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5 ÂSince about thirty-five years,  research on implicit  learning has shown that subjects

faced with complex rule-governed situations can improve their  performance without

intention to learn and without  clear acquisition of  conscious knowledge of  the rules

(Cleeremans, Destrebecqz, & Boyer, 1998). Current research on implicit learning relies

mainly  on  the  artificial  grammar  learning  (AGL)  and  on  the  sequence  learning  (SL)

paradigms. AGL experiments have shown that participants, after being confronted with

strings of letters generated by an artificial grammar, are able to identify correctly new

strings as grammatical or not, in spite of the fact that they were not able to describe the

rules of the grammar (Reber, 1989). In SL studies, participants perform a serial reaction

time (SRT) task in which they have to indicate as fast and as accurately as possible the

location of a target on a computer screen. Unknown to the participants, the sequence of

stimuli  follows  some  regularity.  Typically,  participants  become  sensitive  to  these

regularities  even tough they remain often unable to access  this  knowledge explicitly

(Destrebecqz  &  Cleeremans,  2001;  Jiménez,  Méndez,  &  Cleeremans,  1996;  Nissen  &

Bullemer, 1987).

6 Despite numerous studies, these results are the object of ongoing controversies about

what  is  learned when people  do not  know that  they are  learning.  More specifically,

several experiments have been conducted to assess whether participants acquire abstract

knowledge of the rules or if it is based on memory of the training material? Three main

Implicit learning in a prediction task: Neither abstract nor based on exemplars

Current psychology letters, 17, Vol. 3, 2005 | 2005

1



positions about this  issue have been expressed in the literature.  According to a first

conception (Lewicki, Czyzewska, & Hoffman, 1987; Reber, 1989), implicit learning results

in abstract knowledge, representative of the structure of the material and independent of

the  physical  features  of  the  stimuli.  For  other  authors,  learning  is  based  on  the

memorization of fragments of the stimuli presented to the subjects (Meulemans & van

der  Linden,  1997;  Perruchet  &  Amorim,  1992;  Perruchet  &  Pacteau,  1990;  Servan-

Schreiber & Anderson, 1990). A third position assumes that, in the context of an artificial

grammar study, participants classify new strings based on their similarity with entire

training exemplars stored in memory (Brooks & Vokey, 1991). The two latter assumptions

contrast with the abstractionist standpoint. Indeed, according to these hypotheses, the

representations developed during learning are distributed over several memory traces

and tied to the surface features of the stimuli.

7 In artificial grammar learning studies, a transfer procedure has been frequently used to

investigate the extent to which knowledge acquired implicitly is rule-like or based on

memory. In a typical transfer task, participants are presented with new strings produced

with the same set of generative rules but made up of a different set of letters or symbols

than the study strings (e.g., Altmann, Dienes, & Goode, 1995; Reber, 1969). The rationale

underlying  this  procedure  is  that  if  learning  reflects  the  abstract  structure  of  the

grammar, participants should be able to correctly classify new strings without a major

cost in performance. By contrast, an important drop in accuracy is expected if learning is

essentially based on memory of the training exemplars.

8 Significant transfer effects have been repeatedly found when different set of letters were

used in training and transfer phases or when the transfer material consisted of tones,

color patches, syllables or abstract symbols (Altmann et al.,  1995).  Even though these

successful  transfer  effects  would  suggest  that  implicit  learning  is  based  on  abstract

knowledge, close inspection of classification performance revealed that a single cue, such

as the identity of  the initial  element or  illegal  repetitions of  the same element,  was

systematically used by participants to reject the ungrammatical transfer items (Tunney &

Altmann, 1999). This result suggests that the transfer effect observed in previous artificial

grammar  learning  studies  cannot  be  attributed  to  the  implicit  abstraction  of  the

sequential dependencies between the different elements. As previously pointed out by

Tunney & Altmann, implicit grammar learning studies have shown, however, that at least

some knowledge can be transferred across training and transfer material; the question at

hand  is  to  determine  exactly  what  features  in  order  to  clarify  the  nature  of  the

mechanisms subtending learning and transfer performance.

