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Abstract: We will overview the results in an informal approach to construc-

tive reverse mathematics, that is reverse mathematics in Bishop’s constructive

mathematics, especially focusing on compactness properties and continuous

properties.
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1 Introduction

The purpose of constructive reverse mathematics is to classify various
theorems in intuitionistic, constructive recursive and classical mathema-
tics by logical principles, function existence axioms and their combinati-
ons. Classifying mathematical theorems means finding logical principles
and/or function existence axioms which are not only sufficient but also
necessary to prove the theorems in a base system. We expect that con-
structive reverse mathematics will contribute to giving some insight into
the philosophy of mathematics.

The Friedman-Simpson-program, called (classical) reverse mathema-
tics [Friedman 1975][Simpson 1999][Tanaka 1992], is a formal mathema-
tics using classical logic and assuming, in its base system, a very weak
set existence axiom – the ∆0

1 comprehension scheme. Its main question
is “Which set existence axioms are needed to prove the theorems of or-
dinary mathematics?”, and many theorems have been classified by set
existence axioms of various strengths. Since classical reverse mathema-
tics is formalized with classical logic, we cannot

• classify theorems in intuitionistic mathematics or in constructive
recursive mathematics which are inconsistent with classical ma-
thematics (for example, continuity of mappings from N

N to N

[Troelstra & van Dalen 1988, 4.6]);

• distinguish theorems from their contrapositions (for example, the
fan theorem from weak König’s lemma, see [Ishihara To appear,
Theorem 16.17 and Theorem 16.21], and [Simpson 1999, IV.1]).

Bishop’s constructive mathematics (BISH) [Bishop 1967][Bishop &
Bridges 1985][Bridges & Richman 1987][Mines et al. 1988][Troelstra &
van Dalen 1988] is an informal mathematics using intuitionistic logic
and assuming some function existence axioms – the axiom of counta-
ble choice, the axiom of dependent choice, and the axiom of unique
choice. It is a core of the varieties of mathematics in the sense that it
can be extended not only to intuitionistic mathematics (INT) (by ad-
ding the principle of continuous choice and the fan theorem) [Bridges &
Richman 1987][Brouwer 1981][Dummett 2000][Heyting 1971][Troelstra
& van Dalen 1988] and constructive recursive mathematics (RUSS) (by
adding Markov’s principle and the Church’s thesis) [Bridges & Richman
1987][Kushner 1984][Troelstra & van Dalen 1988], but also to classical
mathematics (CLASS) practised by most mathematicians today (by ad-
ding the principle of the excluded middle and the full axiom of choice).
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More on philosophy and practice of Bishop and his followers’ construc-
tive mathematics can be found in [Bishop 1970][Richman 1990][Beeson
1985].

Although nonconstructive logical principles such as the limited prin-
ciple of omniscience (LPO) have been rejected within any constructive
framework, some recent proofs in Bishop’s (forward) mathematics [Is-
hihara 1994][Bridges van Dalen Ishihara 2003][Bridges, Ishihara et al.
2005][Spitters 2002] have made use of such nonconstructive principles,
and many theorems in classical, intuitionistic and constructive recur-
sive mathematics have been classified using such principles within the
framework of Bishop’s constructive mathematics [Ishihara 2004].

In this paper, we will overview the results in an informal approach to
constructive reverse mathematics, that is reverse mathematics in Bi-
shop’s constructive mathematics, especially focusing on compactness
properties and continuous properties; see also Mandelkern [Mandelkern
1988], Ishihara [Ishihara 1990], Bridges, Ishihara and Schuster [Bridges,
Ishihara & Schuster 2002], Ishihara and Schuster [Ishihara & Schuster
2002], and Ishihara [Ishihara 2005] for compactness properties; Ishihara
[Ishihara 1991, 1992], Bridges, Ishihara, Schuster and Vîţă [Bridges, Is-
hihara et al. 2005], and Bridges, Ishihara and Schuster [Bridges, Ishihara
& Schuster 2002] for continuity properties.

