

Journal of the Text Encoding Initiative

Issue 8 | December 2014 - December 2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the
Domain of Collaborative Philology

Federico Boschetti and Angelo Mario Del Grosso

Electronic version
URL: http://journals.openedition.org/jtei/1285
DOI: 10.4000/jtei.1285
ISSN: 2162-5603

Publisher
TEI Consortium

Electronic reference
Federico Boschetti and Angelo Mario Del Grosso, « TeiCoPhiLib: A Library of Components for the
Domain of Collaborative Philology », Journal of the Text Encoding Initiative [Online], Issue 8 | December
2014 - December 2015, Online since 23 September 2015, connection on 19 April 2019. URL : http://
journals.openedition.org/jtei/1285 ; DOI : 10.4000/jtei.1285

For this publication a Creative Commons Attribution 4.0 International license has been granted by the
author(s) who retain full copyright.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenEdition

https://core.ac.uk/display/223680695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://journals.openedition.org
http://journals.openedition.org
http://journals.openedition.org/jtei/1285

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 1

TeiCoPhiLib: A Library of Components for
the Domain of Collaborative Philology

Federico Boschetti and Angelo Mario Del Grosso

1. Introduction
1 The TeiCoPhiLib library is a collection of components currently implemented in Java (JSR 270),

which parses documents encoded according to a basic subset of TEI tags dened in an ODD le1

and creates an object-oriented data structure in order to handle the textual content and its
processing. The overall architecture is based on the well known Model-View-Controller (MVC)
pattern, which separates the representation of data from the rendering and management of the
content for the sake of exibility and reusability. TeiCoPhiLib maps the structured document
onto an aggregation of objects. The library enables the visualization through a web browser by
instantiating a collection of widgets rendered on the client through standard web technologies.
Specically, the server-side environment jointly processes data and visualization templates,2 and
generates HTML pages rendered on the client. Special components are devoted to monitoring the
behavior and interactions among the objects generated from the input TEI documents.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 2

2 In distributed and collaborative environments, the maintenance of links and relations among
editable XML documents is a challenging task (Di Iorio et al. 2009; Peroni, Poggi, and Vitali
2013; Schmidt and Colomb 2009). Indeed, this kind of environment must preserve the referential
integrity among interrelated textual units and the consistency among interlinked contents
(Schmidt 2014; Barabucci et al. 2013; Ronnau, Philipp, and Borgho 2009). It is worth noting that
both texts and related annotations may change asynchronously. Accordingly, the problems with
maintenance have an increasing relevance in social editing (Siemens et al. 2012) and in general
in collaborative philology. This emerging eld concerns the social activity of scholars focused
on shared philological tasks (such as scholarly editing and collaborative annotation) through a
cyberinfrastructure (Terras and Crane 2010; Crane, Seales, and Terras 2009). In order to face this
challenge, our approach exploits software engineering techniques illustrated in section 3.3, which
explains the TeiCoPhiLib design patterns.

3 For this reason, the design of TeiCoPhiLib widely leverages the stand-o approaches provided by
the TEI Guidelines, that is, both the reference to plain text osets and the reference to nodes
denoted by the @xml:id unique identiers (TEI Consortium 2015; Wittern, Ciula, and Conal 2009;
Pierazzo 2015). Consequently, the design of the components aims at the separation of concerns
through four distinct layers: (1) textual structure; (2) semantics; (3) style; and (4) behavior, in order
to ensure modularity, scalability, and exibility.

2. Background
4 The main benet of XML, and especially of the TEI Guidelines (TEI Consortium 2015), resides in

simplicity, exibility, readability, and customizability, with the assurance of a formal approach for
validating the marked-up data. Consequently, XML provides a standard way to dene a set of tags
(vocabulary) for specic purposes. Moreover, the cluster of technologies associated with XML3

allows us to process, query and publish structured documents.
5 Several frameworks and initiatives have been developed over the years for handling XML,

achieving great results and benets for both scholars and developers. Among others, the open-
source general-purpose framework Cocoon4 and the native XML database eXist-db5 deserve to
be mentioned. Specically for TEI-annotated documents, TUSTEP,6 TEIBoilerplate,7 TXM,8 and
TAPAS9 are prominent projects.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

http://www.w3.org/standards/xml/
http://cocoon.apache.org/
http://exist-db.org/
http://www.tustep.uni-tuebingen.de/tustep_eng.html
http://dcl.ils.indiana.edu/
http://sourceforge.net/projects/txm/
http://tapasproject.org/

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 3

6 For all of these initiatives, the transformation from an XML document structure to another format
by XSLT can be considered the focal point.