9 An interesting way to better understand the nature of the knowledge acquired during

implicit learning episodes consists in exploring the kind of representations developed in

different experimental settings. In this study, we addressed this issue using a sequential

prediction task initially described by Kushner, Cleeremans, & Reber (1991).

10 In the Kushner, Cleeremans and Reber (1991) experiment, participants were exposed to

sequences of five stimuli presented successively on a computer screen. The task was to

predict the location of the sixth stimulus. There were three possible locations (0, 1, and 2)

arranged as the vertices of an invisible inverted triangle. The first five stimuli appeared

at  random locations  but  the  location  of  the  sixth  stimulus  depended  on  the  spatial

relationship  between  the  second  and  fourth  stimuli.  If  they  appeared  in  the  same

position, then the sixth stimulus always appeared in location A (one of the three screen

locations; the correspondence between sequential transitions and screen locations was
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balanced  between  participants).  If  they  were  in  a  clockwise  relationship,  the  sixth

stimulus  appeared  in  screen  location  B,  and  if  they  were  in  a  counter-clockwise

relationship, the sixth stimulus always appeared in the third screen location C. Only the

second and fourth elements were relevant for the prediction task; the first, third and fifth

stimuli were always irrelevant. This task is particularly complex because (1) there are

more irrelevant than relevant events, and (2) because the location of the sixth stimuli

depends on the relationship between the relevant stimuli, the location of each element is

in itself uninformative. Despite this extreme complexity, the results of the Kushner et al.

study showed that subjects became increasingly better at making accurate predictions

over the 2430 trials of training, and reached at the end of the training phase a level of

performance about 45% of correct responses, significantly above chance level (33%). In a

second phase of this experiment, the rules were modified so that every sequence that

ended in one location in the training phase now ended in another location in the transfer

phase. Accuracy dropped to chance level in the transfer phase, but there was again a

significant improvement in performance over the next sessions. This result showed that

participants  were  able  to  transfer  relatively  easily  from  one  set  of  sequential

dependencies to another one. By contrast, in a third and final phase of the experiment, in

which the sixth location was chosen at random, performance remained low and did not

differ from chance level. Subjects could in some specific cases (e.g. salient sequences such

as  00000  or  01010)  rely  on  explicit  knowledge  to  determine  their  response.  But  the

authors showed that this fragmentary knowledge was clearly insufficient to account for

the global level of performance. Moreover, participants were not able to describe the

rules or even to differentiate the pertinent from the non-pertinent elements. The results

of  this  experiment  seem  therefore  to  be  in  favor  of  the  abstractionist  standpoint

according  to  which  participants  acquired  implicitly  rule-like  knowledge  about  the

sequential contingencies present in the training material.

11 In a replication of this study,  Perruchet (1994) argued, however,  that the increase in

correct predictions was due to the memorization of the specific training sequences and

not to the abstraction of the sequential rules. In this experiment, in order to pit the two

hypothesis  against  each  other,  only  the  sequences  that  comprised  two  of  the  three

possible instantiations of each rule (e.g. 0-0 and 1-1 as second and fourth event) were

displayed during training, and the sequences comprising the remaining possibilities (e.g.

2-2)  where  shown  in  a  subsequent  transfer  phase  without  feedback.  The  rationale

underlying this procedure was that participants should respond A to transfer sequences

including the pertinent combination 2-2 if they abstracted the sequential rules but they

were expected to predict B or C if they simply memorized the training sequences. The

transfer sequences including the combination 2-2 had indeed one additional element in

common with the training sequences ending by B or C than with the training sequences

ending by A.  As the results of  his experiment confirmed this second,  memory-based,

hypothesis, Perruchet argued that subjects did not abstract any rule at all, consciously or

unconsciously,  but  that  they respond to the new items based on similarity  with the

training exemplars.

