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Math. & Sci. hum., (49e année, n◦ 195, 2011(3), p. 55–71)

THE REPRESENTATION CONE OF AN INTERVAL ORDER1

Jean-Paul DOIGNON2, Christophe PAUWELS3

résumé – Le cône des représentations d’un ordre d’intervalles.
Un ordre d’intervalles est donné sur un ensemble fini d’éléments. Définies de manière appropriée,
ses représentations numériques forment un polyèdre convexe. Nos résultats décrivent la structure
géométrique de ce polyèdre. Les facettes correspondent à des objets de quatre types : les éléments
minimaux, les éléments contractibles ainsi que les nez et les creux de l’ordre d’intervalles (ces
deux dernières notions sont inspirées de Doignon et Falmagne [1997]). Le polyèdre n’a qu’un seul
sommet, qui est la représentation minimale de l’ordre d’intervalles (au sens de Doignon [1988a] ;
plusieurs nouvelles propriétés sont établies ici). Les représentations forment donc un cône convexe.
Nous caractérisons les rayons extrêmes de ce cône. L’unicité du sommet est un résultat surprenant,
car Balof, Doignon et Fiorini [2012] ont obtenu, pour le polyèdre des représentations d’un semiordre,
de nombreux exemples à sommets multiples.

mots clés – Ordre d’intervalles, Polyèdre convexe, Représentation d’un ordre d’intervalles

summary – A fixed, interval order is considered on a finite set of elements. When appro-
priately defined, its representations form a convex polyhedron. Our results describe the geometric
structure of the polyhedron. The facets are in a one-to-one correspondence with the objects of one
of four types: the minimal elements, the contractible elements as well as the noses and the hollows
of the interval order (the latter notions are inferred from Doignon and Falmagne [1997]). The
polyhedron has only one vertex, which is the minimal representation (in the meaning of Doignon
[1988a]; new properties are established here). All representations thus form a convex cone. We
characterize the extreme rays of this cone. The uniqueness of the vertex came as a surprise to us be-
cause Balof, Doignon and Fiorini [2012] obtained, for the polyhedron formed by all representations
of a semiorder, numerous examples with multiple vertices.

keywords – Convex polyhedron, Interval order, Interval order representation
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1. INTRODUCTION

Interval orders are mathematical structures used to encode binary preferences on
a set of elements4 (see for instance [Caspard, Leclerc, Monjardet, 2007; Fishburn,
1985; or Pirlot, Vincke, 1997]). Each element being represented by an interval on
the oriented real line, the element i is prefered to the element j exactly if the interval
representing i lies completely before the interval representing j. Here, we will assume
that the set X of elements is finite, with cardinality n. Without loss of generality,
we may assume that all representing intervals lie in R+ (the set of nonnegative real
numbers). Thus, a relation P on X is an interval order if there exist two mappings

f : X → R+ : i 7→ xi,
ρ : X → R+ : i 7→ ri

such that, for all i, j in X,

i P j ⇐⇒ xi + ri < xj. (1)

In case the mapping ρ can be made constant, say ρ(i) = r for all i in X, the relation
P is a semiorder.

It will be convenient to take X = {1, 2, . . . , n} and to set f(i) = xi and f(i) +
ρ(i) = x′

i. Instead of using f and ρ, we work with the 2n-tuple

(x1, x′

1, x2, x′

2, . . . , xn, x′

n)

that we (abusively but conveniently) denote by the short notation x. Equation (1)
is then restated in terms of x as

i P j ⇐⇒ x′

i < xj,

or, using P to denote the complementary relation of P ,
{

i P j ⇒ x′

i < xj,
i P j ⇒ x′

i ≥ xj.
(2)

Notice that the set of all 2n-tuples x satisfying Equation (2) together with 0 ≤ xi ≤
x′

i, for i ∈ X, forms a convex subset of R
2n which is in general neither closed nor

open (we require xi ≤ x′

i because of ρ ≥ 0). On the other hand, the finiteness of X
implies, for any fixed 2n-tuple x satisfying Equation (2), the existence of a strictly
positive number ε such that

{

i P j ⇒ x′

i + ε ≤ xj,
i P j ⇒ x′

i ≥ xj.

In turn, given any interval order P on X and any strictly positive real number ε,
there exists (again by the finiteness of X) a 2n-tuple x satisfying, for all i, j in X,















0 ≤ xi,
xi ≤ x′

i,
x′

i + ε ≤ xj, when i P j,
x′

i ≥ xj, when i P j.

(3)

4Readers who like to see explicit examples are directed to the last section where the concepts
and results of the paper are illustrated on two specific cases.
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A 2n-tuple x = (x1, x′

1, x2, x′

2, . . . , xn, x′

n) satisfying Equation (3) is an ε-represen-
tation (of the interval order P on X). Pirlot [1990] raises the general problem of
investigating the collection of all ε-representations, while providing motivation (to
be precise [Pirlot, 1990] is about semiorders only). Notice that the set of all ε-
representations forms a convex polyhedron in R

2n; we denote this polyhedron as
RP

ε . (We usually follow Schrijver [1986] or Ziegler [1995] for the terminology on
polyhedra). Moreover, it is easily checked that the following holds for ε, ε′ in R

∗

+

(the set of strictly positive real numbers):

RP
ε′ =

ε′

ε
RP

ε . (4)

As a consequence of Equation (4), all polyhedra RP
ε have (essentially) the same

structure. We call them collectively the representation polyhedron of the given
interval order.

