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THE AXIOMATIC CHARACTERIZATIONS OF MAJORITY VOTING
AND SCORING RULES1

Vincent MERLIN2

résumé – Les caractérisations axiomatiques du vote majoritaire et des classements par points.
Le cadre arrowien de la théorie des choix collectifs est suffisament flexible pour entreprendre une

étude axiomatique précise des règles de vote qui sont communément utilisées dans des élections

politiques, lors de compétitions sportives ou par des comités d’experts etc. comme le vote à la

majorité ou les classements par points. L’objectif de cet article est de rendre compte des résultats

qui ont été obtenus dans cette direction depuis 1951. Nous présentons d’abord les conditions qui

garantissent qu’une règle de choix collectif est démocratique. Ensuite, nous exposons en détails

deux résultats fondamentaux : la caractérisation de la règle de décision à la majorité par May,

et l’axiomatisation de la famille des classements par points par Young. Par la suite, en utilisant

ces résultats, des classements par points particuliers, comme le vote uninominal à un tour ou

la méthode de Borda, ont aussi pu être axiomatisés. Quelques remarques sur d’autres voies de

recherche et des questions ouvertes concluent l’article.

mots clés – Choix collectif, Vote majoritaire, Classement par points, Vote uninominal,
Méthode de Borda.

summary – The Arrovian framework of social choice theory is flexible enough to allow for

a precise axiomatic study of the voting rules that are used in political elections, sport competitions

or expert committees, etc. such as the majority rule or the scoring rules. The objective of this

paper is to give an account of the results that have been obtained in this direction since 1951.

We first present some basic conditions for a collective decision rule to be democratic. Next, we

expound in detail two fundamental results: the characterization of the majority rule by May, and

the axiomatization of the family of scoring rules by Young. Afterwards, using these results, some

specific scoring rules, such as the plurality vote or the Borda count, have also been characterized.

Some remarks on other directions of research and open issues conclude the paper.
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1. INTRODUCTION

Arrow’s theorem [Arrow, 1963] is often considered as an impossibility result: there is
no democratic voting rule that satisfies a priori benign requirements. On the other
hand, it is the first characterization result in social choice theory: dictatorship is
the unique social welfare function that satisfies Independence and Pareto. In fact,
Arrow’s model provides an adequate framework for the analysis and the comparison
of the various voting processes that are used in every day life by committees, voting
bodies, parliaments, juries, international institutions, etc. As Young [1975] pointed
out:

“What is needed is an axiomatic framework for comparing the merits of these various

methods. This type of study was begun by Arrow, who identified a set of conditions

that permit only dictatorship when three or more alternatives are involved. This

result (and later refinement of it) tell us much about what cannot be done, but leaves

open the problem of defining what can be done.”

In particular, Arrow’s theorem tells nothing about the most popular voting rules,
that is the majority rule and the scoring rules. In a two-candidate election, the ma-
jority rule is the voting method that picks out as a winner the one who obtains the
greatest number of votes. The class of scoring rules contains many rules, but they
all rely on the same principle: when the choice set contains m candidates, each voter
ranks the m alternatives from her first choice to her least preferred candidate, and
each alternative obtains a fixed number of points, sk, each time it is ranked kth by
one voter. The winner is the candidate who gets the greatest amount of points over
the whole population. For example, the plurality rule which attributes one point for
a first place and zero point for the other ranks is used in many country for parlia-
mentary elections (e.g. United Kingdom, Australia, United States). Two centuries
ago, Borda [1781] suggested another natural way to give points: a candidate should
receive m − 1 points each time she is ranked first by some voter, m − 2 points each
time she is ranked second, and so on down to one point for the next to the last and
zero point for the last candidate in her preference ordering.

If we except the characterization of the majority rule by May in 1952 [May,
1952], the extensive use of Arrow’s framework for the analysis of voting rules dates
back to the seventies. At that time, Fishburn [1973], Gärdenfors [1973], Fine and
Fine [1974(a)(b)], Smith [1973], Young [1974(a)(b), 1975], Richelson [1978], Nitzan
and Rubinstein [1981] proposed several characterizations of the scoring rules. Since
these pioneering works, several other voting rules have been characterized, and a
floodgate of papers has compared the various merits and flaws of all kinds of voting
rules (for recent books on this subjects, see for example Nurmi [1989] or Saari [1994]).
Among all these works, we present two of them in details. The first one is May’s
characterization of the majority rule: his result provides theoretical arguments for
using majority voting in many models of public economy. Moreover, his paper
completes Arrow’s 1951 book, by the study of the case m = 2. The second result
we present is a characterization of scoring rules. Chebotarev and Shamis [1998]
listed more than forty different characterizations of scoring rules in different contexts
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(social choice, statistics, tournament theory). The one we provide here is based
upon Young’s articles [1974(b), 1975]. Several reasons justify this choice. The
result in Young [1974(b)] is given for social welfare functions, which permits a direct
comparison with the characterization of dictatorship. Moreover, the framework is
almost Arrow’s model, the only improvement being that the size of the electorate
may vary (but is still finite). Smith [1973] presented a similar result one year before,
but the proof given by Young in [1974(b)] is shorter and clearer, although it uses
several lemmas from a paper he wrote before [Young, 1975]. It also focuses on the
relationships between the notion of convexity and the scoring rules, which was not
the case in previous works. And, to some extent, Young’s results foreshadow the
framework of the geometry of voting, that has been developed by Saari [1994] in the
mid eighties and early nineties. At last, from a historical point of view, one may
notice that this body of research on the axiomatization of majority rule and scoring
rules show that the Arrovian framework is flexible enough to continue in modern
terms the two hundred-year old debate between Borda, the proponent of the specific
scoring rule which now bears his name, and Condorcet, a partisan of the majority
vote.

The remaining of this paper is organized as follows. Section 2 recalls basic defi-
nitions and introduces the concept of social welfare function (SWF): it is a mapping
that associates a social ranking of these candidates to each list of preferences on
candidates. Similarly, a social choice correspondence (SCC) associates a non empty
subset of candidates to each list of preferences on candidates. Section 3 is a prepara-
tory section. It presents basic democratic requirements that a SWF should satisfy.
The interesting point is that, whenever one of these axioms is satisfied, the domain
of a SWF f can be extended from the set of all possible profiles of preferences to
Nm!, Zm! (the set of all the integers), or even Qm! (the set of all the rationals). From
a technical point of view, this change allows to switch from combinatorial techniques
(like in classical social choice) to linear algebra and geometry. Section 4 is devoted
to the characterization of the majority vote. Section 5 presents the axiomatization
of scoring rules. Several technical lemmas on Q-convexity that are needed for the
proof of the main theorem are also presented in this section. In Section 6, we con-
sider several consequences of these results for SCCs. In particular, we present the
characterizations of the Borda count, the plurality rule and the antiplurality rule
that are based upon Young’s results. To conclude, we complete the picture by de-
scribing other ways to analyze voting rules in social choice theory and raise some
unsolved problems.

