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A STOCHASTIC MODEL FOR THE SPEECH SONORITY1

Marzio CASSANDRO2, Pierre COLLET3, Denise DUARTE4,
Antonio GALVES5, Jesus GARCIA6

résumé – Un modèle stochatisque en sonorité des langues
Nous étudions des familles de chaînes quantifiées à valeurs réelles. Ces chaînes sont liées par une

hypothèse d’existence d’une partition universelle de leur image, telle que la loi de chaque chaîne

conditionnée par l’appartenance à un de ses éléments est indépendante de la chaîne. Nous in-

troduisons une nouvelle classe d’estimateurs des points de séparation définissant la partition et

démontrons la consistance de ces estimateurs. Nous pouvons alors utiliser ces résultats pour mod-

éliser l’évolution de la sonorité des langues naturelles, sur la base d’un corpus linguistique de 1667

propositions en huit langues différentes. Nous montrons qu’un modèle avec quatre points univer-

saux de séparation décrit bien les données. La notion nouvelle de famille de chaînes quantifiées liées

pourrait s’appliquer à d’autres situations dans lesquelles différents agents stochastiques s’expriment

par l’intermédiaire du même genre d’interface.

mots clés – Chaînes quantifiées, Chaînes stationnaires, Estimation linguistique croisé des
points de coupures, Points de coupure universels, Sonorité des langues

summary – We study families of bounded real valued tied quantized chains. The chains

are tied together by the assumption that there is a universal partition of the range, such that the

distribution of the chains, conditioned on each interval of the partition is independent of the chain.

We define a new class of cross estimators for the cut-points separating these intervals and prove

their asymptotic consistency. We apply our results to model the sonority time evolution of different

languages using a linguistic corpus with 1667 sentences from eight different languages. We show

that a model with four universal cut-points is in good agreement with the data. The new notion of

family of tied quantized chains should be relevant for modeling other situations in which different

stochastic agents express themselves using the same type of interface.

keywords – Cross-linguistic estimation of the cut-points, Speech sonority, Stationarity
chains, Tied quantized chains, Universal cut-points
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1. INTRODUCTION

The sonority can be defined as a local index of regularity of the speech signal (see
[Galves et al., 2002]). This indexis a function which maps local windows of the
acoustic signal on the interval [0, 1]. This function assumes values close to 1 in the
regions in which the signal presents a regular behavior characteristic of portions
of the signal. In contrast, the function will assign values close to 0 to regions
characterized by obstruency.

An exploratory analysis of a sample with 1667 sentences from 8 different lan-
guages shows that the time evolution of the sonority is quite regular in high level
regions and displays strong variations below a certain level. This suggests the mod-
eling of the sonority time evolution of a language by a stochastic quantized chain.
Moreover, in this model the quantized chains corresponding to different languages
are tied together by the assumption that the distribution of the sonority, conditioned
on the fact that it belongs to a given region, is universal, i.e. language independent.
In particular the partition in regions of sonority is assumed to be language indepen-
dent. In this model the specific features characterizing each language are expressed
by the symbolic chain indicating in which region of sonority the process is at each
time step.

This model is linguistically appealing. On one hand the universality of the
sonority regions and the corresponding probability distributions mimics the fact
that the physiological features of the speech production apparatus are common to
all human beings and therefore are language independent. On the other hand the
fact that the law of the underlying symbolic chain depends on the language accounts
for the specific phonological features characterizing each particular language.

In order to implement the model we need to estimate the universal cut-points
separating the sonority regions. In the present paper we introduce a family of cross-
linguistic estimators of the cut-points and prove their asymptotic consistency. As
far as we know this is a new theoretical result.

Markov quantized chains have been recently considered in the statistical liter-
ature (cf. [Bühlmann, 1999], and references therein). However the notion of tied
family of quantized chains seems to be new. It is noteworthy that in our model the
embedded categorical chain is not assumed to be Markovian as it is usually done in
the literature. Actually to prove our theoretical results we only need to assume that
the categorical chain is stationary and ergodic.

