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Abstract
This paper deals with necessary conditions for the existence of equivariant maps between the

unit spheres of unitary representations of a cyclic p-group G. T. Bartsch gave a necessary
condition for some unitary representations of G by using equivariant K-theory. We give two
necessary conditions following Bartsch’s approach. One is a generalization of Bartsch’s result
for any unitary representation of G which does not contain the trivial representation. The other
is a stronger necessary condition for some special cases.

1. Introduction

1. Introduction
The Borsuk-Ulam theorem asserts that if there exists a continuous map from S m to S n

commuting with the antipodal map, then n − m is greater than or equal to 0. One way to
generalize this theorem is to consider equivariant maps between the unit spheres of repre-
sentations of a given group. The unit sphere of a representation is called a representation
sphere.

Bartsch [2] showed the following theorem for some unitary representation spheres of a
cyclic p-group. (Note that Vick [10], Munkholm and Nakaoka [8] also obtained a similar
result for equivariant maps from a lens space to a representation sphere.) Let p be a prime,
N be a positive integer, and G be the cyclic group of order pN with a generator g0. For an
integer α, let Uα be the 1-dimensional unitary representation (C, ρα) of G which is defined
by ρα : G → C× with ρα(g0) = ζα, where ζ is the complex number exp(2π

√−1/pN). We
denote by Uα,k the direct sum of k-copies of Uα and S (Uα,k) the unit sphere of Uα,k.

Theorem 1.1 ([10] Corollary 3.3, [8] Theorem 4, [2] §§2 and 3). If there exists a G-
equivariant map from S (U1,m) to S (UpN−1,n), then we have

pN−1(n − 1) − (m − 1) ≥ 0.

Bartsch proved Theorem 1.1 by using equivariant K-theory and the K-theory Euler
classes. In the study of equivariant maps between representation spheres, this method was
originally used by Atiyah and Tall [1], and developed by Liulevicius [6], Bartsch [2], and
Komiya [3, 4, 5].

In this paper, we give two necessary conditions for the existence of G-equivariant maps
between unitary representation spheres of G. One is a generalization of Theorem 1.1 for
any unitary representations of G which does not contain the trivial representation. The other
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is a stronger estimate for some special cases. In the proof we use equivariant K-theory,
the K-theory Euler classes and elementary properties of cyclotomic polynomials following
Bartsch [2] and Komiya [3, 5].

This paper is organized as follows. In §2, we prepare notations and state our main results.
The rest of this paper is devoted to the proof of the results. In §3.1, we recall a theorem of
Atiyah and Tall, and apply this theorem to unitary representation spheres of cyclic p-groups
(Proposition 3.4). This yields a necessary condition for the existence of equivariant maps
between them. Then we state Propositions 3.5 and 3.6, which give explicit consequences
from the condition in Proposition 3.4. In the rest of §3, we prove the main results assuming
Propositions 3.5 and 3.6. Section 4 is devoted to the proofs of Propositions 3.5 and 3.6. In
the appendix, we collect properties of cyclotomic polynomials which are used throughout
this paper.

2. Main results

2. Main results
In this paper we use the following notations. Let p be a prime and let G be the cyclic

group of order pN , N ≥ 1. Let V and W be non-zero unitary representations of G with
VG = WG = 0. For 0 ≤ i ≤ N, let Cpi denote the unique subgroup of G of order pi. The
unit spheres of V and W will be denoted by S (V) and S (W) respectively and the sets of all
fixed points of V and W by the action of Cpi will be denoted by VCpi and WCpi respectively.
We use the symbol ϕ to denote Euler’s phi function and use the symbol vp to denote the
p-adic valuation. Let Φd(x) denote the d-th cyclotomic polynomial and let φ(n)

pa,i denote the
coefficients of the following expansion:

Φpa(x)n =

nϕ(pa)∑
i=0

φ(n)
pa,i(x − 1)i.