12 While  these  results  clearly  show that  memorization  plays  an  important  role  in  this

prediction task, they do not rule out the possibility that some abstraction processes also

subtend  performance  in  this  situation.  Based  on  simulation  results,  that  we  briefly

describe in the next section, Cleeremans (1994) suggested that participants may learn

implicitly  to  differentiate  the  pertinent  elements  from  the  non-pertinent  ones  and
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nevertheless  be influenced by similarity in the transfer phase.  This  form of  learning

would constitute  an abstraction in  the  sense  that  this  knowledge reflects  a  relevant

structural property of the training material.

13 In their paper, Kushner, et al. (see also Cleeremans, 1994) showed that a buffer network

(see Figure 4) was able to simulate their data. In this model, a spatial metaphor is used to

represent the successive events of the sequences. Namely, five identical pools of three

input units were used to represent the five elements of the sequences, each occurring in

one of the three possible locations. Each input unit was connected with every hidden unit.

Three  output  units  received  input  from the  hidden level  and  represented  the  three

possible successors of the first five elements. As a simplification, elements 1 to 5 were

presented at the same time at the input level. According to this procedure, the prediction

task would be more akin to a categorization task in which participants have to classify the

sequences in three categories based on some structural features. On each trial, the error

was measured at the output level and the connection weights were modified through the

back-propagation learning algorithm (Rumelhart, Hinton, & Williams, 1986).

14 Using this procedure, the buffer model was able to simulate participants’ performance in

the three phases of the Kushner et al. experiment. Learning was slower in the model at

the  beginning  of  training  but  this  discrepancy  could  be  attributed  to  the  rapid

memorization of salient sequences in participants — a phenomenon that the learning

mechanisms  instantiated  in  the  buffer  model  cannot  account  for.  Cleeremans  (1994)

showed that the same model was also able to simulate participants’ performance in the

Perruchet (1994) experiment. As for the participants, the buffer network did not abstract

the generation rules of the material and there were clear indications that classification of

the transfer sequence was based on similarity to stored exemplars. Cleeremans (1994)

reported, however, that the representations developed by the network went beyond rote

memory of the training sequences. The pattern of connection weights between input and

hidden  units  indeed  revealed  that  the  network  progressively  learned  to  ignore

information presented on the pools corresponding to non-pertinent elements.  All  the

corresponding connection weights were very close to zero by the end of training. By

contrast, the connections between the pertinent pools of input units and the hidden layer

grew larger and larger during training. This result suggests that the buffer network can

learn to differentiate between relevant and irrelevant sequence elements.  Cleeremans

(1994) also mentioned that the representations developed by the buffer network makes it

possible for the model to exhibit perfect transfer with new sequences that differ from the

training  material  only  with  respect  to  the  non-pertinent  elements  (and  not  to  the

pertinent elements as it was the case in the Perruchet’ study).

15 In this study, we test this prediction experimentally. To do so, we compared participants’

performance in two transfer conditions differing by the nature of the transfer material.

In one condition, training and transfer sequences differed by the relevant elements (as in

the  Perruchet’  study),  and  by  the  irrelevant  elements  in  the  other  condition.  If

participants show preserved transfer in this latter condition (as the buffer model does), it

would  be  a  good indication  that  they learned to  differentiate  between relevant  and

irrelevant items.

16 Pilot experiments have shown that sequence learning was difficult to replicate with the

original material designed by Kushner et al. We therefore simplify this material in order

to promote learning. The simplification consisted in suppressing the third element of

each sequence. The crucial relation that determines the position of the fifth element is
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now between the second and the third stimuli whereas the first and the fourth elements

are always irrelevant for the task. The location of the fifth element depends exclusively

on the spatial relationship between the elements 2 and 3. There are now 81 (34) different

sequences. The response location is based on the relationship between successive events

and there are as many pertinent stimuli as non-pertinent ones.

