
 

Mathématiques et sciences humaines
Mathematics and social sciences 

137 | Printemps 1997
Quelques modèles en analyse des réseaux sociaux

Composition and structure of social networks
Composition et structure de réseaux sociaux

Ove Frank

Electronic version
URL: http://journals.openedition.org/msh/2743
DOI: 10.4000/msh.2743
ISSN: 1950-6821

Publisher
Centre d’analyse et de mathématique sociales de l’EHESS

Printed version
Date of publication: 1 March 1997
ISSN: 0987-6936
 

Electronic reference
Ove Frank, « Composition and structure of social networks », Mathématiques et sciences humaines
[Online], 137 | Printemps 1997, Online since 10 February 2006, connection on 30 April 2019. URL :
http://journals.openedition.org/msh/2743  ; DOI : 10.4000/msh.2743 

© École des hautes études en sciences sociales

http://journals.openedition.org
http://journals.openedition.org
http://journals.openedition.org/msh/2743


11

Math. Inf. Sci. hum. (35e année, n°137, 1997, pp.11-23)

COMPOSITION AND STRUCTURE OF SOCIAL NETWORKS1

Ove FRANK2

RÉSUMÉ — Composition et structure des réseaux sociaux
Les réseaux sociaux représentent une ou plusieurs relation entre des individus, et des informations sur ces

individus eux-mêmes. Les réseaux sociaux montrent à la fois la structure du réseau et des informations sur les

individus. Des modèles probabilistes peuvent être utilisés pour analyser les interrelations entre les variables

structurelles et les variables individuelles ; par exemple pour expliquer comment la structure peut être

interprétée par les informations dont on dispose sur les individus ou comment la composition de celles-ci peut

être interprétée par la structure. L'auteur discute différents modèles et utilise diverses méthodes statistiques

pour illustrer les interrelations entre des données concernant un réseau.

SUMMARY — Social networks representing one or more relationships between individuals and one or

more categorical characteristics of the individuals exhibit both structure and composition. Probabilistic models

of such networks can be used for analyzing the interrelations between structural and compositional variables,

for instance in order to find how structure can be explained by composition or how structure explains

composition. Different models are discussed and different statistical methods are employed to illustrate such

interrelationships in network data.

1. INTRODUCTION

Social networks are composed of individuals, various individual attributes, interindividual
relationships, and various attributes of these relationships. The statistical description and
analysis of compositional and structural data on social networks can benefit from the use of
probabilistic models that formalize and separate composition and structure in various ways.
The purpose of this article is to review and extend some of the most common social network
models and illustrate how composition and structure can be reflected in the probabilistic
assumptions. For other reviews and expositions of social network models, reference is given
to the books by Knoke and Kuklinski (1982), Pattison (1993), and Wasserman and Faust
(1994) and to the articles by Frank (1981, 1988a).

Section 2 introduces the concept of a colored multigraph in order to represent a social
network with attributes attached to individuals and relationships. A few examples of the use
of colored multigraphs are discussed to show the generality and flexibility of the concept. In
particular, colored multigraphs comprise simple graphs and digraphs as well as graphs with
both directed and undirected edges.

                                                

1 This article presents an extended version of a talk given at the International Sunbelt Social
Network Conference in Charleston, SC, 1996.
2 Department of Statistics, Stockholm University, Sweden.
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The simplest probabilistic models of colored multigraphs have independent dyads (induced
subgraphs of order two). Sections 3 and 4 give some results for simple graphs and digraphs
with independent dyads in order to settle terminology and notation and to provide an adequate
background for more general models.

Sections 5 and 6 generalize the results of Sections 3 and 4 to simple graphs and digraphs with
possible dependence between incident dyads and conditional independence between non-
incident dyads, i.e. Markov dependence for dyads. Section 7 gives some results for graphs
and digraphs with general dependence between the dyads, and Section 8 treats the extension
to colored multigraphs. The interplay between compositional and structural modeling is
discussed in Section 9  together with a description of a few broad classes of network models.
Section 10 gives a brief introduction to data analytic methods in social network analysis.