Definition 2.1. (1) We define an integer NV to be the largest integer n such that VCpn

is not zero.
(2) For 0 ≤ i ≤ N, let di(V) be the complex dimension of VCpi .
(3) We define an integer d(V) by

d(V) :=
NV∑
i=0

ϕ(pi)(di(V) − 1).

Remark 2.2. The integer d(V) satisfies d(V) ≥ dimC V − 1 and if G acts freely on S (V),
then d(V) = dimC V − 1. Note that we assume V is not zero.

The following theorems are main results of this paper. Theorem 2.3 is a generalization of
Theorem 1.1.

Theorem 2.3. If there exists a G-equivariant map from S (V) to S (W), then we have

d(W) − d(V) ≥ 0.

Theorem 2.4. Suppose d0(V) > d0(W) and suppose that there exists an integer a such
that

(1) 1 ≤ a ≤ NW,
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(2) di(V) = di(W) for i � 0, a,
(3) pNW−(a−1) ≥ N − NW.

Let m and n be the integers defined by

m = d0(V) − d0(W), n = da(W) −max
{
da(V), 1

}
.

If there exists a G-equivariant map from S (V) to S (W), then the integer n is positive and we
have

vp
(
φ(n)

pa,m−1
) ≥ N − NW .

In the case a = 1 and N − NW = 2, we obtain the following explicit estimate.

Corollary 2.5. Suppose N − NW = 2 and suppose that V and W satisfy

(1) d0(V) > d0(W),
(2) max{d1(V), 1} � d1(W) mod p,
(3) di(V) = di(W) for i = 2, . . . ,N.

If there exists a G-equivariant map from S (V) to S (W), then we have

d(W) − d(V) ≥ ϕ(p).

Remark 2.6. In the case N = 2, Stolz [9] and Meyer [7] gave stronger results than Theo-
rem 2.3 by using stable cohomotopy theory. More precisely, let vp,N(m) (resp. sk(m)) define
to be the minimum number n such that there exists a G-equivariant map from S (U1,m) to
S (UpN−1,n) (resp. S n−1). Here G acts on S n−1 by the antipodal map. Stolz showed that
s(1) = 1 and s2(m), m ≥ 2 are given by

s2(m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
m + 1 if m ≡ 0, 2 mod 8,

m + 2 if m ≡ 1, 3, 4, 5, 7 mod 8,

m + 3 if m ≡ 6 mod 8.

For an odd prime p, Meyer showed that vp,2(1) = 1 and vp,2(m), m ≥ 2 satisfies
〈m − 2

p

〉
+ 1 ≤ vp,2(m) ≤

〈m − 2
p

〉
+ 2 if m � 2 mod p,

vp,2(m) =
m − 2

p
+ 2 if m ≡ 2 mod p,

where the symbol 〈x〉 denotes the smallest integer bigger than or equal to x.

3. Proofs of main results

3. Proofs of main results
We prepare three propositions in §3.1 and by using the propositions, we prove Theorems

2.3, 2.4 in §§3.2, 3.3 and Corollary 2.5 in §3.4.

3.1. Reduction to algebraic problems.
3.1. Reduction to algebraic problems. We recall the definition of the K-theory Euler

class and a theorem of Atiyah and Tall [1]. For a complex representation U of a finite group
H, the K-theory Euler class e(U) of U is defined by the formula
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e(U) =
dim U∑

i=0

(−1)i[ΛiU] ∈ R(H),

where R(H) denotes the complex representation ring of H and [ΛiU] is the isomorphism
class of the i-th exterior power ΛiU of U. The next theorem is due to Atiyah and Tall.

Theorem 3.1 ([1], Part IV, §1). Let V and W be unitary representations of H. If there
exists an H-equivariant map from S (V) to S (W), then e(V) divides e(W) in R(H).

We will write down concretely the divisibility condition of the K-theory Euler classes of
Theorem 3.1 for the cyclic group G of order pN . In order to do this, we will use a ring
isomorphism f : R(G)→ Z[x]/(xpN − 1) defined by

(3.1) f
(
[Uα]

)
= [xα],

where Uα is the 1-dimensional unitary representation of G defined by the correspondence
g0 
→ ζα, where g0 is a generator of G and ζ is the complex number exp

(
2π
√−1/pN)

.