2. THE MODEL

Let A = {x, y, z, . . .} (or {a1, a2, . . . , am} if necessary) be a finite set of m ≥ 2 ele-
ments called here alternatives (and elsewhere issues, decisions, proposals, candidates,
allocations, policies,etc.). Each voter (or agent, individual, committee member) is
identified with one element of the set of natural integers N. A population V is a
finite and non empty subset of N. In this paper, we focus on the case where the
preference of each voter i ∈ N is represented by a linear order Li on A, but some-
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times, we consider that the preference is a complete preorder Ri. If R is a complete
preorder, we denote by I its symmetric part, and by P its asymmetric part.

A profile (of individual preferences) is a function π from N into L, the set of
linear orders (or R, the set of complete preorders). L∞ (respectively R∞) is the set
of all profiles of linear orders (respectively complete preorders). When we restrict
our attention to a population V ⊂ N of size v, the profile of individual preferences
π(V ) = (Li)i∈V in Lv is a v-tuple of linear orders (with the preferences presented
in the order of increasing indices). A similar definition holds when the preferences
are complete preorders (π(V ) ∈ Rv). For two disjoint populations V and V ′, with
V ∩ V ′ = ∅, and two profiles π(V ) = (Li)i∈V and π(V ′) = (Lj)j∈V ′ , we define the
union of the two profiles by the 2v-tuple π(V ∪ V ′) = (Lk)k∈V ∪V ′ . We denote by 2N

the set of all finite parts of N. Thus, the set of all the possible profiles for any finite
population is R̄ = R∞ × 2N or L̄ = L∞ × 2N.

A social welfare function (SWF) is a function f : R̄ → R that assigns to each
profile of preferences π(V ) a complete preorder f(π(V )) = RV . A social choice

correspondence (SCC) is a function g : R̄ → 2A \ ∅ that assigns to each profile
of preferences π(V ) a non empty set of alternatives. Of course, we can restrict the
domain of definition of SWFs and SCCs to L̄.

3. BASIC DEMOCRATIC REQUIREMENTS AND EXTENSION OF THE DO-
MAIN

Several democratic properties may be required when we want to describe a real life
decision process by the mean of a social welfare function3: each voter should have the
same weight in the decision process, all the candidates should be treated equally, the
size of the population should not influence the results, etc. In social choice theory,
such conditions are called the anonymity, the neutrality, the homogeneity and
the independence of symmetric profiles. Moreover, these properties induce
extensions of the domain of f from L̄ to Nm!, Zm!, Qm! or to the unit simplex
S(m!) = {x ∈ Qm! |

∑m!
t=1 xt = 1, xt ≥ 0 ∀t ∈ {1, . . . ,m}}. In several papers, the

voting rules are directly defined on these sets, which means that one or several of
the above conditions are implicitly assumed.

DEFINITION 1. Let V and V ′ be two sets with cardV = cardV ′ and let Γ(V, V ′) be
the set of all the one to one mappings γ : V → V ′. For any profile π(V ) = (Ri)i∈V ,
we define the profile γ(π(V )) = (Rj)j∈V ′ on V ′ such that Ri = Rj if and only if
j = γ(i). A social welfare function f is anonymous if and only if for any γ ∈ Γ(V, V ′)
and any π(V ) ∈ R̄, f(γ(π(V )) = f(π(V )).

This definition is not the traditional one, presented by May [1952] or Arrow
[1963]. Like many authors in social choice theory, they assume that the set of
voters cannot vary, and they directly assume that the set of voters is the fixed
set V = {1, . . . , v}. The anonymity condition described by Definition 1 has two

3All these axioms have a natural counterpart when the aim of the society is to pick out a unique
winner or select a subset of socially best alternatives with the help of a SCC rather than ranking
all the alternatives.
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consequences: first, it establishes a relationship on the social ordering of two different
populations (this fact is generally omitted in social choice models) and secondly, it
implies that f(π(V )) only depends upon the numbers of voters having a definite
preference. There are m! preference types in L, indexed from 1 to m! by p according
to the lexicographic order.

EXAMPLE 1. Let A = {a, b, c}. The set L contains six linear orders, labelled
from 1 to 6 in the lexicographic order (each column describes a linear order, the top
alternative being the most preferred, etc.):

L1 L2 L3 L4 L5 L6

a a b b c c
b c a c a b
c b c a b a

DEFINITION 2. For any π(V ) ∈ L̄, the vector ñ(π(V )) = (n(π(V ))1, . . . , n(π(V )m!) ∈
Nm! (also denoted by ñ(π) or simply ñ for short), where n(π(V ))p is the number of
individuals having the linear ordering Lp as a preference in the profile π(V ) is called
a voting situation.

THEOREM 1. Let π(V ) and π′(V ′), two profiles on two populations of the same
size (possibly with common voters) such that ñ(π(V )) = ñ(π′(V ′)) = ñ. If f is
anonymous, f(π(V )) = f(π′(V ′)) = f(ñ).

Proof. Take V , V ′, π, π′ such that ñ(π(V )) = ñ(π′(V ′)) = ñ. First, consider a new
population V ′′ = {1, . . . , v}, with v = cardV = cardV ′. Let γ ∈ Γ(V, V ′′) such that
γ(π(V )) = π(V ′′) and γ′ ∈ Γ(V ′, V ′′) such that γ′(π′(V ′)) = π′(V ′′). By anonymity,
f(π(V )) = f(γ(π(V ))) = f(π(V ′′)) and f(π′(V ′)) = f(γ(π′(V ′))) = f(π′(V ′′)).
This shows that we can directly label the voters from 1 to v in the natural order
without loss of generality. Thus, π(V ′′) = (L1, . . . , Lv) and π′(V ′′) = (L′

1, . . . , L
′
v).

Secondly, let γ′′ ∈ Γ(V ′′, V ′′) such that γ(i) = j if and only if Li = L′
j. Such a

mapping exists, as ñ(π(V ′′)) = ñ(π(V )) = ñ(π′(V ′)) = ñ(π′(V ′′)). By anonymity,
f(π(V ′′)) = f(γ′′(π(V ′′))) = f(π′(V ′′)) and f(π(V )) = f(π′(V ′)) = f(ñ). QED.

Thus, anonymity implies that each individual has the same power and that the
names of the voters have no importance. We can directly define f on the domain
of voting situations ñ, that is Nm!. In the three candidate case, for any π(V ) ∈ L̄,
we have f(π(V )) = f(n1, n2, n3, n4, n5, n6) whenever f is anonymous. The second
democratic requirement concerns the alternatives.

DEFINITION 3. Let Σ(A) be the set of permutations on A = {a1, . . . , am}. For
any binary relation R on A, we define σ(R) by aσ(i)σ(R)aσ(j) iff aiRaj. For any
profile of linear orders π(V ) ∈ L̄, we define σ(π(V )) = (σ(Li1), . . . , σ(Liv)). Then,
a social welfare function f is neutral iff, for any σ ∈ Σ(A) and any profile π(V ) ∈ L̄,
f(σ(π(V ))) = σ(f(π(V ))).