The present paper provides information on the geometric structure of the repre-
sentation polyhedron of an interval order. First, it describes the facets by relating
them to the ‘noses’ and ‘hollows’ of the interval order (these notions, implicit in
Doignon and Falmagne [1997], are defined in the next section) together with el-
ements of two special kinds, the minimal elements and the ‘contractible’ elements
(with respect to the interval order, see Theorem 4 below). Then it shows that there is
exactly one vertex (Theorem 5), which is the ‘minimal representation’ of the interval
order in the sense of Doignon [1988a] (for this concept, see also Section 2.2.). Thus
the polyhedron is a cone, the representation cone of the interval order P . Finally,
our paper establishes a description of the extreme rays of the cone (Theorem 6).

It is worth mentioning here that a similar study was done by Balof, Doignon and
Fiorini [2011] for the ‘constant-length representations’ of a semiorder P on X which,
in our previous notation, are n+1-tuples (x1, x2, . . . , xn, r). The geometric findings
in the case of semiorders are in some aspects strikingly different from the present
ones; for instance the representation polyhedron can have numerous vertices.

Both Balof, Doignon and Fiorini [2011] and the present paper consider only the
basic structures of interval orders and semiorders. We do not know of any inves-
tigation of similar questions for more general structures. For instance, in multiple
interval orders or semiorders the preference relation P decomposes into several de-
grees that correspond to several thresholds attached to any item (for the concept, see
for instance [Doignon, 1988a; Doignon, Monjardet, Roubens, Vincke, 1986; Doignon,
1987; Doignon, 1988b]). Other general structures occur when intervals are replaced
with geometric figures, for instance trapezes with bases on two given, parallel lines.
Fishburn [1997] reviews such extensions of semiorders and interval orders, as well
as the related “tolerance orders”. In all cases, as far as we know, even the concept
of a minimal representation was not investigated. It would also be interesting to
extend our study to representations of semiorders and interval orders (and their
generalizations) on an infinite set of elements.
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2. INTERVAL ORDERS

2.1. noses and hollows

Combinatorial characterizations of interval orders and of semiorders are often attri-
buted to Fishburn [1985] and Scott and Suppes [1958], respectively. However, for
interval orders, Mirkin [1972] was a precursor with a similar characterization, and
Ducamp, Falmagne [1969] establishes Fishburn’s characterization in a more general
setting; for semiorders, a characterization is formulated in another notation in Luce
[1956].

To formulate them as compact formulas, we use P−1 to denote the converse
relation of P , and P to denote the complementary relation.

theorem 1. [Fishburn, 1985; Scott, Suppes [1958] A relation P on X is an interval

order if and only if P is irreflexive and satisfies P P
−1

P ⊆ P . It is a semiorder if

and only if it satisfies moreover P
−1

P P ⊆ P .

For the rest of the paper, we consider an interval order P on the finite set
X. The ‘noses’ and ‘hollows’ of P , which we now define, are used in the next
section. These terms originally appeared in two papers of Pirlot [1990, 1991] on
(reduced) semiorders. The similar notions for interval orders are implicit in Doignon
and Falmagne [1997] (they capture the pairs of elements forming respectively the
‘inner’ and ‘outer fringes’ of P ). We first state the definition, and then provide
a characterization easily derived from Theorem 1 (compare with Proposition 7 in
Doignon and Falmagne [1997]).

definition 1. A nose of the interval order P is a pair (a, b) in P such that P \{(a, b)}
is again an interval order. A hollow of P is a pair (c, d) in P such that P ∪ {(c, d)}
is again an interval order.

theorem 2. The noses of the interval order P form the set P \ P P
−1

P . The
hollows form the set P \

(

I ∪ P P−1P
)

, where I is the identity relation on X.

2.2. the minimal representation

Let now ε be a fixed real number with ε > 0. As defined in our introduction, an ε-
representation of the interval order P is a 2n-tuple x = (x1, x′

1, x2, x′

2, . . . , xn, x′

n)
such that5, for i, j in X,







−xi ≤ 0,
x′

i − xj ≤ −ε, when i P j,
xj − x′

i ≤ 0, when i P j.
(5)

Notice that all inequalities xi ≤ x′

i belong to the third form, in view of the irreflexiv-
ity of P . The value ε being fixed, we will from now on abbreviate ‘ε-representation’
into ‘representation’. Among all representations, there is one that is minimal in a
very strong sense—we sometimes say that it is ubiquitously minimal. Its existence

5Obviously, the two “when” in Equation (5) can be safely replaced with two “if and only if”.
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was established by Doignon [1988a] (as a variant of a similar finding on semiorders,
a very nice and much harder result of Pirlot [1990]; an alternative proof for Pirlot’s
result is in Doignon [1988a]). For completeness and also because we need the setting
in order to establish further results, we sketch a proof similar to the one of Doignon
[1988a].

theorem 3. [Doignon, 1988a] There exists a representation x∗ of the interval order
P on X such that for any representation x of P the following holds for all i in X:

x∗

i ≤ xi, x′ ∗

i ≤ x′

i.

definition 2. The representation x∗ mentioned in Theorem 3 is called the minimal
representation of the interval order P .