The paper is organized as follows. In Section 3. we present the linguistic data. In
Section 2. we introduce the notion of tied family of quantized chains, define a family
of cross-linguistic estimators for the universal cut-points and prove their consistency.
In Section 4. we discuss the adequacy of a family of tied quantized chains with four
cut-points to model the linguistic data. Final remarks and perspectives are presented
in Section 5. The proof of the mathematical results stated in Section 2. is given in
the appendix. The data sets and computer codes used in this paper can be obtained
from the site [www.ime.usp.br/∼tycho/prosody/sonority/quantized].
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2. FAMILIES OF TIED QUANTIZED CHAINS

We will consider a family of stochastic processes
{(

Sl
t

)
t∈Z

: l ∈ L
}

taking values in
the interval [0, 1], where L is a fixed but otherwise arbitrary set. We will assume that
these processes are stationary and ergodic. They are tied together by the following
assumption.

assumption 1. There exist a positive integer N and an increasing sequence of cut-

points c0 = 0 < c1 < . . . < cN < cN+1 = 1 and N + 1 probability measures πj,

j = 0, . . . , N , such that the support of πj is contained in the interval Ij = [cj, cj+1[
and that at any time step t and for any l ∈ L we have

P
{
Sl

t ∈ B|Sl
t ∈ Ij

}
= πj(B) , (1)

where B is any Borel subset of [0, 1].

We stress the fact that by assumption, the cut-points cj and the probabilities πj,
j = 0, . . . , N are independent of l. In our linguistic application L will be discrete
and will represent a set of natural languages. The intervals Ij will represent regions
of different sonority levels.

We introduce the chain
(
X l

t

)
t∈Z

taking values in the finite alphabet A = {0, . . . , N}
and defined by

X l
t = j if Sl

t ∈ Ij .

The assumptions on
(
Sl

t

)
imply that the chains

(
X l

t

)
are stationary and ergodic.

We introduce the shorthand notation

pl(j) = P
{
X l

t = j
}

.

Let w : [0, 1] → [0, 1] be a continuous and strictly increasing function with
w(0) = 0. Given a couple l and l′ of different elements of L, we define

W l,l′(r) = w(|F l(r) − F l′(r)|) , (2)

where F l(r) = P
{
Sl

t < r
}
.

proposition 1. Under Assumption 1, assume that each probability πj has no atom

and that its support is the full interval Ij. If pl(j) 6= pl′(j) for any j ∈ A, then

for any continuous and strictly increasing function w vanishing at the origin, the

function W l,l′(·) has a global maximum which is attained at one of the cut-points.

In particular, if N = 1, then the function W l,l′ is unimodal and its maximum is

attained at c1.

For simplicity, from now on we will assume that this global maximum is unique
and will denote by cl,l′ the cut-point where the global maximum of the function W l,l′

is attained.

proposition 2. Under the same assumptions as in Proposition 1, each interval

between two zeros of the function W l,l′ contains at least one cut-point.
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The reader should note that by definition the function W l,l′ has at least zeros at
the end points r = 0 and r = 1.

Propositions 1 and 2 suggest an estimation strategy for the cut-points. First we
introduce the empirical counterpart of the function W l,l′ . For T ≥ 1, r ∈ [0, 1] and
any pair of samples Sl

1, . . . , S
l
T and Sl′

1 , . . . , Sl′

T , we define

Ŵ
l,l′

T (r) = w(|F̂ l
T (r) − F̂ l′

T (r)|) ,

where

F̂ l
T (r) =

1

T

T∑

t=1

1
{
Sl

t ≤ r
}

,

and similarly for F̂ l′

T . We define the estimator ĉ
l,l′

T of cl,l′ by

ĉ
l,l′

T = inf

{
v ∈ [0, 1]

∣∣∣∣ Ŵ
l,l′

T (v) = sup
r

Ŵ
l,l′

T (r)

}
.

The idea is to define the estimator as the argument of the maximum of Ŵ
l,l′

T . How-

ever the fact that the function Ŵ
l,l′

T is piecewise constant makes it necessary to
specify which point is chosen in the interval where the maximum is attained. The
following theorem states that ĉ

l,l′

T provides an asymptotically consistent estimator
for cl,l′ .

theorem 1. Under the same assumptions as in Proposition 1, for any continuous

and strictly increasing function w vanishing at the origin, ĉ
l,l′

T converges almost

surely to cl,l′, as T → +∞.