17 The experiment was run on a Macintosh computer. The display consisted of three empty

circles (1 cm in diameter) arranged as the vertices of an invisible equilateral triangle. The

stimuli were black circles appearing within one of the three circles.

18 The experiment consisted of 10 sessions of 216 trials. Participants had a small rest period

in the middle of each session. The 54 training sequences were presented four times in a

random order during each of the 8 training sessions. Participants were simply asked to

observe the sequence of four elements (stimulus duration and inter-stimuli interval were

both set to 250 ms) and were then prompted to indicate the location of the fifth stimulus

by using one key of the numerical keypad (the keys ‘4’, ‘5’, and ‘6’ corresponded to the

three corners of the invisible triangle). Subjects had 6 seconds to enter their predictions.

Two different tones were used to indicate a correct or erroneous response. In case of

incorrect  response,  the correct  location was  displayed on the screen for  one second

before presentation of  the next  sequence.  The percentage of  correct  predictions was

displayed on the screen after each session.

19 There  were  two  transfer  sessions  of  216  trials  (sessions  9  and  10)  during  which  no

feedback was given on the correct  location of  the fifth stimulus in order to prevent

learning  in  this  phase.  The  54  transfer  sequences  were  the  27  new  sequences

corresponding to the combinations not displayed previously and 27, randomly selected,

interspersed old sequences.

20 Learning was compared in 2 conditions. In the rule deletion (RD) condition, the transfer

sequences included new combination of relevant items, and in the context deletion (CD)

condition,  the  transfer  sequences  included new combination of  irrelevant  items (see

Annex 1 and 2).

21 During a subsequent rating task, subjects were asked to rate each of the four stimuli in

terms of their relevance in predicting the location of the fifth stimulus on a graded scale

of  1  (not  important)  to  5  (very  important).  After  the  experiment,  subjects  were

interviewed about their strategies, their hypotheses about the structure of the material

and the sequences that they had possibly memorized.

22 There were 81 (34) different sequences. In the RD condition, the combinations 0-0, 1-2,

and 2-1 between the second and third relevant elements were not displayed during the

training  phase  and  were  reserved  for  the  transfer  phase  (see  Annex  1).  In  the  CD

condition,  the same combinations,  0-0,  1-2,  and 2-1,  were not presented between the

irrelevant first and fourth elements during the training phase and were only displayed at

transfer (see Annex 2). . This procedure ensures that the three different stimuli (0, 1 and

2) were equally frequent in the four sequence positions during the training phase. It must

be noted that the material presented to RD and CD participants differed during both the

training and transfer phases.

23 Unknown to participants, the location of the fifth stimulus could be predicted based on

the  spatial  relationship  between  elements  2  and  3  (identical,  clockwise  or  counter-

clockwise).  The correspondence between sequence category and correct  location was

balanced between participants.
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24 Twelve participants (6 in each condition) were paid 50 € for their participation in the

experiment, and could earn an additional bonus of 0.02 € for each correct prediction.

Participants were told that the experiment concerned the study of predictive behavior

but they were not informed about the presence of sequential regularities. All participants

performed the entire experiment within 5 days.

Image7

25 Figure 1 (Panel A) shows the percentage of correct responses (CR) during training and

transfer  phases.  In  both  conditions,  performance  improves  gradually  up  to  the  last

training session (session 8). We can also observe that performance is improved in the rule

deletion  condition  as  compared  to the  context  deletion  condition.  This  difference

between the two conditions appears since the first session and remains relatively stable

until session 8.

26 These impressions were confirmed by an analysis of variance (ANOVA) performed on the

proportion of CR obtained during the eight sessions of training with Practice (8 levels) as

a within-subject variable and Condition (2 levels) as a between-subjects variable. This

analysis revealed significant main effects of Practice [F (7,70) = 22.587, MS
e
 = 738.752, p <

.0001] and Condition [F (1,10) = 7.683, MS
e
 = 1998.101, p < .05]. The Practice X Condition

interaction did not reach significance (F < .4).

