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Review of Graßmann, Robert, Theory of
Number or Arithmetic in Strict Scientific
Presentation by Strict Use of Formulas

(1891)

Otto Hölder (1859-1937)
Translation by Mircea Radu

Graßmann, Robert, Theory of Number or Arithmetic in Strict Scientific
Presentation by Strict Use of Formulas. Stettin, Robert Graßmann Pub. Co.
1891, XII and 242 pages. Price: 5 Marks.

The author of this book pursues the objective of treating the whole of pure
mathematics [die ganze reine Mathematik ] in four sections [Abtheilungen]. a

One half of the first of these sections is dedicated to arithmetic and is already
available. The other half of the first section “A heuristic treatise on number
[Zahlenlehre in freier Gedankenentwicklung ]” which treats the same discipline
is supposed to follow. b The author may have opted for such an unusual
separation [of the treatment of arithmetic – M.R.] in the assumption that this

Philosophia Scientiæ, 17 (1), 2013, 57–70.

a. Robert Graßmann opens the preface of his book with the following words: “The
theory of forms or mathematics will be presented (. . . ) free of any logical fallacy
[Trugschluss]. It will cover all branches [Zweige] of pure mathematics: the theory of
numbers or arithmetic [Zahlenlehre], the theory of functions [Funktionenlehre], the
calculus of extension [Ausdehnungslehre], and the Erweiterungslehre”, [Graßmann
1891, Preface]. I found no adequate translation for Graßmann’s “Erweiterungslehre”.
Robert Graßmann explains that the “Erweiterungslehre” is a development of ideas
put forward by Hermann in his “Ausdehnungslehre” under No. 410-527. This descrip-
tion only fits the second edition of Hermann Graßmann’s Calculus of Extension of
1862. There Hermann Graßmann treats fundamental subjects belonging to analysis.
Kannenberg translates Hermann Graßmann’s title of the corresponding chapter by
“Theory of Functions”. These dificulties need not concern us here, since Hölder’s
Review only covers arithmetic.

b. Graßmann emphasizes the need to provide two complementary presentations
[die Zahlenlehre in zwei Formen darstellen] of arithmetic. He calls the first presen-
tation a “strict development by formulas” [strenge Formelentwicklung]. The second
is called “freie Gedankenentwicklung”, a rather uncommon expression, not so easy
to translate appropriately. One should perhaps translate this by “a speculative con-
ceptual development” or perhaps a “heuristic treatment” of arithmetic. Graßmann’s
distinction, is the consequence of his general concept of method. His main method-
ological concern was to accomplish an abstract and logically stringent development
of arithmetic by formulas, the only possible strictly scientific [wissenschaftliche] pre-
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would underpin his strong commitment to rigor [Strenge], something of great
importance to him. c

The Theory of Number d begins with an extensive introductory chap-
ter [Einleitung in die Zahlenlehre]. It contains a theory of operations with
abstract magnitudes in the most general sense of the term [Theorie der
Größenoperationen im weitesten Sinne des Worts]. Even at this early stage
of the presentation, great care is taken to accommodate multiplication as an
operation, which, in addition to not satisfying the commutative law, does not
even satisfy the associative law. The introduction also provides, right from
the beginning, a discussion of the various forms of proof [Beweisformen], par-
ticularly of the so-called mathematical induction [vollständige Induction]. e

sentation of arithmetic (in his opinion). Graßmann claims that the “Formulas” (they
are special aggregations of signs) used by him are direct expressions of the thinking
operations [Denkoperationen], icons of the mental operations involved in arithmetic.
In Graßmann’s view, such a strictly formal treatment of arithmetic is elementary and
scientific at the same time, and is therefore also appropriate and, indeed, necessary for
teaching. Graßmann’s understanding of his own account of the mathematical inscrip-
tions is reminiscent of Leibniz’s famous ideal of developing a Calculus Ratiocinator,
an ideal that Hölder considered impossible to achieve. The second “speculative” or
“heuristic” treatment of arithmetic mentioned by Graßmann seems to have a genuine
pedagogical function. It is supposed to deal with an aspect of arithmetic that the
strict scientific treatment cannot deal with, namely, additional explanations and de-
scriptions of alternative paths of proving the same result [Graßmann 1891, Preface,
v ff.]. Hölder, who also emphasizes conceptual clarity, regards Graßmann’s identifica-
tion of symbolic expression and conceptual content as a blind alley and Graßmann’s
obsession with it a methodological evil. Splitting the treatment of arithmetic in a
scientific and a separate didactic part only becomes necessary because of Graßmann’s
belief that in mathematics abstract sign aggregates are the only direct and therefore
the only appropriate expression of thinking. As far as I know, Graßmann never wrote
the second book.

