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Introduction

1 Among the variety of natural hazards, flash floods are one of the deadliest and most

devastating in terms of economic losses (Johnson, 2000; Gaume et al., 2009; Llasat et al.,

2014). The definition of a flash flood is quite ambiguous in the literature. However, it is

always associated with high flow velocity, strong rainfall intensity and often steep slopes

but also, more implicitly with relatively small watersheds (Hirschboeck, 1988; Douvinet &

Delahaye, 2010) ranging from a few square kilometres to a couple of hundreds square
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kilometres (Scarwell & Laganier, 2004). Muddy floods are caused by runoff carrying large

quantities of soil from bare or relatively bare agricultural fields (Boardman & Vandaele,

2010) and generally occur in valleys without permanent watercourses (Evrard et al., 2007).

The disambiguation between these two phenomena in testimonies may be difficult due to

the incompleteness of the data sources. This paper will address both flash floods and

muddy floods as they are reported in the newspapers. In their European analysis of flash

floods,  Gaume et  al. (2009)  considered a maximum catchment area of  500 km² and a

rainfall  event inferior to 24 h.  Most flash flood events are attributed to precipitation

generated in stationary Mesoscale Convective Systems (Anquetin et al., 2010). The risk to

be affected by such a flood is a combination of property vulnerability and flash-flood

hazard  (Verstraeten  &  Poesen,  1999).  The  concepts  of  urbanization  and  population

density therefore also come into play. Numerous papers including the synthetic analysis

of Gaume et al. (2009) report case studies all over the world. In the European context,

most studies were conducted in the Mediterranean mountainous region (Poesen & Hooke,

1997), due to the hydroclimatic particularities, urbanization and intense rainfall events

(Vinet, 2008, 2010) and in the loess areas such as the Belgium loess belt, the South Downs

in the UK, the Pays de Caux in northern France and the Limburg in the Netherlands

(Bielders et al., 2003).

2 Despite strongly different contexts, most studies show that some human factors often

make the situation worse, such as the urbanization of hazardous zones of concentrated

runoff downstream large areas of monocultures, the undersized design of the drainage

system as it was seen in Nîmes (France) (Fabre, 1989) or the location of campgrounds in

areas with high risk and a lack of maintenance of dams, as in Biescas in the upper basin of

Gállego river in Spanish Pyrenees (Benito et al., 1998; Gutiérrez et al., 1998). In the area of

Nîmes, Davy (1990) used historical data and mentioned three comparable events of high

intensity (in 1557, 1599 and 1868) and several others with a slightly lower intensity. She

concluded  that  these  events  occur  with  a  return  period  of  about  50  years.  Others

examples were studied in Mediterranean mountainous region (Cosandey, 1993; Ruin et al.,

2008) and showed radical geomorphological changes in rivers affected by flash floods as

the Guil river (Tricart, 1961; Arnaud-Fassetta et al., 2005) and the Bez river (Lahousse &

Salvador, 1998). Regarding the size of the catchment, we can note that the devastating

flood event of Ouvèze on September 22,  1992 is still  considered by Piegay & Bravard

(1997) as a flash flood despite a peak flow reaching nearly 1,000 m³.s-1 and a catchment

area of about 600 km². In the United States, Davis (1998) used a cut-off threshold of 100

square miles (corresponding to about 260 km²). In humid temperate climate, many flash

flood cases were also described in England (Harvey, 1986), in the Paris Basin (Dacharry,

1988; Douvinet & Delahaye, 2010; Douvinet et al., 2013) and in the Ardennes (Pissart, 1961);

some of  these  events  were pluri-centennial  floods  (Petit,  1995).  Several  studies  were

conducted in Belgium, most of them refer to muddy flood events rather than flash flood

events. Evrard et al. (2007) compiled a database of 367 locations affected by muddy floods

in 204 municipalities in the loess belt,  completing the surveys of  farmers carried out

earlier  by  Verstraeten  & Poesen  (1999)  and  Bielders  et  al.  (2003).  These  compilation

studies give precise information on recent muddy flood events.  However,  the limited

historical memory of the survey respondents does not allow a clear analysis of long-term

trends Bielders et al. (2003).

3 It  is  clear  from  the  literature  that  the  greatest  part  of  flash  floods  with  major

geomorphologic  impacts  often  occurs  in  small  ungauged  catchments  (Collier,  2007;
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Anquetin et al., 2010; Ruiz-Villanueva et al., 2010; Hapuarachchi et al., 2011; Alfieri et al.,

2012). The watershed may be equipped with a gauging station. However, this equipment

may be destroyed by the extreme water velocity or  the estimated peak flow is  very

uncertain due to the extrapolation of the rating curve.  Obtaining flow rates estimate

through indirect evidences is necessary in order to characterize these events in terms of

bed load transport and soil erosion through suspended load. 

4 This paper will show how these estimates were accomplished after a major flash flood

event in the area of  Liège (Belgium) on May 29,  2008 and the uncertainties that are

associated with these indirect reconstructions. We had the opportunity to perform field

surveys after this event that caused heavy damage and affected several streams with

forested and partially urbanized watersheds. We have not focused our initial observations

on urban areas because the experience gained during the flood mapping of the urban

region of Liège (Van Campenhout et al., 2007) and in Wallonia (Peeters et al., 2006) ensured

us that a wide variety of information would be available in urban area: pictures, movies,

surveys of the residents and information from the municipal and intervention services

(firemen,  civil  defence,  …).  Our  observations  focused  on  the  forested  parts  of  the

watershed  where  flood  marks  and ephemeral  information  about  the  flash  flood  was

available. A particular methodology was used to reconstruct the flow rate, estimate the

vertical  and  lateral  erosion,  attempt  to  quantify  the  bed  load  and  suspended  load

transport in these ungauged catchments.

