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A COMBINATORIAL APPROACH TO THE PHONETIC SIMILARITY
OF LANGUAGES

Daniele A. GEWURZ1, and Andrea VIETRI2

résumé – Une approche combinatoire de la ressemblance phonétique entre langues
En exploitant une représentation géométrique des phonèmes vocaliques, nous réalisons un modèle

bidimensionnel dans lequel des voyelles sont des points et les distances entre ces points expriment

des différences auditives. Ceci nous permettra de décrire le système vocalique d’une langue du

point de vue d’une autre langue au moyen d’une partition d’un ensemble fini dont les propriétés

combinatoires peuvent être explorées. Le concept de base que nous utilisons est celui du diagramme

de Voronoï, qui a été largement utilisé dans d’autres domaines. Dans le cas présent, nous mettons

en évidence quelques particularités combinatoires de partitions d’entiers qui décrivent des dissem-

blances entre des inventaires vocaliques de différentes langues et classons les relations possibles entre

inventaires par le biais des graphes orientés appropriés et, en particulier, parmi les diagrammes

de Voronoï adéquats. Nous appliquons cette théorie à quelques langues réelles, en recherchant des

améliorations pouvant faciliter la compréhension d’un inventaire vocalique par un auditeur dont la

catégorisation auditive est différente. Enfin, nous décrivons des inventaires privilégiés, facilement

compréhensibles dans beaucoup de langues en même temps.

mots clés – Arrangements de points, Diagrammes de Voronoï, Graphe fonctionnel, Langage
naturel, Partitions

summary – By exploiting a well-known geometrical representation of vowel phonemes, we

devise a two-dimensional model in which vowels are points and distances between points express

auditory discrepancies. This will allow us to describe the vowel system of a language, as seen by

another language, by means of a set partition whose combinatorial properties can be explored. The

basic concept we employ is that of the Voronoi diagram, which has been, so far, extensively used

for many other purposes. In the present framework, we point out some combinatorial features of

integers partitions which describe dissimilarities between vowel inventories of different languages.

We classify the possible relations between inventories via suitable directed graphs related to point

configurations and, in particular, to the pertinent Voronoi diagrams. We apply the above theory to

some real languages we also look for possible improvements that make a vowel inventory easier to

understand by a listener whose auditory categorisation is different. Finally, we describe particular

inventories, easily understandable in many languages at the same time.

keywords – Functional graphs, Natural languages, Partitions, Point arrangements, Voronoi
diagrams
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1. INTRODUCTION

In this paper we analyse phonetic similarities between vowels of distinct languages,
by means of combinatorial properties of point arrangements in the plane. To this
end, we shall borrow from phonetics a rigorous geometrical setting where the sim-
ilarity between vowel phonemes can be assessed. We start by introducing a basic
concept which will provide the link between phonetics and combinatorics.

definition 1. Let a1, . . . , an be distinct points in the Euclidean plane. The Voronoi
domain related to ai, in symbols V(ai), is the region all of whose elements are closer
to ai than to any other aj. Representing all the V(ai)’s in the plane yields the
Voronoi diagram for a1, . . . , an.

r

r

rr

r

figure 1. A Voronoi diagram

Clearly, any two Voronoi domains (which are, topologically, open sets) are dis-
joint, while the union of the closures of all domains is precisely the whole plane.
Voronoi diagrams have been so far employed in several applicative and theoretical
contexts. We quote, for instance, [Aurenhammer, 1991; Klein, 1989; Okabe et al.,
2000].

In order to introduce the phonetical setting to which Voronoi diagram theory
will be applied, we start by describing a related model that actually provided the
initial motivation for the present study. This model, namely the so-called “vowel
quadrilateral” first introduced in the 1910s by Daniel Jones [1917, 1922], is widely
recognised as a valuable tool for effectively classifying vowels without getting in-
volved in too deep calculations. In fact, such a quadrilateral (see Figure 2) displays
vowels3 in a 2-dimensional grid, according to the part of the tongue raised when
uttering the sound, and to the extent of the raising. More precisely, the horizontal
axis of the grid measures the “tongue backness”, that is, the position of the raised
part (the more on the left, the closer to the lips), while the vertical axis refers to
the raising degree (higher points correspond to positions closer to the palate). For
example, when uttering the vowel /i/ of “see” the tongue tip is quite close to the
upper incisives, at one extreme of the mouth cavity. On the contrary, the /2/ of
“cut” requires positioning the tongue quite backward, without touching the palate.

It must be noticed that representing vowels as above fails to yield an injective
map. In fact, one does not take into account possible lip rounding, or nasalisation,

3In keeping with the standard conventions, the symbols for vowel phonemes are taken from the
International Phonetic Alphabet (see [1999]).



a combinatorial approach to the phonetic similarity of languages 23

æ 5

UI Y

Æ•3•

@
8•9•

0•1• u•W•

o•7•

O•2•

6•A•Œ•a•

œ•E•

ø•e•

y•i•

figure 2. The vowel quadrilateral

or other adjustments, which would produce distinct sounds when applied to some
fixed position of the tongue. Furthermore, although the vowel trapeze is an unques-
tionably practical and suggestive tool, it does not so faithfully describe the actual
position of the tongue (as it can be checked using X-rays or artificial palates). Such
a lack of accuracy does not arise in a more rigorous model than the vowel trapeze,
namely the diagram obtained by suitably plotting on a 2-dimensional space the first
and second formant of any given vowel. For, roughly speaking, any given sound may
be regarded as the superposition of a fundamental frequency (its “pitch”) and some
higher frequencies, called harmonics. In human speech, the vocal tract emphasises
to different degrees the harmonics generated by the vocal cords, thus giving rise to
frequency peaks, the formants of a given vowel. By definition, the (n+1)th formant
Fn+1 has a higher frequency than Fn.