c. The word “Strenge” occurs twice in the title of Graßmann’s book: “The
Theory of Number or Arithmetic in strict scientific presentation by strict use
of formulas [Die Zahlenlehre oder Arithmetik streng wissenschaftlich in strenger
Formelnentwicklung].”

d. Due to the meaning that the expressions “number theory” and “theory of num-
bers” have today, it would be misleading to use any of them as a translation of
Graßmann’s “Zahlenlehre”. In Graßmann’s work, this term refers to the general con-
struction of the number systems beginning with the system of the natural through
to that of the complex numbers. Graßmann does not use set-theory in his work, so
that it would also be misleading to use the word “set” in describing his work. The
same difficulties hold for the term “Arithmetik”. To avoid misunterstandings I have
translated Graßmann’s term “Zahlenlehre” by “Theory of Number”.

e. Graßmann calls the theory presented in his introductory chapter “Theory of
Magnitudes [Größenlehre]”. This theory of magnitudes includes, among other things,
a general discussion of algebraic operations and structures. It extends over fifty
(!) pages. To the modern reader, the “Größenlehre” looks like a general theory
of algebraic structures. In it Graßmann harshly criticizes Paul du Bois-Reymond,
“who fails to recognize the purely formal nature of mathematics” [Graßmann 1891,
2]. More importantly Graßmann writes “Mr. Paul du Bois-Reymond (. . . ) regards
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The introduction is followed by the treatment of arithmetic in four chap-
ters. The first chapter contains the four fundamental operations with whole—
positive and negative—numbers and with fractions. Results concerning prime-
factor decomposition of integers are also included. Beside that, this chapter
also contains a detailed exposition of practical calculations with decimal frac-
tions and with named numbers [benannte Zahlen]. The second chapter deals
with powers, roots and logarithms; one also finds the binomial and the geomet-
rical series, as well as the arithmetical series here. The third chapter contains
a combined treatment of trigonometry and of the complex numbers, which also
includes solving algebraic equations up to the fourth degree. Approximation
methods for determining higher order roots [of polynomials – M.R.] are
also presented.

Selection of the material covered is determined by the author’s aim of
writing a book for teachers [Lehrer ] that at the same time meets the highest
standards of scientific rigor. One can accept that the elementary teaching of
arithmetic should be pursued in a more rigorous way. It is often dealt with
mechanically, with insufficient attention dedicated to the justification of the
methods presented. One would, however, not deny that it is possible to go too
far in the pursuit of rigor.

I would not recommend Graßmann’s treatment of arithmetic for teaching
purposes. The treatment of the operations [Rechnungsoperationen] in the most
general terms possible is too abstract for the student. The concepts dealt with
[in schools – M.R.] should rather be introduced starting with the positive
whole numbers [die positiven ganzen Zahlen]. I do not attach great weight to
the objection already raised by Mr. Graßmann in his book that, in this case,
one would have to repeat the same steps over and over again. Transposing a
proof [Beweis] from a special case to a more general one is a useful exercise.
In the case of frequent repetition, one can invoke the analogy and proof may
be omitted. A presentation which begins with concrete examples also has the
advantage that certain objects and operations satisfying certain computation
laws are known beforehand, so that one has a firm ground under one’s feet,
right from the start.

