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ABSTRACT

The addition of GridPro semi-structured, automated generation of grids for com-

plex moving boundaries for combustion engine applications and the Menter Shear

Stress Turbulent Transfer (SST) model are being developed by Los Alamos National

Laboratory. The software is called Fast, Easy, Accurate, and Robust Continuum

Engineering (FEARCE). In addition to improving the time and effort required to

build complex grid geometry for turbulent reactive multi-phase flow in internal com-

bustion engines, the SST turbulence model has been programmed into the Predictor

Corrector Fractional-Step (PCS) Finite Element Method (FEM) for reactive flow and

turbulent incompressible flow regime validation is performed. The Reynolds-Averaged

Navier-Stokes finite-element solver without h-adaption is used for validation of the

SST turbulence model on two benchmark problems in the subsonic flow regime: (1)

2D duct channel flow, and (2) a 2-D backward-facing step with an applied constant

heat flux on the bottom surface downstream of the single-sided sudden expansion

of the step. The 2D BFS using the newly installed SST FEARCE code yielded a

corresponding Xre = 6.655H vs. that as experimentally determined by Vogel and

Eaton [1] of Xrevogel = 6.66667H.
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Chapter 1

Introduction

Numerical modeling of turbulent reactive multi-phase flow in internal combustion

engines is a complex multi-scale problem. Adding to the difficulty of modeling the

applicable physics is the complex domain with moving immersed bodies and bound-

aries. A large aspect of modeling internal combustion engines rapidly is providing a

quality grid of the engine, and ideally be able to do this with a minimal amount of

expensive labor.

This manuscript will discuss new capabilities available in LANL codes, in partic-

ular the introduction of the Menter Shear-Stress Transport (SST) model [5] into the

the Fast Easy, Accurate and Robust Continuum Engineering (FEARCE) code. Also a

new grid capability is introduced that has an important emphasis placed on reducing

one of the most time-consuming components for the engine designer and combustion

researcher: the ability to generate a high-quality grid quickly. Using GridPro [6] for

its advanced meshing algorithm and automated grid generation increases quality and

reduces the time and labor needed to run complex engine simulations. The meshes

that can now be generated with GridPro benefit both the KIVA-4mpi parallel Finite

Volume engine modeling software and newly developed KIVA-hpFE Finite Element

code (FEARCE) which will include a Large eddy-simulation (LES) FEM turbulence

1



CHAPTER 1. INTRODUCTION 2

model, the existing k-ω two-equation turbulence model, and the newly developed SST

turbulence model.

The intricacies of implementing GridPro grid generation are shown in Appendix (B)

along with engine simulations using the grids. A large amount of success for this

work was due to the early implementation of GridPro for KIVA-4mpi and then

FEARCE LANL codes, both implementations and new capabilities are also shown in

Appendix (B).



Chapter 2

Literature Review

2.1 Background Introduction

The purpose of this chapter is to introduce a background to contemporary and his-

torical turbulence modeling and computational fluid dynamics (CFD). Following this

development with the particular background that is relevant to the separated flow, ad-

verse pressure gradient backward facing step geometry that has an applied a constant

heat-flux surface behind the single-sided sudden expansion.

2.2 Turbulence Modeling

The beginning of turbulence studies can be attributed to the time when Boussinesq

first introduced the eddy viscosity supplement to molecular viscosity in 1887 [7], fol-

lowed by Reynolds time averaging, then Prandtl included a mixing length hypothesis

helpful in solving the eddy viscosity problem in [8]. Among the core characteristics

of Prandtl’s initial contribution in 1904 was the revolutionary insight that the effects

of friction are somewhat negligible unless fluid is very close to the wall of the object

moving through the fluid, thus remedying D’Alembert’s hydrodynamic paradox of

1752 [9]. Prandtl later conceptualized that eddy viscosity is the proportionality fac-

3
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tor that describes the turbulent transfer of energy due to moving eddies, giving rise

to tangential stresses.