In Figure 3 we compare some of the vowels in the vowel quadrilateral with the
same ones plotted in the plane with the formants as coordinates. Formants are given
in Hertz, with the first one on the vertical axis; the reference is [Wise, 1957].
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figure 3. The vowel quadrilateral compared with formant plane

Unlike in the vowel trapeze case, many secondary adjustments subject to a fixed
tongue position result in distinct points of the new model. For example, rounding
the lips modifies the length of the oral cavity and, consequently, lowers the second
formant (in the same figure, notice the disambiguation of /2/ and /O/). As a matter
of fact, distinct vowels are mostly characterised by the first and second formant
– which are almost entirely determined by the tongue position and all additional
adjustments – while the zeroth formant is strongly related to vocal cords (see e.g.
[Canepari, 2005; Fairbanks, Grubb, 1961; Ladefoged, 1975; Wise, 1957]). It is then
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clear that whenever two vowels are perceived as distinct, they are extremely likely
to correspond to distinct points of the formant diagram.

Due to its precision, the acoustic model provides a handy geometrical setting
where similarities between vowel sets of different languages can be analysed. In the
sequel we will actually use the logarithmic plotting of F1 against F2, which is well
known to yield vowel configurations rather similar to those appearing in the vowel
quadrilateral. The use of logarithms is justified by the fact that the human ear
perceives sounds having distinct frequencies, say f1, . . . , fn, more or less as points
log(f1), . . . , log(fn) in a 1-dimensional space, where a greater distance corresponds
to a more marked distinction of the sound [Wise, 1957]4.

The main working hypothesis in this papers takes into account the set of vowels of
an individual’s mother tongue, with the individual trying to relate some unfamiliar
vowel inventory to his own inventory, during an auditory process. Our assumption
is that the listener assigns, more or less unconsciously, every perceived vowel to
the most similar one in his inventory, and we translate this similarity into a spatial
closeness.

On the way to giving a formalisation of this point of view, we plot two given vowel
sets A = {a1, . . . , am}, B = {b1, . . . , bn} in the (log(F1) , log(F2))-plane together
with one or both the corresponding Voronoi diagrams (see for example Figure 6).
It then becomes quite easy to assess how much one set “comprehends” the other.
In fact, by regarding these sets as the vowel inventories of two individuals IA, IB

speaking different languages, we can interpret any formula “bi ∈ V(aj)” as “vowel
bi is approximated to vowel ai by individual IA”, and conversely using the other
Voronoi diagram.

In Section 2 we provide a formal description of the case where one set compre-
hends or, more generally, recognises the other (here sets consist of points in the
Euclidean plane, not necessarily regarded as vowels). As a major tool we employ
suitable “approximation” functions, which in the phonetic model assign each vowel
of a given language to the “more similar” vowel of another language. Further on
in that section, to each ordered pair of sets (A, B) we associate a real number
IB,A ∈ [0, 1] indicating the “degree of unbalance” of the approximations of points
of B by means of points in A. In particular, the least value of that number for
fixed sizes |A|, |B| corresponds to recognition or, if |A| ≥ |B|, comprehension. Such
a value is attained precisely when the listened vowels are distributed as equably
as possible among the listener’s Voronoi domains. The whole section is managed
in a geometrical-combinatorial fashion, with a fleeting mention to the underlying
phonetical meaning (Theorem 1).

The approximation functions between sets lend themselves to a purely graph-
theoretical investigation, which would, though, carry us to a far different topic
than the present one. Nonetheless we could not refrain from collecting some basic
definitions and properties in the Appendix 1, where approximation functions are
classified via a special class of directed graphs. This classification is shown to be on

4A sharper representation of vowels is obtainable by replacing F1, F2 with F2 − F1, F3 − F2

respectively [Ladefoged, 1975], and by using a different scale (the Bark) instead of the usual Hertz
scale [Sorianello, 2003; Syrdal, 1985; Traunmüller, 1981]. However, the logarithmic plotting of F1,
F2 is precise enough for the present purposes. Future investigations might possibly involve the
above refinements.
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the one side well-posed, while on the other side it associates to each graph at least
one pair of sets.

The third and last section is devoted to applicative issues such as the measure-
ment of vowel dissimilarities between different real-life languages, and the construc-
tion of vowel sets which are “as much as possible understood” by an arbitrarily large
set of languages. In that section we shall exploit previously proved results to address
concrete issues.

Geometrical notions related to the vowel quadrilateral – e.g. collinearity of vow-
els, parallelism of vowel segments, minimum distance between vowels in different
sets – have been tacitly invoked by many linguists who, although in more intuitive
terms, came to grips with actual mathematical problems. On the other side, not
a great number of mathematicians seem to have tackled the phonetic classification
problem from a geometric-combinatorial viewpoint. Among them, Petitot [1989]
appears to have been the only one to resort to Voronoi diagrams. His definition
and results, mostly concerned with consonants, are partly along the same lines as
the present work. Other geometrical approaches can be found in [Hall, 1999; Liljen-
crants, Lindblom, 1972].

Not surprisingly, the idea of comparing systems of phonemes of different lan-
guages is far from new. Over the decades, very many methods have been developed
for the analysis and comparison of speech inventories (see, for example, [Kondrak,
2001; Nerbonne et al., 1996; Nerbonne, Heeringa, 1997]). A big amount of work has
also been devoted, and is still being, to the development of effective algorithms for
speech recognition, synthesised speech generation, and so forth. Among the numer-
ous applicative contributions of mathematical flavour we quote [Badino et al., 2004];
a formal approach from a logical viewpoint can be found in [Batóg, 1961, 1968].

2. COMPREHENSION AND RECOGNITION

As already mentioned, we are regarding vowels as points in the Euclidean plane.
For this reason, many results shall be expressed in purely geometrical terms, while
bearing in mind the initial, applicative, setting.

Let us assume that two finite sets A = {a1, . . . , am}, B = {b1, . . . , bn} in the
Euclidean plane endowed with the usual metric (where we denote by xy the distance
between x and y) have the following property: for each element bi there exists an
element aj such that bi ∈ V(aj) (as the Voronoi domains are disjoint, aj is necessarily
unique). In other words, for every i, bi is closest to a unique aj . If this property
holds we say that B is in general position with respect to A and define ϕB,A : B → A
as the map sending bi to the above defined aj , for every i.