I now come to my fundamental criticism of the author. He holds his ap-
proach to be a milestone on the path towards a rigorous treatment of arithmetic
and scorns alternative treatments. It is thus only reasonable to judge his work

the pure theory of number [Zahlenlehre], which generates its numbers and number-
magnitudes by itself, as nothing more than a symbolic game, comparable to chess, not
a science” [Graßmann 1891, 3]. This reminds of Hermann Weyl’s ciritque of formal
axiomatics. In his Review, Hölder never explicitly mentions Graßmann’s critique of
du Bois-Reymond. Much of Hölder’s criticism of Graßmann and indeed many of
Hölder’s subsequent writings, however, attach great importance to the distinction
between the symbolic statement of mathematical results and methods (their mere
form, as it were), on the one hand, and their true conceptual origin, on the other
[Radu 2003, 365 ff.]. In a sense, Hölder’s Review can be seen as a reinforcement of
the position attributed to du Bois-Reymond by Graßmann.
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by the same high standards. I do not, however, believe that his work can pass
such a test.

It is perhaps not so easy to do justice to the author, because his conception
differs so strongly from the commonly held views. His conception is, so it
seems, underpinned by a peculiar philosophical principle.

By magnitude [Größe] he understands (No. 2) “everything that is or can
become an object of thinking [Gegenstand des Denkens], in that it only pos-
sesses one rather than multiple values [Werthe]”. He calls equal (No. 10) “two
magnitudes which can be replaced the one for the other in the connections
[Knüpfungen] of the theory of magnitudes [Größenlehre] without, however,
changing the value of the connection”. f

I do not wish to claim that the term “magnitude” was defined by replacing
it with the synonymous term “value”. Requiring of a magnitude to have a
unique value is, I think, simply the expression of the determination of the
principle used when comparing magnitudes. But should there be no objects
of thinking that can be compared based on criteria not involving value? And
how are we supposed to apply the above criterion of equality? Conceptual
formulations of this kind remind us of Scholastic philosophy, which is not yet
fully extinct in Germany. g

In my view, one should begin by describing the objects to be dealt with.
One should afterwards explicitly name the criteria to be used for comparing
objects, for deciding if two objects are declared equal or unequal. h Then,

f. These formulations are an interesting expression of the difficulties still being
encountered in 1892 with describing concepts and results that, from our point of
view, belong to the standard description of algebraic structures. They also represent
a historic relic insofar as they repeat a terminology originally developed by Hermann
Graßmann and published in the 1844 edition of his famous Calculus of Extension. In
this book Hermann Graßmann makes a great effort to create a language suitable for
a presentation of vector-algebra. Hermann Graßmann’s terminology was developed
further in the writings of his brother Robert.

g. Graßmann is defining magnitudes, value, and operation. His definitions are not
easy to use. Could Graßmann have introduced all these notions as primitive ones,
as Hölder seems to be suggesting here? The term “magnitude” might perhaps have
been taken as a primitive notion. What about “value” and “operation”? Graßmann’s
definition of his operation concept expresses a perfectly legitimate requirement also
found in modern definitions of the concept. Today we state this simply by saying that
an algebraic operation is a function. Graßmann does not think of operations in these
terms, and states his definition in alternative ones. I find Graßmann’s definition of
operation adequate.

h. As will be seen, Hölder returns several times to this issue. A better under-
standing of Hölder’s intentions can be reached by taking his subsequent writings
into account. It concerns the relationship between equality as a general logical con-
cept and equivalence. Hölder explains that a general concept of equality, defined by
means of general axioms is useless in mathematics because, in his view, such a con-
cept would be completely vacuous. Hölder argues that equality makes sense only as
equality between well defined equivalence-classes in respect to some explicitly defined
equivalence relation. Thus the general axioms of equality only make sense if they are
proved as theorems based on equivalence relations defined in advance.
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after having clarified the operations involved, one can move on to proving,
say, that equals added to equals yields equals. In this manner, the proposition
according to which equals can be substituted for equals [daß man Gleiches für
Gleiches setzen kann] would become a non-tautological proposition [Lehrsatz],
and only such propositions allow fruitful applications. My remarks concerning
the treatment of fractions [Bruchlehre] provides an illustration of this.