Neutrality means that no alternative (like the statu quo) plays a particular role
in the decision process. A neutral and anonymous SWF is called symmetric. If
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f is a symmetric SWF with domain Nm!, then the permutation of coordinates of ñ
induced by σ, a permutation on A, can be conveniently represented by a permutation
matrix Mσ, and we have:

∀ñ ∈ Nm!, f(Mσ(ñ)) = σ(f(ñ)).

Notice that if f is symmetric and ñ is a fixed point of Mσ, then f(σ(ñ)) = σf(ñ)
must contain some indifference relations. Moreover, for the voting situation e =
(1, . . . , 1) ∈ Nm!, f(e) = I(A), the complete indifference relation on A.

DEFINITION 4. Let f be a symmetric SWF, defined on Nm!. Then f is independent
of symmetric profiles if and only if ∀ñ ∈ Nm!, ∀k ∈ N, f(ñ + ke) = f(ñ).

THEOREM 2. Let f be a symmetric and independent of symmetric profiles SWF,
defined on Nm!. Then, there exists a unique extension of f from Nm! to Zm!, defined
by ∀k ∈ N, ∀ñ ∈ Nm!, f(ñ − ke) = f(ñ)

Proof. Assume that for (ñ, m̃) ∈ (Nm!)2, (k, k′) ∈ N2, ñ − ke = m̃ − k′e. Without
loss of generality, k ≥ k′. Then, f(ñ − ke) = f(ñ) = f(m̃ + (k − k′)e) = f(m̃) =
f(m̃ − k′e). This extends f to Zm!. QED.

The next condition is homogeneity: if each voter is replicated k times with the
same preference to create a new population of size kv, the social outcome should
not be changed.

DEFINITION 5. Let V 1, V 2, . . . , V k, be k disjoint populations of the same size v,
and a profile π such that ∀t ∈ {1, . . . , k }, π(V t) = π(V 1). Let π(kV 1) = π(V 1 ∪
V 2 ∪ . . . ∪ V k). Then a social welfare function f is homogeneous if and only if
f(π(kV 1)) = f(π(V 1)).

THEOREM 3. Let f be a homogeneous, symmetric and independent of symmetric
profiles social welfare function defined on Zm!. Then, there exists a unique extension
of f from Zm! to Qm!, defined by: ∀ k ∈ N, ∀ ñ ∈ Zm! f( ñ

k
) = f(ñ).

Proof. For ñ, m̃ ∈ (Zm!)2, k, k′ ∈ N2, let ñ
k

= m̃
k′

. Then f( ñ
k
) = f(ñ) = f(k′ñ) =

f(km̃) = f(m̃) = f( m̃
k′

). The domain of f is now Qm!. QED

Another possibility is to consider symmetric and homogeneous SWF. Then their
natural domain can be viewed as the set of rational points in the unit simplex,

S(m!) =

{

x = (x1, . . . , xm!) ∈ Qm! |
m!
∑

t=1

xt = 1, and for 1 ≤ t ≤ m, xt ≥ 0

}

where xt is the fraction of voters having Lt as a preference. In particular, this
domain is extensively used by Saari [1988, 1990, 1994].
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4. MAJORITY VOTING

Majority voting plays a central role in voting theory: when two alternatives are in
contention, it is the most natural way to order the candidates. Its characterization
is due to May [1952]. His result is a natural complement of Arrow’s theorem, as
it is a possibility theorem for the case m = 2. Unfortunately, for more than two
candidates, the majority relation may lead to cycles; Arrow’s theorem [Arrow, 1963]
can be also considered as generalizations of the cyclicity result. Nevertheless, in
some contexts, natural restrictions on the preferences make the majority relation
transitive and the main objection to its use disappears4. This is why it is so often
used in public economy as the most natural way to model the voting process.

Without loss of generality, consider that V = {1, . . . , v} is a finite set of voters.
Let π = (R1, . . . , Rv) ∈ R̄ be a profile of complete preorders. For all (x, y) ∈ A2, we
write:

Nπ(x, y) = {i ∈ V | xPiy}.

DEFINITION 6. Let A = {x, y}. A SWF is the simple majority rule if and only if,

∀π(V ) ∈ R̄, xRy ⇔ CardNπ(x, y) ≥ CardNπ(y, x)

where R = f(π).

The majority voting is obviously symmetric. It also satisfies the monotonicity

property. We here define it for any number of candidates.

DEFINITION 7. Let π(V ) ∈ R̄ and f a SWF be such that xPV y or xIV y where
RV = f(π(V )). Let π′(V ) ∈ R̄ be a second profile such that there exists j ∈ V
with, , (xIjy and xP ′

jy) or (yPjx and xI ′
jy) and with ∀i 6= j, R′

i = Ri. Then f is
monotone if and only if xP ′

V y, with R′
V = f(π′(V )).

THEOREM 4 (May). Let A = {x, y}. A SWF is anonymous, neutral and monotone
if and only if it is the simple majority rule.

Proof. Using the same argument as in Theorem 1, we can state that f is de-
fined on N3. Thus, f(π) = f(n1, n2, n3) = f(ñ), where n1 = CardNπ(x, y),
n3 = CardNπ(y, x) and n2 = v − n1 − n3. By symmetry, we will prove that

n1 = n3 ⇒ xIñy, (1)

with the convention Rñ = f(ñ). Assume the contrary, xPñy. Let σ be such that
σ(x) = y, and σ(y) = x, and γ be a permutation on V such that γ(i) = j if and only if
xPiy and yPjx (such a permutation exists as n1 = n3). Then, by neutrality, yPσ(ñ)x.
By anonymity, yPγ(σ(ñ))x, but γ(σ(ñ)) = ñ, which implies yPñx, a contradiction.

Suppose now that π is such that n1 = n3 + 1. By (1) and monotonicity, xPñy.
By induction,

n1 > n3 ⇒ xPy. (2)

4This fact has been noticed first by Duncan Black [1998] in 1948.
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Similarly,

n1 < n3 ⇒ yPx. (3)

Thus, equations (1), (2) and (3) define the majority rule. Independence of the three
conditions is left to the reader as a simple exercise. QED.

From the axiomatic point of view, there is almost nothing more to say about
the simple majority rule for the case of two alternatives. Fishburn [1973] discussed
extensively possible modifications of the three axioms, and characterized the family
of qualified majorities, where n1 must attain some threshold greater than n3 to
declare x socially better than y.

5. CHARACTERIZATION OF SCORING RULES

5.1. scoring rules and their properties

Scoring rules are popular decision processes. Given m alternatives and a profile,
assign a sk points (sk is a real number) to each voter’s kth most preferred alternative.
Then x will be ranked before y in the social ordering if its total score over the whole
population is higher. Any SWF defined in this way is a simple scoring function,
denoted by f s, where s is the m-dimensional vector (s1, s2, . . . , sm) ∈ Rm. The
vector s is called a scoring vector.