The proof in Doignon [1988a] relies on graph potentials, as we will know briefly
explain while building the appropriate graph. First, we make a disjoint copy X ′

of X, formed by new elements i′, for i in X. The components of any 2n-tuple x
encoding a representation can be seen as being indexed by X + X ′ if we identify x′

i

with xi′ . In this way, a representation x has components xs, with s ∈ X + X ′ (thus
xs denotes either an initial or a final extremity of an interval [xi, x

′

i] for some i in
X).

Define a (weighted, directed) graph G on X + X ′ with an edge

{

(j, i′) of weight − ε when i P j,
(i′, j) of weight 0 when i P j.

A potential for the graph G is a function p : X + X ′ → R+ such that

{

p(i′) − p(j) ≤ −ε, when i P j,
p(j) − p(i′) ≤ 0, when i P j.

The representations of P are in a natural one-to-one correspondence with the
potentials of G (in the above notations, the correspondence is captured by the
equations xi = p(i) and x′

i = p(i′), or shortly xs = p(s)).

As is well-known, the graph G admits a potential if and only if any of its directed
circuits has nonnegative weight (cf. Section 8.2 in Schrijver [2003]). Our graph has

no circuit because P is irreflexive and P P
−1

P ⊆ P (Theorem 1). Moreover a
minimal potential p∗ exists, that is, a potential p∗ such that for any potential p we
have p∗(s) ≤ p(s) for all s in X + X ′. This is easily proved with p∗(s) equal to the
maximum weight of a directed path ending at the vertex s (we use the convention
that if no such path exists, p∗(s) = 0). In our case, the minimal potential corresponds
to the minimal representation. This establishes Theorem 3.

A description of p∗, and thus x∗, is a consequence of the previous paragraph.
For i in X, we have x∗

i equal to ε times the largest number h such that for some k
in X there holds k (P−1P )h i (if the latter holds for no element k and no positive
natural number h, then x∗

i = 0; also, remember j P j). Similarly, x′ ∗

i equals ε times
the largest number h such that k (P P−1)h i for some k in X.It is also easily checked
that the values taken by x∗ form an interval in the chain {k ε k ∈ N}.
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Further results on the minimal representation are given in the next subsection
as well as in Section 4.

Remark 1. Let us rewrite the system (5) as A x ≤ b, where the matrix A has rows
indexed by X + P + P and columns by X + X ′. Thus A results from putting the
identity matrix atop the incidence matrix of our (directed) graph G. By a classical
result (Theorem 13.9 in Schrijver [2003]), the matrix A is totally unimodular. A
nice property of the polyhedron RP

ε follows: the coordinates of its vertices and the
components of well-chosen vectors generating its extreme rays are integral multiples
of ε. As a matter of fact, we will prove much more in the sequel (see Theorems 5
and 6).

2.3. the left, right and global traces

The minimal representation x∗ induces a (reflexive) weak order 4 on X + X ′: for s,
t in X + X ′, we set6

s 4 t when x∗

s ≤ x∗

t .

The asymmetric part of the weak order 4 is denoted as ≺ (we also use ≻ with its
usual meaning). A direct description of 4 is easily obtained.

proposition 1. The weak order 4 satisfies for all i, j in X:

(a) i 4 j ⇐⇒ (k P i ⇒ k P j, for all k in X);

(b) i 4 j′ ⇐⇒ i P
−1

j;
(c) i′ 4 j ⇐⇒ i P P−1P j does not hold;
(d) i′ 4 j′ ⇐⇒ (j P k ⇒ i P k, for all k in X).

Proof. All four cases being simple we provide details only in Case (c), working with
the contraposition. If i′ ≻ j, we have x′ ∗

i > x∗

j . Because the value x′ ∗

i of the minimal
representation cannot be decreased to x∗

j , there must exist some k in X such that
x′ ∗

i ≥ x∗

k > x∗

j . Then because x∗

k cannot be decreased to x∗

j , there exists some l in X

such that x∗

k ≥ x′ ∗

l + ε > x∗

j . There result i P k, l P k and l P j, hence i P P−1P j.

To prove the converse, we assume i P P−1P j. There thus exist k, l in X such that
i P k, k P−1 l and l P j, from which follows

x′ ∗

i ≥ x∗

k ≥ x′ ∗

l + ε > x′ ∗

l ≥ x∗

j

and thus x′ ∗

i > x∗

j .

Proposition 1 is summarized in the following table7, where P◦ is the relation from

6In geometric language: both of s and t correspond to extremities of intervals of the form
[x∗

i
, x′ ∗

i
] (an initial extremity if s ∈ X, a final one if s ∈ X ′), and s 4 t holds if and only if the

extremity corresponding to s is less or equal to the extremity corresponding to t.
7Comparing with Table 1 in Doignon, Ducamp, Falmagne [1984], we see that 4 is the largest

quasi order on X + X ′ having P−1
◦ as its intersection with X × X ′. The construction of such a

quasi order for any given relation goes back to Bouchet [1971], see also Cogis [1982].
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X ′ to X with i′P◦j if and only if i P j:

4 X X ′

X P◦

−1 P ◦ P◦

−1

X ′ P ◦ P◦

−1 P ◦ P ◦ P◦

−1

(6)

Complementations (indicated by an overbar) are taken within the adequate set prod-
uct (in first row, X × X and X × X ′). The restrictions of 4 to respectively X and
X ′ (as in Cases (a) and (d) of Proposition 1) are called the left, resp. right traces
of P . Thus Tl and Tr are relations on respectively X and X ′ which are specified by
Tl = P−1P and Tr = P P−1. We call the relation 4 the global trace of P . All these
traces (or their asymmetric parts) are often used in the investigation of interval
orders (see for instance [Doignon, Ducamp, Falmagne, 1984] or [Fishburn, 1985]).
The next proposition offers another useful property of 4.

proposition 2. For s, t in X + X ′, the two following assertions are equivalent:

(i) s 4 t;

(ii) xs ≤ xt for some representation x.