27 Figure 1. Real (panel A) and simulated (panel B) mean percentages of correct predictions

observed in the RD and CD conditions during the eight practice sessions and the two

transfer sessions. The horizontal line indicates chance level (33%). Real (panel C) and

simulated (panel  D)  percentages of  correct predictions observed for the old and new

sequences presented during the transfer phase. The error bars represent standard errors

of the means.
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28 Proportion of CR did not differ between the two transfer sessions (F < 1.8). Therefore, we

averaged  performance  over  sessions  9  and  10  in  subsequent  analysis.  Inspection  of

Figure 1 (Panel A) suggests that the introduction of novel sequences in the transfer phase

resulted  in  a  drop  in  accuracy  essentially  in  the  RD  condition.  This  impression  is

confirmed by an ANOVA in which we compared the mean accuracy during the two last

sessions of training (session 7 and 8) with the mean accuracy during the two transfer

sessions. This analysis was performed with Session (2 levels) as a within-subject variable

and Condition as a between-subjects variable. The ANOVA revealed a significant main

effect  of  Session [F (1,10) =  18.500,  MS
e
 =  617.780,  p <  .01]  and a  significant  Session 5

Condition interaction [F (1,10) = 7.106, MS
e
 = 237.290, p < .05]. The main effect of Condition

did not reach significance (F < .5). Planned comparisons indicated that accuracy dropped

between training and transfer phases in the RD condition [F (1,10) = 15.435, MS
e
 = 810.410,

p < .05] but not in the CD condition (F < 3.2).

29 Figure 2. Mean ratings of the four sequence elements in terms of their relevance in

predicting the location of the fifth trial plotted separately for the CD and RD conditions.

30 To further analyze transfer performance, we compared accuracy between old and new

sequences  presented  during  the  two  transfer  sessions  (see  Figure 1,  Panel  C).  We

performed another ANOVA with Condition (2 levels) as a between-subjects variable and

Sequence type (2 levels) as a within-subject variable. This analysis revealed a significant

effect of Sequence type [F (1,10) = 30.424, MS
e
 = 1643.415, p < 

Image8.001] and a significant Sequence type 5 Condition interaction [F (1,10) = 9.759, MS
e =

527.156, p < .05]. The main effect of Condition did not reach significance (F < .06). Planned comparisons revealed that the main effect of Sequence

type was significant in the RD condition [F (1,10) = 29.163, MS
e = 2016.058, p < .01] but not in the CD condition (F < 4).

31 To  summarize,  these  analysis  indicated  that  performance  remained  stable  between

training and transfer phases in the CD but not in the RD condition in which we observed

impaired  transfer  performance.  In  this  latter  condition,  accuracy  dropped  for  new

sequences, as compared to old sequences, and did not differ from chance level (t < 0.3).
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32 When asked to rate each event according to their importance for the prediction task, RD

and CD participants failed to differentiate between relevant and irrelevant items (see

Figure 2).

33 Nevertheless,  they  often  explicitly  and  accurately  reported  some  particularly  salient

sequences. These sequences were made by three or four repetitions of the stimulus at the

same location, and they all predict the same particular location for the fifth event. One

RD participant and one CD participant have been able to rate relevant and irrelevant

items correctly by attributing the lowest rating to elements 1 and 4 and the highest rating

to elements 2 and 3. However, the RD participant was not able to describe the relationship

between these relevant items and the fifth location. The CD participant could tell that

when elements 2 and 3 appeared in the same location, the fifth element appeared in

location A.

34 How  well  would  the  buffer  network  (see  Figure  3)  learn  the  material  used  in  this

experiment? To find out, we trained six buffer networks with four pools of three input

units, each of these pools representing the four sequence elements. Three output units

were used to represent the three possible locations of the fifth element and the hidden

layer was comprised of 5 units.