3. Method

3.1 Flexibility and Reusability

7 A document-oriented approach can be complemented by an application/API-oriented approach
for the development of textual analysis tools. We are adopting a top-down design integrated with
bottom-up processes (Del Grosso and Boschetti 2013), which allows us to generalize, extend, and
refactor the overall architecture as new requirements and common issues emerge from use cases
under development. The design is top-down because we are dening both the general abstract
framework and the mechanisms that allow us to implement new functionalities according to
emerging needs. On the other hand, our library also adopts a bottom-up approach because we
apply refactoring strategies to adapt existing components implemented in our previous projects
to the general framework, extending the framework.

8 The library of components is designed by exploiting object-oriented methods and processes such
as analysis of requirements, denition of the domain entities, separation of concerns, information
hiding, and software reusability and extensibility (Fowler 1996). Extensive use of design patterns
(i.e., recurring solutions to common problems within a given context [Gamma et al. 1995])
facilitates the achievement of these goals.

9 Agile software development10 and use case–driven modeling (Rosenberg and Stephens 2007)
ensure the progressive enhancement of old functionalities and the development of new ones.
The main principles of agile software development that we adopt are: (1) individuals and
communication are more important than processes and tools; (2) documentation and design must
be accessible to everybody all the time; (3) software development starts as soon as possible; (4)
changes and refactoring are part of the design and the development process; (5) all lab team
members participate in all presentations; (6) software is organized in short releases and divided
into short iterations; (7) results are validated by domain expert collaborations and test-driven
development (both unit tests and acceptance tests). The continuous integration and release are

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 4

supported by open source Integrated Development Environments (IDEs) like Eclipse or NetBeans
and by a software conguration management tool such as SVN or Git for versioning and revision
control.

10 The aforementioned paradigm is applied in the TeiCoPhiLib library by (1) the implementation
of a exible importing and normalization module in the pre-processing phase, which ensures a
coherent abstraction model of the resources; (2) the denition of the functional specication by
designing the objects and by declaring the application interfaces; (3) the export of the information
encapsulated in the objects into dierent data formats, in order to enable data integration and
data exchange.

3.2 Separation of Concerns

11 First of all, objects that represent the whole document or interrelated documents are initialized
by parsing the original TEI document(s) and by creating a new data structure, which decouples
the orthogonal information conveyed by the XML elements: (1) textual structure, (2) semantics,
(3) style, and (4) behavior. It is important to point out that the new data structure is the result of
transformations (by XSLT DOM transformations or SAX event-driven transformations) managed
during the parsing process. Thus, the current implementation of the TeiCoPhiLib exposes methods
that parse the XML le and create Java objects. The resources are stored and maintained in a native
XML database management system (i.e., eXist-db). The APIs and services provided by Lucene, a
software library developed and hosted by the Apache Foundation, have been used for indexing the
textual data.

12 For instance, the information conveyed by the following TEI snippet is distributed among the
appropriate Java objects that handle the four levels described above:

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 5

 <div type="chapter" n="1" style="font-variant:normal">

 [...]

 <p xml:lang="ita">

 <lb n="1"/>Io nacqui veneziano ai

 18 ottobre del 1775, giorno

 <lb n="2"/>dell’evangelista san Luca;

 e morrò per la grazia di Dio

 <lb n="3"/>italiano quando lo vorrà

 quella Provvidenza che governa

 <lb n="4"/>misteriosamente il mondo.</p>

 [...]<milestone type="page" n="2"/>[...]

 </div>

13 The parsing process concerns the following aspects:

1. Textual structure. The same document originally structured paragraph by paragraph
for literary analysis can easily restructured page by page for layout analysis and for
comparison with the original page image. Semantics, style, and behavior are represented
by objects separated from (but linked to) the nodes of the DOM tree.

2. Semantics. At the semantic level, both attributes (such as @type) and tag names (such as <p>)
are processed in the same way and linked to the related DOM node.

3. Style. The style is managed by separated renderers, which point to textual positions aected
by stylistic features. For instance, the information extracted from the @style attribute is
used to instantiate the Java objects devoted to managing the rendering information.

4. Behavior. Behaviors are handled by objects that process textual resources according to the
current state of the data structure and the rules to manage such a state. For example, a
hyphenator performs its tasks according to the language of the textual data (encoded in
the original TEI le, e.g., by @xml:lang="it") and the related hyphenation rules (such as
the hyphenation rules for the Italian language, managed by the hyphenator bundles).