Lemma 3.2. For any unitary representation U of G, there exists a unitary representation
U′ of G with the following properties:

(1) There exist G-equivariant maps from S (U) to S (U′) and from S (U′) to S (U).
(2) The K-theory Euler class e(U′) satisfies

f
(
e(U′)

)
= (−1)dim U

⎡⎢⎢⎢⎢⎢⎢⎣
NU∏
i=0

Φpi(x)di(U)

⎤⎥⎥⎥⎥⎥⎥⎦ .
Proof. Let ai, 0 ≤ i ≤ NU be the non-negative integers defined by

ai := di(U) − di+1(U).

Note that the sequence {di(U)}NU
i=0 satisfies

d0(U) ≥ d1(U) ≥ · · · ≥ dNU (U) > dNU+1(U) = 0.

Then we define U′ to be the unitary representations of G of the forms

U′ = a0U1 ⊕ a1Up ⊕ · · · ⊕ aNU UpNU .

First we show that the unitary representation U′ satisfies the condition (1). Since {Uα |
1 ≤ α ≤ pN} gives a complete set of irreducible representations of G, we can take irreducible
decomposition of U as follows:

U = Uα1 ⊕ · · · ⊕ Uαdim U , 1 ≤ αk ≤ pN .

Note that U′ can be written as

U′ = U(α1)p ⊕ · · · ⊕ U(αdim U )p ,

where (αk)p denotes the largest power of p that divides αk. Since the correspondence z 
→ za

defines a G-equivariant map S (Uγ)→ S (Uδ) for any integers γ, δ and a with δ ≡ aγ mod pN ,
we have G-equivariant maps

ϕk : S (U(αk)p)→ S (Uαk ), ψk : S (Uαk )→ S (U(αk)p)
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for 1 ≤ k ≤ dim U. The join of the equivariant maps ϕk, 1 ≤ k ≤ dim U gives a G-equivariant
map

ϕ : S (U′) � S (U(α1)p) ∗ · · · ∗ S (U(αdim U )p)→ S (Uα1 ) ∗ · · · ∗ S (Uαdim U ) � S (U),

where ∗ denotes the topological join. A similar construction for (ψk)dim U
k=1 gives a G-

equivariant map ψ : S (U)→ S (U′).
Next we show that the unitary representation U′ satisfies the condition (2). From the

multiplicativity of the K-theory Euler class, it is easy to see that

f
(
e(U′)

)
= (−1)dim U

⎡⎢⎢⎢⎢⎢⎢⎣
NU∏
k=0

(xpk − 1)ak

⎤⎥⎥⎥⎥⎥⎥⎦ .
Hence it is sufficient to show

NU∏
k=0

(xpk − 1)ak =

NU∏
i=0

Φpi(x)di(U).

This equation follows from

NU∏
k=0

(xpk − 1)ak =

NU∏
k=0

k∏
j=0

Φp j(x)ak =

NU∏
i=0

Φpi(x)ai+···+aNU =

NU∏
i=0

Φpi(x)di(U).

�

We also state the next lemma which we will use frequently in our argument.

Lemma 3.3. Let R be an integral domain and a, x, y and z be elements of R.

(1) Suppose that a is not zero. Then ax ∈ (ay, az) if and only if x ∈ (y, z).
(2) Suppose that a is a prime element of R and y � (a). Then ax ∈ (y, az) if and only if

x ∈ (y, z).

We omit the proof of this lemma since it is straightforward. From Theorem 3.1 and
Lemma 3.2, we obtain the following proposition.

Proposition 3.4. Let V and W be unitary representations of G with VG = WG = 0. If
there exists a G-equivariant map from S (V) to S (W), then we have

(3.2)
NW∏
j=0

Φp j(x)d′j(W) ∈
⎛⎜⎜⎜⎜⎜⎜⎝

NV∏
i=0

Φpi(x)d′i (V),ΦpNW+1 (x) · · ·ΦpN (x)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where d′i (V) and d′j(W) are defined by d′i (V) := di(V) − 1, d′j(W) := d j(W) − 1.