Formally, we may define f s on the domain Nm! as follows. Given Lp ∈ L, let Ep

be the m × m permutation matrix with “1” in the (i,j)th position if and only if aj

is the ith most preferred alternative in the preference order Lp. For every ñ in Nm!,
define T (ñ) =

∑

Lp∈L
npEp. The column vector Tj(ñ) gives the positions of aj on

the m ranks for a profile ñ.
Let π(V ) be a profile, and ñ the associated voting situation. Let s be a scoring

vector. Then, the simple scoring function f s is a SWF, where Rs
ñ = f s(ñ), defined

by:

aiR
s
ñaj ⇔ s.Ti(ñ) ≥ s.Tj(ñ).

Thus, the product s.Ti(ñ) is the total score of the alternative ai with the scoring
vector s and the voting situation ñ.

Among the class of simple scoring functions, we may distinguish the Borda count
(s = (m− 1, m− 2, . . . , 1, 0)), the plurality rule (s = (1, 0, . . . , 0)), the antiplurality
rule (s = (1, . . . , 1, 0)) and the trivial social welfare function (s = (0, . . . , 0)). One
may easily check the equality f s = f t whenever s is a positive linear transformation
of t. At this point, we do not require the coordinates in s to be decreasing.

It is possible to refine further the concept of simple scoring functions, when ties
relative to the simple scoring rule f s1

are resolved by the mean of another simple
scoring function f s2

. The composition of f s2

with f s1

, denoted by f s2

◦ f s1

, is
defined, for all a, b ∈ A and all π(V ) ∈ L̄, by:

aIs2◦s1

b ⇔ (aIs1

b) and (aIs2

b) (4)

aP s2◦s1

b ⇔ (aP s1

b) or (aIs1

b and aP s2

b). (5)
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DEFINITION 8. Let s1, s2, . . . sα be a sequence of α m-dimensional scoring vectors.
Then, the composition f sα

◦f sα−1

◦ . . .◦f s2

◦f s1

, called a composite scoring function,
is defined by applying recursively formulas (4) and (5).

By definition, scoring functions (simple or composite) are symmetric. Another
important property of scoring rules is Young’s consistency [1974(a)(b), 1975], also
called separability by Smith [1973], elimination by Fine and Fine [1974(a)(b)] or
reinforcement by Moulin [1988] and Myerson [1995].

DEFINITION 9. Let f be a social welfare function defined on L̄. The SWF f is
consistent if for any two profiles π(V ), π(V ′) defined on disjoint populations:

aPV b and aRV ′b imply aPV ∪V ′b (6)

aIV b and aIV ′b imply aIV ∪V ′b (7)

where f(π(V )) = RV , f(π(V ′)) = RV ′ and f(π(V ∪ V ′)) = RV ∪V ′.

In other words, consistency means that if candidate a is considered as better
than candidate b with the social welfare function f in two or more different sub-
populations of voters, this conclusion should remain true when we directly use f on
the whole population. Notice that we do not care about the ranking of the other
candidates to reach this conclusion.

The fact that all the scoring functions (simple or composite) satisfy the con-
sistency condition follows from the additivity of the scores. This later property
also implies homogeneity and independence of symmetric profiles. Thus, there is a
unique way to extend f s and compositions of scoring rules from L̄ to Qm!, as shown
by Theorems 1, 2, and 3. This enables us to introduce a last condition, directly
defined on Qm!.

DEFINITION 10. Let f be a SWF defined on Qm!. It is continuous (or Archimedean
in Smith’s terminology [Smith, 1973]) if, for every (a, b) ∈ A2 and a sequence of
profiles {xn} from Qm! such that ∀n ≥ n̄ aRxn

b, then limn→∞xn = x imply aRxb.

Continuity distinguishes between simple and composite scoring functions. For
example, consider A = {a, b, c}. Take a sequence of profiles xn in Q6 where the coor-
dinate corresponding to the linear order aLbLc is 1, the coordinate corresponding to
the linear order bLcLa is 1− 1

n
and all the other components 0. With the adequate

labelling (see Example 1), xn = (1, 0, 0, 1− 1
n
, 0, 0) and Limn→∞xn = (1, 0, 0, 1, 0, 0).

Take now the composite scoring function f s2 ◦ f s1 with the scoring vectors s1 =
(1, 0, 0) and s2 = (0, 1, 0): we first rank the alternatives on the basis of he number
of first place and use the extra information given by the number of second place
to break the possible ties. For all xn, aRxn

b, but bPxa. The composition of simple
scoring rules does not satisfy the continuity, while simple scoring rules do so.

THEOREM 5. Young [1974(b)]. A social welfare function defined on L̄ is symmetric
and consistent if and only if it is a (simple or composite) scoring function. It is also
continuous if and only if it is a simple scoring function.

In his proof, Young uses a key fact: the set of profiles that lead to a social
outcome is a convex set in Qm! for the scoring rules. We present in detail this
feature of the scoring rules in the next paragraphes.
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5.2. convexity

To characterize all symmetric and consistent social welfare functions, we will ex-
tensively use the notion of Q-convex sets. In general, we say that a set S ⊆ Rn is
Q-convex if S ⊆ Qn, and for all (x, y) ∈ S2, and all rational λ ∈ Q, 0 ≤ λ ≤ 1, we
have λx + (1 − λ)y ∈ S.

For a given pair of alternatives, (a, b) ∈ A2, and a simple scoring function f s,
define Ds

a = {x ∈ Qm! | aRxb}. It is the set of profiles where a does better than b on
the ground of the scoring vector s. Then, it is easy to see that Ds

a is a Q-convex set.
For any two profiles x and y in Ds

a, s.Ta(x) ≥ s.Tb(x) and s.Ta(y) ≥ s.Tb(y). Thus,
for any rational λ ∈ [0, 1], s.(λTa(x)+(1−λ)Ta(y)) ≥ s.(λTb(x)+(1−λ)Tb(y)). Thus,
aRλx+(1−λ)yb and λx+(1−λ)y ∈ Ds

a. Similarly, if we define Bs
a = {x ∈ Qm! | aPxb},

we can prove that Bs
a is Q-convex.

Before going to the proof of the main theorem, it is useful to recall the following
facts. For S ⊆ Rn, let cvxS be the convex hull of S, afS the affine hull of S, and
S the closure of S. If S ⊆ W ⊆ Rn, where W is an affine set, let intW S denote
the interior of S relative to W , and riS = intafSS the relative interior of S. The
dimension of S, dimS, is the dimension of afS. We shall also use the following well
known facts: if S is convex, then S and riS are convex, riS = riS, and riS= S.

In order to characterize the scoring functions, Young [1975] also needs to establish
two technical lemmas. The proofs are given in appendix.

LEMMA 1. Young [1975]. S is Q − convex if and only if S = Qn ∩ cvxS.

LEMMA 2. Young [1975]. If S is Q − convex, then S = cvxS and S is convex.

