)] �→ [γ(√2c/4, 3
√

3ckτ(4k2 + c)−3/2)]. This satisfies  = Ck ·  ◦ Φk on
k with Ck =

√
3c/{2(4k2 + c)} (see [2]). Thus we have a lamination on 

(
CPn(c)

)
each

of whose leaf is maximal with respect to the smooth property of  (see Fig. 1). Every leaf
crosses to the set √

2c/4 of congruence classes of circles of geodesic curvature
√

2c/4.

3. Trajectories for Sasakian magnetic fields

3. Trajectories for Sasakian magnetic fields
Let M be a real hypersurface in a Kähler manifold M̃. On this hypersurface we have an

almost contact metric structure induced by the complex structure J on M̃. If we denote by
 a (local) unit normal vector field on M in M̃, this structure is a quartet (η, ξ, φ, 〈 , 〉)
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Fig.1. Lamination on the moduli space of circles on CPn(c)

of a vector field ξ defined by ξ = −J , a 1-form η given by η(v) = 〈v, ξ〉, a (1, 1)-tensor φ
defined by φ(v) = Jv−η(v) and the metric 〈 , 〉 induced by the metric on M̃. These ξ and φ
are called the characteristic vector field and the characteristic tensor of M, respectively. We
define a 2-form Fφ associated with this structure by Fφ(v, w) = 〈v, φ(w)〉. One can easily find
that it is a closed form (see [7]). Generally, a closed 2-form on a Riemannian manifold is
said to be a magnetic field because it can be regarded as a generalization of a static magnetic
field on a Euclidean 3-space R3 (see [15], for example). We therefore say that a constant
multiple Fκ = κFφ (κ ∈ R) of the form Fφ, which is also closed, a Sasakian magnetic field on
M.

A smooth curve γ on M which is parameterized by its arclength is said to be a trajectory
for Fκ if it satisfies the differential equation ∇γ̇γ̇ = κφ(γ̇). When κ = 0, which is the case
that there is no influence of magnetic fields, trajectories are geodesics. Therefore, we may
say that trajectories are extended objects of geodesics. To study properties of trajectories,
we put ργ = 〈γ̇, ξγ〉, and call this function along a trajectory γ its structure torsion. We here
recall Gauss and Weingarten formulae. If we denote by ∇̃ the Riemannian connection on M̃,
they are given as

∇̃XY = ∇XY + 〈AMX, Y〉 and ∇̃X = −AMX

for vector fields X, Y tangent to M. Here AM denotes the shape operator of M in M̃ with
respect to  . By these formulae we have ∇Xξ = φAMX, hence we get

ρ′γ = 〈κφγ̇, ξγ〉 + 〈γ̇, φAMγ̇〉 = 1
2
〈γ̇, (φAM − AMφ)γ̇〉,

because AM is symmetric and φ is skew-symmetric. Therefore the structure torsion for each
trajectory is a constant function if AM and φ are simultaneously diagonalizable.

We denote by ι : M → M̃ an isometric immersion. For a curve γ on M we have a curve
ι ◦ γ on M̃. We call this the extrinsic shape of γ, and denote it also by γ for the sake of
simplicity. In this paper we study extrinsic shapes of trajectories on a geodesic sphere G(r)
of radius r (0 < r < π/

√
c) in CPn(c). It is well known that the characteristic vector ξp at

each point p ∈ M = G(r) is a principal curvature vector associated with δM =
√

c cot
(√

c r
)
,

and that each tangent vector orthogonal to ξp is a principal curvature vector associated with
λM =

(√
c/2
)

cot
(√

c r/2
)
. In particular, its shape operator and its characteristic tensor are

simultaneously diagonalizable, hence each trajectory has constant structure torsion. By ap-
plying Gauss and Weingarten formulae, for a trajectory γ for Fκ on G(r) we have
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∇̃γ̇γ̇ = κφγ̇+{λM(1 − ρ2
γ) + δMρ

2
γ

}
 ,

∇̃γ̇∇̃γ̇γ̇ = κJ∇̃γ̇γ̇+{λM(1 − ρ2
γ) + δMρ

2
γ − κργ

}∇̃γ̇
= −{κ2(1 − ρ2

γ) + {λM + (δM − λM)ρ2
γ}2
}
γ̇

+
{
λM − κργ + (δM − λM)ρ2

γ

}{
κ + (δM − λM)ργ

}
(ργγ̇ − ξγ).