Proof. From Lemma 3.2, there exist unitary representations V ′ and W ′ of G with the
following properties:

(1) There exist G-equivariant maps from S (V ′) to S (V) and from S (W) to S (W ′).
(2) By the ring isomorphism f of (3.1), the K-theory Euler classes e(V ′) and e(W ′)

correspond to

(−1)dim V

⎡⎢⎢⎢⎢⎢⎢⎣
NV∏
i=0

Φpi(x)di(V)

⎤⎥⎥⎥⎥⎥⎥⎦ , (−1)dim W

⎡⎢⎢⎢⎢⎢⎢⎣
NW∏
j=0

Φp j(x)d j(W)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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respectively.
Since we assume the existence of a G-equivariant map from S (V) to S (W), we obtain a
G-equivariant map from S (V ′) to S (W ′). Theorem 3.1 implies that e(V ′) divides e(W ′) in
R(G). From the condition (2), we obtain

(3.3)
NW∏
j=0

Φp j(x)d j(W) ∈
⎛⎜⎜⎜⎜⎜⎜⎝

NV∏
i=0

Φpi(x)di(V), xpN − 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
By the existence of a G-equivariant map from S (V) to S (W) and WG = 0, we have the
inequalities NV ≤ NW < N. Then the required relation (3.2) follows immediately from
repeated application of Lemma 3.3 to the relation (3.3). �

The next algebraic propositions give explicit consequences from the relation (3.2) in
Proposition 3.4. The proofs are given in §4.

Proposition 3.5. Let k, k′ and � be non-negative integers with max{k, k′} < � and let mi

and n j be non-negative integers for 0 ≤ i ≤ k, 0 ≤ j ≤ k′. Then

(3.4)
k′∏
j=0

Φp j(x)n j ∈
⎛⎜⎜⎜⎜⎜⎜⎝

k∏
i=0

Φpi(x)mi ,Φp�(x)

⎞⎟⎟⎟⎟⎟⎟⎠
if and only if

k∑
i=0

ϕ(pi)mi ≤
k′∑
j=0

ϕ(p j)n j.

Proposition 3.6. Let N1,N2 and a be positive integers satisfying a ≤ N1 < N2 and
pN1−(a−1) ≥ N2 − N1. If non-negative integers m and n satisfy

(3.5) Φpa(x)n ∈ (Φ1(x)m,ΦpN1+1 (x) · · ·ΦpN2 (x)),

then

vp

(
φ(n)

pa,m−1

)
≥ N2 − N1.

Here we set φ(n)
pa,−1 := 0.

Remark 3.7. In fact, the converse of Proposition 3.6 is also true. However we omit the
proof of the converse since it is not needed for our purpose.

3.2. Proof of Theorem 2.3.
3.2. Proof of Theorem 2.3. From Proposition 3.4, we have

NW∏
j=0

Φp j(x)d′j(W) ∈
⎛⎜⎜⎜⎜⎜⎜⎝

NV∏
i=0

Φpi(x)d′i (V),ΦpN (x)

⎞⎟⎟⎟⎟⎟⎟⎠ .
Applying Proposition 3.5, we obtain the required inequality

d(V) =
NV∑
i=0

ϕ(pi)d′i (V) ≤
NW∑
j=0

ϕ(p j)d′j(W) = d(W).