Of course, since Bishop’s constructive mathematics is informal, and
assumes the function existence axioms, we cannot

• compare those results with the results in classical reverse mathema-
tics (for example, the equivalence in Bishop’s constructive mathe-
matics between a function existence axiom, weak König’s lemma,
and a logical principle, the lesser limited principle of omniscience
(LLPO) was proved in [Ishihara 1990]);

• prove neither underivability nor separability of those principles (for
example, underivability of LPO and separability of the weak limi-
ted principle of omniscience (WLPO) from LPO, see [Akama, Be-
rardi et al. 2004] and [Kohlenbach 2004, chapter 6] for such results
in HA and HA

ω).

For a formal approach to constructive reverse mathematics, see [Ishihara
2005].
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2 Bishop’s Constructive Mathematics

Bishop’s constructive mathematics is an informal mathematics using in-
tuitionistic logic and assuming some function existence axioms: the axiom
of countable choice

∀n ∈ N∃x ∈ XA(n, x)→∃f ∈ XN∀n ∈ NA(n, f(n)),

the axiom of dependent choice

∀x ∈ X∃y ∈ XA(x, y)→

∀x ∈ X∃f ∈ XN(f(0) = x ∧ ∀n ∈ NA(f(n), f(n + 1))),

and the axiom of unique choice

∀x ∈ X∃!y ∈ Y A(x, y)→∃f ∈ Y X∀x ∈ XA(x, f(x)).

Bishop’s constructive (forward) mathematicians have been making
every effort, for a given classical theorem A, to find its constructive
substitute A′ such that

BISH ⊢ A′ and CLASS ⊢ A↔A′.

In general, we may find more than one such A′, say A′

1, . . . , A
′

n
, and in

this case, we try to find A′

k
such that BISH ⊢ A′

k
→A′

i
for all i = 1, . . . , n.

In some cases, we have to be contented ourselves with A′ such that
BISH ⊢ A′, CLASS ⊢ A→A′, and it is strong enough for applications.
Of course, it happens that sometimes we can take A′ as A; for examples
we can prove the following classical theorems in BISH.

The completeness of R: every Cauchy sequence of real numbers conver-
ges.

The constructive compactness of [0, 1]: the closed unit interval [0, 1] is
totally bounded and complete.

When A and A′ are not equivalent in BISH, we also try to show
that A does not admit a constructive proof by giving a Brouwerian
counterexample to A such that

BISH ⊢ A→P and BISH 6⊢ P

for some principle P . Since BISH is an informal mathematics, BISH 6⊢ P

does not mean formal unprovability, but unacceptability, or at least high
dubitation in BISH. The constructive compactness of [0, 1] is classically
equivalent to the following special case of the Bolzano-Weierstraß theo-
rem:
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The sequential compactness of [0, 1]: every sequence of [0, 1] has a con-
vergent subsequence.

But it is well known that the sequential compactness of [0, 1] entails in
BISH the limited principle of omniscience (LPO):

∀α ∈ N
N[∃n(α(n) 6= 0) ∨ ¬∃n(α(n) 6= 0)],

which is an instance of the Principle of the Excluded Middle (PEM):

P ∨ ¬P,

and false both in INT and in RUSS [Troelstra & van Dalen 1988, 4.6.4,
4.3.4].

Mandelkern [Mandelkern 1988] showed its converse and proved the
equivalence between the Bolzano-Weierstraß theorem and LPO in BISH,
which led the subsequent research of reverse mathematics in Bishop’s
constructive mathematics aiming at finding a logical principle P such
that

BISH ⊢ A↔P,

not only for a theorem A in CLASS but also for a theorem A in INT and
in RUSS even if it is inconsistent with CLASS. This is possible because
CLASS, INT and RUSS are extensions of BISH.

