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Mathematical Practice and Naturalist
Epistemology: Structures with Potential for

Interaction
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Centre for Logic and Philosophy of Science,
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Abstract: In current philosophical research, there is a rather one-sided focus

on the foundations of proof. A full picture of mathematical practice should

however additionally involve considerations about various methodological as-

pects. A number of these is identified, from large-scale to small-scale ones.

After that, naturalism, a philosophical school concerned with scientific prac-

tice, is looked at, as far as the translations of its epistemic principles to mathe-

matics is concerned. Finally, we call for intensifying the interaction between

both dimensions of practice and epistemology.

Philosophia Scientiæ, 9 Cahier 2, 2005, 57–74.



1 Introduction

If it is one’s intention, as it is ours, to take mathematical practice
seriously, then all of its dimensions, or at least as many as reasonably
possible, should be attended to. In current philosophical research, how-
ever, there is a rather one-sided focus on the foundations of proof, i.e. the
prime result of mathematical endeavour. A full picture of mathematical
practice should however additionally involve considerations about vari-
ous methodological aspects presumably influencing this result. In section
2, which is rather descriptive in nature, a number of these aspects is iden-
tified, leading us from large-scale topics, such as standards of proof, to
small-scale ones, concerning the particular tools used by the individual,
working mathematician. Ample reference is made to specific cases. As
naturalism is a philosophical school from which real concern for scientific
practice should be expected, it seems instructive to have a deeper look
into translations of its principles in mathematical terms. Consequently,
in section 3, a tentative theoretical framework is established for interre-
lating various of its versions in terms of their epistemological concerns.
In the concluding section 4, we suggest to finally get the interaction
going between both dimensions of practice and epistemology. Globally,
we seek to contribute, however modestly, to the instauration of philo-
sophical mechanisms that lead all the way from mathematical practice
to philosophy and back, answering Hao Wang’s dramatic appeal, many
years ago:

Foundational studies in this [twentieth] century have been
very fruitful in several ways. [. . . ] On the whole, there re-
mains, however, the impression that foundational problems
are somewhat divorced from the main stream of mathematics
and the natural sciences. [. . . ] The principal source of de-
tachment [. . . ] implies a neglect of mathematics as a human
activity, [. . . ]. In a deeper sense, what is more basic is not the
concept of set but rather the existing body of mathematics.
[. . . ] Rightly or wrongly, one wishes for a type of founda-
tional studies which would have deeper and more beneficial
effects on pedagogy and research in mathematics and the
sciences. [Wang 1974, 242–243]



2 Structuring Mathematical Practice

We start our observation of mathematical practice at the most gen-
eral level: that of the entire mathematical community, the notion of
which has clearly been evolving over time (2.1). Subsequently, we move
down a level to consider the role of research traditions and projects (2.2).
Finally, the individual core business of mathematics is highlighted: con-
structing proof. In this section, which is rather descriptive in nature, we
are mainly concerned with raising questions about some standard views
of mathematics as practice. We advise the complementary lecture of
[Van Bendegem 1999] to this section.

2.1 Macro-level: The Community

The most dramatic shift in the large-scale history of mathematics
arguably took place in the seventeenth century. After a relatively tran-
quil transition period of several centuries, it marked the birth of modern
mathematics, with major advances in the fields of analytic and projective
geometry, calculus, combinatorial analysis, higher arithmetic, dynamics,
and symbolic logic [Bell 1992, ch.7]. Coinciding with these develop-
ments, a professionalization of the discipline took place. “The seven-
teenth century witnesses the beginnings of the demise of the amateur
mathematicians. Between 1645 and 1715, the role of the mathemat-
ical practitioner, a precursor of the professional mathematician, con-
solidated. [. . . ] By 1910, under the influence of the advances in pure
mathematics, mathematics had become a profession; the audience for
and beneficiaries of mathematical research and teaching were now the
mathematicians themselves” [Resnik 1992, 149 and 143]. Communica-
tion is the key word here. “Up to about 1550, mathematics was created
by individuals or small groups headed by one or two prominent lead-
ers. The results were communicated orally and occasionally written up
in texts – which, however, were manuscripts” [Kline 1990, 396]. But in
the seventeenth and eighteenth centuries, all over Europe, societies and
academies flourished. Due to their organizing meetings and publishing
bulletins, contacts among mathematicians, hitherto mainly restricted to
the exchange of letters, boosted.