This completes the proof. �
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3.3. Proof of Theorem 2.4.
3.3. Proof of Theorem 2.4. It follows from Proposition 3.4 that

NW∏
j=0

Φp j(x)d′j(W) ∈
⎛⎜⎜⎜⎜⎜⎜⎝

NV∏
i=0

Φpi(x)d′i (V),ΦpNW+1 (x) · · ·ΦpN (x)

⎞⎟⎟⎟⎟⎟⎟⎠
In view of the assumptions d0(V) > d0(W) and (2) of Theorem 2.4, it follows from Lemma
3.3 and NV ≤ NW that

(3.6) Φpa(x)d′a(W) ∈
(
Φ1(x)d0(V)−d0(W)Φpa(x)d̄a(V), ΦpNW+1 (x) · · ·ΦpN (x)

)
,

where d̄a(V) is defined to be the integer max{da(V) − 1, 0}. We show that d′a(W) is greater
than d̄a(V). For otherwise, the relation (3.6) implies that

1 ∈
(
Φ1(x)d0(V)−d0(W)Φpa(x)d̄a(V)−d′a(W), ΦpN (x)

)
,

and hence d0(V) = d0(W), contradicting the assumption d0(V) > d0(W). Combining Lemma
3.3 and the inequality d̄a(V) < d′a(W), the relation (3.6) yields

(3.7) Φpa(x)d′a(W)−d̄a(V) ∈
(
Φ1(x)d0(V)−d0(W),ΦpNW+1 (x) · · ·ΦpN (x)

)
.

Note that

d′a(W) − d̄a(V) = da(W) −max{da(V), 1}.
Applying Proposition 3.6 to (3.7), we obtain the required inequality. �

3.4. Proof of Corollary 2.5.
3.4. Proof of Corollary 2.5. For simplicity of notation, let d̃1(V) stand for the integer

max{d1(V), 1}. From Theorem 2.4 (the case a = 1) and the assumption N − NW = 2, it
follows

vp

(
φ(n)

p,m−1

)
≥ 2,

where m and n is given by m = d0(V)−d0(W) and n = d1(W)− d̃1(V). Lemma A.3(2) implies

(3.8) ϕ(p)
(
d1(W) − d̃1(V) − δd1(W)−d̃1(V)

) ≥ d0(V) − d0(W),

where δd1(W)−d̃1(V) is given by

δd1(W)−d̃1(V) =

⎧⎪⎪⎨⎪⎪⎩
0 d̃1(V) ≡ d1(W) mod p

1 d̃1(V) � d1(W) mod p.

The assumption (2) in Theorem 2.4 implies

(3.9) δd1(W)−d̃1(V) = 1.

By the definitions of d(V) and d(W), we have

(3.10) d(W) − d(V) = d0(W) − d0(V) + ϕ(p)
(
d1(W) − d̃1(V)

)
.

Combining (3.9) and (3.10) with (3.8), we obtain

d(W) − d(V) ≥ ϕ(p),

as required. �
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We have completed the proof of Theorems 2.3, 2.4 and Corollary 2.5 assuming Proposi-
tions 3.5 and 3.6.

4. Proofs of Propositions

4. Proofs of Propositions
In this section, we prove Propositions 3.5 and 3.6, which are used in §3.

4.1. Proof of Proposition 3.5.
4.1. Proof of Proposition 3.5. Let ζp� denote the complex number exp(2π

√−1/p�). Us-
ing a ring isomorphism Z[x]/(Φp�(x)) → Z[ζp�] defined by [x] 
→ ζp� , we can reformulate
the relation (3.4) in Proposition 3.5 as

(4.1)
k′∏
j=0

Φp j(ζp�)n j ∈
⎛⎜⎜⎜⎜⎜⎜⎝

k∏
i=0

Φpi(ζp�)mi

⎞⎟⎟⎟⎟⎟⎟⎠ .
It follows from Lemma A.1 that the relation (4.1) is equivalent to

(4.2) Φ1(ζp�)
∑k′

j=0 ϕ(p j)n j ∈ (Φ1(ζp�))
∑k

i=0 ϕ(pi)mi .

Since Φ1(ζp�) is not a unit of Z[ζp�], the relation (4.2) is equivalent to

k∑
i=0

ϕ(pi)mi ≤
k′∑
j=0

ϕ(p j)n j.

This completes the proof. �

4.2. Proof of Proposition 3.6.
4.2. Proof of Proposition 3.6. Let S be the set of all pairs of non-negative integers (m, n)

such that

Φpa(x)n ∈ (Φ1(x)m,ΦpN1+1 (x) · · ·ΦpN2 (x)).