 

Hydrosedimentological characteristics of the May 29,
2008 major flash flood event in Liège

Location of the flash flood

5 On May 29, 2008 in the early morning, a storm cell oscillated along the Belgian-German

border and generated intense rainfall  on the southern part  of  the Liège urban area,

corresponding to the interfluve between the Ourthe valley and the Meuse valley (Figure 1

). The rain gauge located on the Sart Tilman plateau has recorded 92.5 mm between 6 am

and 9:30 am (Deliège et al., 2009), with a maximum hourly intensity reaching 76.7 mm.h-1

which  corresponds  to  a  return  period  much  greater  than  200  years  (Mohymont  &

Demarée, 2006). Considering the Ruthy’s curve that envelopes the most extreme rainfall

events recorded in Belgium between 1889 and 1960 (Ruthy, 1961), the rainstorm observed

at Liège is even more extreme. Rivers of this region with high slopes suffered from flash

floods devastating both forested and urban areas. Newspapers reported that the damage

was estimated by insurance companies at € 33 million for 9,000 people affected by this

event in the province of Liège. Unfortunately, we have not had access to the insurance

databases to pinpoint the precise location and the characteristics of the damage. These

costs are signicantly high for a single flood event in Belgium. Evrard et al. (2007) showed

that extreme events in the loess belt generate yearly a societal cost between 16 and € 172

million. Topographic surveys were performed quickly during the days following the event

in order to reconstitute the hydrological conditions and to assess geomorphological and

sedimentological impacts of this flash flood on peri-urban steep watersheds. Four creeks

were affected by the May 29, 2008 flash flood in varying magnitude. Two of them are

almost  exclusively  forested  (Sordeye  Creek  and  Blanc  Gravier  Creek),  the  other

watersheds are partially urbanized (Renory Creek, urbanized in its lower part and the
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Fond du Moulin Creek where the lower two-thirds are highly urbanized). The area of

these catchments ranges from 0.65 to 2.53 km² and the average slope of the thalweg from

6.6  to  13.2%  (Table  1).  The  geological  substrate  consists  in  Devonian  rocks:  schists,

quartzites  and  micaceous  sandstone  (Emsian  and  Praguian:  400  Ma)  and  sandy

Carboniferous shales (299-325 Ma). On the plateau, these rocks are overlain by Cenozoic

sands (Oligocene, 28-33.7 Ma), quaternary wind deposits, gravel terraces of the Meuse and

the Ourthe and slope deposits. According to the flood areas mapped in 2004 on the basis

of residents survey (Peeters et al.,  2006),  no significant overflow was identified in the

urban areas of these watersheds in the last 20-25 years corresponding to the period of

analysis.

 
Figure 1. Watersheds affected by the May 29, 2008 flash flood with the land use map as
background.

Sources: NGI topographic maps, 2003; Public Service of Wallonia, 2008

 
Table 1. Watershed characteristics.

Catchment
Spring  elevation

(m)

Outlet  elevation

(m)

Mean  slope

(%)

Area

(km²)

Maximum  length

(m)

Fond  du

Moulin
238 75 11.9 2.53 1370

Blanc Gravier 240 78 6.6 2.51 2455

Renory 200 60 9.7 1.18 1437
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Sordeye 225 75 13.2 0.65 1138

 

Methodology used for estimating peak flow rate, bed incision,

suspended load and bed load transport

6 Three  or  four  50  to  100-m  long  sections  in  the  forested  part  of  each  stream  were

accurately surveyed in the weeks following the event while the flood marks were visible.

These sections are representative of the geomorphological variety of these watercourses.

Figure 2a shows the boundary corresponding to the maximum flood water level.  The

presence of dead leaves, swept away by the water flow, provided an excellent topographic

indicator equivalent to high water marks, with an accuracy reaching a few centimetres.

The following parameters were measured at ten locations: the water level on the right

bank and the left bank (to identify asymmetry), the width of the channel at the peak flow

and the slope of the water surface.

 
Figure 2. a. Position of the maximum water level determined with flood marks; b. Bark and trunk
abrasion caused by the bed load transport and floating logs (site RE2); c. Trunk injuries caused by
shocks with floating logs, about 1 m above the thalweg (site RE2); d. 1-m deep incision in the
colluviums (site RE2); e. Bare roots at site BG1; f. Flash flood in the urbanized part of the Fond du
Moulin Creek.

Sources: resident’s photograph, May 29, 2008 10:11

7 Figure 3 shows a sample of topographic survey of each geomorphological element, the

effect of the flash flood on the riparian vegetation and the location of transverse profiles.

These ones were positioned to highlight areas with deep incision, asymmetries of the

water surface between the left and the right banks in meandering reaches. The effects of

Flash floods and muddy floods in Wallonia: recent temporal trends, spatial di...

Belgeo, 1 | 2015

5



such an intense flood on the riparian vegetation are important: some tree trunks were

ripped off by the water flow then transported by flotation and finally impacted other

trees on the banks (Figure 2c). These trunk injuries are located high up on the trees and

allow confirming the  maximum water  level  measured with  other  flood marks.  Scars

represent the most commonly used dendrogeomorphic evidence of past flood activity

(Ballesteros Cánovas et al., 2011). However, an uncertainty has to be taken into account,

depending on the diameter of the trunks and their position at the moment of impact.

 
Figure 3. Example of topographic survey on site RE2 (Renory Creek).

8 The watersheds of these steep creeks have a significant amount of colluviums on their

slopes. The bed load of these streams is composed of gravel and pluri-decimetric blocks.

The flash flood transported the bed load and the colluvium load coming from the incision

of the slopes and the alluvial plains. The particle size analysis will be detailed below. The

mobilization and the mixing of blocks during the flood leave irreparable damages at the

bottom of the trees (Figure 2b). The bark has been abraded; the trunk shows many traces

of impacts and allows quantifying the thickness of the mobilized pebbles layer.

9 The longitudinal slope of the water surface at the flood peak, the maximum depth and the

asymmetry  between  the  banks  have  been  observed  and  measured  from topographic

survey of each reach. Unfortunately, we were not able to trace the chronology of the bed

load incision. It is probable that the inception of the incision started with the sudden rise

in the water level and reached the maximum at the flood peak, when the unit stream

power  reaches  its  peak.  The  estimated  water  depths  are  then  probably  slightly

overestimated when they are measured in incised reaches.