14 The object-oriented representation of the document allows data to be processed dynamically,
taking account of its physical and logical structure, in an attempt to overcome the multiple
hierarchies issue. This means that the data model of the library has a decoupled and abstract
structure which can be serialized in any available le format, including all standard TEI-

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 6

compliant approaches. Consequently, the TeiCoPhiLib document entity keeps structure and logical
information in an independent but related aggregate of objects (gure 3). Furthermore, output
modules or visitors (gure 2) can traverse and serialize the object representation of the document
to a le. In particular, modules for TEI les dene the marshalling process, which encompasses
the operation to obtain the encoded XML les. In this way the system provides the actual
representation of the document.

3.3 Design Patterns

15 The overall architecture of the library is based on several design patterns, according to the object-
oriented paradigm (Gamma et al. 1995; Buschmann, Henney, and Schmidt 2007).

16 Design patterns were introduced in software engineering in order to provide a common solution
for a recurring problem in a specic context. A design pattern denes the instantiation policies,
the structure, or the behavior for an aggregate of objects that cooperate to provide a complex
but recurrent functionality, such as the creation of polymorphic entities, the management of
decoupled modules, or the selection at run time of the most suitable algorithm for the current
task. The general idea of object-oriented patterns is to encapsulate functionality and data inside an
ecient and exible collection of classes. The current implementation of the prototype exploits
the Java programming language technologies.

1. The Model-View-Controller (MVC) pattern (Burbeck 1992) determines the architecture of the
library by separating the internal representation of the data from the rendering and the
behavioral purposes.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 7

2. The Factory pattern allows designers to enhance the object creation procedure by means
of special classes (i.e., the factory classes) that guarantee abstract coupling among system
modules (i.e., the object relationships do not reference implementing classes). As a matter
of fact, the foregoing design makes it possible to programmatically reference abstract
objects independently from the run-time instances which actually perform the task. This
design pattern lets applications change the implementation of a class in a exible way.
In our case, for instance, a document object has textual content maintained in a specic
DOM data structure transparent to the user. The client agent is able to manipulate and
process the document independently of its internal DOM representation. The algorithms
and processing keep the state of the data structure coherent by updating the DOM
representation in a transparent way.

3. The Builder pattern is used to initialize and populate the document data structure. Together
with the factory pattern, it hides the real type of the objects from the user agents and
maintains the state consistency of the interconnected information. In this way, in the
library initialization process, it is possible to create dierent data structures for dierent
aims, in a way that is completely transparent to the user agents. For instance, a Builder
oriented to the layout analysis can restructure the information parsed from the TEI input
document.

4. The Composite pattern is the core of the data structure (gure 3). The document object is
dened as an aggregation of hierarchical entities with the same data type. The hierarchy
maps either the DOM structure of the original XML-TEI document or the structure of one of
its transformations based on an XSLT input parameter. Thanks to this pattern, an ecient
object-oriented structure, sketched through the UML class diagram on the right of gure
3, represents the whole/part relationships among the objects in the data structures.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 8

5. The Strategy pattern implements dierent operations in dierent ways based on the object
type or on specied parameters. For example, the building process uses dierent strategies,
which are driven from specic features given through property les. In the previous
example, the original TEI page milestone is represented by an element node in the DOM
internal structure; conversely, the original TEI element for paragraph can be represented
by a milestone. Furthermore, the Strategy pattern is useful for rendering the same data in
multiple views in dierent contexts or processing the same data with dierent algorithms.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 9

6. The Observer pattern provides a mechanism for handling dependencies among interrelated
objects. This ensures that when a change occurs, the overall state is synchronized and
updated. For example, if an edit operation deletes some values in the document, all related
structures are notied and updated accordingly. The library organizes the entities derived
from the original document information through the stand-o approach. In this way the
document structure is separate from its semantics, style, and behavior.

Figure 1. Class diagram of the Observer pattern designed for the TeiCoPhiLib.