For a positive integer α ≥ 1, let I(α)
p denote the integer ϕ(pN1+1) + · · · + ϕ(pN1+α) and we

set I(0)
p := 1. We define a sequence of integers {a j}I

(N2−N1)
p

j=0 and sequences of rational numbers
{bk}∞k=0, {c�(n)}∞�=0 as the coefficients of the following expansions:

N2∏
i=N1+1

Φpi(x) =
I(N2−N1)

p∑
j=0

a j(x − 1) j ∈ Z[x],

1∏N2
i=N1+1Φpi(x)

=

∞∑
k=0

bk(x − 1)k ∈ Q[[x]],

Φpa(x)n

∏N2
i=N1+1Φpi(x)

=

∞∑
�=0

c�(n)(x − 1)� ∈ Q[[x]].

Here Q[[x]] is the ring of formal power series with coefficients in Q. The next lemma follows
immediately from the definitions of S and {c�(n)}∞�=1.

Lemma 4.1. (m, n) ∈ S if and only if c0(n), . . . , cm−1(n) are integers.

From Lemma A.4(1), it is easy to see the following lemma.

Lemma 4.2. If I(α)
p ≤ j < I(α+1)

p , then vp(a j) ≥ N2 − (N1 + α).



EquivariantMaps Between Representation Spheres 655

For an integer k and a positive integer w, let q(k, w) be the unique integer satisfying the
inequality

q(k, w)ϕ(pw) ≤ k < {q(k, w) + 1}ϕ(pw).

Lemma 4.3. The number pN2−N1+q(k,N1+1)bk is an integer for any k ≥ 0.

Proof. We will prove the statement by induction on k ≥ 0. When k = 0, this follows from

pN2−N1b0 = a0b0 = 1 ∈ Z.
Let k ≥ 1 and suppose that the assertion is true up to k − 1. By the definitions of {a j}Ip(N2−N1)

j=0
and {bk}∞k=0, we have

pN2−N1bk = a0bk = −
k∑

j=1

a jbk− j,

where we set a j := 0 for j > I(N2−N1)
p . Hence it is sufficient to show that pq(k,N1+1)a jbk− j is an

integer for 1 = I(0)
p ≤ j ≤ I(N2−N1)

p .
Case 1. Suppose I(0)

p ≤ j < I(1)
p . Lemma 4.2 implies

vp(a j) ≥ N2 − N1.

On the other hand, the induction hypothesis implies that

pN2−N1+q(k,N1+1)bk− j ∈ Z.
Hence we have

pq(k,N1+1)a jbk− j ∈ Z
for I(0)

p ≤ j < I(1)
p .

Case 2. Suppose I(α)
p ≤ j < I(α+1)

p for some α with 1 ≤ α ≤ N2 − N1. Lemma 4.2 implies

vp(a j) ≥ N2 − (N1 + α).

On the other hand, since

k − j < {q(k,N1 + 1) + 1}ϕ(pN1+1) − I(α)
p

= {q(k,N1 + 1) + 1 − (1 + p + · · · + pα−1)}ϕ(pN1+1),

we have

q(k − j,N1 + 1) ≤ q(k,N1 + 1) − (1 + p + · · · + pα−1) ≤ q(k,N1 + 1) − α,
and hence the induction hypothesis implies that

pq(k,N1+1)+N2−(N1+α)bk− j ∈ Z.
Therefore we obtain

pq(k,N1+1)a jbk− j ∈ Z,
for I(α)

p ≤ j < I(α+1)
p . �
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Proof of Proposition 3.6 . We will prove the statement by induction on m ≥ 0. When
m = 0, the assertion is trivial. Let m ≥ 1 and suppose that the assertion is true up to m − 1.
We assume that (m, n) ∈ S . From the definitions of {bk}∞k=0 and {c�(n)}∞�=0, it follows

(4.3) p−(N2−N1)φ(n)
pa,m−1 = cm−1(n) −

m−1∑
k=1

bkφ
(n)
pa,m−1−k.