3 Omniscience Principles

The limited principle of omniscience (LPO) is a strong nonconstructive
principle into which the following mathematical theorems are classified.
A metric space is compact if it is totally bounded and complete, and se-
quentially compact if every sequence of its elements has a convergent sub-
sequence; for further basic notions in metric spaces, see [Bishop 1967][Bi-
shop & Bridges 1985][Bridges & Richman 1987][Troelstra & van Dalen
1988].

Theorem 1 The following are equivalent in BISH.

1. LPO.

2. ∀x ∈ R(0 < x ∨ ¬(0 < x)).

3. The monotone convergence theorem [Mandelkern 1988]: every boun-
ded monotone sequence of real numbers converges.
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4. The Bolzano-Weierstraß theorem [Mandelkern 1988]: every boun-
ded sequence of real numbers has a convergent subsequence.

5. The sequential compactness theorem [Ishihara & Schuster 2002]:
every compact metric space is sequentially compact.

6. The Cantor intersection theorem [Richman 1999]: every sequence
of closed sets of a compact metric space with the finite intersection
property has nonempty intersection.

A weaker nonconstructive principle is the weak limited principle of
omniscience (WLPO):

∀α ∈ N
N[¬∃n(α(n) 6= 0) ∨ ¬¬∃n(α(n) 6= 0)].

WLPO is an instance of the weak Principle of the Excluded Middle:

¬P ∨ ¬¬P,

and false both in INT and in RUSS [Troelstra & van Dalen 1988, 4.6.4,
4.3.4].

We can show that the existence of a discontinuous function is equi-
valent to WLPO. A function f between metric spaces is discontinuous if
there exist δ > 0 and a sequence {xn} converging to a limit x such that
d(f(xn), f(x)) ≥ δ for all n.

Theorem 2 The following are equivalent in BISH.

1. WLPO.

2. ∀x ∈ R(¬(0 < x) ∨ ¬¬(0 < x)).

3. The existence of a discontinuous function [van Atten & van Dalen
2002]: a discontinuous function from N

N into N exists.

A weak continuity theorem is classified into the logical principle
¬WLPO. A function f between metric spaces is nondiscontinuous if
xn → x and d(f(xn), f(x)) ≥ δ for all n imply δ ≤ 0.

Theorem 3 The following are equivalent in BISH.

1. ¬WLPO.

2. The nondiscontinuity theorem [Ishihara 1992]: every mapping of a
complete metric space into a metric space is nondiscontinuous.
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The lesser limited principle of omniscience (LLPO):

∀αβ ∈ N
N[¬(∃n(α(n) 6= 0) ∧ ∃n(β(n) 6= 0))→

¬∃n(α(n) 6= 0) ∨ ¬∃n(β(n) 6= 0)]

is weaker than WLPO, and is an instance of De Morgan’s law

¬(P ∧ Q)→¬P ∨ ¬Q.

It is false both in INT and in RUSS [Troelstra & van Dalen 1988, 4.6.5,
4.3.6].

The following mathematical theorems are classified into LLPO. A
(binary) tree is a subset T of the set {0, 1}∗ of finite binary sequences such
that it is detachable from {0, 1}∗ in the sense that for each a ∈ {0, 1}∗,
either a ∈ T or a 6∈ T , and it is closed under restriction, that is if a ∈ T

and b is an initial segment of a, then b ∈ T . A tree T is infinite if for
each n there exists a ∈ T with length n, and an infinite binary sequence
α is an infinite path in T if the finite initial segment α(n) of α with
length n belongs to T for all n ∈ N. A subset S of a metric space X is a
zero set if there is a pointwise continuous function f : X → R such that
S = {x ∈ X | f(x) = 0}.

Theorem 4 The following are equivalent in BISH.

1. LLPO.

2. ∀x ∈ R(¬(0 < x) ∨ ¬(x < 0)).

3. ∀xy ∈ R(xy = 0→x = 0 ∨ y = 0).