Still, I do not wish to attach too much importance to the definitions men-
tioned above. They are only an external robe [äußeres Gewand ]. In fact,
there is, despite these definitions, little to object to with regard to the con-
sistency [Folgerichtigkeit ] of the inferences given in the general introductory
part. Solely, under this kind of derivation [Herleitung ], it is only possible to
assign a hypothetical validity [eine hypothetische Giltigkeit ] to the results thus
derived. i If, for instance, an addition operation is defined on a domain of
magnitudes, and this operation admits an inverse operation defined without
restrictions (that is, if it leads to a subtraction that can be always carried
out, i.e., the outcome of which is uniquely defined), Mr. Graßmann calls this
addition a separable connection [trennbare Knüpfung ]. j However, the possi-
bility of a separable connection should have been proved beforehand. In the
case of a treatment such as that of Mr. Graßmann, which takes only a single
operation as its starting point, this result may almost be seen as obvious, and
the requirement of proving it overlooked. The matter would look rather dif-
ferent if two interconnected operations were considered. This happens when a
multiplication or a separable multiplication is added to the separable addition.
In this case, multiple relations between the two operations are required, and
it is not immediately obvious, whether an iteration of these operations would
not lead to contradictions. And even if the system as a whole were to be
proved consistent [widerspruchslos] one would have to require a justification
of its applicability. k

Such a justification should be given in the first subsection right after the
general introduction. Here, however, something seems to be missing in the
introduction of negative numbers and of fractions (No. 165): “division is the
name of the separation corresponding to the multiplication of the numbers”
and immediately afterwards the term “dividing-magnitude” [Theilgröße] is in-
troduced without any critical examination. l Concerns about the existence of
such a magnitude are simply overlooked. It goes without saying that, accord-
ing to the spirit of Mr. Graßmann’s own approach, a foundation of the theory
of fractions must be laid independently of any considerations of external intu-

i. Here Hölder aknowledges that Graßmann’s “Einleitung” provides a general ax-
iomatic treatment of the theory of operations.

j. A “separable connection” is Graßmann’s phrase for an invertible operation.
k. I have discussed these and other important claims in greater detail in [Radu

2003].
l. Graßmann defines “Teilgröße” as any magnitude that is preceded by the division

sign “:”. The term stands for the inverse element of an element a in respect to an
algebraic operation, something now commonly denoted by a−1. Graßmann writes 1

a
instead, [Graßmann 1891, 71].
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ition [äußere Anschauung ].1 Thus, our difficulty cannot be put to rest simply,
say, by calling upon the fact that it is always possible to divide continuous
extended magnitudes.

It would, however, be possible to hold another position, which, even though
nowhere explicitly stated in the book discussed here, may express the actual
conception of its author, namely, that the peculiar basic formulas [besondere
Grundformeln]m posited at the beginning of the treatment are so chosen as
to define both the numbers and the operations at the same time. n This is to
some extent correct. To clarify this, I must emphasize two distinct concepts
standing behind the expression whole number [ganze Zahl ]. o

The concept of cardinal number [Cardinalzahl oder Anzahlbegriff ] emerges
based on comparing aggregates of discrete objects. This is done by associating
one individual of one of the aggregates to an individual of the other aggregate.
While doing this, one examines whether, while performing this procedure of
comparing the two aggregates, both aggregates are simultaneously exhausted
or not. As Mr. v. Helmholtz pointed out,2 Mr. Schröder3 was the first to
recognize that here an additional assumption is tacitly made, namely, that the
outcome of this comparison is independent of the manner in which it is carried
out. p Because this fact can be easily proved,4 a treatment of arithmetic taking
the concept of cardinal number as its starting point, looks unproblematic to
me. I also do not accept the idea that the cardinal number concept requires
external experience, for I am able to count things given just in thinking—
names stored in my memory, or things like that. In doing this, one only needs
such psychological and logical actions as are required by any presentation of
arithmetic and by any mathematical deduction.