On the other hand, it follows from Lemma 4.1 that cm−1(n) is an integer. If we prove the
inequalities

(4.4) vp

(
φ(n)

pa,m−1−k

)
≥ N2 − N1 + q(k,N1 + 1), k ≥ 1,

then combining Lemma 4.3 with the equation (4.3), we have

p−(N2−N1)φ(n)
pa,m−1 ∈ Z.

Hence it is sufficient to show (4.4).

Case 1. Suppose k ≥ I(1)
p . In this case, we have q(k,N1 + 1) ≥ 1. By Lemma A.4(2), we

have

vp

(
φ(n)

pa,m−1−k

)
≥ n − q(m − 1 − k, a).

From the inequality k ≥ q(k,N1 + 1)ϕ(pN1+1), it follows

vp

(
φ(n)

pa,m−1−k

)
≥ n − q

(
m − 1 − q(k,N1 + 1)ϕ(pN1+1), a

)
= n − q(m − 1, a) + q(k,N1 + 1)pN1−(a−1).

By the assumption (m, n) ∈ S and Proposition 3.5, we have

n ≥ q(m − 1, a) + 1.

Hence

vp

(
φ(n)

pa,m−1−k

)
≥ 1 + q(k,N1 + 1)pN1−(a−1).

From the assumption pN1−(a−1) ≥ N2 − N1 and q(k,N1 + 1) ≥ 1, we obtain the required
inequality

vp

(
φ(n)

pa,m−1−k

)
≥ q(k,N1 + 1) + N2 − N1.

Case 2. Suppose I(0)
p ≤ k < I(1)

p . In this case, the integer q(k,N1 + 1) is zero. Note that
(m, n) ∈ S implies (m − k − 1, n) ∈ S . Then the induction hypothesis implies that

vp

(
φ(n)

pa,m−1−k

)
≥ N2 − N1 = N2 − N1 + q(k,N1 + 1).

�

Appendix A. Cyclotomic polynomials

Appendix A. Cyclotomic polynomials
This appendix will collect properties of cyclotomic polynomials which are used through-

out this paper.
The following lemma is well-known.
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Lemma A.1. If k is less than �, then Φpk (ζp�) and Φ1(ζp�)ϕ(pk) are associates in Z[ζp�],
that is Φpk (ζp�) = uΦ1(ζp�)ϕ(pk) for some unit u of Z[ζp�].

Next we give three lemmas on the p-adic valuation of φ(n)
pa,i. Here φ(n)

pa,i, 0 ≤ i ≤ nϕ(pa) are
the coefficients of the following expansion:

Φpa(x)n =

nϕ(pa)∑
i=0

φ(n)
pa,i(x − 1)i.

Lemma A.2. The integer φ(1)
p,i is given by

φ(1)
p,i =

(
p

i + 1

)
.

In particular, it satisfies

vp

(
φ(1)

p,i

)
=

⎧⎪⎪⎨⎪⎪⎩
1 0 ≤ i < ϕ(p)

0 i = ϕ(p).

We omit the proof of this lemma since it is straightforward. Recall that we denote by
q(k, w) the unique integer satisfying the inequality

ϕ(pw)q(k, w) ≤ k < {q(k, w) + 1}ϕ(pw).

Lemma A.3. (1) vp

(
φ(n)

p,i

)
≥ n − q(i, 1).

(2) Suppose n ≥ q(i, 1) + 1. Then vp

(
φ(n)

p,i

)
≥ 2 if and only if ϕ(p)(n − δn) > i, where δn

is given by

δn =

⎧⎪⎪⎨⎪⎪⎩
1 n � 0 mod p

0 n ≡ 0 mod p.

Proof. We first show Lemma A.3(1). The product rule implies

(A.1) φ(n)
p,i =

∑
i1,...,in

φ(1)
p,i1
· · · φ(1)

p,in
,

where the sum is taken over all the integers i1, . . . , in such that

i1 + · · · + in = i, 0 ≤ i j ≤ ϕ(p).