10 Significant  incision  phenomena  were  observed  on  the  four  studied  streams  in  their

forested part.  In  absence  of  pre-flood  topographic  data,  the  incision  depth  was

reconstructed by an estimation of the shape and the assumed elevation of the thalweg

before the devastating flood. We observed locally incision deeper than 1 m in the Renory

Creek with a width reaching about 3 m (Figure 2d), corresponding to a local incision of 3

cubic  metres  per  linear  metre.  We  cannot,  however,  extrapolate  these  punctual

observations to the entire length of the creek because this incision varies greatly from

one reach to another, depending on the substratum. In areas where the major bed is
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covered with trees, the incision phenomenon has led to another result. The sediment

around the tree roots has been removed by the water flow. Then, their bark was deeply

abraded by the mobilization of bed load during the event (Figure 2e).

11 The Fond du Moulin watercourse includes in its lower part a significant urbanization,

essentially located along the river. Most houses are located on the lower part of the slopes

and a few of them directly overlap the creek, leading to significant damages. At many

places, the road has bypassed the usual course of the river. The photographs taken by the

local  residents  near  the  flood  peak  have  helped  to  identify  the  hydrological

characteristics of the flash flood and estimate the flow rate (Figure 2f).

12 The Blanc Gravier and Sordeye watersheds have their outlet in the Ourthe valley where a

major road has been flooded. A fluvial fan was developed in the Ourthe river bed while a

10- to 15-cm thick sediment layer was observed in the downstream part of the Blanc

Gravier Creek, due to the accumulation zone created by the flat surface of the road.

 

Topographic and hydrological data

13 The hydrological characteristics of the flood in each watershed were compiled in Table 2.

For each cross section, the area, the perimeter, the width and the hydraulic radius were

measured thanks to flood marks. It is necessary to note that these values correspond to

the maximum level reached during the flood. In the absence of gauging station in these

catchments with a surface area of less than 3 km², it was not possible to estimate the

evolution of the flow rate during the event without the help of a hydraulic modelling

using rainfall  data.  The Manning coefficient  was  estimated at  0.06 for  all  sectors,  in

accordance with  the  values  proposed  in  the  literature  for  forested  substrates  with

obstructions (Bravard & Petit, 2000).

14 Using the values of hydraulic radius R, the local slope S (in m.m-1) and the Manning’s n

value, the maximum flow velocity Vmax was calculated (Equation 1). 

15 Equation 1

16 Then the maximum flow rate Qmax (in m3.s-1) and the maximum unit stream power ωmax

(in W.m-2) were estimated from the wet section A (Equation 2) and the width w of the

river during the flood (Equation 3). These values are summarized in Table 2.

17 Equation 2

18 Equation 3
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Table 2. Summary of the characteristics of transverse profiles, velocities, flow rates and unit
stream powers observed during the flood (average and standard deviation values for each studied
reach).

Location, ID and

number  of

cross-sections

at each reach

 

W

Width

(m)

S

Local

slope

(m.m-1)

v
max

Max.

velocity

(m.s-1)

Q
max

Max.

flow  rate

(m³.s-1)

ω
max

Max.  unit

stream

power

(W.m-2)

Max.

depth

(m)

Area

(km²)

Blanc  Gravier

(BG1) (n=3)

Average 5.7 0.095 4.3 25.7 4,795

1.50 1.32

Std. dev 1.5 0.040 0.7 4.9 668

Blanc  Gravier

(BG2) (n=3)

Average 6.3 0.080 4.5 34.8 4,655

2.46 2.08

Std. dev 0.8 0.008 0.1 7.6 631

Blanc  Gravier

(BG3) (n=4)

Average 10.6 0.067 2.4 15.3 710

2.50 2.35

Std. dev 4.0 0.023 1.1 20.0 704

Sordeye  (SO1)

(n=2)

Average 3.8 0.123 3.7 9.8 2,650

1.38 0.61

Std. dev 1.3 0.016 0.6 5.1 351

Sordeye  (SO2)

(n=3)

Average 5.1 0.161 3.5 9.7 2,919

1.58 0.73

Std. dev 1.6 0.056 0.2 6.8 1,761

Renory  (RE1)

(n=3)

Average 5.5 0.144 3.5 8.3 2,642

2.15 0.37

Std. dev 0.8 0.014 0.9 4.5 1,771

Renory  (RE2)

(n=3)

Average 8.7 0.104 3.5 22.8 3,502

2.32 0.84

Std. dev 4.6 0.061 1.5 22.2 1,698

Renory  (RE3)

(n=3)

Average 5.2 0.100 3.3 12.6 2,838

1.59 0.95

Std. dev 1.2 0.063 0.9 2.6 827

Fond du Moulin

(FM1) (n=3)

Average 6.5 0.060 1.7 3.3 315

1.64 0.57

Std. dev 1.2 0.000 0.3 1.3 151

Fond du Moulin

(FM2) (n=5)

Average 4.3 0.073 2.7 6.4 987

2.07 1.00

Std. dev 1.7 0.045 0.8 2.7 341

19 The lack of gauging station in these watersheds makes the validation of the flow rate

estimations difficult. However, extreme flow rate estimations in the Blanc Gravier Creek
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were computed when the university campus was built on the Sart Tilman Plateau. This

peak value was calculated with the Soil Conservation Service Method at the outlet of the

Blanc Gravier and reached 25 m3.s-1 (Spronck et al., 1965). This value is in accordance with

the average value obtained with the flood marks in the three studied reaches (24.3 m3.s-1).

The flat topography observed at the outlet reach introduces a high variability of the

estimates and forced us to take into account a mean value through the entire watershed.