Developed herein, two two-equation models are are used in the FEM, one pre-

existing introduced by Wilcox [2] or rather more properly by Kolmogorov in 1942,

and the other that blends these two most popular models, that of Wilcox’s k-ω and k-

ε introduced by Menter [10]. Of the two-equation models k-ε is the most widely used

and focuses on aspects of turbulence modeling that affect turbulent kinetic energy.

The k-ε model is specifically tailored to resolve planar shear layers and recircu-

lating flows. A brief history leading up to the standard k-ε model would include the

Particle-in-Cell (PIC) method proposed by Harlow in 1957 [11] [12]. The success of

Harlow’s PIC method gave the early CFD community the ability to solve seemingly

unsolvable problems and paved the future for the Fluid-in-Cell (FLIC) [13], Marker-

in-Cell (MAC) [14], Implicit-Continuous-Fluid-Eulerian (ICE) [15], and SOLA and

Reactive flow codes [16] that would lead to the early numerical modeling of turbulence

with k-ε.

A brief history of the the k-ω two equation model begins with the turbulent length

scale from Kolmogorov in 1941 [17]. Kolmogorov is generally considered to be a

founding expert of modern turbulence theory. Kolmogorov provided the relationship

of length scale k1/2/ω̄ and time scale 1/ω̄ to the k-ω. The insight by Kolmogorov

alleviates the need of former knowledge of the flow to get a solution to the two

equation k-ω.

In 1994 Menter blended the more popular k-ε two-equation model with that of k-ω

to create what he called the Menter Shear Stress Transport model (SST) [10]. The k-ε

like k-ω is rooted in finding a way to avoid algebraically setting turbulent length scales.

Menter simply combined the two models, k-ω and k-ε, so that k-ω can be used in the

inner region local to the boundary layer and cleverly provides a switching mechanism

to apply k-ε further off in the free stream shear portion of the flow. The SST model [10]
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seeks to offset free-stream flow sensitivity and attempts to improve prediction of

adverse pressure gradients, something that could be deemed useful in combustion

engine modeling. To my knowledge the SST has not been applied to combustion

modeling applications. Many forms of SST exist ranging from the “standard” (SST)

model [10], the SST with Vorticity Source Term (SST-V) [18], SST from 2003 (SST-

2003) [19], SST with Controlled Decay (SST-sust) [20], SST with Controlled Decay

and Vorticity Source Term (SST-Vsust), SST with Rotation/Curvature Correction

(SST-RC) [21], and Hellsten’s Simplified Rotation/Curvature Correction (SST-RC-

Hellsten) [22]. Because of the various forms of the Menter SST model typical naming

conventions have adopted naming individual models as the base model (SST) with

the appended variant.

2.3 Convective Heat Transfer Downstream of a Back-

ward Facing Step

Rich flow physics can be garnered from the geometrical simplicity of a backward facing

step (BFS) [23]. Both experimental and theoretical investigations of backward-facing

step flow are often used to investigate a CFD turbulence models effectiveness. The

BFS produces an internally wall bounded flow with an adverse pressure gradient

consisting of a separating boundary layer and reattaching shear layer.

In 1983 Armaly et al. [23] investigated BFS flow using laser-doppler measurements

of velocity distribution and reattachment lengths were reported downstream for a

single BFS mounted in a 2D channel for Reynolds numbers (Re) between 70 < Re <

8000. Armaly found additional recirculation attachment locations downstream and

further reinforced prior investigations by [24], [25], and [26]. Armaly noted high aspect

ratio in the test section (1:36) was chosen specifically to ensure the incoming flow was

fully developed, yet the experimental results showed 2D characteristics at low and
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high Re values only (Re < 400 and Re > 6000). Within the nice 2D Re regimes,

Armaly solved the numerical steady differential equations for mass conservation and

momentum and showed meaningful comparative analysis to his experimental results;

leaving the regimes that exhibited strong 3D affects to later investigations.