Another possibility is to take the ordinal number concept as a starting
point. It is possible to carry out the addition, subtraction, and multiplication
of the whole numbers without previously introducing the cardinal number
concept.5 In this case one regards the number sequence

1, 2, 3, 4, 5, . . .

as made of arbitrary signs, which gain their specific meaning only from their
fixed order within the sequence. To add 1 to a number a thus means nothing

m. Hölder calls certain equations—such as a+ (b+ 1) = (a+ b) + 1—that are used
by Graßmann “basic formulas”, “formulas”, and also “equations”. This will become
clearer in the sequel.

n. In Hölder’s view, such an interpretation of the basic formulas used by Graßmann
would make it possible to regard the formulas as constructive procedures and not
as descriptive axioms. Hölder is right, when emphasizing that Graßmann does not
discuss this distinction. It is indeed not easy to establish whether Graßmann is clearly
aware of this distinction and of its significance. Reading Robert Graßmann’s writings,
one gets the impression that the genetic and the axiomatic standpoint are conflated.

o. Hölder has positive natural numbers in mind.
p. It is independent of the order in which the elements of the two sets are associated

to each other.
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other than moving on to the next member of the sequence, which is then
denoted by a+1 in addition to its original notation.6 It now becomes possible
to deduce all the laws of addition based on the formula:

a+ (b+ 1) = (a+ b) + 1. (1)

This formula can be used as a definition of addition, because it explains what
it means to add b+ 1, assuming that one already knows what it means to add
b. Since adding 1 is fully defined, everything is uniquely determined. In this
sense, it is possible to say that taken together, the formulas

1 · a = a
(b+ 1) · a = b · a+ a

(2)

define multiplication (in b · a the number b should be seen as the multiplying
factor), and all the laws of multiplication can be deduced [deducieren] based
on these formulas.

The formulas I have labeled by 1) and 2) were introduced as a foundation
for arithmetic by the Graßmann brothers a long time ago,7 and founding arith-
metic on such simple principles is a great accomplishment of the Graßmann
brothers. It is possible, as pointed out by Mr. v. Helmholtz, to move on di-
rectly to the negative numbers, by pursuing the number sequence backwards.
One then gets the bi-directional infinite sequence

. . . 5′, 4′, 3′, 2′, 1′, 0, 1, 2, 3, 4, 5, . . .

Every sign introduced to the left or to the right of the sequence is taken
to be distinct from all the others. By holding the condition governing the
addition of 1 to be generally true, and by requiring equation 1) to hold suc-
cessively for b = 0, 1′, 2′, 3′, . . . one obtains, one after the other, the definitions
[Erklärungen] ruling the addition of 0, of 1′, of 2′ and so forth. It then becomes
possible to take a as a positive or as a negative number in formulas 2). By
positing b = 0, 1′, 2′, 3′, . . . one gets conditions, which are sufficient for defining
multiplication for negative multiplication-factors. Developing subtraction then
raises not the slightest difficulty. One must define a− b as a fully determined
number satisfying the equation [Gleichung ]

(a− b) + b = a (3)

and, with this, subtraction becomes possible in all cases.
Frequently negative numbers are introduced by directly allowing symbols

of the form a − b, which are supposed to satisfy equation 3). In this respect,
the treatment of Arithmetic discussed here follows this practice. Equivalence
relations hold between symbols of the form a− b. These equivalences are fully
determined by equations 1) and 3), as soon as we also add that the equation

x+ b = a



64 Otto Hölder

always has a unique solution. Equation 3), for instance, implies that

(3− 5) + 5 = 3.

By adding 1 we next get

((3− 5) + 5) + 1 = 4.

Then, by applying equation 1) on the left side of the former equation, we
obtain

(3− 5) + 6 = 4.

This proves that 3− 5 is the solution of the equation x+ 6 = 4, and therefore,
one must posit

3− 5 = 4− 6.

It is, however, not entirely obvious that this way of introducing the sym-
bols a − b is justified. It seems conceivable that, taken together, equations
1), 2), and 3) may also lead to equivalences of a quite different kind. It
would then no longer be permissible simply to posit that (Graßmann No. 114)
“Numbers generated by successively adjoining of 1, are all taken as distinct
from each other”.

As soon as this difficulty is eliminated in the way proposed above q or in any
other way, it becomes possible to regard equations 1), 2), and 3) as definitory
relations [definierende Relationen]8 for the positive numbers, for the negative
numbers, and for the operations of addition, subtraction, and multiplication
to be carried out on these numbers.