The  Myer  value  corresponding  to  this  estimation  reaches  15.3.  The  largest  values

measured in Belgium reached 18 in streams located on the slopes of the High Fens, 40 km

to the east-south-east of Liège (Collard et al., 2012). 

20 Many  other  methods  exist  in  the  literature  to  estimate  the  extreme  peak  flow  in

ungauged  catchments.  We  mention  in  particular  the  method  of  envelope  curves

developed by Francou & Rodier (1967). From a dataset of extreme floods observed in the

last two centuries in 1,400 watersheds in the entire world, with areas comprised between

10-2 and 106 km², these authors have established the following law (Equation 4):

21 Equation 4

22  

23 where Q is the peak flow rate (in m³.s-1), A the area of the watershed (in km²), Q0 = 106 and

A0 = 108.

24 The  k parameter  is  a  regionalized  parameter:  it  varies  in  France  from  5.5  in

Mediterranean area to 3.5 in the northern oceanic zone. As this law is linked with the

maximum observed floods, these flow estimates are not associated with a return period.

However, the authors indicate that the majority of the points used to calibrate the k

parameter correspond to a return period of about 100 years (Lang & Lavabre, 2007).

25 The use of this equation, with the k parameter equals to 3.945, adjusted to the estimated

average flow rate on the Blanc Gravier Creek (24.3 m3.s-1), gives the results presented in

Table  3.  The  maximum  flow  rate  estimated  with  flood  marks,  the  unit  discharge

(discharge divided by the watershed area) and the maximum flow rate estimated by the

WOLF  model,  developed  by  the  HECE  team  (Hydraulics  in  environmental  and  civil

engineering, University of Liège) are also presented in this table (Deliège et al., 2009). The

WOLF model uses explicit resolution of hydraulic differential equations at high spatial

and temporal resolutions. This physically-based and spatially distributed model is able to

represent the runoff in the whole drainage network and simulate the effect of different

scenarios (land use modifications, impact of retention basins). It is useful to note that the

modelling team took into account outlets located downstream relative to the studied

sections in forested area. The modelled flow rates show high values as they correspond to

larger watersheds. The adapted k parameter fits with the geographical situation of the

studied  watersheds,  namely  basins  in  an  oceanic  climate  but  including  steep  slopes,

characteristic of Mediterranean watersheds. There is a good correlation between the flow

rates  calculated  from the  flood marks  and the  Francou & Rodier  estimation for  the

Renory  and Sordeye  watercourses.  We note  a  significant  difference  for  the  Fond du

Moulin Creek which is probably due to the presence of a small  diameter pipe in the
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central part of the watershed; it led to the creation of a temporary lake in the forested

area and has limited the flow rate at the outlet.

 
Table 3. Flow rates comparison rates between observations, HECE modelling results and Francou &
Rodier (1967) model.

Catchments
Watershed

area (km²)

Outlet

flow

rate

from

flood

marks

(m³.s-1)

Outlet  unit

flow rate

(m3.s-1.km-2)

Max.  flow

rate

according

to

Francou

&  Rodier

(1967)

(m³.s-1)

Modelled

watershed

area (km²)

Modelled

max.

flow  rate

(HECE)

(m3.s-1)

Modelled

max.  unit

flow  rate

(HECE) (m3.s
-1.km-2)

Blanc

Gravier

Creek

2.40 24.3 10.1 - 2.80 28.0* 10.0

Renory

Creek
1.06 14.6 13.8 14.8 1.32 14.2** 10.8

Sordeye

Creek
0.64 9.8 15.3 10.9 - - -

Fond  du

Moulin

Creek  (at

the

forested

outlet)

0.98 5.2 5.3 14.1 2.90 42.5*** 14.7

* Flow rate calculated at the confluence of the Blanc Gravier Creek and the Ourthe
River (2.80 km²) ** Flow rate modelled at the forested outlet of the Renory watershed
(1.32 km²), taking into account the malfunction of one of the two storm basins upstream;
*** Flow rate calculated at the confluence of the Fond du Moulin Creek and the Ourthe
River (2.90 km²)

26 The unit flood discharge presented in Table 3 was compared to literature data using the

flash flood compilation produced by Gaume et al. (2009). Values obtained in the area of

Liège range from 5.3 to 15.3 m3.s-1.km-2. They are lower than the envelope line presented

by Gaume et al. (2009). We also note that the publications addressing this range of small

watersheds (lower than 2.5 km²) are relatively rare in the literature.

 

Block deposits size analysis and estimation of peak flow using unit

stream power law

27 As it was highlighted above, the flash flood caused large incisions in the alluvial and

slopes  deposits.  Blocks  and  gravels  were  mobilized  over  long  distances.  Even  small

tributaries of  the main watercourses showed massive bed load mobilization.  Figure 4

shows an important block deposit on the road along the Fond du Moulin Creek, coming

Flash floods and muddy floods in Wallonia: recent temporal trends, spatial di...

Belgeo, 1 | 2015

10



from a little tributary on the left bank of the creek. The enlargement of the flow on the

road decreased the competence and induced the accumulation of blocks, despite the low

roughness of the road surface.

 
Figure 4. Pluri-decimetric block deposits from a small tributary of the Fond du Moulin watercourse.

Source: Bernard Chandelon, http://blueperrot.blogspot.com/, May 29, 2008 12:41

28 Pluri-decimetric blocks were mobilized and created accumulation in low slope reaches

(Figure 5). Their mobilization is attested not only by the before and after photos but also

by their imbrication, stacked together in the flow direction and covering roots and fresh

vegetation. Size analysis surveys were carried out on several block deposits. The streams

have  mobilized  a  wide  range  of  element  sizes;  granulometric  indices  show  a  bad

classification of these deposits.

 
Figure 5. Evolution of the alluvial plain of the Blanc Gravier Creek from two photos taken at the
same location before and after the flood.