5.3. proof of Theorem 5

Proof. The part “if ” is left to the reader as an exercise. Conversely, let f defined on
L̄ be symmetric and consistent. Without loss of generality, we can uniquely extend
its domain of definition to Qm!, as shown by Theorems 1, 2 and 3. For m = 1, the
theorem is trivial, so let m ≥ 2, and fix (a, b) ∈ A2. For every profile x ∈ Qm! define
the linear mapping α : Qm! → Qm, α(x) = Ta(x) − Tb(x), such that αi(x) is the
number of times a occurs in rank i minus the number of times b occurs in rank i
in x. Evidently,

∑m

i=1 αi(x) = 0 for all x, and the dimension of the image by α is
m − 1. Hence, ker(α) = {x ∈ Qm! | α(x) = 0} has dimension m! − (m − 1).

Let us now find a base for ker(α). We will use two kinds of vectors in Qm!. For
every Lp ∈ L, let ep denote the profile with “1” in coordinate p, and “0” elsewhere.

First group. The set L′ of preferences in which neither a nor b has rank m has
cardinality (m − 1)!. With each Lp in L′, associate ηp = ep + eσ(p) + eσ2(p), where
σ permutes a, b and the mth ranked alternative in a 3-cycle. The ηp’s are linearly
independent, as they are not based upon the same vectors ep’s. Moreover, α(ηp) = 0.

Second group. Consider the remaining preferences in L \ L′ as the vertices of a
graph in which Lp and Lq are adjacent if Lp is obtained from Lq by interchanging a
and b, or by interchanging a with b and c with d, c, d different from a, b. This graph
has (m − 1) connected components T (one for each i < m), with 2(m − 2)! edges
and vertices in each component. With each edge {Lp, Lq} in T associate the profile
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ǫpq = ep + eq. There are (m− 1)(2(m− 2)!− 1) such vectors which are independent
as a linear order Lp only belongs to one connected graph, and is only connected with
m − 2 2 + 1 other linear orders. Moreover, α(ǫpq) = 0.

EXAMPLE 2. Let A = {a, b, c}. The preference types are the ones presented in
Example 1. L′ = {L1, L3}, η1 = (1, 0, 0, 1, 1, 0) and η2 = (0, 1, 1, 0, 0, 1). Next, we
obtain that L \ L′ = {L2, L4, L5, L6}. The linear orders L5 and L6 are adjacent,
so we get ǫ56 = (0, 0, 0, 0, 1, 1). Similarly, L2 and L4 are adjacent, and we obtain
ǫ24 = (0, 1, 0, 1, 0, 0). These four independent vectors form a base for ker(α) in the
case m = 3.

Thus, we have (m − 1)(m − 2)(m − 2)! + 2(m − 1)! − (m − 1) = m! − (m − 1)
linearly independent vectors η’s and ǫ’s which form a set W . The vectors in W
span ker(α). Each x ∈ W is fixed by some permutation σ ∈ Σ(A) taking a to b, so
symmetry and the transitivity of Rx imply aIxb. As any profile in ker(α) is a linear
combination of the vectors in W (with rational weights), by consistency (equation
(3)), aIxb for all x in ker(α).

If α(x) = α(y), then the profile x− y is in ker(α) so aIx−yb, and aPxb if and only
if aPyb (by equation (4)). Thus, f , relative to a and b, depends only on α(x), and
we may consider f to have domain D = {x ∈ Qm |

∑m

i=1 xi = 0}.
The sets D1 = {x ∈ D | aPxb} and D2 = {x ∈ D | bPxa} are Q-convex (by

consistency), and disjoint (by the antisymmetry of f). Moreover, unless f is the
trivial function, they are non empty. By lemma 2, D1 and D2 are non empty convex
sets. If D1 ∪ D2 is not the whole set D = {x ∈ Rm |

∑m

i=1 xi = 0}, then the set
D − (D1 ∪ D2) is open in D and contains a rational point x for which aIxb. For
any y ∈ D1, and sufficiently small rational λ > 0, (1 − λ)x + λy is rational and in
D − (D1 ∪ D2), aP((1−λ)x+λy)b, a contradiction. Thus, D = D1 ∪ D2. By symmetry,
D1 = −D2, so both sets must have non empty interior relative to D. If the interior
of D1 meets the interior of D2, then their intersection contains a rational point x,

and, since int(Di) = int(cvxDi) = int(cvxDi), we have by Q-convexity and lemma
1 that x ∈ (cvxD1 ∩ cvxD2) ∩ D = D1 ∩ D2, contradicting the disjointness of D1

and D2.

Thus D1 and D2 are nonempty convex sets with disjoint interiors (relative to
D), so the separation theorem for convex sets implies that there exists a non zero
vector s1 ∈ D such that s1.x ≥ 0 for all x ∈ D1, and s1.x ≤ 0 for all x ∈ D2.

If x ∈ D and s1.x > 0, then x is in D1 − D2; hence, x is in the interior of D1,
and since it is rational, it must be in D1. Thus, s1.x > 0 implies aPxb. Similarly,
s1.x < 0 implies bPxa .

If the set D′ = {x ∈ D | s1.x = 0} contains points x such that aPxb, we can
define D′

1 = {x ∈ D′ | aPxb} and D′
2 = {x ∈ D′ | bPxa}. By applying the preceding

argument to D′, we obtain a non zero vector s2 such that s2.x > 0 implies aPxb for
all x ∈ D′

1, and so forth. This construction terminates in at most dimD = m − 1
steps with a sequence of vectors s1, s2, . . . , sk belonging to D that represents f as a
scoring function for the pair a, b. By symmetry, the same numbers must apply to
all pairs from A, so f is a scoring function.
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If f is continuous, then aIxb for all x in D′, meaning that f is determined by a
single scoring vector s1. QED.

To conclude this section, notice that the scoring vectors s need not be decreasing.
One needs a further condition, like a kind of monotonicity, Pareto optimality (see
below), or other weaker conditions, to get sj ≥ sj+1.

6. FURTHER AXIOMATIC RESULTS

The axiomatic approach led to many positive results in the analysis of voting rules.
After the pioneering research of Young [1974(b), 1975] and Smith [1973], several
authors characterized specific scoring functions. We can quote, among others, Young
[1974(a)], Fishburn and Gehrlein [1976] Nitzan and Rubinstein [1981] and Saari
[1994] for the Borda count, Richelson [1978], Lepelley [1992], Ching [1996] and
Merlin and Naeve [1999] for the plurality rule, Barberà and Dutta [1982] for the
antiplurality rule. All these results are given for social choice correspondences. In
this framework, for two disjoint populations V and V ′ and a SCC g defined on L̄,
consistency reads :

g(π(V )) ∩ g(π(V ′)) 6= ∅ ⇒ g(π(V ∪ V ′)) = g(π(V )) ∩ g(π(V ′)) (8)

and Young’s result applies (see [Young, 1975] for details): a symmetric and consis-
tent SCC is described by a scoring rule (simple if we add a continuity axiom). Most
of the additional characterizations proceed in the same way: keeping (up to some
minor changes) Young’s framework and axioms, and adding one or two extra prop-
erties. Most of the proofs also follow the same pattern5: it is easy to prove that the
considered scoring rule satisfies the extra axioms, and the key point of the proof is
to check it is the only one in this family by providing a well chosen counterexample.
We omit the proofs of the results that we will now present, but the reader can try
to demonstrate them in this way.