2. SOCIAL NETWORK DATA REPRESENTATIONS

To analyse simultaneous distributions of several attributes it is often convenient to categorize
or recategorize each attribute to two or a few categories only. All attributes in the social
networks are here assumed to be categorical. A general specification of a social network on  n
individuals can be given by a  p-dimensional vector variable  x  defined on the individuals, a
q-dimensional  vector  variable  y  defined  on  the  unordered  pairs  of  individuals,  and  an
r-dimensional vector variable  z  defined on the ordered pairs of individuals. Thus network
data consist of individual data vectors  xi  for  i=1,...,n  and pairwise data vectors  yij=yji  and
zij  for  i=1,...,n  and  j=1,...,n  with  i≠j.

If the  p  components of  x  have  a1,...,ap  categories, the  q  components of  y  have  b1,...,bq
categories, and the  r  components of  z  have  c1,...,cr  categories, there is a possible total of
a=a1,...,ap  combined categories of individual attributes, b=b1,...,bq  combined categories of
attributes of unordered pairs of individuals, and  c=c1,...,cr  combined categories of attributes
of ordered pairs of individuals. If the network is represented as a graph on  n  vertices  with
n

2

  undirected edges and  n(n-1)  directed edges, each vertex is given one of a distinct

colors, each undirected edge is given one of  b  distinct colors, and each directed edge is

given one of  c  distinct colors.  In total there is a possibility of  an b

n

2  cn(n-1)  distinct
colored labeled multigraphs.

For dyads (colored labeled multigraphs of order two) there are  a2bc2  distincts versions, and
for triads (colored labeled multigraphs of order three) there are  a3b3c6 distinct versions. In
particular,  (a,b,c)=(1,2,1)  yields 2 dyads (labeled graphs of order two) and 8 triads (labeled
graphs of order three), and  (a,b,c)=(1,1,2)  yields 4 dyads (labeled digraphs of order two) and
64 triads (labeled digraphs of order three). Structural properties of graphs are often defined as
properties that are invariant under isomorphism, and the class of isomorphic labeled graphs
can be represented by an unlabeled graph. There are 2 undirected dyads (unlabeled graphs of
order two) and 4 undirected triads (unlabeled graphs of order three), and there are 3 directed
dyads (unlabeled digraphs of order two) and 16 directed triads (unlabeled digraphs of order

three). According to Frank (1988b) there are  ac+1

2

 b  dyads and  
abc2 + 2

3

 - a2b2c2 c

2

triads for unlabeled colored multigraphs. The counts of these dyads and triads among all
induced subgraphs of order two and three, respectively, contained in a colored multigraph of
order  n  are important structural statistics. In exploratory social network analysis the dyad
and triad counts might be convenient summary statistics, and  under special probabilistic
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assumptions they can be shown to be sufficient statistics. See Frank and Strauss (1986), Frank
(1985, 1988a), and Frank and Novicki (1993).

In order to illustrate the generality and flexibility of the colored multigraph, consider first the
case of a social network comprising individuals of two kinds and three symmetrical binary
relations. This network can be represented by a colored multigraph with  (a,b,c)=(2,8,1). The
2 vertex colors correspond to the two kinds of individuals. The 8 undirected edge colors
correspond to the possible combinations of occurrence or non-occurrence on each one of the
three symmetrical relations. The single color on directed edges corresponds to the absence of
any unsymmetrical binary relation.

As a second example consider the case of a social network comprising males and females of
three age groups and two binary relations. Both the relations describe different kinds of
pairwise contacts between the individuals, and contact intensities are reported as low,
medium, or high from each individual to every other individual. Here the social network can
be represented as a colored multigraph with  (a,b,c)=(6,1,9). The 6 vertex colors correspond
to the combinations of gender and age group. The single undirected edge color means that
there is no symmetrical relation. The 9 directed edge colors correspond to the combinations
of contact intensities for the two kinds of contacts.