Source: L. Schmitz

29 The biggest mobilized blocks were measured on each site.  These measurements allow

estimating the unit stream power and the maximum peak discharge through an indirect
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calculation method. Indeed, the size of the mobilized elements during a flood can be

linked with the unit stream power needed to move them. There are few relationships

developed for rivers transporting elements with a b-axis greater than 500 mm. We can

mention the one developed by Costa (1983) in Colorado rivers and the relationship of

Williams (1983). More recently, the same type of law has been proposed in Mediterranean

watersheds (Jacob, 2003; Gob, 2005; Gob et al., 2003, 2005; Jacob et al., 2006). Riggs (1976)

also proposed a simplified slope-area method for estimating flood discharge,  without

specifying the associated return period. All these relationships have the following form:

30 Equation 5

31 where ω0 is the critical unit stream power of the bed load mobilization (W.m-2), Di the size

of the element (mm) and a and b two parameters of the equation 5.  The unit stream

powers that are estimated here represent the minimum power that can mobilize the

block taken into account in the equation.

32 These laws are developed on the basis of the mobilization of individual elements (Di). It

was arbitrarily chosen to use as Di value the b-axis of the biggest block found on each site.

Indeed, the coarse elements allow assessing the maximum competence of the mobilizing

floods. Several tests were conducted with these data. The best fits were obtained with the

equation proposed by Jacob (2003, see Equation 6), who computed the parameters on a

river located in the Cévennes region. The Chassezac River, studied by Jacob (2003) is a

step-pool river. In this type of river bed, the roughness caused by the bed morphology is

significant. In this case, the unit stream power needed to mobilize the bed load is higher

than the power required in pool-riffle rivers.

33 Equation 6

34 Petit et al. (2005a) showed that the characteristics of the rivers had a great influence on

the  mobilization  threshold.  In  medium-sized  watercourses,  the  unit  stream  power

required to mobilize bed load elements has to be higher due to the loss of energy caused

by the resistance of the minor bed morphology. Results obtained with the Jacob (2003)

equation are presented in Table 4. These values are high compared to those calculated in

a series of Ardennian rivers for which the maximum unit stream power ranged from 100

and 200 W.m-2 (Petit et al., 2005a, 2005b). 

 
Table 4. Calculation of unit stream power and theoretical flow rate with the law identified by Jacob
(2003).

Watercourse Site
Mean  slope

(m.m-1)

Mean  width

(m)

b-axis

(mm)

Unit  stream  power

(W.m-2)

Flow

rate

(m3.s-1)

Blanc-Gravier

Creek

BG3 0.068 10.6 660 1,101 17.6

BG1 0.095 5.7 670 1,128 6.9

Sordeye Creek

SO2 0.161 5.1 500 697 2.2
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SO1 0.123 3.7 460 607 1.9

Renory Creek

RE3 0.100 5.2 550 815 4.3

RE2 0.104 8.7 590 915 7.8

RE1 0.144 4.0 490 674 1.9

Fond  du  Moulin

Creek

FM2 0.054 4.3 540 791 6.4

FM1 0.060 6.5 410 503 5.5

35 Values obtained with Jacob’s fit,  between 550 and 1,100 W.m-2,  are much higher than

those  obtained  with  the  Costa’s  equation.  Such  values  of  unit  stream  powers  are

extremely rare in the Ardennian rivers, even for a 100-year flood. These values confirm

the exceptional character of this flash flood.

36 Tests made with Riggs’ equation show an underestimation of about 20-30%. From these

calculations, we can highlight the lower estimated flow rate values using particle size

method with respect to the analysis of the water level thanks to the flood marks. Two

hypotheses  may  explain  these  differences:  first,  approximations  resulting  from  the

absence of direct observations of the phenomenon and the use of theoretical equations

developed for streams of different contexts;  second,  the lack of mobilizable elements

above a b-axis of about 700 mm in the slope deposits, leading to an underestimation of

the competence of the flash flood.

37 As a comparison, the major flash flood that affected the Chefna River, a small tributary of

the Amblève River, has transported quartzite blocks up to 950 mm on August 26, 1969.

Some blocks over 1.25 m of b-axis were tilted during the flash flood which caused many

geomorphologic changes (Tenret, 1969). The estimation of the peak flow discharge in this

7.84-km² watershed reaches about 40 m³.s-1 and a unit stream power of around 2,000 W.m
-2.

 

Order of magnitude of the watershed erosion caused by the flash

flood

38 The flash flood caused massive watershed erosion in terms of suspended load and fine

sediment, coming essentially from bank erosion and bed incision. The forest cover has

limited the runoff in the headwaters. In the downstream part of the Blanc Gravier Creek,

a  pond  was  cleaned  of  sediment  in  2006.  After  the  May  29,  2008  event,  the  almost

complete filling of the lake by fine particles allowed us to estimate an accumulation of

about  300  m³,  i.e.  about  480  tons  considering  a  bulk  density  of  1.6.  In  addition,  we

estimated the thickness of sediment accumulated in the decantation zone on the road

located downstream the pond. It reached 10 to 15 cm of thickness on an area of about

3,000  m²,  leading  to  a  mass  of  fine  sediment  of  about  600  tons.  Considering  these

observations,  the  suspended  load  transport  was  estimated  at  a  minimum  value  of

440 t.km-2 for this unique event. In Ardennian rivers the mean watershed soil erosion

ranges in average from 20 to 50 t.km-2.year-1 (Van Campenhout et al., 2013).
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39 Regarding the bed load transport, the volume of the main accumulation of blocks and

pebbles located in the downstream part of the Blanc Gravier Creek has been measured

with a total  station.  It  reaches 74 m³,  which corresponds to 122 tons considering the

porosity  of  this  angular  assembly.  Taking  into  account  the  area  of  the  associated

watershed,  the  unit  solid  discharge  was  estimated  at  51  t.km-2 for  the  bed  load.