35 Each network was initialized with random weights between – 0.5 and 0.5 and presented

with the same material, and for the same number of trials, as participants. The task of the

network  was  also  to  predict  the  fifth  element  of  each  sequence.  We  used  the  same

simplification  procedure  as  Cleeremans  (1994)  and  presented  the  four  elements

simultaneously  to  the  networks.  The  model  was  then  equivalent  to  a  three-layers

backpropagation network. During the training phase, the learning rate and momentum

parameters  were  set  to  0.5  and  0.9  respectively.  During  the  transfer  phase,  these

parameters were set to 0.0 because participants did not receive any feedback on their

accuracy during this phase of the experiment.

36 Figure 1 (panel B) shows the mean network performance for the training and transfer

phases in the two conditions. Results indicate that the buffer network can account for the

main  aspects  of  human  performance.  The  percentage  of  correct  responses  tends  to

increase with training in both conditions. As in the experiment, the introduction of novel

sequences in session 9 exerts a detrimental effect on performance in the RD condition but

not  in  the  CD  condition.  Figure  1  (panel  D)  also  indicates  that,  as  in  participants,

networks’ performance did not differ between old and new transfer sequences in the CD

condition but was clearly impaired for new sequences as compared to old sequences in

the RD condition.
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37 Figure 3. The buffer network : Each pool of three input units represents one of the four

sequence element. Three output units are used to represent the fifth element predicted

by the network.

Image9Simulations are not perfect however and present a series of discrepancies with

participants’ performance. The mean level of performance is slightly underestimated by

the model in the CD condition and clearly overestimated in the RD condition. In this

latter condition, the simulated percentage of correct responses tends to remain relatively

stable from the second to the last training session while performance’s improvement is

much more progressive in participants. Differences in learning curves between buffer

networks and participants were previously reported by Cleeremans (1994) and may be

related to the fact that participants also rely on memory for specific instances during

training.  Particularly  salient  sequences  consisting for  instance  in  the  repetition of  a

single element or in simple alternations between two locations may be quickly learned by

participants  during  the  first  training  session  while  the  buffer  network  has  no

computational mechanism to capture this aspect of performance. This might explain the

initial difference between networks and participants in the CD condition.

38 By contrast, in the RD condition, the model quickly reaches his performance peak from

session  2.  We  observed  this  pattern  of  results  in  our  simulations  using  different

parameters values: learning was systematically more important and occurred faster for

networks trained in the RD condition than for those trained in the CD condition. This

pattern of results reproduces, although in an emphasized way, what we observed in the

experiment where performance was also improved in the RD condition. We discuss this

unexpected result in the next section.

39 The notion that rule-based learning can occur implicitly has been previously rejected

based on the observation that abstract information was not necessary to perform the

tasks used to assess the acquired knowledge (Perruchet, Gallego, & Savy, 1990; Perruchet

& Pacteau, 1990). Namely, in the case of the prediction task used in this study, Perruchet

(1994) has shown that transfer performance was determined by the similarity between

novel  and training sequences rather  than by the rule-based category of  the transfer

sequences.  Our  results  are in  line  with  this  assumption.  Indeed,  in  our  experiment,

participants also tend to respond to transfer sequences based on their similarity to the

training sequences. For instance, in the RD condition, participants tended to erroneously

respond B or C to the transfer sequence 0000 because the more similar training sequences
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0010,  0200,  0020 and 0100 were followed by locations B or C.  By contrast,  in the CD

condition, participants correctly responded A to the transfer sequence 0000 because the

more similar training sequences 0001, 0002, 1000, and 2000 are also followed by location

A.