Finally, consider the case of a social network defined on individuals categorized as being
presently employed or not, as having ever been employed or not, and as being healthy or not.
There is information about kinship, about father-son relationships, and about brother and/or
sister relationships. This example implies that a straightforward cross-classification of the
attributes might lead to categorical combinations that are known apriori to be impossible
(structural zeros among the cross-classification frequencies). It might be advantageous to
avoid this kind of attribute redundancy by defining combined attributes so that the total
number of combined categories is reduced. For instance, the straightforward approach is to
define three binary individual attributes (indicating present employment, previous or present
employment, and healthy condition) and three binary relationships corresponding to the two
symmetrical kinship and brother and/or sister relationship, and one asymmetrical  father-son
relationship. This yields a colored multigraph with  (a,b,c)=(8,4,2). An alternative approach
keeping the same information is the following. Introduce an employment attribute with three
categories corresponding to never employed, previously employed only, and presently
employed. Keep the health status attribute. Furthermore, introduce a kinship attribute with
four categories corresponding to no kinship, father-son relationship, brother and/or sister
relationship, and other kinds of kinship. This yields a colored multigraph with
(a,b,c)=(6,1,4). Thus, compared to the initial approach  a  and  b  have been reduced but not
c. Using the dyad formula reported above it follows that the number of non-isomorphic dyads
have been reduced from 544 to 300. A further reduction to 234 non-isomorphic dyads can be
achieved by modifying the alternative approach so that the initial father-son relationship is
kept and the initial two symmetrical relationship are replaced by one symmetrical relationship
with three categories. This yields a colored multigraph with  (a,b,c)=(6,3,2).

Generally it is important to have mutually exclusive and exhaustive categories for vertices,
undirected edges, and directed edges. As the last example illustrates, a reduction of  b  that
implies an increase in  c  is guaranteed neither to reduce nor to increase the number of dyads.

3. INDEPENDENT DYAD MODELS FOR SIMPLE GRAPHS

Bollobas (1985) and Palmer (1985) in their extensive accounts of the theory of random
graphs treat simple parametric models and uniform models which have influenced much
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research on graphical limit theorems, graphical evolution, and random graph processes. Such
models have not got a sufficiently rich probabilistic structure for most applications and need
to be extended to provide good fit to statistical network data. Extensions might be mixture
distributions of simple models or various kinds of generalizations allowing more complex
specifications.

Even for the simplest network models the statistical aspects deserve some attentions. Network
data offer numerous possibilities of varying the sampling and observation procedures, and
this might result in unconventional statistical problems. For instance, vertex sampling and
induced subgraph observation or different kinds of complete and partial snowball sampling
have been discussed in the literature. See Frank (1988a) for references.

Here interest is not focused on sampling or other sources of explanation for the stochastic
dependence prevailing in netwotk data. Models with different kinds of structure dependence
are investigated without referring to whether sampling, measurement errors or other sources
of variation explain the randomness. Dyad independence for simple graphs is a starting point.

Consider a finite vertex set  V={1,...,n}  and a simple random graph on  V  defined by its

symmetric adjacency matrix  Y=(Yij)  with  Yii=0. There are  2
n

2   possible outcomes  y  of  Y,
and under dyad independence the probability function is given by

P(Y=y) = p(y) = pi jy i j∏
i<j

 (1-pi j)
1-y i j

where  pij  is the probability of edge  {i,j}. A convenient reparameterization is obtained by
introducing the logodds   aij = log[pij / (1-pij)]

so that p(y) = c-1 exp ai j∑
i<j

 y i j

where c =  (1+eai j∏
i<j

)

is a normalizing constant.

A particular case is the homogeneous model with all edge probabilities equal,  pij=p,  which
is called a Bernoulli  (V,p)  model. Setting  q=1-p  and  a=log(p/q)  implies that

p(y) = p rq
n

2
 -r
 = (1+ea) - n

2  rar

where  r = yi j∑
i<j

  is the edge frequency of  y.  Here the edge frequency  R = yi j∑
i<j

  of  Y  is a

minimal sufficient statistic with a binomial  n

2
,p -distribution, and the maximum likelihood

estimator of  p  is given by the edge density

p = R  / 
n

2
 .