Proof. (i) ⇒ (ii). With x∗ for the representation in (ii), the implication results from
the definition of 4.

(ii) ⇒ (i). After having contraposed, we need to prove that if s ≻ t then xs > xt

for any representation x. The present assumption amounts to x∗

s > x∗

t . We face four
possible cases according to the positions of s and t in either X or X ′. For instance,
consider the case s = i ∈ X and t = j ∈ X with thus x∗

i > x∗

j . By Proposition 1 (a),

there exists k in X such that k P i and k P j. For any representation x there follows
x′

k + ε ≤ xi and x′

k ≥ xj, hence also xi > xj. The three other cases are similarly
handled.

The next proposition is phrased in terms of the minimal representation x∗, but
it could have been formulated in terms of the weak order 4. Indeed, the second
condition in Equation (7) holds exactly if b is in the (equivalence) class of 4 which
follows the one of a′, while the second condition in Equation (8) holds exactly if c′

and d are in the same class.

proposition 3. For a, b, c, d in X we have:

(a, b) is a nose ⇐⇒ x′ ∗

a + ε = x∗

b , (7)

and
(c, d) is a hollow ⇐⇒ x′ ∗

c = x∗

d. (8)

Proof. If (a, b) is a nose, then a P b and so x′ ∗

a +ε ≤ x∗

b . Proceeding by contradiction,
assume x′ ∗

a + ε < x∗

b . By the ubiquitous minimality of x∗, there must exist some
k in X giving x′ ∗

a + ε < x′ ∗

k + ε ≤ x∗

b (because x∗

b cannot be decreased to x′ ∗

a + ε)
and then some l in X with x′ ∗

a < x∗

l ≤ x′ ∗

k (because x′ ∗

k cannot be decreased to x′ ∗

a ).
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We deduce a P l, k P l and k P b. This gives a P P
−1

P b, a contradiction in view
of Theorem 2. Conversely, if x′ ∗

a + ε = x∗

b , then a P b. Moreover, we cannot have

(a, b) ∈ P P
−1

P because otherwise a P k, k P
−1

l and l P b for some k, l in X and so

x′ ∗

a + ε ≤ x∗

k ≤ x′ ∗

l ≤ x′ ∗

l + ε ≤ x∗

b .

Hence (a, b) is a nose.

If (c, d) is a hollow, then c P d and so x′ ∗

c ≥ x∗

d. Moreover, by Theorem 2,
(c, d) /∈ P P−1P and so by the table in Equation (6) c′ 4 d, that is x′ ∗

c ≤ x∗

d. The
converse implication is similarly proved.

2.4. an auxiliary result

The following result will be used in the next section.

proposition 4. Given the interval order P on X and an element i in X, the
following three conditions are equivalent:

(i) x∗

i = x′ ∗

i in the minimal representation x∗;

(ii) there is some representation x such that xi = x′

i;

(iii) j P k ⇒ (j P i or i P k), for all j, k in X.

An element i satisfying the conditions in Proposition 4 is said to be contractible
for the interval order P .

Proof. (i) ⇒ (ii). Obvious.
(ii) ⇒ (iii). If some representation x of P satisfies xi = x′

i and moreover we have
j P k and j P i, then x′

j + ε ≤ xk and x′

j ≥ xi = x′

i. Therefore, x′

i + ε ≤ xk, and we
obtain i P k as desired.

(iii) ⇒ (i). Condition (iii) amounts to (i, i) /∈ P P−1P . By the table in Equa-
tion (6), the latter formula is equivalent to i′ 4 i, that is x′ ∗

i ≤ x∗

i . On the other
hand, x∗

i ≤ x′ ∗

i holds by the definition of a representation.

3. THE FACETS

For a given interval order P on X = {1, 2, . . . , n} and a fixed ε in R
∗

+, we describe
in this section the facets of the representation polyhedron RP

ε . Remember that RP
ε

is the polyhedron in R
2n defined by the inequalities in Equation (5).

proposition 5. The representation polyhedron RP
ε is of dimension 2n and contains

no line.

Proof. Let x be a representation of P satisfying xi > 0 for any i in X. Setting
yi = 2 xi and y′

i = 2 x′

i + ε/2, we get from Equation (5)














0 < yi,
yi + ε/2 ≤ y′

i,
y′

i + ε + ε/2 ≤ yj, when i P j,
y′

i ≥ yj + ε/2, when i P j.
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Thus y is a representation satisfying strictly all the inequalities defining RP
ε . Hence

RP
ε , having a nonempty interior, is of the same dimension as R

2n. The second as-
sertion follows directly from the fact that our representations only take nonnegative
values.