These extra axioms can be broadly classified in two groups. The first group
gathers conditions which all share a majoritarian flavor. In the second group, we
encounter weakened version of Maskin Monotonicity [Maskin, 1985].

6.1. majority-like conditions

The Borda count has been proposed for the first time in 1786 by Jean Charles de
Borda [1781], a member of the French Académie Royale des Sciences: he suggested
that each voter should award m− 1 points to her first best candidate, m− 2 points
to her second, and so on down to 1 point for the next to the last and zero point for
the last one. A few years later, Condorcet [1785] pointed out that all the scoring
rules, including the Borda count, suffer from the same flaw: for some profiles, they
fail to pick out as a winner the candidate who is able to beat all the other candidates
in majority pairwise comparisons. Such a candidate now bears Condorcet’s name in

5The three exceptions are the characterizations of the Borda Count by Young [1974(a)] and
Nitzan and Rubinstein [1981] and the characterization of the plurality rule by Ching [1996].
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the literature. Thus, it seems a priori useless to distinguish among the scoring rules
on their ability to select a Condorcet winner. But in fact, many positive results have
been obtained by using weakened version of Condorcet’s majority criterion.

The first result is due to Young [1974(a)], who had in fact characterized the
Borda count as a SCC one year before his general result. He uses two extra axioms,
but was able to get rid off anonymity.

DEFINITION 11. Consider a single voter population : π(V ) = (Li) ∈ L. Let ai

be the top element in the preference Li : ∀b ∈ A \ {ai}, aiLib. Then, a SCC g is
faithful if and only if :

g(Li) = ai.

When the population is reduced to a single voter, she is able to impose her most
preferred alternative.

DEFINITION 12. Consider a profile π(V ) ∈ L̄ such that for any pair of alternative
CardNπ(x, y) = CardNπ(y, x)s. Thus, g satisfies the cancellation property if and
only if

g(π(V )) = A.

Thus, the cancellation property asserts that when all the majority comparisons
end up in a tie, the SCC should select all the alternatives.

THEOREM 6. Young [1974(a)]. For any fixed number of alternatives, there is one
and only one social choice correspondence that is neutral, consistent, faithful, and
has the cancellation property - namely the Borda count.

Notice that Nitzan and Rubinstein [1981] proposed a much related result for
SWFs: the Borda count is the only SWF which satisfies neutrality, consistency, and
the adequate adapted versions of monotonicity and cancellation. The cancellation
property emphasizes a particularity of the Borda count: the Borda scores can be
computed from the values of the pairwise comparisons obtained through majority
voting. This fact had been pointed out by Fishburn and Gehrlein [1976] and Smith
[1973] who proved that formula (9) is true for any profiles and any alternative x ∈ A
if and only if s = (m − 1, m − 2, . . . , 1, 0); it asserts that the total score of an
alternative under a scoring vector s is equal to the sum of its margins of victory in
majority comparisons.

s.Tx(ñ) =
∑

y∈A, y 6=x

CardNπ(x, y) (9)

Formula (9) can also be used to prove Theorem 7.

DEFINITION 13. An alternative x ∈ A is a Condorcet loser for a profile π(V ) if

∀y ∈ A \ {x}, Nπ(x, y) < Nπ(y, x)

A SCC satisfies the Condorcet Loser (CL) property if and only if it never selects a
Condorcet loser whenever such a candidate exists.
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THEOREM 7. Smith [1973], Fishburn and Gehrlein [1976]. The Borda count is the
only simple scoring rule which satisfies the Condorcet loser property.

Symmetrically, one can easily show that a Condorcet winner is never ranked
last with the Borda count. However, in the Borda ordering, a Condorcet loser
can be ranked up to the second place, and a Condorcet winer down to the next
to last position. A complete description of all the relationships between majority
pairwise voting and the Borda count can be found in Saari [1988, 1990]. In fact,
Saari did more: he completely characterized all the possible relationships among the
rankings of scoring rules on all the different subsets B ⊆ A of candidates. Again,
the Borda count emerges as the unique scoring rule which minimizes the number of
inconsistencies among the rankings of different subsets. Theorem 6 and 7 can now
be seen as corollaries of his more general theory.

However, the Borda count is not the only scoring rule which can be characte-
rized by the mean of some extra majority-like axiom. The plurality rule, which
ranks the alternatives according to the number of first positions in the individual
preferences, also meet some weak Condorcet type properties. Richelson [1978] was
the first author who provided a characterization of the plurality rule. He slightly
changed Young’s framework, allowing the set of alternatives to change too. Thus a
SCC is now a mapping g from the set (2A \ ∅) × L∞ × 2N to 2A \ ∅ with, for any
B ⊆ A, g(B, π(V )) ⊂ B; a preference on B is defined as the restriction of Li on B.

DEFINITION 14. Let π(V ) ∈ L̄ be a profile such that there exist x and y with
Nπ(x, y) = V . Thus, a SCC satisfies the reduction property if and only if:

g(A, π(V )) = g(A \ {y}, π(V )).

In words, the social outcome should be unaffected when we remove a Pareto
dominated alternative from the choice set.

THEOREM 8. Richelson [1978], Ching [1996]. There is one and only one social
choice correspondence that satisfies anonymity, neutrality, consistency and the re-
duction property - namely, the plurality rule.

Richelson also included the continuity as a necessary condition, but Ching prove
later that this condition could be omitted. Another characterization of the plurality
rule is based upon the notion of a strong Condorcet winner.

DEFINITION 15. An alternative x ∈ A is a strong Condorcet winner for a profile
π(V ) ∈ L̄ if

Card{ i ∈ V | xPiy ∀y ∈ A \ {x} } > v/2

A SCC satisfies the strong Condorcet winner (SCW) property if and only if it
selects the strong Condorcet winner whenever such a candidate exists.

THEOREM 9. Lepelley [1992]. There is one and only one social choice correspon-
dence that satisfies anonymity, neutrality, consistency, continuity and the strong
Condorcet winner property - namely, the plurality rule.
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6.2. a symmetric result for plurality and antiplurality rules

Up to our knowledge, there is only one characterization of the antiplurality rule in
the literature: it has been provided by Barberà and Dutta [1982] in the appendix of
a more general paper on implementation theory. In this literature, a famous axiom
is Maskin Monotonicity:

DEFINITION 16. A SCC g satisfies Maskin Monotonicity if for all voter i ∈ V , for
all profile π(V ) ∈ L̄v, and for all preference L′

i ∈ L, the following implication holds.

[a ∈ g(π(V )) and (∀ b ∈ A, aLib ⇒ aL′
ib)] ⇒ a ∈ g(π′(V )) ,

π′ being a new profile where the preference Li has been removed and replaced by the
preference L′

i.