Several modules of the library need synchronized data. In particular, annotations and
comments need to be notied if an event occurs that changes the state of the referenced
object. This problem is well known in the context of graphical user interfaces, where
embodied components communicate by message exchange according to a standard
protocol. The Observer pattern, which is a behavioral technique, solves the aforementioned
problem in an elegant and easy way. TeiCoPhiLib exploits the Observer pattern to manage
communication among the object-oriented representation of the document and the
encapsulated data that point to it. Figure 1 shows the UML class diagram of the mechanism
designed for the library. The pattern involves two interfaces: (6a) Subject and (6b)
Observer. These two entities provide the exibility to implement a decoupled notication
mechanism. The Subject provides a registration procedure for the Observer object, and the
Observer object provides a standard method allowing the Subject to notify it. TeiCoPhiLib
denes objects that can change, such as the Document data type, and objects that need to be
notied, such as the Annotation or the Comment data types. Consequently, the Document

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 10

class implements the Subject interface, whereas the Annotation and Comment classes
implement the Observer interface. The following simplied Java snippet illustrates this
concept programmatically.
 Observer annotation = new Annotation();

 Observer comment = new Comment();

 Subject teiDocument = new Document();

 teiDocument.subscribe(ObserverType.ANNOTATION, annotation);

 teiDocument.subscribe(ObserverType.COMMENT, comment);

 // some processing that modifies the teiDocument object

 // accordingly the observers have to be notified

 //[...]

 teiDocument.notify(ObserverType.ANNOTATION);

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 11

7. The pattern Visitor allows the user agents to gather data which are stored in dierent object
data elds and enables the reconstruction of a consistent and homogeneous view. The
stand-o mechanism implies a distributed and interrelated structure where information
is maintained across various objects. For example, during the exporting phase the object-
oriented representation of the document is processed in order to produce a valid TEI XML
document according to a schema selected by the user.

Figure 2. Class diagram of the Visitor pattern designed for the TeiCoPhiLib.

The hierarchical nature of the document representation facilitates the data structure
traversal in a exible and customizable way. The Visitor pattern provides a mechanism to
extend the functionality of the TeiCoPhiLib by allowing components to perform a client-
supplied operation on each node of the document hierarchy. Figure 2 shows how a client
of the data model can traverse the document tree in order to write its textual content.
The mechanism supplies the actual visitor instance by means of a custom operation. The
current implementation of the Visitor interface is then used by the entities of the hierarchy
which are unaware of the actual behavior of the visitor instance. In this way, the Visitor
pattern provides a procedure to operate on the representation of the document by making
available to the clients a point of extensibility (Martin 2000).

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 12

17 An example should clarify the aforementioned architecture. The client application that uses
TeiCoPhiLib APIs invokes the building method of the abstract Builder class. Moreover, the resulting
document object is a concretization of an abstract class representing the current structure of the
TEI-encoded resource, as illustrated in the following Java statement:
 Document teiDocument = AbstractBuilderFactory.buildDocument(new

 File("features.properties"),new File("teiDocument.xml"));

18 The Builder object needs two input les: (1) a property le containing the suitable conguration
for the instantiation of the concrete objects; (2) the TEI XML le to parse. The state of the internal
representation of the document is composite-component–based. In this way each single element
is handled by the TEIComposite object shown on the right-hand side of gure 1, which represents
each node of the hierarchical DOM structure. Leaves are instances of the StrippedTextChunk class
(gure 3). Methods in such a structure make it possible to manipulate the content and the structure
of the resources.

Figure 3. Parsed TEI document (left), mapped into a Composite pattern structure (right).

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 13

19 Finally, the data structure is an object-oriented representation of the entities in the real domain of
the digital document, but the storage platform/paradigm could actually be relational, hierarchical,
semi-structural (XML), or network/graph–structured (Hohpe and Woolf 2004).

20 The UML diagram on the left side of gure 1 shows the structure of a TEI document DOM
representation. Objects, in this case, exactly map the tags of the TEI-encoded le format. The UML
diagram on the right side illustrates the composite-components design. This diagram maps the
same aforementioned information and structure, but using a exible and recursive design. Each
TEIComposite object reects a TEI element and each child is recursively a TEIComposite or a textual
element.

4. Case Studies
21 The case studies illustrated below have been implemented with the components already developed

for our library.

4.1 Euporia: Visualization, Editing, and Annotation of Parallel Texts for

Didactic Purposes

22 Euporia is a project aimed at visualizing, editing, and annotating bilingual texts displayed in
parallel. The original digital resources are stored and maintained in authoritative digital libraries
available online, such as the Biblioteca Italiana and the Perseus Digital Library, or they are
downloaded from social proofreading websites, such as WikiSource, and subsequently processed
and marked up in TEI. Some examples of Greek and Latin texts potentially alignable or actually
aligned with their Italian translations are shown in table 1.