Theorem 1 allows us to estimate one of the cut-points. When N ≥ 2, a natural
idea would be to repeat the procedure conditioned to each subinterval [0, cl,l′ ] and
[cl,l′ , 1]. By repeating this procedure iteratively one can hope to identify successive
cut-points. A difficulty with a direct application of this idea is that the estimator c̄

fluctuates around the true value. Therefore, it is better to consider the maxima of
the empirical conditional functions Ŵ

l,l′

T (r | [ai, bi]) where the open intervals (ai, bi)
form a covering of (0, 1).

Formally we define the conditional functions Ŵ
l,l′

T (r | (ai, bi)) as follows. Let

F̂ l
T (r | (ai, bi)) =

∑T

t=1 1
{
ai < Sl

t ≤ r
}

∑T

t=1 1
{
Sl

t ∈ (ai, bi)
} .

This function is an estimator of

F l(r | (ai, bi)) = P
{
ai < Sl

t ≤ r
∣∣ Sl

t ∈ (ai, bi)
}

.

One then constructs as above the corresponding empirical conditional function
Ŵ

l,l′

T (r | (ai, bi)), and applies Theorem 1 to determine a cut-point inside the interval
(ai, bi) if any.

The procedure is applied iteratively, refining the intervals (ai, bi) until we only
get spurious maxima produced by the fluctuations of the empirical distributions.
We shall return to the question of how many times one should iterate this procedure
in the final section.
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3. THE DATA

In Galves et al. [2002] an index of local regularity of the speech signal was introduced
under the name of sonority. This is a mapping of the spectrogram of the acoustic
signal into a function of time taking values in the interval [0, 1]. At each time step
we compute the relative entropy between neighboring normalized columns of the
spectrogram. A local average of these relative entropies is then mapped through a
fixed decreasing function to define the current value of the sonority.

The definition of the sonority is motivated by the fact that regular patterns
characteristic of sonorant spans typically will correspond to sequences of probability
measures which are close in the sense of relative entropy. Therefore if the window
around time t covers a region of the acoustic signal which is regular, and therefore
sonorant, then St will be close to 1. In contrast, regions in which the acoustic signal
present a chaotic behavior, for instance regions corresponding to stop consonants,
will correspond to intervals in which St will assume values close to 0, with important
variations.

We refer the reader to Galves et al. [2002] for a linguistically motivated presen-
tation of the sonority, to Cros et al. [2005] for a discussion of the relation between
the sonority and the intra-oral pressure and to Cuesta et al. [2006] addresses the
problem of rhythmic classification of languages using the sonority and the projected
Kolmogorov-Smirnov test. As an example, Figure 1 shows the synchronized time
evolutions of the pressure (top), of the spectrogram (middle) and of the sonority
(bottom) for a piece of a Japanese sentence.

figure 1. Graphs of the acoustic signal (top), spectrogram (middle) and sonority (bottom)
for a Japanese utterance. The horizontal axis represents time.

The spectrograms used in the present analysis were produced by the software
Praat [www.praat.org]. The computations of the sonority from the spectrogram and
some basic statistics were carried out using the Free software Piccolo developed by
Jesus Garcia.
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The data we use in the present analysis come from two multi-lingual corpora
belonging to the Laboratoire de Sciences Cognitives et Psycholinguistique (EHESS/
CNRS). The first one was originally recorded by Nazzi et al. [1998], with sentences
from Dutch, English, French, Italian, Japanese and Spanish. The second one, with
sentences in Catalan and Polish, was recorded to be used in the paper by Ramus
et al. [1999]. The whole corpus consists of sentences recorded by 4 female native
speakers of each language, each speaker reading around 50 sentences, controlled with
respect to the number of syllables (from 15 to 21), with in total 1667 sentences. The
sentences were read in a soundproof booth, were low-pass filtered and digitized at
16 kHz and recorded directly in the hard disk.

An inspection of the corpus shows the same type of behavior for the sonority
across languages, namely quite regular time evolutions in the upper sonority re-
gion and displaying strong variations below a certain level as exemplified by the
time evolution at the bottom of figure 1. It is linguistically appealing to interpret
these similarities across languages as an expression of the fact that the physiological
features of the speech apparatus are common to all human beings and therefore
are language independent. The specific features discriminating different languages
should be expressed only in the law of the symbolic chain indicating in which region
of the interval [0, 1] the sonority is at each time step.