The path adopted in the book under scrutiny here is in essence the path
just described, which is rooted in the ordinal number concept. r With respect
to multiplication, we must, however, emphasize that once the formula

(b+ 1) · a = b · a+ a.

has been postulated, it is inappropriate to adopt the equation

a · (b+ 1) = a · b+ a

q. By defining natural number taking the cardinal-number concept as a starting
point.

r. Here Hölder seems to be oscillating between his sharp criticism of Graßmann’s
approach as something fundamentally based on, as it were, abusive use of the per-
manence principle and an alternative interpretation according to which “in essence”
Graßmann’s approach is simply a genetic approach similar to that advocated by
Hölder himself. This uncertainty is rooted in the way in which Graßmann’s book
reviewed by Hölder is written. The two tendencies seem to be competing with each
other. This also holds for all the other books written by the Graßmann brothers,
and it is responsible for the ongoing debate concerning the place of axiomatics in the
writings of the Graßmann brothers. Compare [Radu 2003]; [Radu 2011].
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as an additional postulate. I hope I have managed to show that the former
equation suffices for establishing the definition of multiplication, and, for that
reason, the latter equation can no longer be introduced by arbitrary stipula-
tion. Such a practice cannot exclude the emergence of contradictions. If the
former equation is regarded as the definition of multiplication, it then becomes
necessary to regard the latter as a proposition [Lehrsatz ]. I have reached the
conviction that it can be proved.

The difficulties facing introducing fractions [gebrochene Zahlen] without
relying on geometric premises can be easily overcome based on an idea gener-
ally used by Mr. Stolz [einen Gedanken, der in allgemeiner Weise von Herrn
Stolz durchgeführt worden ist ]. The theory of integers and its first three op-
erations can thereby be taken as accomplished. The propositions ruling over
the relations “greater than” and “smaller than” are subsequently introduced
without difficulty. Expressions of the form a

b
are considered next, a and b

being positive or negative integers, b being different from 0. Such a symbol
has no meaning attached to it yet. It is simply a mere form inside which we
only can distinguish two numerical values: a and b. We are obviously able
to call the numbers a and b numerator and denominator. Two such symbols
seem, at a first glance, different, if their numerators and denominators are not
respectively identical. We then, however, explicitly stipulate that two such
symbols a

b
and a′

b′ should be seen as equivalent only if ab′−a′b = 0 holds. It is
now possible to prove that, if two such symbols are equivalent to a third, then
they are equivalent to each other. If all symbols equivalent to each other are
united to form a single category, it follows that all symbols of one category are
equivalent to each other. We have thus created a new concept, for which we
use the term “value”. We attribute the same value to all mutually equivalent
symbols. Addition and multiplication are next defined directly through the
formulas

a

b
+
a′

b′
=
ab′ + a′b

bb′

a

b
· a
′

b′
=
aa′

bb′
,

and the only thing left to prove (and this is an easy exercise) is that
the value of the sum depends only on the value, not on the form, of the
magnitudes added.

Using this approach, propositions such as “if two magnitudes are equal to a
third, then they are equal to each other” and “equals can always be substituted
for equals” are not tautological [tautologisch]. These propositions were made
redundant by the ordinal construction of the whole numbers [ganze Zahlen],
because, in that case, distinct objects of the same value were not available.

The earlier whole number a is now equivalent with the symbol a
1
. The

associative and commutative laws for addition and multiplication of fractions
can now be easily proved. This also holds for the law connecting the two
operations—namely, the distributive law. There is no difficulty in moving on
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to proving the laws governing subtraction and division. The relations “greater
than” and “smaller than” can be easily defined as well. By definition it is
stipulated that a

b
> a′

b′ , if ab′ > a′b, whereby the numbers a, a′, b, b′ are
positive integers. Propositions such as the following then become provable: of
two different numbers, one is greater than the other; if a number is greater than
a second one, and the latter is greater than a third, then the first is also greater
than the third; each number can be repeatedly multiplied by another until it
becomes greater than some given other number;9 adding greater numbers to
equal or greater numbers leads to greater numbers, etc. s