Because the polyhedron RP
ε is full-dimensional (Proposition 5), we know that

there is a unique, minimal system of linear inequalities describing RP
ε . The minimal

system consists of the facet-defining inequalities (see, e.g., [Schrijver, 1986; Ziegler,
1995]). Moreover, an inequality belonging to a system of linear inequalities defin-
ing RP

ε is facet-defining if and only if its deletion results in an increase of the set
of solutions. Consequently, a facet-defining inequality cannot be dominated by a
positive combination of other inequalities valid for RP

ε . To describe the facets of
the representation polyhedron RP

ε , we rely on the notions of noses and hollows (see
Definition 1).

theorem 4. The facet-defining inequalities for the representation polyhedron of the
interval order P are as follows:

0 ≤ xi, for all i in X which are minimal for P ;
xi ≤ x′

i, for all i in X which are contractible for P ;
x′

a + ε ≤ xb, for all noses (a, b) of P ;
x′

c ≥ xd, for all hollows (c, d) of P.

Proof. The facet-defining inequalities for RP
ε are for sure among the inequalities

given in Equation (5) to define representations, that is, points of RP
ε . We inspect

the four types of inequalities one after the other.

If the inequality 0 ≤ xi is facet-defining, there is a point x in RP
ε , in other words

a representation x, with xi = 0. So i must be a minimal element (no j such that
j P i can exist). Conversely, if i is a minimal element, in any representation x we
have xi ≤ x′

j for all j in X. Resetting xi to, say, −1, we get a 2n-tuple of real
numbers which satisfies all the inequalities in Equation (5) except for 0 ≤ xi. The
existence of such a 2n-tuple implies that the inequality 0 ≤ xi is facet-defining.

Next, assume that the inequality xi ≤ x′

i is facet-defining. If i were not con-
tractible, that is, if we had j P k, j P i and i P k for some j, k in X, then the
resulting inequalities x′

j + ε ≤ xk, xi ≤ x′

j and xk ≤ x′

i (all valid for RP
ε ) would

add up to give xi + ε ≤ x′

i. Thus the inequality xi ≤ x′

i would be dominated by
a positive combination of valid inequalities, contradicting the assumption that it is
facet-defining. Conversely, assume i is a contractible element, that is, there exists a
representation x with xi = x′

i. Let δ be a strictly positive number and consider the
two mappings

g : R → R : t 7→

{

t + δ if t > x′

i,

t otherwise,

and

h : R → R : t 7→

{

t + δ if t ≥ x′

i,

t otherwise.
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Then define a 2n-tuple y by















yi = xi + δ,
y′

i = x′

i,
yj = g(xj), ∀j ∈ X \ {i},
y′

j = h(x′

j), ∀j ∈ X \ {i}.

We leave to the reader to check that all inequalities required in Equation (5) for a
representation are satisfied by y except for xi ≤ x′

i. In view of the existence of such
a y, the inequality xi ≤ x′

i defines a facet of RP
ε .

The third inequality to investigate is x′

i + ε ≤ xj. If (i, j) is not a nose, then by

Theorem 2 either (i, j) /∈ P or (i, j) ∈ P P
−1

P . In the first case, x′

i ≥ xj for all x in
RP

ε and the inequality under investigation is not valid for RP
ε . In the second case,

there exist elements k and l such that i P k, k P
−1

l and l P j. This gives for any
point x in RP

ε

x′

i + ε ≤ xk ≤ x′

l ≤ x′

l + ε ≤ xj,

and so the inequality under investigation is a consequence of other inequalities valid
for RP

ε , so it cannot be facet-defining. Conversely, if (a, b) is a nose, then P \{(a, b)}
is an interval order. Take any representation of P \ {(a, b)}, say y. Then y satisfies
all the inequalities defining RP

ε except for x′

a + ε ≤ xb. Hence the latter inequality
defines a facet of RP

ε .

Finally, we consider the inequality x′

i ≥ xj. If (i, j) is not a hollow, either
(i, j) ∈ P or (i, j) ∈ I ∪P P−1P (we use Theorem 2). In the first case, x′

i + ε ≤ xj is
valid for RP

ε and thus the present inequality x′

i ≥ xj is not valid. In the second case,
i = j or there are elements k and l satisfying i P k, k P−1 l and l P j. The subcase
i = j corresponds to our second type of inequalities, so we may assume i 6= j here.
We then have

x′

i ≥ xk ≥ x′

l + ε ≥ x′

l ≥ xj.

Hence the inequality x′

i ≥ xj is a consequence of valid inequalities, so it cannot
define a facet. Conversely, if (c, d) is a hollow, then P ∪{(c, d)} is an interval order.
Any representation of P ∪{(c, d)} is a point in R

2n which satisfies all the inequalities
that define RP

ε except for x′

c + ε ≤ xd. Thus the latter inequality defines a facet of
RP

ε .

4. THE VERTEX

Let again P be an interval order on the finite set X of cardinality n, and ε a strictly
positive real number. From previous results, we now easily derive that the represen-
tation polyhedron RP

ε has a unique vertex. This vertex is the minimal representation
x∗ = (x∗

1, x′ ∗

1 , x∗

2, x′ ∗

2 , . . . , x∗

n, x′ ∗

n ) of P , which we defined in Subsection 2.2.

theorem 5. The representation polyhedron RP
ε of an interval order P has exactly

one vertex, formed by the minimal representation x∗ of P .