In the present paper we shall assume that pairs of sets like (A, B) above are
always in general position with respect to one another. In phonetical terms, this
amounts to postulating that for any vowel v of a given language there exists only
one vowel of another fixed language, lying at the smallest distance from v in the
(log(F1) , log(F2))-plane. Such an assumption seems sensible enough, dealing as we
are with empirical data. In the next section we shall show how to manage the
case where some vowels of a language lie too close to the boundary of a Voronoi
domain of another language. Accordingly, to each pair (A, B) we shall associate a
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number δ(B, A) which, if too small, warns that some vowel in B might be hard to
approximate using vowels in A, because it lies more or less at the same distance
from two or more vowels in A. Other tools will be introduced that manage such
limit cases.

We now provide the basic definitions that formalise the notions of comprehen-
sion and recognition between sets of vowels (actually, between sets of points in the
Euclidean plane).

definition 2. The set A is said to comprehend B (A |= B) if ϕB,A is injective (in
particular, |A| ≥ |B|).

More generally, A recognises B (A ⊢ B) if ⌊|B|/|A|⌋ ≤ |ϕ−1
B,A(aj)| ≤ ⌈|B|/|A|⌉

for each j. (Notice that, in the comprehension case, these inequalities reduce to
|ϕ−1

B,A(aj)| ≤ 1 for each j.)
Finally, if A ⊢ B and |B| is a multiple of |A|, we say that A equably recognises

B (A ⊢e B).

Figure 4 illustrates four different situations with respect to comprehension or
recognition. The sets A, B consist respectively of full and empty circles. The Voronoi
diagram for A is displayed in each case.
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figure 4. Comprehension and recognition: a showcase

Using Voronoi diagrams we can express |ϕ−1
B,A(aj)| as |B ∩ V(aj)|. In fact, any

of the three properties above means that vowels from B are as fairly as possible
distributed in the Voronoi domains related to A. Comprehension and recognition
are not in general symmetric nor transitive relations, even if points are assumed to
lie in a line. Nonsymmetry of comprehension is trivial, due to the size constraint.
On the top of Figure 5 a case is shown where A |= B |= C and A 6|= C 6|= B;
in particular, notice that both symmetry and transitivity fail to hold in general –
comprehension possibly lacking symmetry even in the equal size case. In the bottom
of the same figure we deal with recognition. In this case we have that A ⊢ B ⊢ C
and B 6⊢ A 6⊢ C.

❜ r ❞ ❜ r ❞
c1 b1 a1 c2 b2 a2

❞ r ❜ ❜ ❞ ❞ r r ❞
c1 b1 a1 a2 c2 c3 b2 b3 c4

figure 5. Relations |= and ⊢ are not symmetric nor transitive

It turns out that mutual comprehension holds only in the trivial case, namely
when ϕA,B(a) = b implies ϕB,A(b) = a for all a ∈ A, b ∈ B, that is, when ϕA,B and
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ϕB,A are inverse of each other. This follows quickly by a preparatory lemma, which
will be utilised later on again.

lemma 1. Let (a1, b1, . . . , ak, bk) be a sequence of points in the Euclidean plane, with
no repeated element, such that bi = ϕA,B(ai) for all i, ai = ϕB,A(bi−1) for all i > 1,
and a1 = ϕB,A(bk). Then, k = 1.

Proof. If k > 1, using the very definition of ϕ_,_ we deduce that a1b1 > b1a2 >

a2b2 > · · · > akbk > bka1, which is a contradiction. For, a1 cannot be nearer to bk

than to b1.

proposition 2. A |= B |= A if and only if ϕA,B and ϕB,A are inverse of each other.

Proof. The if part holds trivially, because the assumption implies that the two maps
are injective. Reasoning by contradiction, let us conversely assume that some a1 ∈ A
exists such that ϕB,A(ϕA,B(a1)) = a2 6= a1. Now using the injectivity of both maps
one obtains a maximal sequence a1, b1, a2, b2, a3, . . . , an (or . . . , bn) with n ≥ 2,
where bi = ϕA,B(ai), ai = ϕB,A(bi−1), such that the points are all distinct. However,
Lemma 1 prevents the last point to be mapped to any preceding element (such a
mapping would indeed cause a nontrivial loop). Due to the finite size of the sets, a
contradiction is then reached.

Having settled the mutual comprehension case, we now deal with the more gen-
eral issue of assessing the extent to which a given set fails to recognise another set.
Before introducing the relevant formal notion, we resort to Figure 4 again and pro-
vide a simple justification of the mathematical tools to be introduced later on. In
the first illustration, namely in the presence of comprehension, the membership of
empty circles in the Voronoi domains of A can be described by the partition (0, 1, 1)
of 2 = |B|, according to the number of circles in each domain (we use nondecreasing
entries). In the other illustrations one obtains respectively the partitions (1, 1, 2),
(2, 2, 2), (1, 1, 3). If we now consider the most balanced partition of |B| for each
case – using rational numbers if necessary – then we get (|B|/|A|, |B|/|A|, |B|/|A|)
with |B|/|A| respectively equal to 2/3, 4/3, 2, and 5/3. Now a way of assessing the
discrepancies between the actual partitions and the most balanced ones is summing
the absolute values of the differences over all entries. By doing so, in the first case
we find the “error” 2/3 + 1/3 + 1/3 = 4/3, and similar computations yield 4/3, 0,
8/3. In order to normalise the error estimation we divide each sum by the greatest
possible error, coming from the most unbalanced partition (0, 0, . . . , 0, |B|), thus
obtaining (4/3)/(8/3) = 0.5, then similarly (4/3)/(16/3) = 0.25, then 0 and finally
0.4. Notice that the normalisation plays a crucial role in discriminating the first two
cases, while the third error, equal to 0, signals an optimal situation. By this handful
of examples we are now led to the formal definition.

definition 3. Given two finite sets A, B and the map ϕB,A as above, let πB,A denote
the partition of |B| in |A| parts given by (|ϕ−1

B,A(a1)|, |ϕ
−1
B,A(a2)|, . . . , |ϕ−1

B,A(a|A|)|) (we
regard partitions of a given integer as tuples of nonnegative integers summing up to
that number, and consider two partitions as equal if they differ only in the ordering
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of the terms). Furthermore, for any partition ω = (ω1, . . . , ωv) of m in at most v
parts (as above, with ωi possibly equal to zero for some i), let the error Eω stand for

v∑

i=1

∣
∣ωi −

m
v

∣
∣

2m − 2m
v

.