40 In a previous study, Cleeremans (1994) claimed that successful transfer to sequences with

new irrelevant contexts could indicate that participants learned to differentiate between

relevant and irrelevant items. The behavioral and simulation results of this study tend to

support  this  assumption.  While  we  do  not  dispute  the  role  of  similarity  in  transfer

performance,  our  results  also  suggest  that  learning  in  the  prediction  task  was  not

exclusively based on raw memory for exemplars. Indeed, we 

Image10observed that the percentage of correct predictions was systematically higher in

the RD condition than in the CD condition throughout the eight training sessions. Close

inspection of  the training sequences reveals  that  this  result  could be attributed to a

structural difference between both sets of training sequences. In the RD condition, each

stimulus 0, 1, or 2 appearing in the second or third locations (i.e., the relevant sequence

items) can only be followed in the fifth location by two of the three possible stimuli. For

example, if the second element appeared in location 0 then the fifth element can only

appear in location B or C. By contrast, in the CD condition, any stimulus appearing in the

second or  third position can be followed by the three possible  locations in the fifth

location.  As  a  result,  there  is  a  crucial  difference  between  the  two  sets  of  training

sequences with respect to the amount of information that can be extracted based on the

relevant elements of each training sequence. In the RD condition, each relevant item

conveys individually more information about the location of the fifth trial than in the CD

condition. In the RD condition, the second and third elements reduce the uncertainty

associated with the identity of the fifth trial. In the CD condition, the fifth location can

only be predicted based on the relationship between the relevant elements. The positions

of the first and fourth sequence elements are irrelevant in both conditions.

41 Figure 4. Luce ratio of the summed connection weights between the foor pools of input

units and the pool of hidden units plotted separately for the RD and CD conditions. These
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values  denote  the  reltive  importance  of  eqch  represented  sequence  element  for  the

prediction task.

42 Simulation results  indicate that  the performance of  the buffer  network was strongly

influenced by this structural difference between training sets. As indicated previously by

Cleeremans (1994), the buffer model learns to ignore the information coming from pools

of input units coding for irrelevant elements. As illustrated in Figure 4, at the end of the

training phase, the connections weights between input and hidden units are stronger for

the second and third pools of input units, coding for the relevant sequence elements,

than for the first and fourth pools of input units that code for the irrelevant elements.

This learning process is improved in the RD condition because the network can start to

use the information provided by the second and third elements in predicting the fifth

trial even before it has developed representations taking the relationship between these

two elements into account. As a result, network’s performance improves quickly during

the first two sessions in the RD condition and remains relatively stable until the transfer

phase, while it improves much more gradually in the CD condition. This can also explain

why performance remains systematically lower in the CD condition as compared to the

RD condition because, in this latter condition, the network keeps to beneficiate from the

structural difference in training sets that has boosted its performance at the early stages

of learning.

43 Participants’ performance was also improved in the RD condition, as compared to the CD

condition, in our experiment. This result suggests that participants were also influenced

by the structural difference between the CD and RD training sets and might therefore

indicate  that  participants  learn,  as  the  model,  to  differentiate  between relevant  and

irrelevant items.

44 This idea seems at  odds with the notion that performance improvement in this  task

simply reflects the increasing number of sequences memorized by the participants. Such

a  learning  mechanism  could  not  explain  the  improved  performance  of  participants

trained in the RD condition. Indeed, memorization of the four sequence elements would

allow to predict the location of the fifth trial equally well in both RD and CD conditions.

Whether the ability to extract the relevant features of the sequential material constitutes

abstract or rule-like knowledge is an open question, however, it certainly involves more

sophisticated learning processes than rote memory of exemplars.

45 Did learning occur implicitly or explicitly? Only one participant in each condition was

able to correctly rate the four elements according to their importance for the prediction

task, and only one of them was able to accurately state one component of the prediction

rule. None of the other participants was able to show any conscious knowledge of the

sequential  regularities.  Most  of  them,  however,  were  able  to  report  some  salient

sequences  involving  repetitions  of  the  same  stimulus  or  alternations  between  two

locations.

46 As we said earlier, the buffer network has no computational mechanism to account for

this sensibility  to  salient  sequences,  which  undoubtedly  influence  prediction

performance. An important contribution of this study, however, is to demonstrate that

the  associative  learning  mechanisms  implemented  by  the  buffer  model  are  able  to

account for  both the sensitivity to the relevant  features  of  the material  and for  the

influence of similarity to training exemplars.