From the nineteenth century onwards, another dimension was added:
that of internationalization. “Mathematics in national contexts share
educational experiences and, hence, research goals and agendas. As
mathematics moves beyond national boundaries, these goals and agen-
das become more universally held. The subject matter — the language



of mathematics — comes to unite mathematicians regardless of their na-
tional loyalties; the subject matter becomes supranational; it transcends
national boundaries altogether” [Parshall and Rice 2002, 10]. Steadily,
through international congresses and journals, the distinct local mathe-
matical discourses converged into a single or universal one. The reason
for the relative ease of this kind of integration in pure mathematics,
despite its highly abstract nature and the clear lack of joint empirical
testing, lies in the growing status of formal proof itself, as the medium
through which unambiguous communication is secured. In professional
and international science, the saveguards of trustworthiness are no longer
personal confidence or social status, but the following of procedures. In
mathematics, this methodological objectivity has come in the shape of
standards of rigour [Heintz 2000]; [Van Kerkhove 2004]. Compare also:
“Abstraction depends on realizing opportunities for producing, publish-
ing, and disseminating ideas in a specialized community of teachers and
students that extends over a number of continuous generations” [Restivo
1992, 171] (our emphasis).

Two brief conclusions. First, it seems that the ‘universal’ language,
thus the content, of mathematics might not have come out of the blue
after all, but (at least) partly got shaped by large-scale sociological devel-
opments. Second, the influence of these emerging ‘universal’ constraints
on local mathematical endeavour is evident. For if he is to be taken
seriously as a professional, the individual researcher will have no choice
but to apply the standards set by the international community. “Early
in the nineteenth century, to be considered a research mathematician, it
was enough that one had sufficient interest in the subject to write (but
not necessarily to publish) books, papers, or articles on the subject. By
the twentieth century, however, publication had become a sine qua non”
[Parshall and Rice 2002, 8n].

2.2 Meso-level: Traditions and Projects

The flight of the sciences, from the seventeenth century onwards, has
actually resulted in tens of thousands of professional mathematicians 1

active in dozens of specialties. As [Jaffe and Quinn 1993, 2] would have it,
“mathematics is [even] much more finely subdivided into subdisciplines
than physics”. Poincaré and Hilbert arguably having been the last of
generalists, no single scholar is any longer able to survey the whole field.
This means that we should be able to discern some intermediate level

1. To give an indication, the AMS currently has more than 30.000 members



where theoretical links can be established between the large-scale struc-
ture of the mathematical enterprise (2.1) and everyday practice (2.3).
One possible perspective is that of [Koetsier 1991], which extends (but
also refines and adjusts) the model proposed by [Lakatos 1976]. As it
is clear that young mathematicians do not just enter the immense field
of inquiry, but a particular segment of it, some additional structure is
needed on top of Lakatos’s (and Pólya’s) low-level heuristics of proving
and refuting. To this end, Koetsier identifies research traditions and
projects, where a tradition carries general assumptions about the ap-
propriate objects and methods of study, while a project sets a specific
agenda of goals and tools.