4. For all x, y ∈ R with ¬(x < y), {x, y} is closed subset of R [Man-
delkern 1988a].

5. Weak König’s lemma (WKL) [Ishihara 1990]: every infinite tree
has an infinite path.

6. The minimum principle [Ishihara 1990][Ishihara & Schuster 2002]:
every uniformly continuous real function f on a compact metric
space X attains its minimum, that is there exists x in X such that
f(x) ≤ f(y) for all y ∈ X.

7. The Cantor intersection theorem for zero sets [Ishihara 1990][Is-
hihara & Schuster 2002]: every sequence of zero sets of a compact
metric space with the finite intersection property has nonempty in-
tersection.
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Among others, the intermediate value theorem in calculus and the
Hahn-Banach theorem in functional analysis are also classified into LLPO
[Troelstra & van Dalen 1988][Ishihara 1990].

4 Markov’s Principle

Another weaker principle than LPO is Markov’s principle (MP):

∀α ∈ N
N[¬¬∃n(α(n) 6= 0)→∃n(α(n) 6= 0)],

which is an instance of the double negation elimination:

¬¬P →P.

MP is rejected in INT, and accepted in RUSS [Bridges & Richman
1987][Troelstra & van Dalen 1988].

The strong extensionality theorem is classified into MP. A mapping
f between metric spaces is strongly extensional if f(x) 6= f(y) implies
x 6= y.

Theorem 5 The following are equivalent in BISH.

1. MP.

2. ∀x ∈ R(¬¬(0 < x)→ 0 < x).

3. The strong extensionality theorem [Bridges & Ishihara 1990]: every
mapping between metric spaces is strongly extensional.

A weaker principle than MP is weak Markov’s principle (WMP):

∀α ∈ N
N[∀β ∈ N

N(¬¬∃n(β(n) 6= 0) ∨ ¬¬∃n(α(n) 6= 0 ∧ β(n) = 0))

→∃n(α(n) 6= 0)],

which holds both in INT and in RUSS [Ishihara 1992][Mandelkern 1988a].

A sequential continuity theorem is classified into WMP. A mapping
f between metric spaces is sequentially continuous if xn → x implies
f(xn) → f(x).
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Theorem 6 The following are equivalent in BISH.

1. WMP.

2. ∀x ∈ R[∀y ∈ R(¬¬(0 < y) ∨ ¬¬(y < x))→ 0 < x].

3. The strong extensionality theorem for complete spaces [Ishihara
1992]: every mapping from a complete metric space into a metric
space is strongly extensional.

4. The sequential continuity theorem [Ishihara 1992]: every nondis-
continuous mapping from a complete metric space to a metric space
is sequentially continuous.

The second statement in the theorem was called the almost separating
property (ASP) in [Mandelkern 1983], and the weak limited principle of
existence (WLPE) in [Mandelkern 1988a].

Anothr principle weaker than MP is the disjunctive version of Mar-
kov’s principle (MP∨):

∀αβ ∈ N
N[¬(¬∃n(α(n) 6= 0) ∧ ¬∃n(β(n) 6= 0))→

¬¬∃n(α(n) 6= 0) ∨ ¬¬∃n(β(n) 6= 0)],

which is an instance of De Morgan’s law. MP∨ is rejected in INT, ac-
cepted in RUSS.

The following theorems are classified into MP∨.

Theorem 7 The following are equivalent in BISH.

1. MP∨.

2. ∀x ∈ R[¬¬(x 6= 0)→¬¬(0 < x)) ∨ ¬¬(x < 0)].

3. For all x, y ∈ R with ¬¬(x < y), {x, y} is closed subset of R

[Mandelkern 1988a].

The second statement in the theorem was called LLPE in [Mandelkern
1988a].

5 Intuitionistic Principles

A subset B of {0, 1}∗ is called a bar if for each infinite binary sequence
α there exists n ∈ N such that αn ∈ B. A bar B is uniform if there
exists k such that for each infinite binary sequence α, ∃i ≤ k(α(i) ∈ B).
Brouwer’s fan theorem for detachable bar FAN∆ is stated as:
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every detachable bar is uniform.