We define the recognition index from B to A, in symbols IB,A, as EπB,A
.

Notice that 2m − 2m/v is equal to (v − 1) · |0 − m/v| + |m − m/v| (as we will
soon show, this quantity is the largest numerator obtainable among all partitions).
In plain words, Eω provides a normalised measure of the “unevenness” of ω with
respect to (m/v, m/v, . . . , m/v) – which is in general not a partition.

Before focussing on some mathematical aspects of IB,A, let us apply the above
definitions to a practical context. We denote by eng the set of British English
monophthongs (i.e., single vowels, as opposed to diphthongs or more complex sounds)
as described in [Wells, 1962]5 and by ita the Italian vowel set, as in [Cosi, Ferrero,
Vagges, 1995]. In Figure 6, left side, we have depicted the elements of eng – regarded
as points lying in the (log(F1) , log(F2))-plane – in the Voronoi diagram of ita. Vow-
els are confined into a suitable area which is a little larger than the the area spanned
by human frequencies (see also the right side of Figure 3). Italian vowels are full
circles, and the Voronoi region of x is labeled by xita. The resulting partition πeng,ita,
namely (1, 1, 1, 1, 2, 2, 3), reveals that ita does not recognise eng (see the right side
of Figure 6). The recognition index from eng to ita is 8/33. Notice that this number
is greater than 2/11 = E(1,1,1,2,2,2,2), which refers to the recognition case.

The next result sheds light on a basic property of recognition indices, by pointing
out the “most balanced” and the “most unbalanced” partitions.

proposition 3. If ω = (ω1, . . . , ωv) is a partition of m in at most v parts, with

ωi ≤ ωj if i < j, then r(v−r)
m(v−1)

≤ Eω ≤ 1, where m = qv + r according to the
Euclidean division. The lower and upper bounds are attained, respectively, only by
the partitions

σ = (q, q, . . . , q
︸ ︷︷ ︸

v−r

, q + 1, q + 1, . . . , q + 1
︸ ︷︷ ︸

r

) and σ′ = (0, 0, . . . , 0, m) .

Proof. We do not provide the easy calculation showing that σ and σ′ yield the
claimed values. In order to prove the lower bound claim let us consider a partition
ω different from σ. The general idea is that starting from ω we can construct a
partition carrying a smaller error. The existence of an entry ωh which differs from
the corresponding σh actually entails the existence of two indices i, j such that
ωi < σi and ωj > σj . This easily implies that i is smaller than j (the only case that

5As a matter of fact, phoneticians do not always agree on the number of vowels in a given
language, as well as on the very definition of vowel (see e.g. [Abercrombie, 1967], p.79-80), on
the classification of diphthongs and other issues which provide many challenging open questions
in phonetics. For example, Wells’ vowel inventory omits the “schwa” /@/, whereas this vowel is
included in other inventories.
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figure 6. English vowels as seen by Italian language

deserves some more attention is when σi > σj , but if this occurs then σi = q + 1
and σj = q, which entails that ωi ≤ σj and eventually – as in the other cases – that
i < j; hence, the present case cannot actually occur).

Let us first assume that σi = q and σj = q + 1. By increasing ωi by 1 and
decreasing ωj by 1, we get a new partition τ such that Eτ = Eω − 2 (the contribute
of each change amounts indeed to 1).

Let us now assume that σi = σj = q. Again, i is smaller than j. By defining a
partition τ as above, we have that Eτ = Eω −1+(|ωj −1−m/v|−|ωj −m/v|). Note
that in this case the contribute of the j-th term is not necessarily equal to 1. Using
the triangle inequality we have |ωj − 1 − m/v| ≤ |ωj − m/v| + 1, which is actually
strict because ωj > m/v. Therefore, also in this case we have that Eτ < Eω. A
similar argument can be used to manage the case σi = σj = q + 1.

Now we prove the upper bound claim. Let us consider again the partition ω =
(ω1, ω2, . . . , ωv) and modify it to ω′ = (0, ω2, ω3, . . . , ωv−1, ωv + ω1). Since ωv ≥
m/v ≥ ω1, we have that Eω′ ≥ Eω, equality holding only if ω1 = 0. Indeed, the
summand |ω1 − m/v| = m/v − ω1 in Eω becomes |0 − m/v| = m/v in Eω′ , and
likewise |ωv − m/v| = ωv − m/v becomes |ωv + ω1 − m/v| = (ωv − m/v) + ω1. So,
Eω′ = Eω + 2ω1.

Iterate this procedure to get a sequence of partitions, the i-th of which is obtained
from the (i − 1)-th by reducing to 0 the ith term ωi and increasing the vth term
by ωi. If ω̃ and ω̃′ are consecutive partitions in this sequence, we have Eω̃′ =
Eω̃ − |ωi − m/v| + m/v + ωi. If ωi ≥ m/v, this equals Eω̃ + 2m/v, else it equals
Eω̃ + 2ωi. In both cases we have Eω̃′ ≥ Eω̃, with the equality holding only if ωi = 0.

By recursively setting entries to zero while increasing the rightmost entry, we end
up with (0, 0, . . . , 0, m). The claim is thus proved by concatenating the equalities or
strict inequalities obtained from each step, noting that at least one strict inequality
holds if ω 6= σ′.
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We are now in a position to deduce the following result which – due to its
relevance – we record as a theorem, although it is simply an instantiation of
Proposition 3.

theorem 1. For any sets of vowels A, B, where |B| = q|A| + r according to the

Euclidean division, the inequalities r(|A|−r)
|B|(|A|−1)

≤ IB,A ≤ 1 hold. The lower bound is
attained if and only if A recognises B, whereas the upper bound is attained if and
only if ϕB,A(B) = {a} for some a ∈ A. In particular, IB,A = 0 if and only if A ⊢e B.

Proof. Because πB,A is a partition of |B| in at most |A| parts, the lower bound claim
follows by Proposition 3. The upper bound claim can be deduced in a similar way.
The final claim follows even more easily.