Since [Kuhn 1962], the mere mentioning of research traditions (or
paradigms, or the like) invariably raises questions about alleged revo-
lutions. The nice thing about Koetsier’s approach is that it remains
impartial on this issue, as progress as such is its crucial point, whether
revolutionary or not. [Gillies 1992] remains the standard collection of el-
ementary papers on this topic. In his book, Koetsier has himself worked
out some historical case-studies on (transitions between) research tradi-
tions, both from ancient Greek and modern mathematics. Alternative
proposals are available though, e.g. in terms of structures [Corry 1992]
or polarities [Duda 1997]. Examples of mathematical research projects
are the Erlanger Programme, seeking to organize the various geometries
in terms of groups of symmetries, the Langlands Programme, aiming
at “a synthesis of several important themes in classical number theory”
[Gelbart 1984, 178], Hilbert’s Programme, outlined in his famous speech
before the International Congress of Mathematicians [Hilbert 2002], Cat-
egory Theory, 2 and the Classification Theorem for the Finite Simple
Groups, initiated by Otto Hölder in 1892 and now spread over about
15.000 journal pages. [Solomon 2001] offers a recent and concise round-
up of this ample history. In the next subsection, we shall hint at some
of the methodological influences of research projects.

2.3 Micro-level: Constructing Proof

On the basic research level, individuals are committed to conjecturing
and, especially, to proving (or disproving) specific mathematical state-
ments. Traditionally, a mathematical proof is considered to be a written
down sequence of symbol strings, each one deduced from (one or more
of) the former, in application of one of a limited list of specific rules.

2. For discussion, see e.g., Philosophia Mathematica (III) 2(1), 1994.



The initial, non-deduced strings are called axioms, premises, or defini-
tions, while the final ones constitute ‘fresh’ theorems. This, however, is
a strictly formal notion of proof, viz. as an end result. In order to obtain
a more complete picture of what proof is really like, it seems desirable
to also attend to the informal process of its construction and evaluation
as well. It might be instructive, for one, to assess the role and impact
of the tools mathematicians use in order to find a proof, e.g. metaphors
and analogies [Van Bendegem 2000], pseudo-proofs, or computer graph-
ics and calculations. In the latter field, the proof of the Four-Colour
Theorem, by Appel and Haken, has triggered intensive philosophical con-
troverse. For a technically refined historical appraisal, see [Fritsch and
Fritsch 1998]. Other types of questions concern the development and
functioning of proof methods (infinite descent, proof by cases, visual rea-
soning, experiment [Van Bendegem 1998], induction, . . . ) as well as the
evaluation criteria for recognizing a ‘good’ proof (simplicity, elegance,
explanatory value, beauty, depth, importance, relevance, . . . ).

In the same respect, further points of interest are specialization and
division of labour. In an introductory article on Fermat’s Last Theo-
rem, at a moment Andrew Wiles had not yet released his manuscript
(ironically, a serious gap had been identified only the month before by
one of the referees, Nick Katz ), one reads, quite reassuringly: “Most ex-
perts continue to believe in the fundamental correctness of the proof”
[Cox 1994, 13]. It is interesting to know, however, that this particu-
lar ‘expertise’ was shared by a dozen of highly specialized scholars at
most, and this situation, it should be clear, leaves substantial room for
error. Moreover, nowadays ample use is being made of mathematical
techniques for cutting down the size of formal proofs, in order to im-
prove their readability. The dropping of steps is often justified in view
of splicing because of extensive argument elsewhere, and skipping be-
cause of intuitive obviousness [Davis 1972]. In the latter case, clearly, no
formal argument is available, as grasping the move is supposed to be an
irreducible feature of the particular community’s membership. A spe-
cial case of splicing is the division of labour, geographically as well as in
time, and either intentionally or not, when constructing proof. Proving
Fermat, for instance, has not been the work of just one man (although
he indeed did the substantial final efforts), but of several generations of
mathematicians spread all over the world and in a variety of subdisci-
plines. See [Cox 1994] for a brief and accessible overview. The same goes
for Goldbach’s Conjecture, as yet unsolved [Cheng Don and Cheng Biao
1992] and for the Finite Simple Groups Theorem (see 2.2).

Summing up, a lot of what has been touched upon here might be fun-



damentally at odds with what is traditionally required of a proof, namely
that “there must be final contact which lights up the whole thing”, and
that “only a man can establish this contact by taking in the whole pro-
cess that makes up the calculation or the proof” [Wang 1974, 230]. The
upshot of the present discussion could then sound thus: “As a definition
of the word ‘mathematics’, perhaps the proof is indeed dead, or dying.
In which case, I would proclaim: Long live the proof as an important
part of a broad spread of mathematical activity” [Devlin 1993].