Estimations of bed load discharge for Ardennian rivers give average values ranging from

0.36 t.km-2.yr-1 (Ourthe River in Famenne, 1,285 km²) to 2.21 t.km -2.yr-1 (Wamme River,

139 km²) for a complete year (Petit et al., 1996), including all the hydrologic events. Single

flood  events  may  generate  higher  bed  load  transport  rates;  Houbrechts  et  al. (2012)

observed a mobilization of 2.07 t.km-2 for a 11.2-year recurrence flood in the Aisne basin

and up  to  4 t.km-2 for  a  decennial  flood  on  Eastern  Ourthe  River  (Petit  et  al.,  1996;

Houbrechts et al., 2006). The value measured after the Sart Tilman flash flood, around

50 t.km-2,  for  a  single  coarse  elements  accumulation  (corresponding  to  the  most

important  block deposit  observed in  the Blanc Gravier  watershed)  clearly  shows the

uniqueness of this torrential event and its implications on the bed load transport.

 

Spatial and temporal distribution of recorded events in
Wallonia

Methodology of database compilation

40 The second topic of this paper addresses the spatial and temporal distribution of flash

floods and muddy floods in Wallonia. It is mainly based on several works that used press

information to create the most comprehensive database of extreme events. Compiling

historical information about the location, the frequency and the characteristics of these

events is not an easy task. On the Walloon territory, about one hundred of them have

been recorded for the period 1906-2000 by Lejeune (2001). Gérard (2013) extended the

flash flood and muddy flood analysis in Wallonia to the first decade of the 21th century,

including a reanalysis of old newspaper archives1 and web archives2. A wide variety of

keywords has been used to find information about flash floods in these databases. Indeed,

the journalistic language is often approximate compared to the scientific definition of

these natural events. The disambiguation between intense local runoff, muddy floods and

flash  floods  cannot  easily  be  done  from  press  archives.  In  addition,  the  distinction

between a  flash flood and a  typical  river  overflow can be  complex,  especially  when

exceptional rainfalls affect large areas, leading to flash floods in the small watersheds and

flooding major beds of large rivers. Note that these newspaper archive researches were

performed in French language only. Daily newspapers in the German-speaking part of the

country  (East  Belgium)  have  not  been  analysed.  This  bias  can  be  another  cause  of

incompleteness of the database. It is quite difficult to estimate its effect because this part

of the country corresponds to a low population density, which strengthens the possibility

of not transcribing all the events in local or regional newspapers.

41 The completeness of the database is difficult to achieve due to several bias that can be

observed in the information sources, especially when we try to get historical data. In the

frame of this analysis, data were collected using newspaper and web-based sources, books

and papers related with the territory of Wallonia, since the beginning of the 20th century.

The use of newspaper data leads to an incompleteness of the database. The facts that are

related in the newspapers usually do not take into account events that did not cause
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damage to urban areas.  A major flash flood occurring in a forested area may not be

reported. On the other hand, a minor event generating many damages in a city will be

reported by the majority of the newspapers, including testimonies of the residents and

numerous photographs of the affected area that enable defining with good accuracy the

characteristics of the event (precise location, origin of the muddy water flow, delineation

of the flooded area and estimation of the water level at the peak of the event). These

characteristics are often unknown when flash floods occur in forested area or in the least

densely populated rural areas. These biases lead to an incompleteness of the database;

they have to be kept in mind when analysing the spatial distribution of the events that

will be presented later.

42 Lejeune (2001) also studied the return period of extreme rainfall events and the spatial

distribution of flash floods using newspaper articles for the period 1906-2001 and two

other studies in link with floods in the lower Ourthe and Lesse watersheds. Several study

cases were conducted to obtain more information regarding the characteristics of the

most important events recorded in the press. Its database contains 70 flash floods that

occurred between 1906 and 2001, affecting 253 communities. 

 

Results

43 It is generally believed that flash floods and muddy floods only occur in loamy regions

where  thick  erodible  soils  are  available  on  moderate  to  steep  slopes.  The  database

describing the spatial repartition from 1906 to 2013 also shows events in areas where

slopes  are  lower  and  soil  is  not  constituted  of  loess.  Figure  6 presents  the  spatial

distribution of the flash floods recorded from 1906 to 2013 through the press archives. At

this scale, each point represents one or several flash flood events occurring at the same

location.  Press  papers  do  not  always  allow  a  perfect  location  of  the  damages.  The

municipalities  of  Hesbaye  and  Brabant  Plateau  covered  with  loess  show the  highest

density of flash floods in Wallonia, especially in the valleys of the Gette, the Geer, the

Mehaigne and the Senne. The Gette watershed shows a higher density of events than the

Geer watershed, probably due to the larger agricultural plots in the Gette basin and the

urbanization of several preferential runoff axes. Gérard (2013) studied the spatial extent

and  the  density  of  flash  flood  at  the  scale  of  agro-geographic  homogeneous  areas

(Génicot, 1987) and at the municipality scale. In addition to the well-known location of

flash flood events in the northern part of Wallonia, he has highlighted a high density of

events in the slopes of the tributaries of the Sambre and Meuse rivers in the Condroz

region, where the population density exceeds 100 inhabitants.km-2 (Figure 7, showing the

population density by municipality in 2012 with a classification highlighting the low-

density  areas  that  are subjected to the database incompleteness  bias).  The boundary

between the Ardennes massif and the Fagne, linked to steeper slopes than observed in the

loamy region,  and the southern part  of  the Lorraine region also show many events,

despite the absence of loess layer on the geological substratum and a lower population

density (below 50 inhabitants.km-2). Any type of soil is susceptible to be affected by major

flash flood and very steep slopes are not  a  necessary condition to generate extreme

events. This spatial analysis suggests that the rainfall intensity and the total amount of

precipitations are the main triggering factors, before the physical characteristics of the

affected watersheds.  A rainfall  data analysis  showed that  there is  a  huge correlation

between the flash flood occurrence and the threshold of 40 mm.day-1 (Gérard, 2013). This

value is consistent with the observations of Evrard et  al.  (2007),  showing that muddy
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floods are generated in small and medium catchments with 99% probability after 43 mm

rainfall,  with  a  seasonal  differentiation.  The  40-mm  threshold  is  relatively  low  and

corresponds to a return period of about 9 months in the most southern part of Wallonia, a

little less than one year in the High Fens (in the most eastern part of Wallonia), two years

in Namur (at the confluence of the Sambre River and the Meuse River) and three years in

the western part of the Scheldt basin (Mohymont & Demarée, 2006). The extreme spatial

variability of rainstorms behind these flood events often requires the use of radar data to

assess the intensity and the variability of the phenomenon at a local scale (Douvinet &

Delahaye, 2010).