Proof. By its ubiquitous minimality, the minimal representation x∗ clearly forms a
vertex of RP

ε . Next we check that x∗ belongs to all the facets of RP
ε (this establishes
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that x∗ is the only vertex of RP
ε ). To this aim, we consider in turn each of the four

types of facet-defining inequalities listed in Theorem 4.

The inequality 0 ≤ xi is facet-defining if and only if i is an element which is
minimal for P . For such an element i we must have 0 = x∗

i , thus the inequality is
satisfied with equality by x∗.

The inequality xi ≤ x′

i defines a facet if and only if the element i satisfies, for all
j, k in X,

j P k ⇒ (j P i or i P k).

By Proposition 4, the latter condition implies x∗

i = x′ ∗

i .
The inequality x′

a + ε ≤ xb defines a facet exactly when (a, b) is a nose. On the
other hand, if (a, b) is a nose Proposition 3 states x′ ∗

a + ε = x∗

b .
Finally, if (c, d) is a hollow, we have by the same proposition x′ ∗

c = x∗

d. This
entails equality in the facet-defining inequality x′

c ≥ xd of the fourth and last type.

Remark 2. Theorem 5 has the following consequence. Given any representation x
of P , the minimal representation x∗ satisfies the two following properties, for all i,
j in X,

i P j ⇒ x∗

j − x′ ∗

i ≤ xj − x′

i

and

i P j ⇒ x′ ∗

i − x∗

j ≤ x′

i − xj.

To derive the first implication, notice that the linear form R
2n → R : x 7→ xj−x′

i−ε,
which is nonnegative on RP

ε , must take its minimum value on RP
ε at the vertex of

RP
ε . For the second implication, use similarly the form R

2n → R : x 7→ x′

i − xj. In
turn, the two last properties imply the uniqueness of the vertex. Another proof we
designed for Theorem 5 started by establishing the two properties.

5. THE EXTREME RAYS

The representation polyhedron RP
ε of an interval order P on X is a pointed, convex

cone: indeed, RP
ε has only one vertex (Theorem 5), and moreover it is contained

in R
2n
+ . We know that the vertex of RP

ε is the minimal representation x∗. In this
Section, the extreme rays of the representation cone RP

ε are characterized. As we will
easily see, any such ray is generated by a binary vector v = (v1, v′

1, v2, v′

2, . . . , vn, v′

n)
located at x∗ (we may write vi′ for v′

i). This fact has a direct interpretation for
the extreme rays of RP

ε . Any such ray corresponds to an ‘admissible’ subset Y of
X + X ′, and its points are generated from the minimal representation x∗ by fixing
the components of x∗ with indices outside Y , and increasing the components with
indices in Y by the same varying positive quantity. The next theorem provides a
characterization of the admissible subsets Y of X + X ′. It relies on a variant ⊑ of
the weak order 4 which we defined in Subsection 2.2.

For s, t in X + X ′, we set s ⊑ t when either x∗

s < x∗

t , or
(

x∗

s = x∗

t together
with s ∈ X or t ∈ X ′

)

. Accordingly, the relation ⊑ is a weak order contained in
the weak order 4—some of the classes of 4 are split into two classes in order to get
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the classes of ⊑. It can be combinatorially characterized as shown in the following
table, which uses the same conventions as those for the table in Equation (6).

⊑ X X ′

X P◦

−1 P ◦ P◦

−1

X ′ P ◦ P◦

−1 P ◦ \ P ◦ P ◦ P◦

−1

For the asymmetric part ⊏ of ⊑ and for s, t in X + X ′, we have s ⊏ t if and only if
x∗

s < x∗

t , or
(

x∗

s = x∗

t together with s ∈ X and t ∈ X ′
)

. This time, ≺ is a subset of
⊏.

proposition 6. For s, t in X + X ′, the two following conditions are equivalent:

(i) s ⊑ t;

(ii) xs < xt for some representation x.

Proof. (i) ⇒ (ii). Our assumption s ⊑ t implies x∗

s ≤ x∗

t . In case x∗

s < x∗

t the
representation x∗ makes (ii) true. In the remaining case, we have x∗

s = x∗

t together
with s ∈ X or t ∈ X ′. Assume first s = i for some i in X. In the 2n-tuple 2 x∗,
subtract ε from the component indexed by i. The result forms a representation (as
easily checked), with xs < xt. Second, assume t = j′ for some j in X. This time add
ε to the component indexed by j′ in 2 x∗. The result forms again a representation
with xs < xt.

(ii) ⇒ (i). Proceding by contraposition, we assume t ⊏ s. The latter implies
x∗

t ≤ x∗

s. In case x∗

t < x∗

s, Proposition 2 implies xt ≤ xs for any representation x as
desired. In the remaining case, x∗

t = x∗

s together with t = i and s = j′ for some i, j
in X. Then j P i, from which follows xt ≤ xs for any representation.

Here is the main result of this Section.

theorem 6. The extreme rays of the representation cone RP
ε of the interval order P

are the rays generated by the binary vectors v = (v1, v′

1, v2, v′

2, . . . , vn, v′

n) of R
2n,

located at the minimal representation x∗, which satisfy two properties:

1. if vs = 1 and s ⊏ t for some elements s, t of X + X ′, then vt = 1;

2. if the indices of the components of v equal to 1 form a subset S of the last class
of ⊑, then |S| = 1.