An  alternative to homogeneity is given by the dyad independence model with a
multiplicative edge probability decomposition according to  pij = pbibj  where b1,..., bn  are
activity probabilities of the vertices and  p  is a latent edge probability. A manifest edge

occurs if and only if the latent edge occurs and is supported by active vertices. Thus the n

2
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edge probabilities are replaced by  n+1  probabilities  p,b1,...,bn  of  latent edge and vertex
acitivities. The probability function is given by

p(y) = p r( bi
y i.

∏
i=1

n
)( (1 - pbi∏
i<j

bj)
1-y i j)

where  r  is the edge frequency as before and  yi. = yi j∑
j=1

n
  is the degree of vertex  i. The

probability function is invariant to admissible parameter changes that leave  p  bi  invariant
for  i=1,..., n.  Identifiability of the parameters can be achieved by imposing the restriction

bi∑
i<j

bj = 
n

2
  This means that the expected numbers of manifest and latent edges are the

same.

A similar dyad independence model is obtained by assuming an additive logodds
decomposition according to  aij = a+gi+gj .  This  implies that the probability function is equal
to

p(y) = c -1exp  (gi∑
i=1

n
 + a /2) y i.

where  yi. is the degree of vertex  i  in  y.  The parameters  a,g1,...,gn   restricted by  gi  = 0∑
i=1

n

are identifiable and can be considered as overall and local specifications of  Y . The degrees
Y1....,Yn. of  Y  are minimal sufficient statistics. Thus this model might be preferable to the
previous model with a multiplicative edge probability decomposition.

4. INDEPENDENT DYAD MODELS FOR SIMPLE DIGRAPHS

A simple directed graph on  V  is defined by its adjacency matrix  Z=(Zij)  with  Z ii=0.  A

dyad induced by  i  and  j  (in that order) is specified by  (Zij, Z ji). There are 2n(n-1)  outcomes
z  of  Z,  and under dyad independence the probability function is given by

P(Z=z) = p(z) = pi j∏
i<j

 (zi j,  zj i)

where  pij(0,0),  pij(0,1), pij(1,0),  and  pij(1,1)  are the probabilities of a dyad with no edges
between  i  and  j, with an edge from  j  to  i  only, with an edge from  i  to  j  only, and with
mutual edges between  i  and  j.  It is convenient to introduce dyad probabilities  pij(k,l) for all
i  and  j  and put  pij(k,l)=pji(l,k).  By denoting  pij(1,0)=aij  and  pij(1,1)=bij  it follows that
pij(0,0)=1-aij-aji-bij,  pij(0,1)=aji ,  and  bij=bji .  Hence

p(z) =  (1 - ai j - aj i∏
i<j

 - bi j)
(1-zi j)(1-zj i) aj i

(1-zi j)zj i ai j
zi j(1-zj i) bi j zi jzj i  =

       = c -1 exp  ai jzi j + bi jzi jzj i∏
i<j

∑
i≠j

where
aij  = log[aij  / (1-aij -aji-bij )],
bij  = log[bij (1-aij -aji-bij ) / aij aji],

and  c  is a normalizing constant given by
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c = (1 + eai j∏
i<j

 + eaj i + eai j+aj i+bi j) .

A particular case is the homogeneous model with all dyad distributions equal, that is  aij=a

and  bij=b,  or, equivalently,  aij=a   and  bij=b  where
a = log a - log (1-2a-b),
b = log b + log (1-2a-b)-2 log a.

It follows that the frequencies of induced dyads in  Z   of size 0,1, and 2 are multinomial
n

2
 ; 1-2a-b,2 a,b -distributed.  If these frequencies are denoted

N0 = (1 - Zi j∑
i<j

)(1 - Zj i) ,

N1 = (Zi j∑
i<j

 + Zj i - Zi jZj i) ,

N2 = Zi j∑
i<j

Zj i ,

the  maximum  likelihood estimators of  a  and  b  are given by  a = N1 / n(n-1)  and

b = N2 / 
n

2
.