We shall call a curve on a real hypersurface extrinsic circular if its extrinsic shape is a circle
of positive geodesic curvature. In view of the above computation we get the following.

Lemma 1. A trajectory γ for Fκ on a geodesic sphere G(r) in CPn(c) is extrinsic circular
if and only if it satisfies one of the following conditions:

1) ργ = ±1,
2) λM − κργ + (δM − λM)ρ2

γ = 0,
3) κ + (δM − λM)ργ = 0.

Corresponding to each case, the geodesic curvature kγ and the complex torsion τγ of the
extrinsic shape are as follows:

1) kγ = δM, τγ = ∓1,
2) kγ = |κ|, τγ = −sgn(κ),

3) kγ =
√
κ2 − 2λMκργ + λ

2
M, τγ = (2κρ2

γ − κ − λMργ)/kγ.

A geodesic sphere G(r) in CPn(c) of radius r > (2/
√

c) sin−1(√6/3
)

is known as a Berger
sphere. Its sectional curvatures lie in the interval [εK,K] with some ε ∈ (0, 1/9), and it has
closed geodesics of length less than 2π/

√
K. It is known that their structure torsions are

±1. Hence extrinsic shapes of these geodesics are circles by Lemma 1. We should note that
every trajectory γ of structure torsion ±1 for an arbitrary Sasakian magnetic field Fκ is a
geodesic because φ(γ̇) = 0.

4. Extrinsic circular trajectories in the moduli space of circles

4. Extrinsic circular trajectories in the moduli space of circles
In the first and the second cases in Lemma 1, the absolute values of complex torsions

of extrinsic shapes are 1. We hence study the third case. For a geodesic sphere M = G(r)
in CPn, we denote by (M) the moduli space of extrinsic circular trajectories of third type
in Lemma 1 for some Sasakian magnetic field on M (for congruency of trajectories for
Sasakian magnetic fields, see [3]). Since isometries of M is equivariant, that is for each
isometry ϕ of M there is an isometry ϕ̃ of CPn satisfying ι ◦ ϕ = ϕ̃ ◦ ι with an isometric
immersion ι : M → CPn, we see that extrinsic shapes of two curves on M are congruent
to each other in CPn if they are congruent to each other in M. Therefore we have a map of
(M) into the moduli space 

(
CPn(c)

)
of circles of positive geodesic curvature. From now

on we use (M) together with its image through this map.
First we study how (M) is included in 

(
CPn(c)

)
. As we have δM −λM = −c/(4λM), in

the case that 4κλM = cργ, we see by Lemma 1 that the geodesic curvature and the complex
torsion of the extrinsic shape of circular trajectory γ are expressed as

(4.1) kγ =

√
λ2

M −
cρ2
γ

2
+

c2ρ2
γ

16λ2
M

, τγ =
ργ(2cρ2

γ − c − 4λ2
M)

4λMkγ
.
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When λM =
√

2c/4, we have by (4.1) that kγ = λM and τγ = 4ρ3
γ − 3ργ. If we vary the

parameter of structure torsion ργ in the interval [−1, 1] we find τγ takes all the values in the
interval [−1, 1]. In this case, we find that the map of (M) into 

(
CPn(c)

)
is three to one

on the image. When λM �
√

2c/4, the first equality of (4.1) shows that the map of (M) into

(
CPn(c)

)
is one to one onto the image, hence we may consider that (M) is the subset of


(
CPn(c)

)
. In this case, by substituting the first equality of (4.1) to the second, we have

(4.2) τ2
γ =

(k2
γ − λ2

M)(32λ2
Mk2
γ + 4cλ2

M − c2)2

c(c − 8λ2
M)3k2

γ

.

Here, as |ργ| ≤ 1, the first equality of (4.1) shows that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λM ≤ kγ ≤ c/(4λM) − λM

(
= −δM

)
, when λM <

√
2c/4,

c/(4λM) − λM ≤ kγ ≤ λM, when
√

2c/4 < λM <
√

c/2,

λM − c/(4λM) ≤ kγ ≤ λM, when λM ≥ √c/2.

We consider the right hand side of (4.2) as a function g(K) = g(K; λM) on K = k2
γ. We then

have

dg
dK
=
λ2

M(8K − c)(8K + c − 4λ2
M)(32λ2

MK + 4cλ2
M − c2)

c(c − 8λ2
M)3K2

.