FAN∆ is a contrapositive form of WKL, weaker than LLPO [Ishihara
1990] and hence than WKL [Ishihara To appear], accepted in INT, and
false in RUSS [Troelstra & van Dalen 1988, 4.7.6].

A pointwise continuous function f from the Cantor space 2
N into N

is representable if there exists γ : {0, 1}∗ → N such that

∀α ∈ 2
N∃n[∀k < n(γ(α(k)) = 0) ∧ γ(α(n)) = f(α) + 1].

A subset S of a metric space X is a cozero set if there is a pointwise
continuous function f : X → R such that S = {x ∈ X | f(x) 6= 0}.

Theorem 8 The following are equivalent in BISH.

1. FAN∆.

2. The uniform continuity theorem for representable functions [Veld-
man 2005][Loeb 2005]: every representable pointwise continuous
function from 2

N into N is uniformly continuous.

3. The Heine-Borel theorem for cozero sets [Ishihara & Schuster 2002]:
every cover of a compact metric space by a sequence of cozero sets
has a finite subcover.

Equivalents of FAN∆, including versions of the Heine-Borel theo-
rem, has been extensively studied in [Veldman 2005]. A relation between
FAN∆ and the uniformly continuity theorem for functions without re-
presentation, and other equivalents of FAN∆ can be found in [Berger
2005] and [Julian & Richman 1984] [Berger, Bridges & Schuster 2004]
[Berger & Ishihara 2005] [Berger & Schuster To appear], respectively.

Finally, we deal with a pointwise continuity theorem and the boun-
dedness principle (BD-N):

every countable pseudobounded subset of N is bounded,

where a subset A of N is said to be pseudobounded if for each sequence
{an} in A, an < n for all sufficiently large n. BD-N is weaker than LPO
and provable both in INT and in RUSS [Ishihara 1992].
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Theorem 9 The following are equivalent in BISH.

1. BD-N.

2. The pointwise continuity theorem [Ishihara 1992]: every sequential-
ly continuous mapping from a separable metric space into a metric
space is pointwise continuous.

Other equivalents of BD-N, including the open mapping theorem in func-
tional analysis, can be found in [Bridges & Ishihara 1998][Ishihara 2001]
[Bridges, Ishihara et al. 2005] [Ishihara & Yoshida 2002].

6 Relations Between Principles

The following relations hold between principles we have seen so far.

Proposition 10 The following hold in BISH.

1. LPO↔WLPO + MP.

2. WLPO→LLPO.

3. MP↔WMP + MP∨ [Mandelkern 1988a][Ishihara 1993].

4. LLPO→MP∨ [Mandelkern 1988a][Ishihara 1993].

5. LLPO→FAN∆ [Ishihara 1990].

6. LPO→BD-N.

In the presence of an intuitionistic continuity principle, weak conti-
nuity for numbers (WC-N):

∀α ∈ N
N∃nA(α, n)→∀α ∈ N

N∃mn∀β ∈ N
N(α(m) = β(m)→A(β, n)),

which is a weak form of the continuous choice, we have the following.

Proposition 11

1. BISH + WC-N ⊢ ¬LLPO [Troelstra & van Dalen 1988, 4.6.5].

2. BISH + WC-N ⊢ WMP [Ishihara 1992].

3. BISH + WC-N ⊢ BD-N [Ishihara 1992].



54 Hajime Ishihara

On the other hand, with another intuitionistic principle, Kripke’s
scheme (KS):

∀X ⊂ N∃α ∈ N
N

2

∀n[n ∈ X ↔∃m(α(n, m) = 0)],

MP entails PEM [Troelstra & van Dalen 1988,4.9.5], and hence LLPO.
Thus we have the following.

Proposition 12 If BISH + FAN∆ + WC-N + KS is consistent, then

1. BISH 6⊢ WMP→MP∨,

2. BISH 6⊢ FAN∆ →MP∨,

3. BISH 6⊢ BD-N→MP∨.

Note that FAN∆ + WC-N + KS is consistent relative to elementary ana-
lysis [Krol’ 1978].