An alternative to homogeneity is the dyad independence model with partial homogeneity
bij=b. With no restrictions on  aij  there are  n(n-1)+1  parameters in the model. If an additive

decomposition of  aij   is assumed according to  aij  = l + ai + bj  with  ai∑
i=1

n

 = 0  and

bj∑
j=1

n
 = 0 ,  then there are  2n  free parameters and sufficient statistics corresponding to in-

and outdegrees and the total mutual adge frequency. This is the well known model introduced
by Holland and Leinhardt (1981). An extension is obtained by relaxing the partial
homogeneity  bij=b  to an additive decomposition according to  bij = m + gi + gj  with

gi∑
i=1

n

 = 0   This model has   3n-1  free parameters and sufficient statistics corresponding to in,

out-, and mutual degrees at every vertex, that is

 Zi j∑
j=1

n
, Zj i∑
j=1

n
, Zi j∑
j=1

n
Zj i  

for  i=1,..., n.

5. MARKOV DYAD MODELS FOR SIMPLE GRAPHS

The assumption of stochastic independence between dyads might seem inappropriate, since a
network is usually studied because there is an interest in the links and influences across
several individuals in the network. Dyad independence means that all links and influences
involving three or more individuals are the results of random effects governed by a set of
fixed values on dyad parameters. Therefore the structural properties beyond those of dyads
are only indirectly controlled and might fail to fit data. It should be preferable to have access
to parameters reflecting dyad interactions.
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The Markov dyad models introduced by Frank and Strauss (1986) assume that non-incident
dyads are conditionally independent but incident dyads might be dependent. They show that
this implies that there are

n2n-1 + n

3
 - n+1

2

parameters and sufficient statistics corresponding to triangles (3-cycles) and stars. The
probability function is given by

p(y) = c-1 exp ti j k y i j y j k yk i + 1
m!

 si0, . . . ,im
  y i0 i1

 ... yi0, . . . ,im∑
i0, . . . ,im

∑
m=1

n-1

∑
i<j<k

 ,

where the last sum is over distinct vertices, and there are  n

3
  triangle parameters  tijk,

n
n-1

m
  star parameters  si0, . . . ,im  for  m=2,..., n-1,  and  n

2
  edge parameters  si0 i1

..  The

normalizing constant  c  is a function of the parameters determinated so that the  2
n

2

probabilities  p(y)  sum to unity.

Under homogeneity all triangle parameters are equal and the star parameters depend only on
the order of the star:  tijk = t  and  si0 , . . . ,im = sm  for  m =1,..., n-1.  This implies that
isomorphic graphs  y  get the same probability

p(y)  =  c-1 
exp tt + sm sm∑

m=1

n-1

where
t = yij yj k∑

i<j<k

 yk i

is the number of triangles in  y,

sm = 1
m!

 yi0 i .1
 ... yi0, . . . ,im∑

i0, . . . ,im

(with distinct vertices in the sum) is the number of  m -stars (stars of size  m)  in  y  for
m=2,..., n-1,  and  s1 = 2 yi j∑

i<j

  is twice the number of edges in  y.

A simplified version of the homogeneity model assumes  sm=0  for  m>2. If the remaining
star parameters are denoted  s1=r/2   and  s2=s, it follows that

p(y) = c-1 exp (rr + ss + tt)

where  r,s,t  are the frequencies of edges, 2-stars, and triangles in  y. This is a simple model
for a random graph with dependence between incident edges. Inference for this model is
discussed by Frank and Strauss (1986), Frank (1991), and Frank and Nowicki (1993).

Without assuming homogeneity but assuming that the star parameters are  0  for all stars of

size 3 or more, the model has  n

2
  parameters  sij  for  i<j,  n n-1

2
  parameters  sijk for

j<k,  and  n

3
  parameters  tijk  for  i<j<k. One way of simplifying this model is to make

additive decomposition assumptions according to
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si...j      = r + ai + aj
sijk  = si + bj + bk
tijk   = t + gi + gj +gk

with restrictions  Sai = Sbi = Sgi  = 0.  This model has  4n-1  parameters. Further feasible
simplifications  are  si = s,  ai = bi = gi,   ai = 0,  bi = 0,  or gi = 0.  The  vertex  parameters  ai,
bi, gi, si   can be considered as controlling for edges, 2-paths, 3-cycles, and 2-stars at vertex  i.
(A 2-star at  i  with edges to  j  and  k  is also a 2-path at  j  and a 2-path at  k.)