Hence we find the following.
1) When λM <

√
2c/4, the function g is monotone increasing with respect to K in the

intervals
[
λ2

M, c/8
] ∪ [(c(c − 4λ2

M)/(32λ2
M), (−δM)2], and is monotone decreasing in

the interval
[
c/8, (c(c − 4λ2

M)/(32λ2
M)
]
. We have

g(λ2
M) = g

(c(c − 4λ2
M)

32λ2
M

)
= 0, g

( c
8

)
= g
(
(−δM)2) = 1.

2) When
√

2c/4 < λM <
√

c/2, the function g is monotone decreasing with respect to K
in the intervals

[
(−δM)2, c(c−4λ2

M)/(32λ2
M)
]∪ [c/8, λ2

M
]
, and is monotone increasing

in the interval
[
c(c − 4λ2

M)/(32λ2
M), c/8

]
.

3) When
√

c/2 ≤ λM <
√

2c/2, the function g is monotone decreasing with respect to
K in the intervals

[
δ2M, (4λ

2
M − c))/8

] ∪ [c/8, λ2
M
]
, and is monotone increasing in the

interval
[
(4λ2

M − c))/8, c/8
]
. We have

g
(4λ2

M − c
8

)
=

(4λ2
M + c)3(4λ2

M − c)

c(8λ2
M − c)3

,

which satisfies 0 ≤ g((4λ2
M − c)/8

)
< 1 and is monotone increasing with respect to

λM.
4) When λM ≥

√
2c/2, the function g is monotone decreasing with respect to K in the

interval [δ2M, λ
2
M].

Thus for M = G(r), the moduli space (M) in 
(
CPn(c)

)
is like the following figures (Figs.

2 – 5) corresponding to λM =
(√

c/2
)

cot
(√

c r/2
)
.

Next we study the behavior of 
(
G(r)
)

when we vary the radius r. We consider the right
hand side of (4.2) as a function h(Λ) = h(Λ; kγ) on Λ = λ2

M. We then have
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Fig.2. λM <
√

2c/4 Fig.3.
√

2c/4 < λM <
√

c/2

Fig.4.
√

c/2 ≤ λM <
√

2c/2 Fig.5. λM ≥
√

2c/2

dh
dΛ
=

(8k2
γ − c)2(32k2

γΛ + 4cΛ − c2)(4Λ + c)

c(8Λ − c)4k2
γ

.

When Λ > c/4, as 32k2
γΛ + 4cΛ − c2 > 0, we have dh/dΛ > 0, and when Λ < c/4 we

see dh/dΛ changes its signature at Λ = c2/(32k2
γ + 4c). That is, when λM >

√
c/2, the

function h(Λ; kγ) is increasing with respect to Λ for each kγ, and when λM <
√

c/2 and
λM �

√
2c/4, there is k∗ satisfying that h(Λ; kγ) is decreasing with respect to Λ if kγ < k∗

and is increasing with respect to Λ if kγ > k∗. As we have λ2
M = c2/(32k2∗ + 4c), we

see k∗ >
√

2c/4 when λM <
√

2c/4 and k∗ <
√

2c/4 when
√

2c/4 < λM <
√

c/2. Since
cot
(√

c r/2
)

is monotone decreasing with respect to r, if we take two geodesic spheres M =
G(r1), M′ = G(r2) (r1 > r2) so that the difference r1 − r2 of their radii is sufficiently small,
their moduli curves (M),(M′) of extrinsic circular trajectories are as Figs. 6 – 9.

Fig.6. λM < λM′ <
√

2c/4 Fig.7.
√

2c/4 < λM < λM′ <
√

c/2

We divide the moduli space 
(
CPn(c)

)
into three subsets −(CPn)∪√

2c/4∪+(CPn),
where −(CPn) is the moduli space of circles of geodesic curvature less than

√
2c/4, and

+(CPn) is the moduli space of circles of geodesic curvature greater than
√

2c/4. For each
k with k <

√
2c/4, if we vary λ in the interval (0, k], we see τ2(λ, k) = (k2 − λ2)(32k2λ2 +

4cλ2 − c2)2/{c(c − 8λ2)3k2} varies monotone decreasingly in the interval [0, 1). Hence
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Fig.8.
√

c/2 ≤ λM < λM′ <
√

2c/2 Fig.9. λM′ > λM ≥
√

2c/2{
(M) ∩−(CPn)

∣∣∣ λM <
√

2c/4
}

is a foliation of −(CPn) \ {[γ(k, 1)]
∣∣∣ k <

√
2c/4
}
.