Implicit learning in a prediction task: Neither abstract nor based on exemplars

Current psychology letters, 17, Vol. 3, 2005 | 2005

11



47 Different  putative  mechanisms  have  been  proposed  to  account  for  performance  in

implicit  learning  studies:  rule  abstraction,  memorization  of  training  instances,  and

sensitivity  to  the statistical  properties  of  the environment.  The results  of  this  study

suggest that performance in this prediction task is based on learning processes, such as

those implemented in the buffer network,  resulting in the acquisition of  graded and

distributed knowledge. Learning, in this perspective, consists in the development of an

increased sensitivity to the most relevant source of  information and depends on the

structural properties of the training environment (see also Gomez, 2002). In our view, the

abstract nature of the knowledge acquired during a learning episode evolves along a

graded dimension going from simple memorization to rule abstraction.  Connectionist

modeling makes it possible to go beyond descriptive theories and to identify the nature of

the representations developed throughout learning.

48 AD and AC are respectively Scientific Research Worker and Senior Research Associate of

the National Fund for Scientific Research (FNRS, Belgium). AD is now supported by a post-

doctoral grant from the Fyssen Foundation.

49 Thanks to Pawel Lewicki and an anonymous reviewer for their useful comments to a

previous version of this article.

50 This table shows the sequences presented in the RD condition. The framed sequences

were presented in the transfer phase.

51 This table shows the sequences presented in the CD condition. The framed sequences

were presented in the transfer phase.
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ABSTRACTS

The notion that rule-based learning can occur implicitly has been previously challenged based on

the observation that abstract information was not always necessary to perform the tasks used to

assess the acquired knowledge. Some authors suggest instead that implicit learning is based on

memorization  of  training  material.  In  this  study,  we  address  this  issue  in  the  context  of  a

sequential prediction task initially described in Kushner, Cleeremans & Reber (1991). The task

consists in predicting the location of the fifth element of a sequence amongst three possible

locations.  Unknown  to  the  participants,  the  correct  location  can  be  predicted  based  on  the

relationship between two of the four preceding sequence elements. After training, we compared
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transfer  performance in two conditions.  In  the “rule  deletion” condition,  transfer  sequences

contained new combinations of relevant elements and in the “context deletion” condition, new

combinations of irrelevant elements. Based on behavioral and modeling results, we confirm the

strong  influence  of  similarity  in  transfer  performance  but,  crucially,  we  also  conclude  that

participants  progressively  learned implicitly  to  differentiate  between relevant  and irrelevant

elements for the prediction task — a learning process that is not equivalent to rule abstraction

but that is clearly a step away from rote memorization.

L’hypothèse selon laquelle l’apprentissage de règles peut avoir lieu implicitement a été remise en

question car, dans plusieurs études, des connaissances abstraites se sont révélées inutiles pour

accomplir les tâches utilisées pour mesurer l’apprentissage. Dans cette étude, nous étudions cette

question à l’aide d’une tâche séquentielle de prédiction décrite initialement par Kushner, Reber,

et  Cleeremans  (1991).  La  tâche  consiste  à  prédire  la  position  du  cinquième  élément  d’une

séquence parmi trois positions possibles. La réponse dépend, à l’insu des sujets, de la relation

existant entre deux des quatre éléments de la séquence. Après l’apprentissage, la performance de

transfert est comparée dans deux conditions. Dans la condition “Rule Deletion”, les séquences de

transfert  incluent  de  nouvelles  combinaisons  d’éléments  pertinents  et,  dans  la  condition

“Context Deletion”, de nouvelles combinaisons d’éléments non-pertinents. Sur base des résultats

comportementaux et de simulations connexionnistes, nous confirmons l’influence importante de

la  similarité  dans  le  transfert  mais  nous  montrons  également  que  les  sujets  ont  appris

implicitement  à  différencier  les  éléments  pertinents  et  non-pertinents —  un  processus

d’apprentissage qui ne peut être assimilé à de la simple mémorisation.
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