3. RESULTS ON VOWEL SETS OF REAL LANGUAGES

In this final section we use the previously developed machinery to obtain practical
results on similarities between vowel sets of languages actually spoken. First, we
compare some different languages. Second, we describe a way of modifying a given
set A, so as to increase the recognition index from another set to A. Third, we
exhibit privileged sets of vowels which can be recognised, or comprehended, by
several languages at the same time.

We start by associating a positive, real number to a given set B in general
position with respect to another set A. This number plays a fundamental role in
any context involving distance measurements for two given sets. In fact, it provides
a rating how meaningfully the present combinatorial model suits the experimental
data.

For any fixed a ∈ A, b ∈ B with b ∈ V(a), let Vb denote the Voronoi domain of
A, different from V(a), to which b is closest. Also, let pb denote the distance of b
from the closest boundary. Finally, let ∆(b) stand for pb/ab. If the minimum, over
all b ∈ B, of ∆(b) is smaller than 1, we denote that number by δ(B, A). Otherwise,
we set δ(B, A) = 1.

✟✟✟✟✟✟✟PPPPPP
☎
☎
☎
☎
☎
☎
☎
☎☎❳❳❳❳❳❳❳❏

❏
❏

❏
❏❏

❆
❆

❍❍❍❍

rb

❜a

pb

V(a)

Vb

figure 7. ∆(b) = 1
2

definition 4. The set B is said to be in general position of degree δ(B, A) with
respect to A.
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A value of δ which approaches zero indicates that at least one vowel in the set B
lies more or less at the same distance from two vowels of the listener’s inventory (the
set A). In that case, although the general position property ensures a deterministic
correspondence from vowels in B to vowels in A, yet the actual correspondence from
speaker to listener may well not be deterministic. In fact, the listener might have
difficulties in spontaneously categorising the perceived vowels. On the other hand,
the higher δ(B, A), the more reliable IB,A. In particular, δ is equal to 1 precisely
when no b ∈ V(a) lies closer to Vb than to a.

The above considerations and, notably, the introduction of δ(_, _), are justified
by the fact that empirically one never has pointlike data, but rather distributions
spread around an average value. So, it becomes of great importance to look at the
behaviour of points lying pretty close to a border.

Instead of looking for a degree δ(B, A) large enough, we might be contented if the
partition πB,A does not change should any troublesome vowel, or a number of them,
cross the corresponding closest boundaries. In other words, we are now looking at
sets of vowels which, irrespective of their “swinging” auditive interpretation, yield
the same, global, partition in the listener’s mind.

definition 5. The loose degree of B with respect to A, in symbols λ(B, A), is the
largest number l in {∆(b):b ∈ B}∪{0} with the property that, given any b ∈ B such
that ∆(b) ≤ l, the partition πB,A is not altered by moving b to Vb.

It is straightforward to observe that the loose degree attains the minimum value,
namely 0, if and only if any element b such that ∆(b) = δ(B, A) affects πB,A when
moving to Vb.

Notice that even if each single point of a subset {b1, b2, . . .} ⊆ B can cross the
corresponding closest boundary without affecting the partition, the same property
may not be true for some, or all, points simultaneously crossing the boundaries (this
is easily seen, for example, when considering two points lying in a half plane, and
three other points lying in the complementary half plane). For this reason, it seems
worthwhile to improve and generalise the above definition, as follows.

definition 6. Let n be a positive integer. The n-loose (or simply “loose” if
n = 1) degree of B with respect to A, in symbols λn(B, A), is the largest number l in
{∆(b):b ∈ B} ∪ {0} with the property that given any u ≤ n points b1, b2, . . . , bu ∈ B
such that ∆(bi) ≤ l for every i, the partition πB,A is not altered by simultaneously
moving bi to Vbi

for every i.

We now have all the ingredients to compare different vowel sets and, in particular,
to assess and quantify the degree of similarity in each case. Let us therefore consider
again Figure 6. The following result, partly established in Section 2, can now be
claimed in full.6

property 1. πeng,ita = (1, 1, 1, 1, 2, 2, 3). In particular, ita 6⊢ eng. Furthermore,
Ieng,ita = 8

33
= 0.24, while δ(eng, ita) = ∆(A) = 0.08. Finally, the corresponding

loose degree is zero (indeed, the vowel /A/ modifies the partition, once it crosses the
closest boundary).

6The numerical data from whence the numbers ∆(x) have been calculated are collected in the
Appendix 2.
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As remarked earlier, recognition would hold only if the partition were (1, 1, 1,
2, 2, 2, 2), the recognition index being 2/11 = 0.18. On the other hand, a quick
glance to the Voronoi diagram of eng – which we are not providing – would show
that eng |= ita, the related partition being indeed (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1). Also
notice that, due to the trivial inequality:

λu(B, A) ≥ λu+1(B, A) for all u ≥ 1 ,

there is no hope of finding any positive n-loose degrees.
A different situation occurs if we look at Figure 8. Here the German vowel

inventory, say ger, is taken from [Delattre, 1981].

b

b

b

b

b

b

b

iita eita Eita

aita

Oitaoitauita

bci
bcI

bcE

bce

bca

bco

bcA

bcy

bcO
bcU

bcu

bcY
bc

ø bcœ

5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8
6.4

6.6

6.8

7.0

7.2

7.4

7.6

figure 8. German vowels in the Italian Voronoi diagram (Italian /O/ and German /O/
virtually coincide)

property 2. πger,ita = (1, 1, 2, 2, 2, 2, 4). In particular, ita 6⊢ ger. Furthermore,
Iger,ita = 1

6
= 0.16, while δ(ger, ita) = ∆(U) = λ1(ger, ita) = 0.01. Finally,

λn(ger, ita) = 0 for any n > 1.

A better case concerns the Spanish inventory spa, depicted in Figure 9. Again,
the plotted frequencies refer to [Delattre, 1981].

property 3. πspa,ita = (0, 0, 1, 1, 1, 1, 1). Therefore, ita |= spa or, equivalently,
Ispa,ita = 1

3
= 0.3 is the smallest possible. Furthermore, δ(spa, ita) = ∆(o) = 0.31,

and λ1(spa, ita) = λ2(spa, ita) = 0.65 = ∆(e). Finally, λn(spa, ita) = 0 for any
other n.