If we vary λ in the interval
[(−k +

√
k2 + c

)
/2, c/

{
2
√

8k2 + c
}]

, we see τ2(λ, k) varies mono-
tone decreasingly in the interval [0, 1]. Hence

{
(M) ∩−(CPn)

∣∣∣ √2c/4 < λM <
√

2c/2
}

covers −(CPn). On the other hand, for each k with k >
√

2c/4, if we vary λ in the
interval

[
k,
(
k +
√

k2 + c
)
/2
]
, we see τ2(λ, k) varies monotone increasingly in the interval

[0, 1]. Hence
{
(M) ∩+(CPn)

∣∣∣ λM >
√

2c/4
}

is a foliation of +(CPn). If we vary
λ in the interval (0, k], we see τ2(λ, k) takes all the values in the interval [0, 1]. Hence{
(M)∩+(CPn)

∣∣∣ λM <
√

2c/4
}

covers +(CPn). Summarizing up we get the following.

Theorem 1. (1) The family
{

(
G(r)
) ∩−(CPn)

∣∣∣ r > (2/
√

c) sin−1√2/3
}

forms a
foliation of −(CPn) \ {[γ(k, 1)]

∣∣∣ k < √2c/4
}
.

(2) The family
{

(
G(r)
) ∩+(CPn)

∣∣∣ r > (2/
√

c) sin−1√2/3
}

covers +(CPn).
(3) 

(
G((2/

√
c) sin−1√2/3 )

)
=√

2c/4.
(4) The family

{

(
G(r)
) ∩+(CPn)

∣∣∣ r < (2/
√

c) sin−1√2/3
}

forms a foliation of
+(CPn).

(5) The family
{

(
G(r)
) ∩−(CPn)

∣∣∣ 2√
c sin−1 1√

3
< r < 2√

c sin−1
√

2
3

}
covers −(CPn).

5. A characterization of the geodesic sphere

5. A characterization of the geodesic sphere
In the previous section we see that in CPn(c) geodesic spheres of radius r =

(2/
√

c) sin−1√2/3 have a specific property on extrinsic circular trajectories. In this section
we give its characterizations among real hypersurfaces in CPn from this point of view.

We take a trajectory γ for Fκ on a general real hypersurface M of a Kähler manifold M̃.
By use of Gauss and Weingarten formulae, its extrinsic shape satisfies

∇̃γ̇γ̇ = κφγ̇ + 〈AMγ̇, γ̇〉 = κJγ̇ +
(〈AMγ̇, γ̇〉 − κρ) ,(5.1)

∇̃γ̇∇̃γ̇γ̇ = −κ2γ̇ − (〈AMγ̇, γ̇〉 − κρ)(AMγ̇ + κξ) +
d
dt
(〈AMγ̇, γ̇〉 − κρ) .(5.2)

Thus, if the extrinsic shape of γ is a circle of geodesic curvature kγ, as we have ∇̃γ̇∇̃γ̇γ̇ =
−k2
γγ̇, we obtain the following by (5.1) and by comparing (5.2) with this equality:

k2
γ = κ

2(1 − ρ2
γ) + 〈AMγ̇, γ̇〉2,(5.3)

(k2
γ − κ2)γ̇ =

(〈AMγ̇, γ̇〉 − κργ)(AMγ̇ + κξ).(5.4)

A real hypersurface M is said to be Hopf if its characteristic vector field ξ is principal at
each point of M. It is known that the principal curvature associated with the characteristic
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vector field of a Hopf real hypersurface in CPn is locally constant ([10]). We here consider
the following condition at p ∈ M:

(ET) The extrinsic shape of a trajectory γ0 for some Sasakian magnetic field Fκ0 with
γ̇0(0) = ξp is a circle of geodesic curvature kγ0 � |κ0|.

Theorem 2. A connected real hypersurface M in a complex projective space CPn(c) of
constant holomorphic sectional curvature c is locally congruent to the geodesic sphere of
radius r = (2/

√
c) sin−1√2/3 if and only if the following conditions hold:

i) At each point of p ∈ M,
a) the condition (ET) holds,
b) there exist constants κp, ρp with κp � 0,

√
2c/4 and |ρp| < 1 and linearly in-

dependent unit tangent vectors v1, . . . , v2n−2 ∈ UpM with 〈vi, ξp〉 = ρp which
satisfy that the extrinsic shapes of trajectories γi (i = 1, . . . , 2n−2) for Fκp with
γ̇i(0) = vi are circles of geodesic curvature ki � |κp|;

ii) There is a trajectory whose extrinsic shape is a circle of geodesic curvature
√

2c/4
and of complex torsion τ � ±1.