3 Structuring Naturalist Epistemology

We begin the markedly philosophical section of this paper, in 3.1, by
giving a general assessment of naturalism, its main variants, and some
objections directed against it. On the basis of that, we then devote
ourselves, in 3.2, to the specific case of naturalism as a philosophy of
mathematics. For the latter, we have in part drawn on [Van Kerkhove
2002], where further details and references can be found.

3.1 Internalism and Externalism

Naturalism is most widely known as the school of artistic expres-
sion entertaining a fatalistic conception of existence, and consequently
concerning itself with depicting ‘harsh’ social reality. The encompass-
ing metaphysical doctrine, which influenced by the ascent of (human)
science reached the height of its popularity in the nineteenth century,
states that all things and events, particularly human affairs, are to be
understood in terms of natural causes and effects. The consequences
for epistemology were drawn under the impulse of W.V.O. Quine and
T.S. Kuhn in the mid twentieth century. They amount to the empirical
nature of the question as to how, if at all, genuine knowledge is (to be)
arrived at. “Questions about how we actually arrive at our beliefs are
thus relevant to questions about how we ought to arrive at our beliefs.
Descriptive questions about belief acquisition have an important bear-
ing on normative questions about belief acquisition” [Kornblith 1997, 3].
As, according to this school, scientific epistemology is rooted in scien-
tific practice, consequently, it is not up to a priori philosophy, but to
science itself to determine what its object (‘reality’) is like and how it
should best be approached. This has brought about nothing short of a
revolution in the modern agendas of philosophy of science:



The new naturalisms [. . . ] shift epistemology away from ide-
alized abstraction to establish connections with epistemic
practice that could enable theories of knowledge to engage
constructively and critically with everyday cognitive activ-
ities. Neither committed to analyzing what ideal knowers
ought to do nor constrained to devoting their best efforts
in silencing the sceptic, naturalists assume that knowledge
is possible and seek to understand its real-world (natural)
conditions. They abandon any quest for a priori, necessary
and sufficient conditions for knowledge in general, to examine
how epistemic agents actually produce knowledge, variously,
within the scope and limits of human cognitive powers. [Code
1996, 1]

The epistemological naturalist is challenged to cope with two promi-
nent ambiguities without taking recourse to a form of monism and/or
reductionism. One is the age-old problem of justifying the is-ought or
fact-value derivation, widely known and referred to as the naturalistic
fallacy, the original formulation of which is generally attributed to the
empiricist David Hume. The other is that of establishing methodological
criteria in the face of the non-monolitic character of modern science, an
issue embedded in that of the emergence, in society at large, of numer-
ous independent and apparently incommensurable spheres of interest,
resulting in what is presently called our postmodern condition.

In order to be able to distinguish more clearly between some dif-
fering stances, within naturalism, towards these central problems, we
shall exploit an epistemological antagonism that traditionally hinges
on the justificatory privileges of the individual, and apply it here, in
a metascientific context, to that of the individual discipline: that be-
tween internalism and externalism. In this way, full blooded internalist
epistemological naturalism can be defined as proclaiming a discipline’s
methodological independence over any external influences, philosophical
or scientific. It has a strong objectivist gist, severely contrasting the
contexts of discovery and justification, and discarding the former while
claiming exclusivity over the latter. The complementary task left to
philosophy of science is the providing with “a pleasing gloss on the his-
tory and discovery of sciences. But we should not expect it to provide
today’s scientists with any useful guidance about how to go about their
work or about what they are likely to find” [Weinberg 1993, 133]. Adding
an externalist dimension is then acknowledging science as essentially a
human enterprise, which should be open to examination of its practices,
thereby using the specific methodological tools developed to that end:



those of history, sociology, or psychology.