23 As mentioned in section 3, dierent subcollections of texts that must be aligned may provide or
omit some extratextual information (such as line number or page number) and they may organize
texts in dierent ways (for instance, lines can be grouped or not inside <lg> elements). For this
reason, the XSD schema (which is expected to be a subset of the general TEI schemas) is generated
a posteriori from the actual text subcollections. This approach can be considered complementary
to the TEI Roma approach, a kind of reverse engineering, which also allows us to generate the
ODD le. Studying the schemas, XSLT transformations are created in order to deal only with
relevant information and canonical formats processed by the appropriate Aligner. Currently only

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 14

the SpeechAligner for dramatic texts has been implemented: correspondences between the Italian
translation and the original Greek text are automatically injected with the @corresp attribute (see
row B in table 1) and misalignments must be manually corrected.

Table 1. Parallel texts.

A) Perseus Digital Library Digital Library of Biblioteca Italiana

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 15

 <!-- www.perseus.tufts.edu -->

 <div1 type="Book" n="2" org="uniform"

sample="complete">

 <milestone ed="p" n="1" unit="card"/>

 <l>Conticuere omnes, intentique ora

tenebant.</l>

 <l>Inde toro pater Aeneas sic orsus ab

alto:</l>

 <l>Infandum, regina, iubes renovare

dolorem,</l>

 <l>Troianas ut opes et lamentabile

regnum</l>

 <l n="5">eruerint Danai; quaeque ipse

miserrima vidi,</l>

 <l>et quorum pars magna fui. Quis talia

fando</l>

 <l>Myrmidonum Dolopumve aut duri miles

Ulixi</l>

 <l>temperet a lacrimis? Et iam nox

umida caelo</l>

 <l>praecipitat, suadentque cadentia

sidera somnos.</l>

 <l n="10">Sed si tantus amor casus

cognoscere nostros</l>

 <l>et breviter Troiae supremum audire

laborem,</l>

 <l>quamquam animus meminisse horret,

luctuque refugit,</l>

 <l>incipiam.<milestone ed="P"

unit="para"/>Fracti bello fatisque

repulsi</l> [...]

 </div1>

 <!-- www.bibliotecaitaliana.it -->

 <div1 sample="complete"> [...] <lg

sample="complete">

 <l>Tutti ammutiro e s'affisaro.

Enea</l>

 <l>Da l'alto seggio

incominciava. Infando,</l>

 <l>O Regina, è il dolor cui tu

m'imponi</l>

 <l>Ch'io rinnovelli. I' dovrò

dir da' Greci</l>

 <l>I teucri averi e il miserando

regno</l>

 <l>Come fosser diserti; io dire

i casi</l>

 <l>Tristissimi dovrò, cui vidi

io stesso</l>

 <l>E di che fui gran parte. E

qual potrebbe</l>

 <l>O Mirmidone o Dolope o

seguace</l>

 <l>Del fero Ulisse rattenere il

pianto</l>

 <l>Tai cose in ragionando? E già

dal cielo</l>

 <l>Precipita la notte umida, e

gli astri</l>

 <l>Vanno in cader persuadendo il

sonno.</l>

 <l>Ma se tanto desio nel cor ti

siede</l>

 <l>De l'ascoltar de' nostri casi

e in breve</l>

 <l>Udir di Troia l'ultima

sciaura,</l>

 <l>Benchè pur del pensiero io mi

spaventi,</l>

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 16

 <l>Comincerò. Dopo tant'anni

infine</l> [...] </lg> [...] </div1>

B) Perseus Digital Library Euporia Resources

 <sp id="sp_grc_0002">

 <speaker>Ἑλένη</speaker>

 <p>

 <lb/>τί δ, ὦ ταλαίπωρ’ — ὅστις ὤν μ’

ἀπεστράφης

 <lb/>καὶ ταῖς ἐκείνης συμφοραῖς ἐμὲ

στυγεῖς;

 </p>

 </sp>

 <sp id="sp_ita_0002"

corresp="#sp_grc_0002">

 <speaker>ELENA</speaker>:

 <p>

 <lb/>Perché, qual che tu sia,

misero, gli occhi

 <lb/>torci da me, pei falli

altrui m'aborri?

 </p>

 </sp>

24 Parallel texts are visualized and managed through EuporiaWebApp (gure 4), which is a server-side
Java web application compliant with the JSR 314 specication intended for educational purposes.
Students, the end users of Euporia, are allowed to query texts, both jointly and independently,
through multilingual or monolingual keywords.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 17

Figure 4. Euporia.