As noticed by Barberà and Dutta, this condition can be split in three parts which
together are equivalent to Maskin Monotonicity. The first one is the monotonicity
condition we presented in Definition 1 for the SWFs. For the case of SCCs, it reads:

DEFINITION 17. A SCC g satisfies monotonicity if for all voter i ∈ V , for all
profile π(V ) ∈ Lv, and for all preference L′

i ∈ L the following implication holds.

a ∈ g(π(V ))
Li and L′

i agree on A\{a}
∀ b ∈ A (aLib ⇒ aL′

ib)







⇒ a ∈ g(π′(V )) ,

π′ being a new profile where the preference Li has been removed and replaced by the
preference L′

i.

For L ∈ L and r ∈ {1, . . . ,m}, we denote the rth ranking worst alternative in L
by br(L) and the kth ranking best alternative in L by tk(L). Also we define the ℓ-
bottom B(ℓ, L) = {br(L) ∈ A | r ≤ ℓ}, and the ℓ-top T (ℓ, L) = {tk(L) ∈ A | k ≤ ℓ}.

DEFINITION 18. A SCC g satisfies top-invariance if for all voter i ∈ V , for all
profile π(V ) ∈ L̄, and for all preference L′

i ∈ L the following implication holds.

br(Li) ∈ g(π)
B(r, Li) = B(r, L′

i)
Li and L′

i agree on B(r, Li)







⇒ br(Li) ∈ g(π′(V )) ,

π′ being a new profile where the preference Li has been removed and replaced by the
preference L′

i.

The top invariance condition asserts that a voter cannot exclude a winner from
the choice set by reshuffling her preferences above this winner. Similarly, the bottom
invariance condition states that a change of preference below a winner cannot be
used by a voter to remove it from the choice set: in some sense, the choice set is not
affected by a change in the bottom preferences of the voters.
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DEFINITION 19. A SCC g satisfies bottom-invariance if for all voter i ∈ I, for all
profile π(V ) ∈ L̄, and for all preference L′

i ∈ L the following implication holds.

tk(Li) ∈ g(π)
T (k, Li) = T (k, L′

i)
Li and L′

i agree on T (k, Li)







⇒ tk(Li) ∈ g(π′(V )) ,

π′ being a new profile where the preference Li has been removed and replaced by
preference L′

i.

THEOREM 10. Barberà and Dutta [1982]. There is one and only one social choice
correspondence that satisfies anonymity, neutrality, consistency, monotonicity and
top invariance - namely, the simple antiplurality rule.

Though Barberà and Dutta did not notice it, it is easy to get a symmetrical
result for the plurality rule:

THEOREM 11. Merlin and Naeve [1999]. There is one and only one social choice
correspondence that satisfies anonymity, neutrality, consistency, monotonicity and
bottom invariance - namely, the simple plurality rule.

7. CONCLUSION

As one may guess, the theorems that we presented in this paper do not exhaust all
the results on voting rules that have been undertaken in the Arrovian framework.
Several other directions of research have emerged and have been developed since the
seventies.

Though majority voting is known to posses nice axiomatic properties, the sup-
porters of the Condorcet criterion have to come up with extra arguments to choose
among alternatives when there is a cycle. This drawback led to the development
of new solution concepts that respect the Condorcet criteria. For example, the
Copeland method selects as a winner the candidate who obtains the greater number
of victories in majority pairwise comparisons. Fishburn [1978] listed and classified
in 1977 nine so-called Condorcet social choice rules.

More generally, since thirty years, tournament theory has been a very active
field. A binary relation T on the set of alternative A is a tournament if, for any x
and y in A, one and only one of the following is true:

x = y, xTy or yTx.

Denote by T the set of all the tournaments defined on A. Then, a tournament
solution is a mapping from T to 2A\∅. McGarvey [1953] prove that any tournament
could be obtained by using the majority rule on a preference profile. Thus, the
search for new Condorcet voting rules largely coincide with the study of tournaments
solutions. The recent works by Laslier [1996, 1997] give an account of the research
in this area, presenting many solutions and characterization results.
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The research on the axiomatic of scoring rules has been much less active. How-
ever, three papers are worth to notice. They all consider modifications of the consis-
tency axiom but these new properties still convey the notion of convexity. Fishburn
[1978] and Sertel [1988] propose characterizations of the approval voting rule: each
voters indicates whether she approves or disapproves each alternative. The can-
didate who obtains the highest degree of support is elected. In this model, the
preferences of the voter are restricted: they can be interpreted as a weak ordering
with two classes of equivalence (approve or disapprove). Nevertheless, the consis-
tency axioms can be adapted to this framework, and again helps to characterize this
peculiar scoring rule.

Saari [1991] pointed out that Young’s consistency was too strong in some sense.
If the objective is to design a SCC g such that the set of alternatives leading to
a definite outcome is convex in the set of profiles S(m!) = {x ∈ Qm! :

∑m

t=1 x1 =
1, and ∀t ∈ {1, . . . ,m}, xt ≥ 0}, it suffices to use a weak consistency axiom:

∀B ⊆ A, ∀(x, y) ∈ (S(m!))2, ∀λ ∈ [0, 1], g(x) = g(y) = B ⇒ g(λx + (1− λ)y) = B.

Together with neutrality and anonymity, this weaker axiom enables Saari to charac-
terize the class of scoring rules with thresholds. Such a rule is also based upon the
total scores computed with a scoring vector, but the victory conditions are weak-
ened. To be selected, a candidate does not need the maximal number of points.
For example, the rule which selects all the alternatives that get more than the av-
erage number of points awarded by all the voters with the Borda count belongs to
this class. A rule which removes an alternative from the choice set only if another
candidate gets 10% more vote with the plurality rule also belongs to this class.

The notion of consistency has also been used by Young and Levenglick, [1978]
for the analysis of the Kemeny rule [1959]. A preference aggregation function g is
a mapping from L̄ into 2L, the set of subsets of linear orderings. The objective is
to associate to each profile a subset of socially good strict rankings of the candi-
date (ideally, only one). In this framework, consistency condition is also defined by
equation (7) except that g(x) is now a subset of linear orders rather than a sub-
set of alternatives. Define the distance between two linear orders as the number
of pairs for which they disagree. Thus, the Kemeny rule [1959] selects the linear
ordering(s) whose sum of the symmetric difference distance to the individual pref-
erences is minimum. Using the same technique as in the proof of Theorem 5, Young
and Levenglick could characterize the Kemeny preference function with anonymity,
neutrality, consistency, and an extra Condorcet type axiom.

I believe that these papers [Fishburn, 1978], [Sertel, 1988], [Saari, 1991], [Young,
Levenglick, 1978], although they seem isolated in the whole literature on voting
rules, clearly indicate that consistency-like conditions are a powerful tool. A detailed
exploration of the consequences of convexity properties in social choice theory still
awaits.