The above considerations motivate the introduction of the notion of family of
tied quantized chains in the next section.

4. A MODEL FOR THE SPEECH SONORITY

Let L denote the set of 8 languages under consideration. For each l ∈ L, denote by
Ul the set of recorded sentences from language l in the corpus. It will be convenient
to use the representation

Ul = {(l, i) : i = 1, . . . , nl} ,

where (l, i) denotes the ith recorded sentences of language l in the corpus and nl is
the total number of recorded sentences of language l.

Denote by (S
(l,i)
t ) the sonority time evolution of sentence (l, i). We assume that

the sonority time evolutions corresponding to the different sentences (l, i) ∈ Ul are
independent realizations of the same stochastic process (Sl

t). We will assume that
these processes are stationary and ergodic.

In order to fit a family of tied quantized chains to the linguistic corpus described
above, is necessary first to estimate the cut-points using Theorem 1.

Let us start with a descriptive analysis of the set of maxima of the functions
Ŵ

l,l′

T , for all 28 possible distinct choices of the languages l and l′. In what follows,

in the definition of Ŵ
l,l′

T we will take w(x) = x. To obtain these functions, the

empirical distribution F̂ l
T were calculated using the entire set Ul of sentences from

each language l ∈ L„ with the formula

F̂ l
T (r) =

∑nl

i=1

∑T(l,i)

t=1 1

{
S

(l,i)
t ≤ r

}

∑nl

i=1 T(l,i)

, (3)
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where T(l,i) denotes the length of sentence (l, i) and T =
∑nl

i=1 T(l,i). The complete
set of 28 graphs can be obtained at the web address [www.ime.usp.br/∼ tycho/pro-
sody/sonority/quantized].

Figures 2, 3, 4 and 5 present the graphs of Ŵ
l,l′

T , with w(x) = x, for the pairs of
languages (Catalan, English), (Polish, Spanish), (English, Japanese) and (Italian,
Japanese), respectively.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
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1
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.0
2

0
.0
3

0
.0
4

0
.0
5

r

W

figure 2. Graph of the function Ŵ
l,l′

T with l = Catalan and l′ = English.

Visual inspection of these graphs suggests the existence of at least four cut-points.
Indeed, graph 2 shows two maxima attained near 0.44 and near 0.94. The last cut-
point reappears in graph 3 which indicates also the existence of a third cut-point
near 0.2. Graph 4 suggests the existence of a fourth cut-point in the neighborhood of
0.68. Finally the graph corresponding to the pair (Italian, Japanese) is compatible
with the existence of the four cut-points suggested by the previous graphs. However,
the scale of this last graph is about ten times smaller than the scale of most graphs,
as exemplified by the above mentioned. This could indicate that the probability
distributions pl( · ) and pl′( · ) for l = Italian and l′ = Japanese are similar.

Something new appears in graph 6 which suggests the existence of another cut
point near 0.05. This seems to be a spurious maximum, produced by an insufficient
number of points of small sonority in the sample of French sentences. Indeed the
probability of visiting the region of very small sonority is smaller in French sentences
than in English sentences (cf. [Galves et al. 2002]). The same effect may occur at
the other extremity of the interval as exemplified in graph 5, corresponding to the
pair (Italian, Japanese). We will return to this point in Section 5.

It turns out that these graphs are representative of the entire set of 28 graphs,
in the sense that they show all cut-points, all shapes, and also the few spurious
maxima appearing in the other graphs.

To see how the cut-point estimators fluctuate we will use a bootstrap procedure.
For each l ∈ L, let ξ

l,b
i , i = 1, . . . , n, b = 1, . . . , B be random variables uniformly

distributed in {1, . . . , nl}, where B is a suitable positive integer. Assume that the
random variables ξ

l,b
i are independent. With these random indexes we will construct
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figure 3. Graph of the function Ŵ
l,l′

T with l = Polish and l′ = Spanish.
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figure 4. Graph of the function Ŵ
l,l′

T with l = English and l′ = Japanese.
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figure 5. Graph of the function Ŵ
l,l′

T with l = Italian and l′ = Japanese.
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figure 6. Graph of the function Ŵ
l,l′

T with l = English and l′ = French

the bootstrap samples {U b∗

l , l ∈ L}, b = 1, . . . , B, defined by

U b∗

l =
{
(l, ξb

i ) : i = 1, . . . , n
}

.