Proof. We are enough to show the “if” part. By the first condition, we have from (5.3)
and (5.4) that

kγ0 = |〈AMγ̇, γ̇〉| and k2
γ0
ξp =

(〈AMξp, ξp〉 − κ0)AMξp + κ0〈AMξp, ξp〉ξp.

As kγ0 � |κ0|, we find that ξp is principal. We denote by δp the principal curvature associated
with ξp, which is locally constant.

By the second condition we decompose the both sides of (5.4) to components parallel to
ξp and orthogonal to it, and get the following:

(k2
i − κ2p)ρp =

(〈AM(vi−ρpξp), vi−ρpξp〉 + δpρ
2
p − κpρp

)
(ρpδp + κp),(5.5)

(k2
i −κ2p)(vi−ρpξp) =

(〈AM(vi−ρpξp), vi−ρpξp〉+δpρ
2
p−κpρp

)
AM(vi−ρpξp).(5.6)

Since ki � |κp|, by (5.6) we find that vi − ρpξp is principal. We denote by αi the principal
curvature of vi − ρpξp. Then (5.5) and (5.6) turn to

(k2
i − κ2p)ρp =

{
αi(1 − ρ2

p) + ρ2
pδp − κpρp

}
(ρpδp + κp),(5.7)

k2
i − κ2p =

{
αi(1 − ρ2

p) + ρ2
pδp − κpρp

}
αi.(5.8)

Hence we have ρpαi = ρpδp + κp. If ρp = 0, we see κp = 0, which is a contradiction. Thus
we have ρp � 0 and obtain αi = δp + (κp/ρp). We hence have α1 = · · · = α2n−2 (= αp).
This shows that all tangent vectors at p which are orthogonal to ξp are principal. Due to the
classification of homogeneous Hopf real hypersurfaces in CPn by Takagi [16], we find that
M is locally congruent to a geodesic sphere. Thus the third condition shows that the radius
is r = (2/

√
c) sin−1√2/3. �

In order to study more about geodesic spheres of special radius, we need to recall prin-
cipal curvatures of homogeneous real hypersurfaces in CPn(c). Such real hypersurfaces are
classified by Takagi [16]. A homogeneous real hypersurface in CPn(c) is congruent to one
of the following:
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1) a geodesic sphere G(r) of raius r (0 < r < π/
√

c),
2) a tube T�(r) of radius r (0 < r < π/

√
c) around totally geodesic CP� (1 ≤ � ≤ n− 2),

3) a tube Q(r) of radius r (0 < r < π/(2
√

c)) around complex hyperquadric CQn−1,
4) tubes of radius r (0 < r < π/(2

√
c)) around CP1 × CP(n−1)/2, G2,5(C) and

SO(10)/U(5).
The principal curvature δM corresponding to ξ is δM =

√
c cot

√
c r. When M = T�(r), it has

two principal curvatures

λ(1)
M =

(√
c/2
)

cot
(√

c r/2
)

and λ(2)
M = −

(√
c/2
)

tan
(√

c r/2
)

for tangent vectors orthogonal to ξ. When M = Q(r), it also has two principal curvatures

λ(1)
M =

√
c

2
cot
(√c

2
r − π

4

)
and λ(2)

M =

√
c

2
cot
(√c

2
r +
π

4

)
for tangent vectors orthogonal to ξ. For other homogeneous real hypersurfaces, they have
four principal curvatures

λ(1)
M =

√
c

2
cot
(√c

2
r − π

4

)
, λ(2)

M =

√
c

2
cot
(√c

2
r +
π

4

)
,

λ(3)
M =

√
c

2
cot
√

c r
2
, λ(4)

M = −
√

c
2

tan
√

c r
2

for tangent vectors orthogonal to ξ. It is known that a Hopf real hypersurface all of whose
principal curvatures are constant in CPn is homogeneous.

Theorem 3. A connected real hypersurface M in a complex projective space CPn(c) of
constant holomorphic sectional curvature c is locally congruent to the geodesic sphere of
radius r = (2/

√
c) sin−1√2/3 if and only if it satisfies the following conditions with some

constant κ with |κ| � √2c/4 at each point p ∈ M :
i) The condition (ET) holds;

ii) There exist linearly independent tangent vectors v1, . . . , v2n−2 ∈ UpM satisfying that
the extrinsic shapes of trajectories γi (i = 1, . . . , 2n − 2) for Fκ with γ̇i(0) = vi are
circles of geodesic curvature

√
2c/4 and of complex torsion τi � ±1.