In 1985, Vogel & Eaton [1] developed an experiment to extract useful thermal

transfer data from the bed of a backward facing step apparatus. Vogel & Eaton com-

bined heat transfer and fluid dynamic measurements in the separated and reattaching

boundary layer, with particular concern for near-wall regions. The Vogel & Eaton

study applied a constant heat-flux surface behind a single-sided sudden expansion to

produce Stanton number profiles as a function of Re and boundary-layer thickness

at the location of the separating shear-wall layer. The study by Vogel & Eaton fur-

ther emphasized how fluctuations in skin friction values controlled the heat (thermal)

transfer rate near the reattachment location, adding that the Reynolds concepts of

redeveloping boundary layer begin to display prevalence 2 to 3 step heights down-

stream of the reattachment location. The work of Vogel & Eaton in 1985 is also of

practical interest to the heat transfer and CFD engineer due to the implications a

large variance in local heat transfer coefficient can cause, but even more importantly

the substantial overall heat augmentation affects prediction of thermal loads near

shear reattachment areas [1].



Chapter 3

Continuum Equations for Fluids

The following are the conservative form of the governing equations for fluid flow

commonly used in CFD textbooks:

∂ρ

∂t
+∇ · (ρ~V ) = 0(3.1)

∂(ρu)

∂t
+∇ · (ρu~V ) = −∂P

∂x
+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ ρfx(3.2)

∂(ρv)

∂t
+∇ · (ρv~V ) = −∂P

∂x
+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ ρfy(3.3)

∂(ρw)

∂t
+∇ · (ρw~V ) = −∂P

∂z
+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ ρfz(3.4)

7
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(3.5)
∂

∂t

[
ρ

(
e+

V 2

2

)]
+∇ ·

[
ρ

(
e+

V 2

2

)
~V

]
=

ρq̇ +
∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
− ∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+

∂ (uτxx)

∂x
+
∂ (uτyx)

∂y
+
∂ (uτ zx)

∂z
+
∂ (vτxy)

∂x
+

∂ (vτyy)

∂y
+
∂ (vτ zy)

∂z
+
∂ (wτxz)

∂x
+

∂ (wτyz)

∂y
+
∂ (wτ zz)

∂z
+ ρ

∂(ρv)

∂t
+∇ · (ρv~V )

= −∂P
∂x

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ ρ~f ··· ~V

Equations (3.1), (3.2), (3.3), (3.4), and (3.5) describe the motion of fluid flow, and

one can assume density does not vary with pressure for an incompressible form [27].

Equations (3.1), (3.2), (3.3), (3.4), and (3.5) also state conservation laws of physics,

mass acting on a fluid is conserved (3.1), the time rate of change of momentum

equals the sum of the forces acting on the fluid (3.2), (3.3), and (3.4), and the time

rate of change of energy is equal to the sum of the rate of heat addition and work

done on the fluid (3.5). Equations (3.2), (3.3), and (3.4) are commonly referred to

as Newton’s second law of motion (or as Navier-Stokes equations), while equation

(3.5) is the first law of thermodynamics [27]. The governing equations (3.1), (3.2),

(3.3), (3.4), and (3.5) form a coupled system and remain one of the fundamental open

problems in non-linear analysis, being included in the Millennium Prize Problems by

the Clay Mathematics Institute [28]. In a proper derivation from conservation laws

of mass and momentum and principle assumptions relating the stresses to velocity

gradients, smoothness of the solution is assumed. There is no self-consistent model

of the Navier-Stokes equations, i.e., one that proves singularities in the solution do

not develop in finite time from smooth initial data with finite energy [28].



CHAPTER 3. CONTINUUM EQUATIONS FOR FLUIDS 9

3.1 Governing Equations

The governing relationships shown in equations (3.1), (3.2), (3.3), (3.4), and (3.5)

can be averaged in time to produce the Reynolds-Averaged Navier-Stokes equations

(RANS) [29]. The instantaneous equations can be represented with the addition of

extra terms that arise from the Reynolds decomposition. Reynolds decomposition is

a mathematical procedure that separates the expectation value from its fluctuations

in an attempt to represent turbulent stresses. A derivation would include the base in-

stantaneous momentum description which allows, with the derivation of the turbulent

momentum equations, an approach to satisfy the closure problem. To get equations

only containing the mean pressure and velocity the RANS equations must be solved

by modeling the Reynolds stress terms as a function of the mean flow. By modeling

the Reynolds stresses in this manner we can alleviate the need for referencing the

fluctuating terms of the velocity field.