Then Lemma A.3(1) follows from (A.1) and the inequality

vp

(
φ(1)

p,i1
· · · φ(1)

p,in

)
= n − #{ j ∈ {1, . . . , n}| i j = ϕ(p)} ≥ n − q(i, 1).

Note that the first equality is given by Lemma A.2.
Next we prove Lemma A.3(2) in two steps.

Step 1. The first step is to show the following equivalence:

vp

(
φ(n)

p,i

)
≥ 2 ⇐⇒ n ≥ q(i, 1) + 1 + δq(i,1)+1.

From Lemma A.3(1) and the assumption n ≥ q(i, 1) + 1 of Lemma A.3(2), it is sufficient to
show

(A.2) vp

(
φ

(q(i,1)+1)
p,i

)
≥ 2 ⇐⇒ q(i, 1) + 1 ≡ 0 mod p.
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Let r be the integer i − ϕ(p)q(i, 1). From (A.1) (the case n = q(i, 1) + 1) and Lemma A.2, it
follows

φ
(q(i,1)+1)
p,i ≡ {q(i, 1) + 1}φ(1)

p,r mod p2.

Since 0 ≤ r < ϕ(p), Lemma A.2 implies vp(φ(1)
p,r) = 1 and hence we have the equivalence

(A.2).
Step 2. The second step is to show the following equivalence:

n ≥ q(i, 1) + 1 + δq(i,1)+1 ⇐⇒ ϕ(p)(n − δn) > i.

Since the inequality ϕ(p)(n − δn) > i is equivalent to the inequality n − δn ≥ q(i, 1) + 1, it is
sufficient to show

n ≥ q(i, 1) + 1 + δq(i,1)+1 ⇐⇒ n − δn ≥ q(i, 1) + 1.

This follows from the following general equivalence: a ≥ b+ δb if and only if a− δa ≥ b for
any integers a and b. This follows immediately from the definition of δ. �

Lemma A.4. (1) If 0 ≤ j < ϕ(pa), then vp

(
φ(1)

pa, j

)
≥ 1.

(2) vp

(
φ(n)

pa,i

)
≥ n − q(i, a).

Proof. First we prove Lemma A.4(1) by induction on a ≥ 1. For simplicity of notation,
we write φpa, j instead of φ(1)

pa, j. When a = 1, the statement follows immediately from Lemma
A.2. Let k ≥ 2 and suppose that the assertions are true for a = k−1. Let j be an integer such
that 0 ≤ j < ϕ(pk). The polynomial Φpk (x) can be described as

Φpk (x) = Φpk−1 (xp) =
ϕ(pk−1)∑

n=0

nϕ(p)∑
i=0

φpk−1,n φ
(n)
p,iΦ1(x)n+i.

This yields the formula

φpk , j =
∑
n,i

φpk−1,nφ
(n)
p,i ,

where the sum is taken over all integers n and i such that

(A.3) 0 ≤ n ≤ ϕ(pk−1), 0 ≤ i ≤ nϕ(p), n + i = j.

In particular we obtain

(A.4) vp(φpk , j) ≥ min{vp(φpk−1,n) + vp(φ(n)
p,i) | n and i satisfy (A.3)}.

Hence it is sufficient to show that

vp(φpk−1,n) + vp(φ(n)
p,i) ≥ 1

for any integers n and i satisfying (A.3). The condition (A.3) implies

1 ≤ n < ϕ(pk−1), or ( n = ϕ(pk−1) and 0 ≤ i < nϕ(p) ).

When 1 ≤ n < ϕ(pk−1), the induction hypothesis for a = k − 1 implies vp(φpk−1,n) ≥ 1. When
n = ϕ(pk−1) and 0 ≤ i < nϕ(p), Lemma A.3(1) implies that vp(φ(n)

p,i) ≥ 1. These inequalities
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implies that vp(φpk , j) ≥ 1. This completes the proof of Lemma A.4(1).
The proof of Lemma A.4(2) is similar to that of Lemma A.3(1), using Lemma A.4(1)

instead of Lemma A.2. �
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