6. MARKOV DYAD MODELS FOR SIMPLE DIGRAPHS

In the directed case, conditional independence for non-incident dyads implies that a random
digraph with adjacency matrix  Z  has a probability function

p(z) = c-1
exp q(a)∑

a≤z

where the sum is over all adjacency matrices of subgraphs of  z  and  q(a)=0  unless  a  is an
adjacency matrix of any of the following graphs on  V : a single edge, a 2-cycle, a star of

order 3 or more, a triangle. The parameter  q(a)  is denoted  r
i j

(1)  for a single edge,  r
i j

(2)  for a

2-cycle,  s
i0, . . . ,im

(k,l)    for a star of order  m+1  with center  i0  and edges from  i0  to the first  k

vertices among  i1,..., im  and edges to  i0  from the last  l  vertices among  i1,..., im,  and  t
i j k

(m)

for a triangle of type  m.  There are triangles of 7 types. Types 1 and 2 have size 3. Types 3, 4,
and 5 have size 4. Type 6 has size 5 and Type 7 has size 6. Type 2 is a 3-cycle. Type 3 has a
vertex with two outedges and Type 4 has a vertex with two inedges. In total there are  n(n-1)

edges,  n

2
  2-cycles, n 

n-1

m
 3m  m-stars (stars of order m+1)  for  m=2,..., n-1, and  27

n

3
  triangles. The 27 triangles on each fixed set of three vertices consist of 6+2+3+3+6+6+1

triangles of the 7 types.

Under homogeneity the parameters are denoted

r
i j

(1)
 = r1, r

i j

(2)
 = r2,  s

i0, . . . ,im

(k,l)
 = sk lm,  t

i j k

(m)
 = tm 

and it follows that

p(z) = c-1 exp r1r1 + r2r2 +  sk lm sk lm∑
k+l≤m

∑
m=2

n-1
 + tmtm∑

m=1

7

where  r1  and  r2  are the frequencies of edges and 2-cycles in   z,  sklm  is  the frequency of
m-stars having  k  outedges and  l  inedges in  z,  and  tm  is the frequency of triangles of Type

m  in  z.  The number of parameters and sufficient statistics is  5+ n+2

3
. Only 15 parameters

remain if star parameters are set to  0  for  m>2.  In this case the sufficient statistics are the
numbers of edges, 2-cycles, 2-stars of six kinds, and triangles of seven kinds. An equivalent
set of sufficient statistics is the set of triad counts. This set contains 16 kinds of triads, and
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their counts sum to  n

3
.  Thus the triad counts are sufficient statistics if we assume

homogeneous Markov dyads with no parameters for stars of order 4 or more.

By dropping homogeneity and assuming additive decompositions of the parameters it is
possible to obtain models that might be of interest as alternatives to the Holland-Leinhardt
model. Assuming

r
i j

(1)
 = l + ai + bj

with  Sai  = Âbj = 0  together with partial homogeneity or zero values on other parameters
should give interesting alternatives.

7. CONDITIONAL INDEPENDENCE MODELS FOR SIMPLE GRAPHS AND
DIGRAPHS

Consider first the adjacency matrix  Y=(Yij)  of a simple random graph on  V.  Define  dijkl
equal to 0 or 1 according to whether or not  Yij and  Ykl  are stochastically independent
conditional on the rest of  Y,  that is conditional on all elements of  Y  except  Yij, Yji, Ykl, Ylk.
Obviously  dijkl=dklij  for all  i, j, k, l.   Moreover,  dijkl=0  if  i=j  or  k=l, and  dijij=1  if  i≠j.