 
Figure 6. Spatial distribution of flash floods and muddy floods in the Walloon Region for the period
1906-2013 from press archives.
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Figure 7. Population density in each municipality of Wallonia.

Source: National Institute of Statistics and location of the rivers and towns mentioned
in the text (B: Bassenge, H: Hélécine, J: Jodoigne, L: Lincent, O: Orp-Jauche, R: Remicourt, T:
Tubize, W: Wasseiges)

44 The  high  variability  of  the  area  of  Walloon  municipalities  makes  the  use  of  a  non-

straightforward density unit mandatory to get comparable results. At the municipality

scale, the mean areal density of flash floods in Wallonia between 1906 and 2013 reaches

0.07 event.km-2 (standard deviation: 0.10 event.km-2). Eight municipalities present a flash

flood density superior to 0.20 event.km-2 on this period of 107 years. They are located on

Figure 7, showing the population density of each municipality of Wallonia. Hélécine and

Lincent  are  the  most  affected  areas,  with  0.83  and  0.68  event.km-2 respectively,

corresponding to 14 and 10 recorded events. Orp-Jauche and Jodoigne, with 24 and 28

recorded events respectively, also suffered many times of intense flash floods in this area

focusing flow runoff from surrounding agricultural areas (see zoom on Figure 6).  The

other municipalities with high density are Remicourt, Wasseiges, Tubize and Bassenge,

corresponding to 7 to 9 events. All these municipalities belong to the Hesbaye region,

constituted of arable lands, divided in large plots on a loamy substrate and the Brabant

Plateau, where sandy soils are also covered by loess deposits (Christians & Daels, 1988).

The  least  affected  municipalities  are  located  in  Central  Ardennes,  East  Belgium

(essentially covered with forested areas and grassland) and western parts of the Fagne

and Famenne subareas (mainly devoted to grassland).

45 Assessing the temporal evolution of the number of flash floods and muddy floods in a

large area is a difficult task due to the possible incompleteness of the database in older

times or in low population density zones (Figure 7). The analysis of press records seems to

indicate that the database only shows major events in urban areas before the year 1965;

only a few events are documented each year (Figure 8). Between 1965 and 1988, a low

increase of the yearly occurrence is noticeable. From 1991, the number of recorded flash

floods rises sharply to several dozen per year. The peak is reached in 2008 with almost

200  events  recorded  this  year.  The  meteorological  station  of  Uccle  (near  Brussels)

recorded this year 861.0 mm of precipitations. Two other peaks of events occurred in
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1977 (855.9 mm) and 2012 (976.5 mm). Normal value on the period 1981-2010 reaches

852.4 mm.

 
Figure 8. Temporal evolution of flash floods and muddy floods documented in press archives
(Wallonia, 1906-2013) and running average (5-year window).

46 The running average shows the huge increase of the number of flash floods in the 1990s.

This is concomitant with the emergence of digital archives on the Internet but this effect

could not explain this massive increase, because paper archives were also analysed. After

a small decrease, another rise is observed in the second part of the 2000s. Despite the

impossibility to guaranty a completeness of the dataset, especially before the 1970s, a

clear  increase  of  the  occurrence  of  events  is  noticeable  in  press  records.  Several

hypotheses may underlie this increase: 1) a real increase of the flash flood events, due to

an increased sealing of the urban and field soils and/or an increased rainfall intensity and

amount;  2)  a  rise  in  the  number  of  people  affected  by  the  flash  floods,  due  to  the

urbanization of small valleys that concentrate runoff water downstream of monoculture

crops. Larger field plots and the removal of hedgerows at parcel boundaries may have

important effects on soil erosion and peak flow (Beuselinck et al., 2000); 3) the awareness

of the press to document any event, even minor which was not the case earlier in the

century. Gérard (2013) tried to correlate the rainfall intensity with the occurrence of flash

floods, but the spatial variability of the rainfall events that generate the floods is huge.

Radar rainfall  images are needed to push forward this study,  the density of  the rain

gauges network in Wallonia is not dense enough to characterise the causes of each flash

flood event.

 

Flash flood vulnerability, hazard and risk mitigation in
Wallonia

47 During the period 1969-2007, every municipality in Wallonia has been affected by at least

one major damage caused by flooding (all  caused combined) and included in a Royal

Decree as a national disaster (SPW, 2008). According to the information available for this

period, in a third of cases floods were caused by watercourses overflowing and in the

remaining cases, by water runoff on agricultural land or blocked sewers. From 2003, the

P.L.U.I.E.S. Plan (“Prévention et Lutte contre les Inondations et leurs Effets sur les Sinistrés”)
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works as an integrated and multi-disciplinary strategy that contains 30 actions aiming to

reduce the risk of flood damage (SPW, 2008). The actions include building restrictions in

flood prone areas. In addition to overflowing areas, concentrated runoff axes were added

to the flood vulnerability and risk maps in Wallonia, taking into account the small valleys

susceptible to generate heavy damage in case of flash floods. Some specific watercourses

affected in the past by intense flash floods causing fatalities were equipped with early

alarm systems and real-time message to the surrounding population, such as the Biesme

River which killed three people in Gerpinnes during the flood of August 1987. A higher

density of monitoring stations is required to reduce the risk. In Europe, 52 casualties per

year  due  to  flash  floods  are  reported  in  average,  representing  40%  of  the  overall

casualties due to all the types of floods (Borga et al., 2011). Major events with documented

characteristics such as the case study reported in the urban area of Liège in 2008 should

allow the development of urban layout strategies to reduce the risk of submersion.