Proof. We are enough to show the “if” part. By the first condition we see M is a Hopf
hypersurface. We denote by δM the principal curvature associated with ξ. We put ρi =

〈vi, ξp〉. As |κ| � √2c/4, we find along the same lines as of the proof of Theorem 2 that each
vi − ρiξp is principal and that αiρi = δMρi + κ with the principal curvature αi of vi − ρiξp.
Moreover, (5.3) shows

(5.9) c/8 = κ2(1−ρ2
i ) +
{
αi + (δM − αi)ρ2

i
}2
.

When ρi = 0, we have κ = 0. (5.9) shows that αi = ±
√

2c/4. When ρi � 0, substituting
αi = δM + (κ/ρi) into (5.9), we find that ρi satisfies the following equation

2κδMρ
3
i + {(c/8) + κ2 − δM}ρ2

i − 2κδMρi − κ2 = 0.

Thus ρi is one of the three solutions of this cubic equation. Therefore, by perturbation theory
([9]) we find that each αi is locally constant. This means that M is a Hopf real hypersurface
all of whose principal curvatures are constant.
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We shall check that homogeneous real hypersurfaces except geodesic spheres of radius
r = (2/

√
c) sin−1√2/3 do not satisfy the second condition. We take v1, . . . , v2n−2 ∈ UpM

as in the second condition. By the above argument, we see that vi − ρiξp with ρi = 〈vi, ξp〉
is principal. We denote by λi the principal curvature of vi − ρiξp. As v1 − ρ1ξp, . . . , v2n−2 −
ρ2n−2ξp span the tangent space T 0

p M orthogonal to ξp, these λ1, . . . , λ2n−2 are all the principal
curvatures for T 0

p M. Let γi denote the trajectory for Fκ with γ̇i(0) = vi. Since the complex
torsion τi of the extrinsic shape of γi is not ±1, by (5.1), (5.3) and by the same computation
as for Lemma 1 we have

κ + (δM − λi)ρi = 0,(5.10)

c/8 = κ2 − 2λiκρi + λ
2
i ,(5.11)

τi = 4(2κρ2
i − κ − λiρi)/

√
2c.(5.12)

When M = G(r) with r � (2/
√

c) sin−1√2/3, we see in §4 that if the extrinsic shape of
an extrinsic circular trajectory has geodesic curvature

√
2c/4 then its complex torsion is ±1,

hence it does not satisfy the second condition.
When M = T�(r) we have δM = λ

(1)
M +λ

(2)
M , λ

(2)
M = −c/(4λ(1)

M ), in particular one of λ(1)
M , λ

(2)
M

is not
√

2c/4. For a circular trajectory γi corresponding to λi �
√

2c/4 we have τ2
i = 1

by the same computation for (4.2). This is a contradiction. Hence T�(r) does not satisfies
the second condition. Similarly, when M is one of tubes around CP1 × CP(n−1)/2, G2,5(C)
and SO(10)/U(5), then λ(3)

M , λ
(4)
M satisfy δM = λ

(3)
M + λ

(4)
M , λ

(4)
M = −c/(4λ(3)

M ). Hence we can
conclude that it does not satisfy the second condition neither.

When M = Q(r), we have

λ(1)
M = (

√
c/2)ν, λ(2)

M = −(
√

c/2)ν−1, δM = −2
√

c/(ν − ν−1)

with ν = cot
(√

c r/2
)
. When λi = λ

(1)
M , we have κ =

√
c(ν2 + 3)ρi/{2(ν − ν−1)}. Substituting

this into (5.11) we find

κ2 = c(2ν2 − 1)(ν2 + 3)/{8(ν2 − 5)}.
When λi = λ

(2)
M , we have κ =

√
c(3+ ν−2)ρi/{2(ν− ν−1)}. Substituting this into (5.11) we find

κ2 = c(ν2 − 2)(3ν2 + 1)/{8ν2(5ν2 − 1)}.
Comparing these we obtain

0 = ν2(5ν2 − 1)(2ν2 − 1)(ν2 + 3) − (ν2 − 5)(ν2 − 2)(3ν2 + 1) = 10(ν2 + 1)3(ν2 − 1).

Since 0 < r < π/
(
2
√

c
)
, we have ν > 1. Hence, the above is a contradiction. Thus Q(r) does

not satisfies the second condition. �
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