We apply to the bootstrap samples the iterative procedure described at the end
of Section 2. We used the following covering

{
(0, 0.3), (0.3, 0.55), (0.55, 0.8), (0.8, 1), (0.2, 0.4), (0.4, 0.7), (0.7, 0.9)

}
.

The cut-points are estimated as follows. In each bootstrap sample we identify
the point where the maximum is attained in each interval of the covering (if any).
This allows us to identify four clusters of points. The corresponding cut-point is
estimated by the median of the cluster

Table 1 summarizes the results obtained with n = 50 and for B taking suc-
cessively the values 100, 200 and 300. The first column gives the value of B used
in the estimation. The second column gives the index of the cut-point considered.
The third column shows the estimated values for the cut-points. The fourth and
fifth columns give the interquartile distance (q∗3 − q∗1) and the standard deviation
respectively for each cut-point.

We observe that both the interquartile distances and the standard deviations
in each cluster are much smaller than the distance between consecutive cut-points.
These results are therefore compatible with the existence of four cut-points which
moreover are universal since the same cut-points point appear for different pairs of
languages.

5. DISCUSSION

In the present paper we introduced the notion of family of tied quantized chains.
Even though our original motivation comes from Linguistics, we believe that this
could be useful in other fields to model phenomena in which different stochastic
agents are constrained to act in the same environment.

The use of tied quantized chains to model the sonority of a set of languages is
new. The evidence for our model came from a linguistic corpus which as far as we
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B cut-point index estimated cut-point q∗3 − q∗1 standard deviation

100 1 0.187 0.046 0.038
2 0.448 0.053 0.034
3 0.672 0.069 0.047
4 0.930 0.016 0.024

200 1 0.191 0.047 0.040
2 0.456 0.063 0.038
3 0.680 0.062 0.045
4 0.932 0.015 0.025

300 1 0.191 0.049 0.041
2 0.456 0.050 0.034
3 0.673 0.067 0.042
4 0.932 0.014 0.024

Table 1. Estimated cut-points, interquartile distances and standard deviations obtained using
bootstrap samples with B = 100, 200 and 300.

know has never been entirely submitted to a statistical analysis. Previously, only a
small subset with 20 sentences from 8 languages selected from the original Nazzi et

al. [1998] corpus together with the additional sentences in Catalan and Polish was
used in the descriptive analysis performed in Ramus et al. [1999]. An inferential
analysis of this restricted corpus was given in Duarte et al. [2001]. The basis of
this analysis was a probabilistic model for the lengths of successive consonantal
intervals, represented as independent and identically distributed gamma random
variables. This inferential study showed that a model with three different variances
for the gamma distributions, one for Dutch, English and Polish, a second one for
Catalan, French and Spanish and a third one for Japanese, was compatible with the
data as suggested by the original descriptive analysis given in Ramus et al. [1999].

The notion of sonority considered here was introduced in Galves et al. [2002]
as a tool to discriminate between rhythmic classes of languages. The goal was to
reproduce in an entirely automatic way, with no need of previous hand labeling,
the remarkable empirical results obtained by Ramus, Nespor and Mehler [1999].
While remaining close to the spirit of Ramus et al. [1999], this new approach
avoids the linguistic difficulties associated to the definition of the statistic parameters
considered in Ramus et al. [1999] and in Duarte et al. [2001]. For a discussion of
this issue we refer the interested reader to Galves et al. [2002] and to Ramus [2002].

The choice of the value 2.5 for the free parameter appearing in the definition of
the sonority was guided by empirical considerations. In fact this is the value which
seems to reproduce in a more clear way the three clusters of languages suggested by
the empirical analysis presented in Ramus et al. [1999].

The idea that the the time evolution of the sonority of different languages is
well described by a family of tied quantized chains is linguistically appealing. To
fully support this intuition we should go one step further in the statistical analysis
and to address the question of the universality of the conditional distribution of the
sonority in each interval Îj = [ĉj, ĉj+1[, for j = 0, . . . , 4. This issue seems to require
a larger linguistic corpus with longer tokens of speech. Indeed the sonority seems to
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have important time correlations at least inside each vocalic and consonantal inter-
val. This could explain the large fluctuations we found in the empirical conditional
distributions of the sonority, making it difficult to draw any conclusion concerning
this issue with the present corpus.