Although the positiveness of λ2(spa, ita) is not quite surprising – due to the little
size of the inventory – still such a property also relies on the fairly balanced position
of the five vowels which, in general, may not be taken for granted.
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figure 9. Spanish vowels in the Italian Voronoi diagram

We conclude by showing, in Figure 10, an instance of recognition which is not a
comprehension. The inventory is now the French one [Delattre, 1981]. Notice that
the vowel /o/ somehow weakens the nice recognition property. This example offers
indeed a good opportunity to see δ(_, _) and λ(_, _) in action.

property 4. πfre,ita = (1, 1, 1, 1, 2, 2, 2). Therefore, ita ⊢ fre or, equivalently,
Ifre,ita = 1

5
= 0.2 is the smallest possible. However, δ(fre, ita) = ∆(o) = 0.27, with

λ1(fre, ita) = 0.

As anticipated, the middle of this section is devoted to an improvement procedure
which, by slightly changing the position of some vowels of the listener’s inventory,
increases the auditory capabilities with respect to a given foreign language. Leaving
aside the purely combinatorial questions raised by this procedure,7 such a vowel
moving could be interpreted in several ways. For example, it gives an indication
about the effort of a listener who wishes to adjust his own inventory, so as to make
it more similar to – and hence more capable of understanding – another inventory.

definition 7. A map f : A → A′ is a recognition improvement of type τ , with
respect to B, if, for each a ∈ A, one has

∣
∣
∣
∣

∣
∣ϕ−1

B,A(a)
∣
∣−

|B|

|A|

∣
∣
∣
∣
≥

∣
∣
∣
∣

∣
∣ϕ−1

B,A′(f(a))
∣
∣−

|B|

|A|

∣
∣
∣
∣

where at least one inequality is strict and, for any a such that equality holds, V(a) =
V(f(a)), with the exception of τ vowels.

7A study of these questions could not be contained in few lines. It deserves at least a separate
section, which would make the present paper too lengthy. Some related work, by the same authors,
is in progress.
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figure 10. French vowels in the Italian Voronoi diagram

Therefore, the larger τ , the more domains are modified which are not involved
in the actual recognition improvement. Clearly, if τ is equal to 0 we have done a
really good job.

Let us then analyse the English and German examples above (Figures 6 and
8, respectively), looking for some possible recognition improvements. In the first
example, we could try to move the Italian vowel /a/, in such a way that either the
English /3/ or /æ/ finds relocated from V(a) to V(E). However, in the former case
/3/ would eventually belong to V(O), whereas in the latter case it seems hard to
place /a/ without causing the English vowel /A/ to fall in V(a) instead of V(O) –
using the data in the Appendix 2 the reader can verify the above. We encounter
fewer difficulties when trying to move the (Italian) /E/. The required adjustment
can be realised as shown in Figure 11. Unfortunately, the resulting recognition
improvement is of type 2 (besides V(E) and V(a), also V(e) and V(O) get affected).8

Finally, we remark that the just described improvement produces a vowel inventory
that actually recognises eng. However, the type equal to 2 warns us there is a price
to pay.

Let us now examine the second example. Here the situation is more entangled,
for we should as carefully as possible modify V(e) together with either V(o) or
V(O) (note that, with our data, /U/ ∈ V(u)). The only practicable way seems that
of moving /o/ and/or /O/ (which is eclipsed by the homonymous German vowel)
towards the centre of the diagram. By doing so, however, there is no hope of bringing
τ down to 3, which is not exactly a great result. At any rate, this experiment helps
us to get a better knowledge of the German inventory, when compared to the Italian
one.

8Although improvements of type 0 are rather uncommon to find – depending as they are from
peculiar geometric features of the involved domains – devising improvements of type 1 is expected
to be not so difficult in general.
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figure 11. Enhancing recognition capabilities

Recognition improvements of small type are certainly welcome although, as
shown in the above examples, they seem to be seldom obtainable. If we refrain
from requiring that certain Voronoi domains be not affected, another definition of
improvement can be given which, remarkably, lends itself to a fruitful generalisation
in the case of more than two languages involved. The great difference between this
combinatorial approach and the previous one reflects in the even greater difference
between the two phonetical interpretations. Namely, in the new setting we shall no
longer try to modify an existing inventory. Rather, we would like to work out a
privileged inventory, starting from the given inventories. The final outcome might
very well be the inventory of a nonexistent language – and yet quite useful. We have
thus come to the third and last part of this section.

We are going to point out a sufficient condition, on the Voronoi diagrams of some
given vowel sets, for the existence of a vowel set of given size which is recognised, or
comprehended when possible, by all the initial sets. The already defined inventories
ita, eng and spa will be the main ingredients of the next example, showing how to
obtain a suitable inventory of size 11 (as the reader will soon realise, the chosen size
is not related to the size of eng).

Let us then focus on the next three diagrams. Numbers 1 to 11 have been
assigned to the domains of each Voronoi diagram, in such a way that the following
two properties hold:

1. For each integer, the three domains it is assigned to (in the three diagrams)
have, all together, nonempty intersection.

2. For every diagram, the numbers are distributed as equably as possible. Equiva-
lently, in every domain there are either n or n+1 numbers, where n = ⌊11/|A|⌋
and A is the corresponding vowel inventory.
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Using the above numbering, it is now immediate to obtain a new inventory of
size 11 which is recognised by both ita and spa and comprehended by eng. Indeed,
for each i = 1, 2, . . . , 11 it suffices to pick any point in the intersection of the three
corresponding domains, which is non-empty by the first of the above properties (see
Figure 12, bottom right side).
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figure 12. Defining an inventory recognised by eng, ita, and spa

Notice that the above example could be slightly modified by removing either the
three 5’s, or the 6’s, or the 11’s, thus ending up with a suitable inventory of size 10.
One could further reduce the size (some possible choices for an inventory of size 9
are those obtained by removing the 5’s and the 6’s simultaneously, or the 6’s and
the 8’s; a possible inventory of size, say, 5 is {1, 3, 5, 7, 8}, and so forth). And also,
in the other direction, adding three 12’s to the domains labelled by 1 (or to those
labelled by 2 or 10) would yield an inventory of size 12 which is recognised by the
three initial sets (clearly, in this case eng no longer comprehends the inventory).