Let  a=(aij)  be the adjacency matrix of a simple graph on  V. There are  2
n

2   such matrices.

Define a function  q(a)  on the class of adjacency matrices in such a way that  q(a)=0  unless

aij akl  ≤  dijkl

for all  i, j, k, l.  Then the probability function of  Y  can be shown to be given by

P(Y=y) = p(y) = c-1 exp q(a)∑
a≤y

where  c  is a normalizing constant determined so that the  p(y)  sum to 1 for all adjacency
matrices  y  of simple graphs on  V.  There are terms in the exponent for all subgraphs  a  of  y
having  q(a)≠0.  These terms corresponds to subgraphs  a  that are restricted by the numbers
in  d=(dijkl).  We can consider  d  as an adjacency matrix of a graph on  V2  with loops at all
(i,j)ŒV2  with  i≠j.  This graph is called the dependence graph of  Y. If  a=(aij)  is considered
as an indicator of a subset of  V2, the restriction on  a  in terms of  d  means that  a  should
correspond to a clique of the dependence graph  d.

Consider now the adjacency matrix  Z=(Zij)  of a simple random digraph on  V.  Define  dijkl
equal to 0 or 1 according to whether or not the dyads  (Zij,Zji)  and  (Z kl,Zlk)  are
stochastically independent conditional on the rest of  Z .  Proceeding as above we define a
function  q(a)  for adjacency matrices  a=(aij)   of simple digraphs on  V, such that  q(a)=0
unless

aij akl  ≤  dijkl
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for all  i, j, k, l.  It follows that

P(Z=z) = p(z) = c-1 exp q(a)∑
a≤z

for any adjacency matrix  z  of a simple digraph on  V.  Again the relevant parameters
correspond to subsets of  V2  that are cliques of the dependence graph  d.

8. CONDITIONAL INDEPENDENCE MODELS FOR COLORED MULTIGRAPHS

The conditional independence models for simple graphs and digraphs considered in the
previous three sections can be extended to colored multigraphs by applying conditional
independence specifications to more general multivariate random variables. The books by
Whittaker (1990) and Edwards (1995) discuss conditional independence modelling in a
general context. The field is known as graphical modelling not because network data is of
concern but because graphs are used to represent multivariate models.

Consider a random colored multigraph given by a vector  X=(Xi)  having  an  outcomes of

vertex colors, a symmetrical matrix  Y=(Yij)  having  b
n

2   outcomes of colors of undirected

edges, and a matrix  Z=(Zij)  having  cn(n-1)  outcomes of colors of directed edges. There are
various possibilities of specifying the probabilistic structure of  (X, Y, Z).

One way is to condition on  X  and consider the  n

2
  dyad variables  (Yij, Zij, Zji)  for  i<j

conditional on  X .  These variables are chosen to be the basic variables for which a

conditional dependence structure needs to be defined. An alternative is to consider the  3 n

2
variables  Yij, Zij, Zji  for  i<j  separately conditional on  X  as the basic variables.

Another way is to consider the  n
2

  dyad variables  (Xi, Xj, Yij, Zij, Zji)  for  i<j    as the basic

variables with a conditional dependence structure. Here all incident dyads are certainly

dependent via their common vertex colors. An alternative is to consider all  n+3 n

2
variables separately as the basic variables with a conditional dependence structure. However,
the symmetry of the approach with dyad variables might by useful.

A convenient choice in any particular application should be a way that offers a simple
conditional dependence structure. In addition to specifying a conditional dependence
structure, there is also need for a number of parameters. This number  depends not only on
the number of basic variables but also on the number of outcomes of these variables.