A natural statistical question arises from our approach, namely the estimation of
the number of cut-points. This issue can probably be treated by using a minimum
description length principle like BIC (see, for instance [Barron, Rissanen, Yu, [1998]).
For isolated quantized chains, a preliminary step in this direction has been suggested
in Bühlmann [1999] using the AIC. To implement this approach it is necessary to
estimate the likelihood of a sample, and this requires extra conditions on the law of
the process. This is outside the scope of the present paper.

The framework considered here is much less restrictive than the one usually found
in the recent literature on quantized chains which assumes that the embedded chain
is Markov of finite order, together with an independence assumption for the values
of the process conditioned on the values of the embedded chain (see [Bühlmann,
1999]). Indeed, to prove Theorem 1, besides Assumption 1, we only assume that for
each fixed l, the process

(
Sl

t

)
is stationary and ergodic.

Our model relies on the idea that all the linguistically relevant information is
carried by the symbolic chains underlying the sonority time evolution. In particular,
the most important linguistic question of the existence of rhythmic classes should be
decided using only the properties of the symbolic chains. This issue will be treated
in a subsequent paper.

PROOFS

In this appendix we give the proofs of the mathematical results stated in Section 2.
The following lemma will appear in all the proofs.

lemma 1. Under the same assumptions as in Proposition 1, the function F l − F l′

is strictly monotone in each interval Ij, i = 0, . . . , N .

Proof of Lemma. 1 We first observe that for r ∈]cj, cj+1[, j = 0, . . . , N , we have

F l(r) =

j−1∑

k=0

pl(k) + pl(j) πj([0, r]) ,

where for j = 0 the first term is absent, and a similar formula holds for F l′(r).
Therefore, for r ∈]cj, cj+1[ we obtain

F l(r) − F l′(r) =

j−1∑

k=0

(
pl(k) − pl′(k)

)
+

(
pl(j) − pl′(j)

)
πj([0, r]) .

Since we assumed pl(j) 6= pl′(j), for any j ∈ A, we conclude that F l(r) − F l′(r)
is monotone on each interval of the partition of the interval [0, 1] with endpoints
0 = c0 < c1 < . . . < cN < cN+1 = 1. �
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Proof of Proposition 1. The function F l − F l′ is continuous and vanishes at the
boundaries r = 0 and r = 1. Moreover, the hypothesis pl(j) 6= pl′(j), for any i ∈ A,
implies that F l − F l′ is not identically zero. Therefore it has a maximum and a
minimum and at least one of them is not zero.

Lemma 1 implies that any non zero maximum or minimum of the function F l−F l′

is a cut-point. Therefore any maximum of the function W l,l′ = w
(∣∣F l −F l′

∣∣) is also
a cut-point. �

Proof of Proposition 2. If the unique zeros of Ŵ
l,l′

T are the boundaries r = 0 and
r = 1, then the result follows from Proposition 1. Let us now suppose that there
exists r̄ ∈ (0, 1), such that

Ŵ
l,l′

T (r̄) = w
(∣∣F l(r̄) − F l′(r̄)

∣∣) = F l(r̄) − F l′(r̄) = 0.

By Lemma 1 the difference function F l −F l′ is strictly monotone between two con-
secutive cut-points. Therefore, such interval can contain at most one zero of the
difference function. This implies the proposition. �

Proof of Theorem 1. By hypothesis, the probability measures πi have no atoms and
therefore the functions F l and F l′ are continuous. The compactness of the interval
[0, 1] implies that they are actually uniformly continuous on the compact set [0, 1].

The empirical distribution functions F̂ l
T and F̂ l′

T are by definition non decreasing.
By Birkhoff’s Ergodic Theorem, for any rational number r ∈ [0, 1] we have

lim
T→+∞

F̂ l
T (r) = F l(r) and lim

T→+∞

F̂ l′

T (r) = F l′(r)

almost surely. Therefore by a standard argument, both sequences converge almost
surely uniformly in r. Since w is continuous, Ŵ

l,l′

T (·) converges almost surely uni-
formly to W l,l′(·), as T → +∞. The result follows at once. �
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