What was previously said regarding the introduction of the negative in-
tegers and of the fractions in the new book of Mr. Graßmann applies, of
course, even more so, with respect to the introduction of the roots and the
logarithms in the second chapter of the book. Graßmann however introduces
even the irrationals without any justification. He simply provides a definition
(No. § 82): “Irrational numbers are magnitudes that are not rational numbers
[nicht Endzahlen sind ]. t The laws ruling the comparison of rational numbers
also hold for the irrational numbers.” This definition is followed by a proposi-
tion (No. 383): “All propositions found in arithmetic, which hold for arbitrary
integers and for fractions, also hold for the irrational numbers.” If the ex-
istence theorems are taken for granted,10 then Mr. Graßmann’s treatment is
basically consistent. u

I do not wish to discuss Graßmann’s introduction of
√
−1 in the third

subsection. Nor do I wish to raise the question of whether the straight forward
introduction of the concept of “oriented angle” [Winkel der Richteinheit ] in
No. 435 is consistent with the point of view initially adopted by its author. It
seems that, in this case, considerations of angle-measurement were taken into

s. The way in which Hölder expresses these well-known laws is a bit surprising.
His formulations are rather cumbersome. Indeed they sound very much like the
formulations of these laws found in Euclid’s books. It would have been a great deal
easier to express these laws symbolically. Contrary to Graßmann, Hölder, however,
is not happy with symbolically expressed laws. In his subsequent methodological
writings, he constantly emphasizes the “conceptual” nature of these laws and the fact
that symbolic abbreviations are nothing more than a more economic expression of
laws originally stated in conceptual terms. (Compare [Radu 2003, 345–359]).

t. Graßmann often uses terms no longer common today. Rational numbers
are called “Rationalzahlen” and also “Endzahlen”. Irrational numbers are called
“Irrationalzahlen” and also “Unzahlen”. Graßmann defines irrational numbers as num-
bers that are not rational. Rational numbers are defined in the usual way, [Graßmann
1891, 182].

u. Hölder’s comments on Graßmann’s treatment are surprisingly mild.
Graßmann’s “definition” 382 is anything but harmless. Graßmann does not just de-
fine irrational number, but also explains that certain comparison laws hold for the
newly introduced numbers as well. These laws are those already quoted by Hölder
in the present Review in his discussion of the comparison of rational numbers. Such
a claim, however, should be a theorem rather than an axiom. It certainly cannot
be a definition. Also, Graßmann’s proposition 383 reproduced by Hölder is adopted
without any proof by Graßmann.
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account. I wish, however, to use another example, to show that the author,
who is so severe in criticizing others for their “fallacies” [Trugschlüsse], is not
himself fully free of them. In No. 451 the formula

(cosα+ i sinα)(cosβ + i sinβ) = cos(α+ β) + i sin(α+ β)

is proved as follows: Calculating the left side of the equation leads to

cosα cosβ − sinα sinβ + i(sinα cosβ + cosα sinβ).

This magnitude should also be a fundamental unit, or, as it could be expressed,
its module should be 1. It therefore can also be brought to the form

cos γ + i sin γ (4)

in which γ depends on α and β. The author, therefore, posits

γ = α ◦ β (5)

and calls this a connection [Verknüpfung ] of α and β. After showing that α◦β
becomes β for α = 0 and α for β = 0, the deduction is pursued in this way:
“The connection α ◦ β is, therefore, the connection having zero [die Null ] as
its non-changing magnitude, that is, the connection is the addition.” No. 71
is invoked as a basis for this inference. There, however, one only finds the
following:

Definition. The non-changing magnitude [nicht ändernde Größe]
of addition [Fügung ] is called zero [Null ]. The sign of zero is 0. v

Zero is thus that magnitude which can be connected to any other,
without thereby changing the value of the latter magnitude; or
The connection having zero as its non-changing magnitude is the
Fügung or addition.w

To this I emphasize that according to Mr. Graßmann’s terminology a connec-
tion [Knüpfung ] is the most general term used to describe a combination of
magnitudes. In No. 5 we read:

A connection of magnitudes is any combination or union of mag-
nitudes that is in the reach of the human mind, in as far as its
outcome has just one not multiple values.