The movement of ‘naturalized epistemology’ has mainly been identi-
fied with Quine’s condemnation of a priori first philosophy as it had been
reigning (the philosophy of) science since Descartes. However, Quine’s
theses in this respect neither allow for an unequivocal reading, espe-
cially with regard to descriptive or prescriptive tendencies, nor exhaust
the possible interpretations of the naturalist principle. Despite the in-
stauration of epistemology as a branch of psychology, it is only fair to say
that Quine’s holism retains a traditional reductionist flavor, in holding
that reliable scientific knowledge is best grasped in a concentric model
the quasi-untouchable hard core of which is formed by the exact sciences,
mathematics and logic in front.

Hence the importance of acknowledging as naturalist also another
current sweeping through postwar philosophy of science, viz. in the
wake of [Kuhn 1962]. In this inspiration, the perfectibilist picture of
science associated with logical positivism, viz. as a unitary and linear
endeavour, as well as strictly normative top-down accounts, decreed by
‘unworldly’ armchair philosophers, got heavily challenged. Instead all
sorts of perspectives on actual science, ‘as it is done’, were promoted,
on the common assumption that first comes practice, and only then
there is proper material for reflection. According to radical versions of
the externalist tendency, as in the internalist case, philosophical labour
is considered vacuous. The result is now a kind of relativist account,
where things are as they happen to be (though they could have been
different), and all left to do is to put these facts on record. There is thus
no proper function for regulative principles of any sort.

Let us now turn back to the ambiguities introduced above. Hume’s
problem of the difference in character, hence impossible transition, be-
tween description and prescription is solved, by exclusive internalists and
externalists alike, simply by denying room to any normative dimension
whatsoever. Philosophy is not welcomed here, as it is thought of as irrel-
evant at best, but more likely far worse than that: confusing, misguided,
thus harmful. Only moderate naturalists seem prepared to bite the bullet
on this point, allowing philosophers a backward mediating role between
science studies and its subjects, viz. opening up the metascientific ma-
terial for them. They are convinced that “evaluation and description are
interwoven and interdependent” [Putnam 2002, 3], and their strategies
of coping with the naturalistic fallacy, both more delicate and vulnerable
than absolutist ones, involve calling into question the genuine character
of the dichotomy to begin with. We shall implicitly comment on the
second problem, that of disciplinary fragmentation, in 3.2, from within



the particular context of mathematics.

3.2 Faces of Mathematical Naturalism

In view of the intra-naturalistic distinction drawn in 3.1, it has be-
come clear that we roughly consider internalism as a Quinean legacy, and
externalism as a Kuhnian one. We are now in a comfortable position to
have a brief look at some particular naturalist accounts of mathematics
along the lines of this distinction, the severeness of which is intended to
have but analytical purposes.

Quine famously argued “that even mathematical principles, which by
most accounts are just as unfalsifiable and devoid of empirical content as
the law of inertia, share in the empirical content of systems of hypothe-
ses containing them” [Resnik 1998, 229]. But despite tensions in his
framework, in reality, Quine was unprepared to abandon logic and the
mathematical foundations reducible to it. It was in view of these ten-
sions, resulting from Quine’s “convert[ing] philosophical questions into
scientific ones” [Maddy 1997, 177], that Penelope Maddy developed a
radicalized version of naturalism, to be catalogued here under the head-
ing ‘internalism’: “Mathematical methodology is properly assessed and
evaluated, defended or criticized, on mathematical, not philosophical (or
any other extra-mathematical) grounds” [Maddy 1998, 164]. As the lat-
ter constraints include natural science, there is even no room here for
criteria with a bearing on the applicability or usability of pure mathe-
matics that is being developed. Despite all this, Maddy does not aban-
don the foundational idea, and thus, as a complement of the ‘voidness’
of epistemology, she also defends the embodiment of actual foundational
consensus in formal, viz. set-theoretical, terms [Maddy 1997], thus sim-
ply equating the naturalist ‘ought’ with ‘is’.