In general, the conditional dependence structure of a set of random categorical variables
W=(Wij)  on  V2  is given by a dependence graph on  V2  with adjacency matrix  d=(dijkl).  Let
A  be a subset of  V2  and  a=(aij)  the corresponding matrix of indicators  aij  that are  1  or  0
according to whether or not  (i,j) Œ A. Such a subset  A  is a clique of the dependence graph if
and only if   aijakl ≤ dijkl  for  all  i, j, k, l.  The probability function of  W  can be given by

P(W=w) = c-1 exp qA∑
AÕV

2

 (w)
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where  c  is a normalizing constant, and the functions  qA  are identically zero for subsets  A

that are not cliques of the dependence graph. Moreover,  qA(w)  depends on  wij  for  (i,j) Œ A

only,  and   qA (w) = 0∑
wi j

  for all  A , w , and  (i,j) Œ A.  By  introducing  the  submatrix

wA=(wij aij)  which is  w   with  wij  replaced by  0  if  (i,j) œ A, it follows that  qA(w)=qA(wA).

9. NETWORK MODELLING

Network modelling can help in understanding or predicting network behaviour. Like in all
modelling, prior knowledge is confronted with empirical facts, and it is not always clear
whether observed discrepancies between model and reality should call for a minor model
modification or a major change to another class of models. Since no model is perfect and
there always are statistics that do not follow the model pattern, it is good practice to be
prepared for future model building by collecting also such general descriptive statistics that
are not needed for estimating the model in use. Compositional and relational structure should
be reflected among such general network statistics. Composition statistics are mainly various
subgraph counts: vertex counts, dyad counts, triad counts, etc. Structure statistics are for
instance distances, reachability, and connectivity of various kinds. Composition refers to how
many elements of different kinds that make up the network, and structure refers to macro
properties involving more than local properties. The interplay between micro and macro,
between composition and structure is the object of network modelling.

It is possible to distinguish a few broad classes of network models that can be described as
follows.

Loglinear models are models obtained for instance by conditional independence assumptions
as illustrated in this paper. It is also possible to formally apply the loglinear methods for
contingency table analysis to categorical counts of vertices, undirected edges, and directed
edges even if appropriate independence assumptions are not met. It is tempting to use easily
available statistical computer packages for this kind of analysis even if it is not yet
theoretically justified or discredited.

Mixture models are models that express the probability function as a weighted average of a
family of simple probability functions with unknown mixing weights. Usually the number of
components in the mixing distribution is also unknown. Mixture models are often hard to
estimate, and mixture models for networks should be no exception. See Frank (1989).

Block models refer to network models with structure parameters that depend on individuals
through some kind of individual categories only. Thus the vertex set is partitioned into
disjoint and exhaustive categories, and there is a partial homogeneity within and between the
vertex categories. Block models with random categories can be considered as a special kind
of mixture models. For block model testing, see for instance Wellman et al. (1991).

Metric models for random colored multigraphs have a distance defined on the set of
outcomes. The probabilities of the outcomes have a maximum at a certain central graph and
decrease with increasing distance from this graph. Such models are especially appropriate if
the random variation is due to measurement or observation errors, and there is a fixed
unknown colored multigraph to be estimated. See Banks and Carley (1994).
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10. DATA ANALYTIC METHODS

Network modelling is often simplified if homogeneity can be assumed. A primary concern in
exploratory network analysis is therefore to decompose the network into more homogeneous
subnetworks. One way of doing this is by using local dyad counts, that is the number of dyads
of different kinds at each vertex. The local dyad counts in colored multigraphs can be
subjected to a cluster analysis in order to find out the similarities and dissimilarities between
the vertices. In favourable cases, only a few different kinds of vertices need to be
distinguished, and separate modelling can be tried out within and between the clusters. For
further discussion and illustration of this method reference is given to Frank, Komanska, and
Widaman (1985) and Frank, Hallinan, and Nowicki (1985).

Regression methods are useful to explain relationships between variables. With categorical
variables regression and classification trees might be more appropriate than methods based on
numerical scales. A general reference is Breiman et al. (1984), and an application to graph
data is given by Frank (1986).

Ordering dyads, triads, and higher order induced subgraphs according to decreasing
frequencies might give some insight into the network structure. Finding the locally most
common dyads, triads, etc. can for instance reveal that some individuals are central or special
in other respects. This can be useful if parameters varying with the individuals are relevant in
the model. Dyad and triad counts are also useful for comparing networks and for detecting
structural changes. See, for instance, Frank (1987).
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