The proof is delayed after Propositions 7 and 8 are established. It will be con-
venient to translate the cone RP

ε in R
2n so that its vertex x∗ becomes the origin o

of R
2n. The resulting cone, denoted as

(

RP
ε

)

o
, is the set of solutions in R

2n of the
system







0 ≤ xi, for i ∈ X,
x′

i ≤ xj, for (i, j) ∈ P,
x′

i ≥ xj, for (i, j) ∈ P .
(9)

The special form of the latter system has a direct consequence for the extreme rays.
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proposition 7. Any extreme ray of the cone RP
ε is generated by a binary vector

located at the vertex x∗.

Proof. We work with the cone
(

RP
ε

)

o
, formed by all the solutions of Equation (9).

Given an extreme ray of
(

RP
ε

)

o
, we may assume it is generated by a vector v whose

nonzero components are all strictly larger than 1. Define a vector w by ws = 1 if
vs > 0, and ws = 0 otherwise, and then another vector u with u = v − w. It is
easily checked that both w and u are also solutions of Equation (9), thus vectors in
(

RP
ε

)

o
. Because v = u + w and v generates an extreme ray, there must exist some

positive real number λ such that v = λw, in other words v is a positive multiple of
a binary vector.

Remark 3. The conclusion of Proposition 7 remains valid for any cone defined in R
d

by 0 ≤ xi, for i = 1, 2, . . . , d, and any number of inequalities of the form xi ≤ xj,
where i, j ∈ {1, 2, . . . , d}. We suspect that the result is well known (it can be proved
in other ways, for instance in terms of the inequalities satisfied with equality by the
extreme ray).

proposition 8. For all s, t in X + X ′, we have s ⊏ t if and only if vs ≤ vt holds
for any vector v in the cone

(

RP
ε

)

o
.

Proof. Use Proposition 6: s ⊏ t if and only if any point of the representation cone
RP

ε satisfies the homogeneous inequality xs ≤ xt, and thus if and only if vs ≤ vt

holds for any vector v of
(

RP
ε

)

o
.

Proof. [Proof of Theorem 6] In view of Proposition 7, we need only show that a
binary vector v generates an extreme ray of RP

ε if and only if it satisfies both
Properties 1 and 2.

Assume that the binary vector v belongs to
(

RP
ε

)

o
. Then v satisfies Property 1,

because vs = 1 and s ⊏ t for some s, t in X + X ′ imply 1 ≤ vt by Proposition 8.
Next we show by contradiction that if v generates an extreme ray of

(

RP
ε

)

o
, then

v satisfies Property 2. Setting S = {s ∈ X + X ′ vs = 1}, we assume that S is
contained in the last class of ⊑ and also |S| ≥ 2. Clearly S ⊆ X ′. Take an element
k in S and form the vector u having uk = 1 and all other components set to zero.
Form also the vector w = v − u. Then u, w belong to

(

RP
ε

)

o
and v = u + w, with u

and w not proportional, contradicting the assumption that v generates an extreme
ray of RP

ε . This shows |S| = 1.

Conversely, let the binary vector v satisfy Properties 1 and 2 and set again
S = {s ∈ X + X ′ vs = 1}. To show that the ray generated by v is an extreme
ray of

(

RP
ε

)

o
, we first derive v ∈

(

RP
ε

)

o
from Property 1 and Equation (9). Second,

we assume v = u + w for some vectors u, w in
(

RP
ε

)

o
and prove that u and w are

proportional. Let s be in S. If vs = 0, then us = 0 = w0. If vs = 1, then for all t
in X + X ′ such that s ⊏ t we have vt = 1 (Property 1). Except if s is an element
of the last class of ⊑, we deduce us = ut and ws = wt (because, by Proposition 8,
us ≤ ut and ws ≤ wt). Consequently, if S is not included in the last class of ⊑, we
derive that the nonzero components of u are equal one to the other, that a similar
property holds for w and in fact that u and w are proportional vectors. On the
other hand, if S is a subset of the last class of ⊑, Property 2 implies |S| = 1. As a
trivial consequence, u and w are then also proportional vectors.
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6. TWO EXAMPLES

In this section, the main concepts and results of the paper are illustrated on two
examples. After having selected an interval order, we collected data by running
the software porta [Christof, Loebel, 2010] on the system of inequalities which
define representations (Equation (5)). Of course, we could have used the results
of the previous sections to derive by hand all the information required on the two
examples.

6.1. example 1

Consider eight intervals on the oriented real line, which represent the elements in
the set X = {a, b, . . . , h} (here n = 8).

a
b

c d
e

f

g
h

R

The resulting interval order P is described just below by both its ‘table’ and its
‘Hasse diagram’. Notice that the two elements d and e are ‘twins’, in the sense
that each of them has exactly the same comparisons as the other one with all the
elements in X; the same holds for elements g and h.