Other authors have stayed more closely to the original Quinean ideas.
Michael Resnik mediates somewhat between Maddy and Quine, holding
that “scientists working in a given context assume that they may take
large blocks of theory for granted. [. . . ] By appealing to this practice we
may roughly rank the sciences in terms of their scopes and methodologies
as more or less global [. . . ]. Mathematics is our most global theory as it is
presupposed by physics, which in turn is presupposed by chemistry, etc. 3

[. . . ] Corresponding to this rough division of the sciences has developed
a division of labour: mathematicians normally do not meddle in physics
nor physicists in mathematics, [. . . ]” [Resnik 1998, 238]. Compared to

3. I.e., Quine’s reductionism in disguise, referred to in 3.1.



the inherent but elusive holism of both Quine and Resnik, Nicolas D.
Goodman has opted for a more progressive position, in putting mathe-
matics unambiguously on a par with the other natural, viz. a posteriori,
sciences: “We should try to show that mathematics is as well-founded as
the most secure parts of physics, but not that it is better founded than
physics” [Goodman 1990, 185]. He gives the example of “[o]ur confidence
in the reliability results of computations done by computer [which] rests
on our confidence in the physical principles underlying the design of the
computer. It is very odd to say that the results of those computations
are known a priori” [op.cit., 189-90]. From here, foundations can be
considered turning (at least in some sense) ‘relative’. “Most classical
mathematicians view logic as a theoretically neutral framework. [. . . ]
In the last few years, however, even this consensus has shown signs of
breaking down as mathematicians have come to see that the choice of a
logical framework is simply another part of theory construction” [op.cit.,
185].

Turning from internalists to externalists, Kuhn, who discerned in
the history of science a pattern of successive normal periods, with rev-
olutionary ones engendering paradigm shifts in between, was however
inclined (just like Quine) to grant mathematics an exceptional status,
and to see its history as a series of cumulative results, with only tem-
porary disagreement in between. It was on this point, among others,
that Imre Lakatos departed from Kuhn, holding that mathematics is a
science like all the others after all. As a result, mathematically, Kuhn’s
legacy can be rightfully renamed Lakatos’s, for frankly tranferring the
general idea common to Quine and Kuhn, viz. the fundamental revis-
ability (and historicity) of science, to mathematics. In the decades since,
[Lakatos 1976] has been the source of inspiration for a wide variety of
approaches granted here the label ‘externalist’. In concreto, this means
that constraints can be laid upon mathematics, e.g., that it should be
succesfully applicable elsewhere, or that it should not contradict oth-
erwise accepted and empirically verified results. Just above, we have
pointed to a (varying) sensitivity within the internalist tradition on this
point, hence the gradual conception of the dichotomy. It also means
that all of the spatio-temporal circumstances that could have a bearing
on the investigative practice of the mathematician, thus contributing to
setting the academic agenda in one way or another, are considered as
potentially relevant. This dimension, viz. the possible importance of
historical, sociological and psychological aspects, does constitute a main
point of difference with Quinean approaches. What gets added here is a
pragmatical concern with the context of (philosophical) problems, with



their embeddedness in a larger setting, e.g. of human relations, rather
than just with their internal or formal dynamics.

Without claiming exhaustiveness, attempts at this type of ‘humanis-
tic’ theories of mathematics, usually coming with a strong socio-historical
import, have been undertaken from within

– neofunctionalism, reconstructing the development of the specific
epistemic structure of mathematics, viz. towards rigourous proof
as a symbolic ‘generalized’ communication means [Heintz 2000],
[Van Kerkhove 2004];

– semiotics, analyzing mathematics as an essentially written – not
spoken – system of man made, interpreted, exchanged and adjusted
signs [Rotman 2000], [Otte 1999];

– ethnomethodology, urging an acknowledgement of the (multicul-
tural) diversity of mathematical expression, thereby widening the
history of mathematics from a predominantly western elitist and
academic one to one processing the daily and local social founda-
tions of mathematical precision [Livingston 1986], [Ascher 1998],
[Ascher 2002];

– cognitive science, focusing on elementary operations, trying to es-
tablish whether (these) mathematical capacities are innate or rather
learnt, and whether or not mathematics is an exclusively human
affair [Dehaene 1998], [Butterworth 2000];

– strong sociology, the externalist counterpart of Maddy-ism, where
‘ought’ is equally anathema, and what thus remains are various
actual and potential mathematical practices, without a possibility
of finding any common regulative principles or foundation [Bloor
1991].