25 Annotations can also be associated with linked chunks of text (such as a sentence and its
translation: see gure 5) or with single, independent chunks of text (such as a single word of the
original text). Annotations and their pointers to the text are stored as stand-o markup. Currently,
the adopted stand-o linking mechanism uses only @xml:id, but the use of XPointer is under
evaluation.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 18

Figure 5. Annotation in Euporia.

4.2 Aporia: Adapting the Parallel Text Framework to Specific Scientific

Requirements

26 Aporia is the enhanced version of Euporia, intended for research purposes. Accordingly, the
Parallel Text framework has been adapted and extended to meet specic scientic requirements
(Bozzi 2013). An experimental case study has been performed on Theodor Mommsen’s edition of
the Res Gestae Divi Augusti (1883), in order to examine the complementarity of attested fragments of
text in the Latin inscription of the RGDA and the related attested fragments in the Greek translation
(Lamé 2012). Attested and conjectural parts from Mommsen’s critical edition have been marked.
As shown in gure 6, the feature “status” (attested / partially attested / conjectural) is not only
visualized in dierent colors (a CSS stylesheet is enough for this task), but also available in query
masks to lter the results of a query (for instance, “nd only attested or partially attested words”)
and in tables of results.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 19

27 Unlimited stand-o layers of analysis can be added (such as morphological, syntactic, and semantic
analysis), at dierent levels of granularity (for example, at the level of words for morphological
analysis and at the level of sentences for semantic analysis). The layers of annotation are added
through the web application and stored in the XML database. Moreover, they can be manually
encoded and visualized through the web application.

Figure 6. Aporia.

4.3 Saussure Project: Supporting Genetic Criticism

28 The Saussure Project exploits the exibility of Aporia in order to adapt the system to the study of
Saussurean autographs, making author’s variants searchable and creating multilingual indexes of
ancient terms studied by the linguist.

29 Instead of showing linked texts in parallel, the system shows the image of the manuscript and the
related transcription (gure 7).

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 20

Figure 7. Saussure Project.

5. Conclusion
30 The TeiCoPhiLib is a work in progress focused on the creation of a library of software components

aimed at managing a limited subset of TEI tags used in the domain of collaborative philology.
Because of the increasing complexity of annotations and the multiple usages of the same texts
in collaborative environments, stand-o annotation and dense mark-up make it challenging to
keep annotated documents readable and manageable. While annotation focuses on types of texts
(such as poetic, dramatic, and with or without critical apparatus), software development focuses
on abstraction of data structures and behaviors related to those texts (such as searching them in
parallel, ltering by morphological features, and comparing text and image).

31 Reusable software components promote the management of stand-o annotation at any level
(such as editing, searching, or visualizing), improving the experience of the annotation and use
of TEI documents.

32 The document parsing in the current Java implementation takes place on the server side, where
the Java virtual machine runs within the web application environment.

33 The marshalling and unmarshalling process handles the serialization of the object representation
of the TEI document, in order to store and retrieve data on the lesystem or in native XML
databases, such as eXist-db.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 21

34 Performance measurement tools such as JMeter will help to optimize the performance of the
library components.

35 Software currently under development will be available on GitHub at https://github.com/CoPhi/
cophilib.

BIBLIOGRAPHY

Barabucci, Gioele, Angelo Di Iorio, Silvio Peroni, Francesco Poggi, and Fabio Vitali. 2013. “Annotations
with EARMARK in Practice: A Fairy Tale.” In DH-CASE ’13: Proceedings of the 1st International Workshop
on Collaborative Annotations in Shared Environment: Metadata, Vocabularies and Techniques in the Digital
Humanities, article no. 11. New York: ACM. doi:10.1145/2517978.2517990.

Bozzi, Andrea. 2013. “G2A: A Web Application to Study, Annotate and Scholarly Edit Ancient Texts and Their
Aligned Translations.” Studia graeco-arabica 3:159–71. http://www.greekintoarabic.eu/uploads/media/
BOZZI_SGA_3-2013.pdf.

Burbeck, Steve. 1992. “Applications Programming in Smalltalk-80TM: How to Use Model-View-Controller
(MVC).” Last modied March 4, 1997. http://www.math.sfedu.ru/smalltalk/gui/mvc.pdf.

Buschmann, Frank, Kevlin Henney, and Douglas C. Schmidt. 2007. Pattern Oriented Software Architecture. Vol.
5, On Patterns and Pattern Languages. Wiley Software Patterns Series. Chichester, England: John Wiley
& Sons.