48 Uncertainties in long-term climate scenarios do not give a clear vision of the evolution of

flash  flood  and  muddy  flood  damage  in  the  future.  Many  authors  link  the  climate

warming to the intensification of heavy precipitation events over roughly two-thirds of

the continental Northern Hemisphere (Andersen & Marshall Shepherd, 2013). In Belgium,

a statistical analysis of 44 regional and 69 global climate model runs,  based on three

different emission scenarios (A1, A1B, B1) showed that the 10-year design storm intensity

can increase up to about 50% till 2100. Systems currently designed for a 20-year return

period of flooding, might flood with a mean recurrence interval of about 5 years. It is

found  that  increase  in  storage  capacity  of  11-51%  is  required  to  keep  the  overflow

frequency to the current level (Willems, 2013).  Design parameters for urban drainage

systems and IDF curves need to be revised to account for this evolution (Andersen &

Marshall Shepherd, 2013).

 

Conclusion

49 The major flash flood event that occurred in Liège on May 29, 2008 was analysed from

geomorphologic  evidences.  Tree  trunk  injuries,  flood  marks,  block  deposits  and  fine

sediment accumulations allowed the reconstruction of the hydrological characteristics of

the  flood  in  these  ungauged  watersheds.  A  multi-disciplinary  approach  allowed  the

comparison  of  several  peak  discharge  estimations  using  flood  marks,  block  size  and

hydraulic models. This flood has shown its exceptional intensity through the sediment

transport rates that were estimated in the affected watersheds, reaching 440 t.km-2 of

suspended load transport and 51 t.km-2 of bed load mobilization. Values with one order of

magnitude greater than usual  floods in Wallonia were measured.  The analysis  of  the

spatial repartition of flash floods in Wallonia has shown that the well-known mud flow

prone areas, in the loamy region, are not the only territories where extreme events can

occur. In addition to the main valleys of the Gette, Geer, Mehaigne and Senne rivers, the

tributaries of the Sambre and the Meuse rivers have been affected by these phenomena.

The threshold of  40 mm.day-1 has  been highlighted as  the main triggering factor,  in

conjunction with a hazardous urbanization, especially downstream of large monoculture

crops.  Despite  the  incompleteness  of  the  database  acquired from press  archives,  the

temporal evolution of the number of flash flood cases shows a significant increase from

the 1990s. Finally, the vulnerability of the Walloon territory to flash flood hazard was
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highlighted  and  mitigation  strategies  have  been  developed  in  the  frame  of  the

recrudescence of extreme rainfall events.
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NOTES

1. Archives  and  availability  period  of  each  source  at  the  Royal  Library  of  Brussels:  Le  Soir

(1900-2013), La Meuse (1900-2013), La Libre Belgique (1918-2013), La Dernière Heure (1907-2013), Vers

l’Avenir (1918-2013), La Wallonie (1921-1950), Journal de Verviers (1940-1943), La Lanterne (1944-1950)

, La Légia (1940-1942), Mons-Tournai (1941-1942), Le Nouveau Journal (1941-1942), Province de Namur

(1942-1944),  Le  Quotidien  (1914-1915),  La  Région  de  Charleroi  (1915-1918),  L’Écho  de  Liège  (1915),

Journal du Borinage (1943), Journal de Namur (1940).

2. Web-based  archives:  La  Libre  Belgique  (2001-2013),  Le  Soir  (1995-2013),  La  Dernière  Heure

(2001-2013),  7sur7  (2008-2013),  L’Avenir  (2007-2013), RTL  (2008-2013),  RTBF  (2008-2013),  Le  Vif

(2011-2013), SudPress (2006-2013).

ABSTRACTS

Flash floods and muddy floods may cause severe human and material damage despite their small

spatial extent and low occurrence. In late May 2008, a major event has affected the area of Liège.

This  paper  describes  the  methodology  used  to  reconstruct  the  hydrosedimentological

parameters of the flood from the geomorphological evidences observed in the field. Bed load and

suspended  load  transport  rates  estimated  during  this  extreme  event  were  compared  to  the

average values observed in other Walloon rivers and more specifically in the Ardennes Massif.

The spatial distribution and the temporal evolution of the flash flood and muddy flood events are

then analysed across Wallonia based on several works compiling press archives since the early

twentieth  century.  The  biases  associated  with  this  type  of  historical  sources  and  the

consequences of flash floods and muddy floods on the vulnerability and the risk of flooding in

Wallonia are finally addressed. 

Les  crues  éclairs  et  les  coulées  boueuses,  malgré  leur  extension  spatiale  réduite  et  leur

occurrence peu fréquente, peuvent être à l’origine de dégâts importants tant sur le plan matériel

que sur le plan humain. Fin mai 2008, un événement majeur a affecté la région liégeoise.  Ce

papier décrit la méthodologie employée pour reconstituer, en milieu forestier, ses paramètres
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hydrosédimentologiques à partir des éléments géomorphologiques observés sur le terrain. Les

taux de transport de la charge de fond et de la charge en suspension au cours de cet événement

extrême sont comparés aux valeurs moyennes observées dans d’autres rivières wallonnes et plus

spécifiquement dans le massif  ardennais.  La répartition spatiale et l’évolution temporelle des

crues  éclairs  sont  ensuite  analysées  à  l’échelle  de  la  Wallonie  sur  base  de  plusieurs  travaux

académiques compilant l’ensemble des événements recensés dans la presse depuis le début du XX
ème siècle. Les biais liés à ce type de sources historiques sont abordés ainsi que les conséquences

des crues éclairs sur la vulnérabilité et le risque d’inondation soudaine en Wallonie. 

INDEX

Mots-clés: crue éclair, coulée boueuse, laisses de crue, reconstitution des débits, gestion des

risques d'inondation 

Keywords: flash flood, muddy flood, flood marks, discharge reconstruction, flood risk

management
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