Basically, this means that, every single valued function of two variables
F (α, β), with F (0, α) = F (α, 0) = α, must coincide with α + β. I leave

v. An alternative translation of Graßmann’s term “nicht ändernde Größe” would
be non-value-changing magnitude.

w. Obviously, Graßmann’s term “non-value-changing magnitude [nicht ändernde
Größe]” stands for the modern term “neutral element” with respect to an internal
algebraic operation.
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the criticism of such a claim to the reader. However, although the author did
not indicate this, it is possible that

F (α, β) = F (β, α),

F (α, F (β, γ)) = F (F (α, β), γ)

can be deduced. Even so, one would have yet to prove that F (α, β) = α+ β.

Tübingen Otto Hölder

Göttingische gelehrte Anzeigen, Nr. 15, 1892, 585–595.

Notes
1 One should compare pages 2 and 3 of the introduction, where reference to mea-

suring lengths is explicitly rejected.
2 v. Helmholtz, Zählen und Messen, Philosophische Aufsätze, Eduard Zeller zu

seinem fünfzigsten Doctorjubiläum gewidmet, Leipzig, 1887, [Helmholtz 1887, 19].
3 Lehrbuch der Arithmetik und Algebra, Leipzig, 1873 [Schröder 1873].
4 Compare O. Stolz, Vorlesungen über allgemeine Arithmetik, Leipzig 1885, [Stolz

1885, 9–10].
5 Compare the already mentioned work of Mr. v. Helmholtz and the differing

presentation given by Kronecker in the same collection of papers.
6 In essence, this view had already been advocated by Leibniz. He used to define

a + 2 through (a + 1) + 1 and could then provide his famous proof of the formula
2 + 2 = 4.

7 Hermann Graßmann, Arithmetik, Stettin 1860, Berlin 1861 [Graßmann 1860],
Robert Graßmann, Die Formenlehre oder Mathematik, Stettin 1872 [Graßmann
1872].

8 A similar view has been developed in the group-theory of Mr. Dyck:
Mathematische Annalen, Bd. 20 [Dyck 1882]. In this case, one would, however,
have to add the relation expressed by the associative law, which is generally valid,
to the definitory relations explicitly stated in group-theory (and which only contain
special symbols) in order to preserve the analogy to the text discussed here.

I do not wish to call these generating relations axioms. It seems to me that
here the situation is different from that in geometry. The primitive concepts
[Grundbegriffe] and first principles [Grundsätze] of geometry do not have their ori-
gin in sequential processes [fortschreitenden Parcessen (sic!)], of the kind used in
geometric and arithmetic deductions alike. One may regard the first principles of
geometry as rooted in intuitive evidence, or, perhaps more appropriately, as princi-
ples abstracted from external experience. In both cases, the first principles and the
primitive concepts of geometry come from a foreign realm [a realm foreign to pure
reason – M.R.]. If one wishes to regard the above mentioned formulas as axioms, one
would then have to introduce similar axioms for innumerable concepts of arithmetic
and analysis, and the number of arithmetical axioms would become infinite.

9 This proposition may look fully obvious here. I emphasize it because it plays
a great role when we treat limit-processes. In order to justify using arithmetical
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propositions in geometry, it is necessary to introduce in geometry results analogous
to some of the fundamental arithmetical theorems as geometric axioms. This holds
for the proposition mentioned here. The importance of this proposition was strongly
emphasized by Mr. Stolz.

10 I think that the foundations of the theory of irrational numbers has been com-
pleted thanks to the works of Weierstraß, Dedekind, Lipschitz, and Cantor. It is
possible to define such numbers on a purely arithmetical basis, introduce the con-
cepts equal and greater than, define the operations and prove all propositions. The
introduction of an irrational magnitude requires, of course, a specific law. I therefore
wish to express my doubt with respect to the legitimacy of bringing all rational and
all irrational numbers under a single general concept. I am not so sure that it is pos-
sible to construct the continuum, on which certain chapters of the theory of functions
rely, in a purely arithmetical manner.
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