4 On the Interaction between Mathematical

Practice and Theory

In this final section, we give a brief assessment of the philosophical
traditions distinguished in 3.2, and hint at their benificiary reconcilia-
tion.

On the whole, the externalist approaches touched upon above are typ-
ified by a lack of mutual coherence and epistemological depth. For sure,
Lakatos’s work is a common and even explicit source of inspiration, but
epistemologically, the ground laid by him has only barely been cultivated.
We are apparently still in the era of letting a thousand flowers bloom, as



there is an increasing supply of daring deconstructions and analyses of
actual mathematical knowledge, whereas meticulous theoretical recon-
structions of the resulting fragments seem to be largely lacking. 4 We
contend that this is a transitional circumstance, that will be remedied
by consecrating persistent effort to the cause. As the phenomenologi-
cal material presented in section 2 has shown, mathematics actually is
much richer and varied than, thus differs thoroughly from, the idealized
accounts of it by foundationalists. Consequently, internalists are invited
to no longer simply brush aside externalist considerations, and strive to
reverse their moderate epistemological breadth.

As suggested above, in 3.1, the ‘family resemblance’ between internal-
ists and externalists can indeed be recast in Hans Reichenbach’s terms of
epistemological focus: while the interest of the former is rather limited
to the markedly formal, individual and normative context of justifica-
tion, the latter are busy developing various descriptive perspectives on
the largely informal and social context of discovery. This artificial dis-
tinction has been wrongfully objectified, in mathematics as in general,
with dramatic consequences. Despite the implicit recognition that a
formal proof “does not dispose of the creative element in mathematics,
which [. . . ] belongs to a domain in which no very general rules can be
given; experiment, analogy, and constructive intuition play their part
here” [Courant and Robbins 1996, 15], only rather isolated attempts at
an exploration of mathematical discovery have been undertaken, espe-
cially by George Pólya (see, e.g., [Polya 1973]). As this domain seems
to have been largely neglected in foundational studies, efforts to better
understand the ways of cognition are up to an urgent revaluation. Hand
in hand with it go questions about the proper function of foundations as
instruments for practical use, i.e. the output or feedback component to
the philosophical machinery called for by Wang (see section 1). 5

But then, conversely, it should be equally clear that to any ‘external-
ist’ unwilling to sink into scepticist quicksand, sound formal foundations
are of vital importance, even when accessible only by descriptive means.
“Just as in science, the factors that determine which areas of pure mathe-
matics are of interest seem to be of an essentially pragmatic nature. In
fact, the pragmatic factors often come indirectly to mathematics through
science. [. . . ] But again, as in science, once pragmatics fixes an area, it
makes sense to speak of non-pragmatic epistemological principles. More

4. We owe Jaakko Hintikka and José Ferreiros here, for their remarks in this
connection at the occasion of our lecture at PILM2002.

5. We are grateful to Lawrence Stout for pointing this out in his talk at the same
conference.



specifically, once an area is fixed, mathematicians seek to develop, in
the loosely specified area, formal theories that have consistent and man-
ageable foundations, [. . . ]” [Peressini 1999, 263]. In effect, some ‘social
constructivist’ exercises have already surfaced tentatively, e.g. [Koetsier
1991] or [Ernest 1998], but the scope of their methodologies has been
widely called into question. If it is indeed the case that similar efforts
have still a long way to go when it comes to the devising of proper foun-
dational systems, it seems only natural to suggest that at least there is
a great deal to learn from more internalist or foundationalist oriented
ones.
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