The two above properties are instances of a far more general case that can be
formalised as follows (the elementary proof is omitted).

proposition 4. Let {V11, V12, . . . , V1i1}, {V21, V22, . . . , V2i2}, . . . , {Vs1, Vs2, . . . , Vsis}
be the Voronoi domains associated to some sets A1, . . . , As. Assume that, for some
positive integer t, there exist s maps {fj : {1, 2, . . . , t} → {1, 2, . . . , ij} : 1 ≤ j ≤ s}
such that

⌊
t

ij

⌋

≤ |f−1
j (h)| ≤

⌈
t

ij

⌉

for all admissible j, h, and with the further property that
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⋂

1≤j≤s

Vjfj(k) 6= ∅

for each k ∈ {1, 2, . . . , t}. Then there exists a set C, of size t, which is recognised
by every Aj (thus, in particular, Aj |= C whenever ij ≥ t).

In the special case where s = 2 and t = i1 ≤ i2, by assuming – clearly with
no loss of generality – that f1 is the identity, the above stipulations amount to
saying that the family {Np} (1 ≤ p ≤ t) of subsets of {1, 2, . . . , i2}, defined through
q ∈ Np ⇔ V1p ∩ V2q 6= ∅, has a transversal or a system of distinct representatives
(namely, a set of t distinct elements {ρ1, ρ2, . . . , ρt} such that ρi ∈ Ni for all i). It is
then possible to apply Hall’s Marriage Theorem (see e.g. [Bryant, 1993]) and obtain
the following.

proposition 5. Under the above assumptions, a set of size t comprehended by A1

and A2 exists if and only if, for every I ⊆ {1, 2, . . . , t},

∣
∣
∣
∣
∣

{

q :

(
⋃

p∈I

V1p

)

∩ V2q 6= ∅

}∣
∣
∣
∣
∣
≥ |I| .

Also in the present context, combinatorial questions could be addressed, such as
the classification of all possible transversals for small sets of points (with respect
to the geometrical features of the Voronoi domains). Finally, some basic properties
(e.g. the transversal hypothesis being strictly weaker than the recognition of A2 by
A1) could be established.

4. CONCLUSION

The present work was a springboard for fruitful discussions with many researchers
in the world and, in the authors’ minds, a motivation for further research both on
the purely mathematical side and on the applicative one. In this last regard, several
open questions in Linguistics seem to be quite compatible with the recognition-
comprehension approach and, even more simply, with the representation by means
of Voronoi domains.
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APPENDIX 1: CLASSIFYING APPROXIMATIONS VIA GRAPHS

Let us consider two sets A,B of points in the Euclidean plane, in general position with
respect to one another (see beginning of Section 2.). By putting together ϕA,B and ϕB,A

so as to obtain a unique map µ : A ⊔ B → A ⊔ B, the involved points can be interpreted
as vertices of a directed graph, GA,B , whose generic arc (u, v) indicates that µ(u) = v (see
left side of Figure 13; empty circles correspond to elements, say, of A).
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figure 13. The functional digraph from a map µ and the corresponding (0,1)-rooted
forest

Directed graphs arising from mappings of a set into itself (a directed arc (a, b) meaning
that b is the image of a) are called functional digraphs [Harary, 1959]. They have been
characterised by the following theorem. (A digraph or component is called weak if it is
connected as a non-directed graph; R−1(b) denotes the set of vertices from which there
exists a directed path to the vertex b; and a directed rooted tree is a directed tree in which
every arc is directed towards the root.)

theorem 2. [Harary, 1959] A finite digraph is functional if and only if each of its weak
components contains exactly one directed cycle Z and, for each vertex b of Z, the subgraph
R−1(b) is a directed rooted tree with root b.

In the present context, Lemma 1 and the above theorem immediately imply the fol-
lowing.

proposition 6. The unique cycle of any weak component of a digraph GA,B is a cycle
(v,w, v) of length 2.

By shrinking every such trivial cycle to a vertex, any digraph GA,B can be regarded as
a disjoint union of trees, each of which has a root (that is, a distinguished vertex) corre-
sponding to the cycle, and whose edges leaving the root have been labelled using numbers
in {0, 1} (so as to recover the vertices adjacent to the removed cycle, by associating 0 to A,
1 to B; see the right side of Figure 13). Let us term any such graph a (0, 1)-rooted forest. If
we define two (0,1)-rooted forests isomorphic when a vertex bijection exists between them
which preserves roots, incidences, and labels, then nonisomorphic (0,1)-rooted forests turn
out to be associated to “essentially distinct” pairs (A,B), according to the next terminology.

notation. We write (A,B) ∼ (A′, B′) if there exist two bijections ξ : A → A′, η : B → B′

such that ξ ◦ ϕB,A = ϕB′,A′ ◦ η and η ◦ ϕA,B = ϕA′,B′ ◦ ξ.
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A B

A′ B′

ϕA,B

ϕB,A

ϕA′,B′

ϕB′,A′

ξ η

In plain words, we require that the two pairs behave in the same way with respect to the
approximation functions ϕ_,_. It is not difficult to show that ∼ is an equivalence relation
and that the (0,1)-rooted forests arising from two pairs (A,B), (A′, B′) are isomorphic if
and only if (A,B) ∼ (A′, B′). We leave to the reader the proof details of the above facts,
which we summarise as follows.

proposition 7. Let FA,B be the (0,1)-rooted forest associated to (A,B) in the way de-
scribed above. Then, the map

G :
{ pairs (A,B) }

∼
−→

{ (0,1)-rooted forests }

isomorphism

which sends [(A,B)]∼ to the isomorphism class of FA,B, is well-defined and injective.

For example, pairs of sets comprehending one another, and of fixed size s, make up a
single equivalence class. The (0,1)-rooted forest associated to any pair of this class is a set
of s roots with no edges.

We can actually say something more about G.

theorem 3. The map G is surjective (thus, it is a bijection).