Crane, Gregory, Bridget Almas, Alison Babeu, Lisa Cerrato, Anna Krohn, Frederik Baumgart, Monica Berti,
Greta Franzini, and Simona Stoyanova. 2014. “Cataloging for a Billion Word Library of Greek and Latin.”
In DATeCH ’14: Proceedings of the First International Conference on Digital Access to Textual Cultural Heritage, 83–
88. New York: ACM. doi:10.1145/2595188.2595190.

Crane, Gregory, Brent Seales, and Melissa Terras. 2009. “Cyberinfrastructure for Classical Philology.” Digital
Humanities Quarterly 3 (1). http://www.digitalhumanities.org/dhq/vol/003/1/000023/000023.html.

Del Grosso, Angelo Mario, and Federico Boschetti. 2013. “Collaborative Multimedia Platform for
Computational Philology: CoPhi Architecture.” In MMEDIA 2013, The Fifth International Conferences on
Advances in Multimedia [Proceedings], edited by Philip Davies and David Newell, 46–51. N.p.: IARIA. http://
www.thinkmind.org/index.php?view=article&articleid=mmedia_2013_3_10_40059.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

https://github.com/CoPhi/cophilib
https://github.com/CoPhi/cophilib
http://www.greekintoarabic.eu/uploads/media/BOZZI_SGA_3-2013.pdf
http://www.greekintoarabic.eu/uploads/media/BOZZI_SGA_3-2013.pdf
http://www.math.sfedu.ru/smalltalk/gui/mvc.pdf
http://www.digitalhumanities.org/dhq/vol/003/1/000023/000023.html
http://www.thinkmind.org/index.php?view=article&articleid=mmedia_2013_3_10_40059
http://www.thinkmind.org/index.php?view=article&articleid=mmedia_2013_3_10_40059

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 22

Di Iorio, Angelo, Michele Schirinzi, Fabio Vitali, and Carlo Marchetti. 2009. “A Natural and Multi-layered
Approach to Detect Changes in Tree-based Textual Documents.” In Enterprise Information Systems:
Proceedings of 11th International Conference on Enterprise Information Systems (ICEIS 2009), edited by Joaquim
Filipe and José Cordeiro, 90–101. Lecture Notes in Business Information Processing 24. Berlin: Springer.
doi:10.1007/978-3-642-01347-8_8.

Fowler, Martin. 1996. Analysis Patterns: Reusable Object Models. Menlo Park, CA: Addison Wesley.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-Wesley.
Hohpe, Gregor, and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging

Solutions. Boston: Addison-Wesley.
Lamé, Marion. 2012. “Epigraphie en réseau: réexions sur les potentialités d’innovations dans la

représentation numérique d’inscriptions complexes.” Ph.D. thesis, University of Bologna – University of
Aix-Marseille. http://www.theses.fr/2012AIXM3130.

Martin, Robert C. 2000. “Design Principles and Design Patterns.” Gurnee, IL: Object Mentor. http://
www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf.

Peroni, Silvio, Francesco Poggi, and Fabio Vitali. 2013. “Tracking Changes through EARMARK: A Theoretical
Perspective and an Implementation.” In DChanges 2013: Proceedings of the International Workshop on
Document Changes: Modeling, Detection, Storage and Visualization, edited by Gioele Barabucci, Uwe M.
Borgho, Angelo Di Iorio, and Sonja Maier. Aachen, Germany: CEUR Workshop Proceedings. http://ceur-
ws.org/Vol-1008/paper6.pdf.

Pierazzo, Elena. 2015. Digital Scholarly Editing: Theories, Models and Methods. Farnham, Surrey: Ashgate.
Ronnau, Sebastian, Geraint Philipp, and Uwe M. Borgho. 2009. “Ecient Change Control of XML Documents.”

In DocEng 2009: Proceedings of the 9th ACM Symposium on Document Engineering, 3–12. New York: ACM.
doi:10.1145/1600193.1600197.

Rosenberg, Doug, and Matt Stephens. 2007. Use Case Driven Object Modeling with UML: Theory and Practice.
Berkeley, CA: Apress.

Schmidt, Desmond. 2014. “Towards an Interoperable Digital Scholarly Edition.” Journal of the Text Encoding
Initiative 7 (November). http://jtei.revues.org/979.

Schmidt, Desmond, and Robert Colomb. 2009. “A Data Structure for Representing Multi-version Texts Online.”
International Journal of Human-Computer Studies 67 (6): 497–514. doi:10.1016/j.ijhcs.2009.02.001.