To some extent, we only reported in this paper the successes of the axiomatic
approach, telling nothing about its limitations and drawbacks. First, some very
simple rules have not been characterized yet. For example, consider the way to elect
the French president: the top two candidates with the plurality rule are selected for
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a final head to head comparison. This rule belongs to the larger class of scoring
run-off rules, where the alternatives are eliminated progressively by the mean of
scoring rules. Social choice theory gives us no more clue about these rules than some
partial results by Smith [1973] and Richelson [1980]. Similarly, the axiomatic results
for tournament solutions cannot be adapted for social choice correspondences: their
domain of definition is the set of preference profiles, not the set of tournament (see for
example the axiomatization of the Copeland method by Henriet [1985]). The same
argument can be used against the work of Roberts [1991]: this author proposesy
several interesting characterization results for the plurality rule, but assumes from
the very beginning that each voter only reports her top alternative. It is not possible
to define many other voting rules in this framework (like the Borda count, the
antiplurality rule, the tournament solutions), and we cannot compare his results
with the ones we presented in this paper.

So, if we consider that the implicit objective of this research programme is to
characterize all the voting rules that are used in practice, in order to be able to
make some recommendation on their respective merits and flaws, we must conclude
that there is still lot of work to accomplish! However, in order to compare the
voting rules, we do not need characterization results. We only need a list of “good”
properties, and check which rule satisfies which axiom. Such exercises are proposed
by Fishburn [1977], Richelson [1975, 1978(a)(b)(c), 1980] or Nurmi [1989] in order to
identify the best voting rules. Nevertheless, the conclusions of these authors strongly
depend upon their opinion on which properties are the most important ones; having
different opinions on the axioms that a voting rule should satisfy lead inevitably to
different conclusions.

This overall mosaic of results would not be complete without some criticisms on
this axiomatic programme. The results presented in Section 6 can be all proved in
the same way: show that rule X is the only scoring rule that satisfies the axiom Y
with the help of a well chosen example. But we do not know whether the fact that
rule Z does not meet axiom Y is a rare event or not. If condition Y is violated for
only 1% of the profiles, can we really say that rule Z does not satisfies it ? This type
of consideration justifies the growing literature on the computation of the likelihood
of voting paradoxes (a paradox occurs each time a desired axiom is violated at some
preference profile). We cannot give an account of all this literature here, but the
reader can find an extensive survey in Gehrlein [1997].

Another direction of research which departs from the axiomatic approach has
been initiated by Saari in a series of papers on scoring rules that have been published
at the end of the eighties and beginning of the nineties (see for example [Saari, 1988,
1990, 1991] and his book [Saari, 1994]). His objective is not to characterize which
rule satisfies which axioms, but to describe, for a given rule, all its possible behavior
when the set of alternatives shrinks or when the preferences varies. His techniques
are also quite innovative: voting rules (and especially scoring rules) are depicted as
linear mappings from the set S(m!) into an adequate image space for the scores.
For example, assume that the objective is to describe the relationships between the
scores obtained with a scoring rules on a set A of m alternatives and the results
of the pairwise comparisons among these alternatives. Saari reduces this problem
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to the analysis of a linear mapping from S(m!) into a (m−1)2m

2
-dimensional space

where all these scores ly. The study of the properties of voting rules is then reduced
to the analysis of a linear mapping. Since this pioneering works, this approach has
been successfully used by Merlin and Saari for the analysis of the Copeland method
[Saari and Merlin, 1996], [Merlin and Saari, 1997] and of the Kemeny rule [Saari
and Merlin, 2000(a)(b)].

There is no more place to talk about other important issues such as, for example,
voting in economic environments or the strategic aspects of voting. But we hope this
review of the literature has convinced the reader that the study of voting rules has
been an active field over the last thirty years. There is no doubt that the axiomatic
approach, the probability models and the linear algebra analysis will continue to
supply this field with new and important results and facts in the next decades.

APPENDIX

Proof of Lemma 1. If S = Qn ∩ cvxS, then clearly S is Q-convex. Conversely, if
S is Q-convex, then certainly S ⊆ Qn ∩ cvxS. Assume for the moment that S is a
Q-convex cone containing the origin. For any q ∈ (Qn ∩ cvxS) such that q 6= 0,

q =
k
∑

i=1

λiq
i, (q1, q2, . . . , qk) ∈ Sk, and for 1 ≤ i ≤ k, λi > 0, λi ∈ R. (10)

Assume that k is the smallest among all the expressions (10). We shall show that
for all 1 ≤ i ≤ k, λi ∈ Q. Letting λ0 = −1 and q0 = q, we can rewrite (10) as

k
∑

i=0

λiq
i = 0. (11)

If, say, λ1 6∈ Q, then, considering R as a vector space over the field Q, let {λ0, . . . , λl},
l ≥ 1, be a basis for {λ0, λ1, . . . , λk} (renumbering the λ’s if necessary), where for
0 ≤ i ≤ k, λi =

∑l

j=0 bijλj, bij ∈ Q and bij = 0, 0 ≤ i ≤ i 6= j ≤ l. Then (11)
implies

l
∑

j=0

(

k
∑

i=0

bijq
i

)

λj = 0.

So by independence,
k
∑

i=0

bi1q
i = 0,

and since b01 = 0
k
∑

i=1

bi1q
i = 0. (12)

Let λ be the greatest real such that for 1 ≤ i ≤ k, λ′
i = λi − λbi1 ≥ 0. Then

q =
∑k

i=1(λi − λbi1)q
i yields a shorter expression for q, a contradiction. Hence
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∀1 ≤ i ≤ k, λi ∈ Q, and so q ∈ S by Q-convexity. Thus, S = Qn ∩ cvxS is S if a
Q-convex cone containing the origin. If S ∈ Qn is Q-convex, consider the Q-convex
cone K = {λ(1, x) | λ ≥ 0, λ ∈ Q, x ∈ S} ⊆ Qn+1. Then,

cvxS = {x ∈ Rn | (1, x) ∈ cvxK}.

Hence if x ∈ Qn ∩ cvxC, then (1, x) ∈ Qn+1 ∩ cvxK = K, so x ∈ S. Thus, we get
S = Qn ∩ cvxS in any case. QED

Proof of Lemma 2. If x ∈ cvxS, then x =
∑k

i=1 λiq
i for some finite collection

(q1, q2, . . . , qk) ∈ Sk, and λi ∈ R, λi ≥ 0,
∑n

i=1 λi = 1. For each i, 1 ≤ i ≤ k − 1,
let {λn

i } be a sequence of rationals converging to λi, such that 0 ≤ λn
i ≤ λi, and

let λn
k = 1 −

∑k−1
i=1 λn

i . Then, λn
k ∈ Q, λn

k ≥ 0, and
∑k

i=1 λn
i = 1 for every n,

so xn =
∑k

i=1 λn
i q

i ∈ S by Q-convexity. Since xn converges to x, x ∈ S. Thus,
S ⊆ cvxS ⊆ S, which implies S ⊆ cvxS ⊆ S. So S = cvxS, the latter of which is
convex. QED.
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