P a b c d e f g h
a 1 1 1 1 1 1
b 1 1 1
c 1 1 1 1 1
d 1 1
e 1 1
f
g
h a

c

d

g

e

h

b

f

The minimal representation is as follows.

a
b

c
d
e

f

g
h

0 ε 2 ε 3 ε 4 ε
R

The twenty-three facet-defining inequalities for RP
ε are indicated by the marked

entries in the next 0/1-table. According to Theorem 4, there are four types of such
inequalities. The first one, 0 ≤ xi, obtains when the element i is minimal for P ;
in our example a and b are the two minimal elements (indicated in the table by an
underline). Combining Proposition 4 and Theorem 4, we see that the inequality
xi ≤ x′

i (where i ∈ X) defines a facet of RP
ε if and only if x∗

i = x′ ∗

i ; this occurs here
for a, c, g and h (shown in the table by an overline). Facet-defining inequalities of
the third type, that is x′

a + ε ≤ xb, come from the noses (a, b) of P ; the latter are
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shown by a “ x1 ” in the table. Finally, facet-defining inequalities of the fourth type,
that is x′

c ≥ xd, correspond to the hollows (c, d) of P ; the hollows are indicated by
a “ 0q ”.

P a b c d e f g h
a 0 0q x1 1 1 1 1 1
b 0 0 0 0q 0q x1 1 1
c 0 0 0 x1 x1 1 1 1
d 0 0 0 0 0 0q x1 x1

e 0 0 0 0 0 0q x1 x1

f 0 0 0 0 0 0 0q 0q

g 0 0 0 0 0 0 0 0q

h 0 0 0 0 0 0 0q 0

The global trace 4 (a weak order) is summarized below by its ordered list of
classes

{a, a′, b} ≺ {c, c′} ≺ {b′, d, e} ≺ {d′, e′, f} ≺ {f ′, g, g′, h, h′}

and similarly for the weak order ⊑ (here, one-element sets lose their enclosing braces)

{a, b} ⊏ a′ ⊏ c ⊏ c′ ⊏ {d, e} ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′}.

The vertex of the representation cone RP
ε , which corresponds to the minimal

representation, is

ε (0, 0, 0, 2, 1, 1, 2, 3, 2, 3, 3, 4, 4, 4, 4, 4).

The representation cone RP
ε has twenty extremal rays, each one generated by a

binary vertex v located at x∗. To specify the rays, we provide the twenty sets
S = {s ∈ X + X ′ vs = 1} by listing their elements together with the relation
induced on them by ⊏:

( 1 ) {a, b} ⊏ a′ ⊏ c ⊏ c′ ⊏ {d, e} ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
( 2 ) a ⊏ a′ ⊏ c ⊏ c′ ⊏ {d, e} ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
( 3 ) b ⊏ a′ ⊏ c ⊏ c′ ⊏ {d, e} ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
( 4 ) a′ ⊏ c ⊏ c′ ⊏ {d, e} ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
( 5 ) c ⊏ c′ ⊏ {d, e} ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
( 6 ) c′ ⊏ {d, e} ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
( 7 ) {d, e} ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
( 8 ) d ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
( 9 ) e ⊏ b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
(10) b′ ⊏ f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
(11) f ⊏ {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
(12) {d′, e′} ⊏ {g, h} ⊏ {f ′, g′, h′},
(13) d′ ⊏ {g, h} ⊏ {f ′, g′, h′},
(14) e′ ⊏ {g, h} ⊏ {f ′, g′, h′},
(15) {g, h} ⊏ {f ′, g′, h′},
(16) g ⊏ {f ′, g′, h′},
(17) h ⊏ {f ′, g′, h′},
(18) f ′,
(19) g′,
(20) h′.
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This provides a good illustration of Theorem 6.

6.2. Example 2

We provide the essential data of a second example, starting with the minimal repre-
sentation and then the Hasse diagram together with the table pointing to the facets.

a
b

c
d

e
f g

0 ε 2 ε 3 ε 4 ε
R

a b

c d e

f g
P a b c d e f g
a 0 0q x1 1 1 1 1
b 0 0 0q x1 x1 1 1
c 0 0 0 0q 0q x1 1
d 0 0 0 0 0q x1 1
e 0 0 0 0 0 0q x1

f 0 0 0 0 0 0 0q

g 0 0 0 0 0 0 0

Here are descriptions of the weak orders 4 and ⊑:

{a, a′, b} ≺ {b′, c} ≺ {c′, d, d′, e} ≺ {e′, f} ≺ {f ′, g, g′},

{a, b} ⊏ a′ ⊏ c ⊏ b′ ⊏ {d, e} ⊏ {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′}.

The vertex of the representation cone RP
ε is

ε (0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4).

We specify the rays following the same convention as in Example 1:

( 1 ) {a, b} ⊏ a′ ⊏ c ⊏ b′ ⊏ {d, e} ⊏ {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
( 2 ) a ⊏ a′ ⊏ c ⊏ b′ ⊏ {d, e} ⊏ {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
( 3 ) b ⊏ a′ ⊏ c ⊏ b′ ⊏ {d, e} ⊏ {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
( 4 ) a′ ⊏ c ⊏ b′ ⊏ {d, e} ⊏ {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
( 5 ) c ⊏ b′ ⊏ {d, e} ⊏ {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
( 6 ) b′ ⊏ {d, e} ⊏ {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
( 8 ) d ⊏ {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
( 9 ) e ⊏ {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
(10) {c′, d′} ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
(11) c′ ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
(12) d′ ⊏ f ⊏ e′ ⊏ g ⊏ {f ′, g′},
(13) f ⊏ e′ ⊏ g ⊏ {f ′, g′},
(14) e′ ⊏ g ⊏ {f ′, g′},
(15) g ⊏ {f ′, g′},
(16) f ′,
(17) g′.
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