Siemens, Ray, Meagan Timney, Cara Leitch, Corina Koolen, and Alex Garnett. 2012. “Toward Modeling the
Social Edition: An Approach to Understanding the Electronic Scholarly Edition in the Context of New and
Emerging Social Media.” Literary and Linguistic Computing 27 (4): 445–61. doi:10.1093/llc/fqs013.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

http://www.theses.fr/2012AIXM3130
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://ceur-ws.org/Vol-1008/paper6.pdf
http://ceur-ws.org/Vol-1008/paper6.pdf
http://jtei.revues.org/979

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 23

TEI Consortium. 2015. TEI P5: Guidelines for Electronic Text Encoding and Interchange. Version 2.8.0. Last updated
April 6. N.p.: TEI Consortium. http://www.tei-c.org/Vault/P5/2.8.0/doc/tei-p5-doc/en/html/.

Terras, Melissa, and Gregory Crane, eds. 2010. Changing the Center of Gravity: Transforming Classical Studies
through Cyberinfrastructure. Digital Technologies and the Ancient World 4. Piscataway, NJ: Gorgias Press.

Wittern, Christian, Arianna Ciula, and Conal Tuohy. 2009. “The Making of TEI P5.” Literary and Linguistic
Computing 24 (3): 281–96. doi:10.1093/llc/fqp017.

NOTES

1 The ODD les currently available can be downloaded from GitHub: https://github.com/CoPhi.
The TEI schema we intend eventually to adopt conforms to the EpiDoc vocabulary, following the
policy of the Perseus Catalog (Crane et al. 2014).
2 Facelets XML templates are used under the Java Server Faces 2.0 specication.
3 http://www.w3.org/standards/xml/.
4 http://cocoon.apache.org/.
5 http://exist-db.org/.
6 http://www.tustep.uni-tuebingen.de/tustep_eng.html.
7 http://dcl.ils.indiana.edu/.
8 http://sourceforge.net/projects/txm/.
9 http://tapasproject.org/.
10 See the Agile Manifesto (http://www.agilemanifesto.org/) for a detailed explanation.

ABSTRACT

In this article we illustrate a work in progress related to the design of a library of software components devoted
to editing, processing, and visualizing TEI-annotated documents in the domain of philological studies, in
particular in the subdomain of collaborative philology, which concerns the social activity of scholars focused
on shared philological tasks. We discuss the technologies related to XML markup languages and the processing
of marked-up documents. We describe the method used to design and implement the TeiCoPhiLib, outlining
the design patterns as well as discussing general benets of the overall architecture. Finally, we present case
studies in which some components of our library currently implemented in Java have been used.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

http://www.tei-c.org/Vault/P5/2.8.0/doc/tei-p5-doc/en/html/
https://github.com/CoPhi
http://www.w3.org/standards/xml/
http://cocoon.apache.org/
http://exist-db.org/
http://www.tustep.uni-tuebingen.de/tustep_eng.html
http://dcl.ils.indiana.edu/
http://sourceforge.net/projects/txm/
http://tapasproject.org/
http://www.agilemanifesto.org/

TeiCoPhiLib: A Library of Components for the Domain of Collaborative Philology 24

INDEX

Keywords: APIs, design patterns, library of components, collaborative philology

AUTHORS

FEDERICO BOSCHETTI

Federico Boschetti, holds a PhD in classical philology and brain and cognitive sciences—language, interaction
and computation. He is a researcher at the A. Zampolli Institute for Computational Linguistics of the Italian
National Research Council (ILC-CNR) of Pisa. His area of interest is computational and collaborative philology.

ANGELO MARIO DEL GROSSO

Angelo Mario Del Grosso, holds a PhD in information engineering at the Engineering Ph.D. School “Leonardo
da Vinci” of the University of Pisa. He is a research fellow at the A. Zampolli Institute for Computational
Linguistics of the Italian National Research Council (ILC-CNR) of Pisa. His area of interest is the analysis, design
and development of object-oriented and computational methodologies applied to the textual scholarship
domain.

Journal of the Text Encoding Initiative, Issue 8, 23/09/2015
Selected Papers from the 2013 TEI Conference

	1. Introduction
	2. Background
	3. Method
	3.1 Flexibility and Reusability
	3.2 Separation of Concerns
	3.3 Design Patterns

	4. Case Studies
	4.1 Euporia: Visualization, Editing, and Annotation of Parallel Texts for Didactic Purposes
	4.2 Aporia: Adapting the Parallel Text Framework to Specific Scientific Requirements
	4.3 Saussure Project: Supporting Genetic Criticism

	5. Conclusion