Proof. We have to show that, given any (0,1)-rooted forest F , there exists a pair (A,B)
such that F = FA,B. Let us first examine the case of a connected forest, that is, of a tree.
In keeping with Proposition 6 and with the remarks following it, we can replace F with
the corresponding cycle C = (v1, v2, v1) having directed trees T_1, T2 rooted at vertices
v1, v2 respectively (trees may consist of a single vertex). For j = 1, 2 let us define T ′

j as
the digraph obtained by adding the arcs (v1, v2), (v2, v1) to Tj .

As a first step we exhibit two pairs of sets (Xj , Yj) (j = 1, 2) such that, for both j,
FXj ,Yj

= T ′
j . The construction is performed by induction on the depth, d, of the tree Tj,

as follows (the case d = 0 requires a little adjustment and is therefore postponed). If d = 1
and there are m children, we consider a convex sector (see top of Figure 14) and place
one point in the middle of each of the arcs σ1, . . . , σm which equably partition the arc of
the sector (in the illustration, m is equal to 1). We also place a point in the centre of the
sector, and denote by r1 the sector radius.

The recursion step, with d ≥ 2, is managed as follows. We first remove the leaves
at depth d and consider the sector and points arising, by induction, from the modified
tree. Let rd−1, rd−2 denote the radii of the two sectors last constructed (set r0 = 0). We
extend the sector to a new sector having the same amplitude and whose radius, rd, satisfies
rd − rd−1 > rd−1 − rd−2. On the arc, A, of the new sector we define as many points as the
removed leaves, in the following way. Let v be the number of leaves adjacent to a given
vertex N of the smaller, “defoliated”, tree. Consider the projection – with respect to the
sector centre – on A of the arc σN corresponding to N . Once partitioned such projection
into v isometric arcs, we place one point in the middle of each arc.
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figure 14. Construction of a suitable pair (A,B)

We complete the whole construction by placing one point hj at a distance from the
centre smaller than r1, and opposing the sector.

The reader can easily verify that the eventually obtained set of points, say Σj, yields the
required digraph T ′

j, provided its elements are partitioned in two classes Xj , Yj according
to the parity of the depth at which they lie. Notice that an arbitrarily small amplitude of
the sector can be chosen at the beginning. Indeed, what really counts is that the differences
of consecutive radii increase as new radii are introduced.

Let us finally put the two above pairs {(Xj , Yj)} together, as follows. We set two
points, p, q, at a distance smaller than r1. Then for each j we remove hj and identify the
two points, one from Σj and one from {p, q}, which refer to the same vertex in FXj ,Yj

and
C. Subsequently, we define A as the set of points of Σ1 occupying an even level, together
with the points of Σ2 occupying an odd level. Clearly, the remaining points will form the
set B.

In the special case where a tree Tj consists of a unique point (that is, the case d = 0), we
define the corresponding set Σj as a unique point and proceed with the vertex identification,
as above.

By possibly reducing the sectors amplitudes (to avoid “interferences” between the two
sectors), while rotating sectors so as to let their axes coincide, with {p, q} contained in
neither sector (see Figure 14), the claimed pair (A,B) is easily obtained.

In the general case of a forest with connected components K1, . . . ,Km, the above
construction can be replicated, with the proviso that the corresponding pairs
(A1, B1), . . . , (Am, Bm) be placed at a suitable distance apart (say, with the minimum
distance greater than the maximum diameter of the set of points corresponding to a com-
ponent).

The above argument relies on the “plenty of room” available in the 2-dimensional space
(even though the sectors can be arbitrarily narrow). In fact, the 1-dimensional analogue of
Theorem 3 does not hold in general. As an example, in the left side of Figure 15 we have
depicted an admissible functional digraph which cannot be obtained from a pair (A,B) of
sets of points entirely contained in a line. For let us suppose that any such configuration on



a combinatorial approach to the phonetic similarity of languages 43

a line exists. Then, without loss of generality we can assume that either a3 is freely placed
between a1 and b1, or it lies outside the interval [a1, b1] and closer to b1, with a1b1 > b1a3.
In the first case the only two possible arrangements – with a2 and a4 still to be placed –
are those depicted in the right upper side of the same figure (b2 and b3 can be therefore
interchanged). Such configurations prevent any placement of a2 or a4 respectively. The
discussion in the second case is similar, and is left to the reader (see the right lower side
of the figure).

s

❝

s❝s ❝ s

a1

b1

a3b2a2 b3 a4

❄

✇
♦

✲ ✲ ✛ ✛

s s ❝ ❝ ❝

a1 a3 b1 b2 b3
b3 b2

no

distance

constraint

s ❝ s ❝ ❝

a1 b1 a3 b2 b3

b3 b2

⇒ b1a3 < a3b2 .

⇒ b1a3 < a3b3 .

a1b1 > b1a3 ,

figure 15. Some difficulties in the 1-dimensional case
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APPENDIX 2

In the following tables we present the first and second formants (in Hertz) of the vowel
phonemes for Italian [Cosi, Ferrero, Vagges, 1995], English [Wells, 1962], German, French,
and Spanish (the last three from [Delattre, 1981]).

Italian (ita) English (eng) German (ger)
phoneme F1 F2 phoneme F1 F2 phoneme F1 F2

i 291 2251 i 285 2373 i 300 2300
e 394 2082 I 356 2098 I 350 2100
E 513 1989 E 569 1965 e 400 2100
a 742 1420 æ 748 1746 E 525 1850
O 552 949 A 677 1083 a 725 1400
o 447 856 6 599 891 A 750 1200
u 325 789 O 449 737 O 550 950

U 376 950 o 425 850
u 309 939 U 375 875
2 722 1236 u 300 825
3 581 1381 y 300 1750

Y 350 1600
ø 400 1550
œ 525 1475

French (fre) Spanish (spa)
phoneme F1 F2 phoneme F1 F2

i 275 2400 i 300 2250
e 400 2200 e 475 1950
E 550 1900 a 750 1400
a 750 1400 o 475 950
O 575 1050 u 300 800
o 400 800
u 275 775
y 275 1900
ø 400 1600
œ 600 1350