In the presence of Church’s thesis (CT0):

∀n∃mA(n, m)→∃k∀n∃m[A(n, U(m)) ∧ T (k, n, m)],

where T is Kleene’s T -predicate and U the result-extracting function,
we have the following.

Proposition 13

1. BISH + CT0 ⊢ ¬FAN∆ [Troelstra & van Dalen 1988, 4.7.6].

2. BISH + CT0 ⊢ WMP [Ishihara 1993].

3. BISH + CT0 + MP ⊢ BD-N [Ishihara 1992].

Thus we also have the following.

Proposition 14 If BISH + CT0 + MP is consistent, then

1. BISH 6⊢ MP→FAN∆,

2. BISH 6⊢ BD-N→FAN∆.

Note that CT0 + MP is consistent relative to elementary analysis [Luck-
hardt 1977].
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To appear Weak König’s Lemma Implies Brouwer’s Fan Theorem: a
Direct Proof, to appear in Notre Dame J. Formal Logic.

2005 Constructive Reverse Mathematics: Compactness Properties,
in: L. Crosilla and P. Schuster (eds.), From Sets and Types to To-
pology and Analysis: Towards Practicable Foundations for Con-
structive Mathematics, Oxford: Oxford University Press, 245–267.

Ishihara, H. and P. Schuster

2004 Compactness under Constructive Scrutiny, MLQ Math. Log.
Q., 50, 540–550.

Ishihara, H. and S. Yoshida

2002 A Constructive Look at the Completeness of D(R), J. Symbolic
Logic, 67, 1511–1519.



58 Hajime Ishihara

Julian, W. and F. Richman

1984 A Uniformly Continuous Function on [0, 1] that is Everywhere
Different from its Infimum, Pacific J. Math., 111, 333–340.

Kohlenbach, U.

2004 Proof Interpretations and the Computational Content of Proofs,
preprint.

Krol’, M. D.

1978 A Topological Model for Intuitionistic Analysis with Kripke’s
schema, Z. Math. Logik Grundlagen Math. 24, 427–436.

Kushner, B.

1984 Lectures on Constructive Mathematical Analysis, Amer. Math.
Soc., Providence.

Loeb, I.

2005 Equivalents of the (Weak) Fan Theorem, Ann. Pure Appl. Lo-
gic, 132, 51–66.

Luckhardt, H.

1977 Ueber das Markov-Prinzip II, Arch. Math. Logik Grundlagen-
forsch, 18, 147–157.

Mandelkern, M.

1983 Constructive Continuity, Mem. Amer. Math. Soc., 42 (277),
v+117pp.

1988 Limited Omniscience and the Bolzano-Weierstrass Principle,
Bull. London Math. Soc., 20, 319–320.

1988a Constructive Complete Finite Sets, Z. Math. Logik Grundla-
gen Math. 34, 97–103.

Mines, R., Richman, F. and W. Ruitenburg

1988 A Course in Constructive Algebra, New York: Springer-Verlag.

Richman, F.

1990 Intuitionism as Generalization, Philos. Math., 5, 124-128.

1999 Personal Communication, May.

S.G. Simpson

1999 Subsystems of Second Order Arithmetic, Berlin: Springer.



59

Spitters, B.

2002 Constructive and Intuitionistic Integration Theory and functio-
nal analysis, Ph.D. thesis, University of Nijmegen, Nijmegen.

Tanaka, K.

1992 Reverse Mathematics and Subsystems of Second-order Arith-
metic, Sugaku Expositions 5, 213–234.

Troelstra, A. S. and D. van Dalen

1988 Constructivism in Mathematics, two volumes, Amsterdam,
North-Holland.

Veldman, W.

2005 Brouwer’s Fan Theorem as an Axiom and as a Contrast to
Kleene’s Alternative, preprint.