3.1.1 Derivation of the Instantaneous Conservation of Mass

Equation

Conservative fields imply the restriction that a quantifiable amount of variable enters

a closed system and exits in a similar fashion. Mass consistency can be expressed

mathematically as:

(3.6)
∂Mv

∂t
=
∑
inflow

ṁ−
∑

outflow

ṁ

where the time derivative of mass is the mass flow rate denoted by ṁ, which is equal

to the density ρ, multiplied by a vector of velocity components ~V . For simplicity a

2D derivation follows that is easily expandable to 3D. The velocity vector ~V={u, v}T

has cartesian velocity components x and y. Using a control surface for the 2D deriva-
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tion, equation (3.6) can be thought as a summation of mass-inflow and mass-outflow

entering and exiting the domain. The equivalent statement to the total change in

mass flow rate is stated in equation (3.7).

(3.7)
∂ρ∆x∆y

∂t
= ρu∆y + ρv∆x−

[
ρu+

∂ρu∆x

∂x

]
∆y −

[
ρv +

∂ρv∆y

∂y

]
∆x

(3.8)
∂ρ

∂t
=
∂ρu

∂x
+
∂ρv

∂y
−
[
∂ρu

∂x
+
∂ρu

∂x

]
−
[
∂ρv

∂y
+
∂ρv

∂y

]
= −

[
∂ρu

∂x
+
∂ρv

∂y

]

The control area, similar to volume in 3D, is represented by ∆x∆y in equation (3.7).

By dividing out the appropriate quantity and taking the limit as ∆x∆y tends toward

dx and dy, we are left with equation (3.8). Equation (3.8) shows the mass flow

contributions from the x and y directions, into and out of the control surface from

ρu∆y and ρv∆x. The common representation of equation (3.8) in 3D cartesian

coordinates with vector notation is shown earlier in this chapter as equation (3.1).

Distributing the vector differential operator to the second term of equation (3.1) the

mass conservation equation is presented in a more familiar form as equation (3.9).

(3.9)
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ ρ

[
∂u

∂x
+
∂v

∂y

]
= 0

It is also common to represent the substantial derivative form of equation (3.9) as

Dρ/Dt+ρ∆ · ~V , where the substantial derivative Dρ/Dt is clearly equal to the first

three terms shown in equation (3.9).

3.1.2 Derivation of the Instantaneous Momentum Equation

Equations (3.2), (3.3), and (3.4) can be derived using the similar control volume

technique as in the previous subsection. Newton’s second law of motion states the

acceleration vector, a in F=ma is applied to any small piece of the fluid and as stated
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previously requires the use of a substantial derivative. Both pressure and viscous

stresses are relatable to surface forces acting on a fluid according to Newtons sec-

ond law in classical context. Newton’s second law results in a summation of forces

equal to the time rate of change of mass multiplied by the velocity vector with gra-

dients of fluxing momenta, body forces, stresses, and pressure summed to impart

their contributions. To conserve momentum, the momentum equation is balanced

and gives a resulting conservation law of momentum. The term shown in (3.10) is

responsible for the x-momentum leaving to the right of the control area and the term

(3.11) is responsible for the excess rate of momentum leaving the control area in the

y-direction.

(3.10)
∂(ρu2)

∂x
∆x∆y

(3.11)
∂(ρvu)

∂y
∆x∆y

Summing the components of fluxing momenta in the x-direction returns the momen-

tum flux flowing into the control element per unit area, as stated in equation (3.12).

(3.12) ρu2∆y + ρvu∆x−
([
ρu2 +

∂ρu2

∂x
∆x

]
∆y +

[
ρvu+

∂ρvu

∂y
∆y

]
∆x

)
=

−
[
∂ρu2

∂x
∆x∆y +

∂ρvu

∂y
∆y∆x

]

The forces that act on the control area additionally include a normal hydrostatic

force. This force must be included in addition to the normal stresses, τxx, the fluid

experiences during motion. The summation in the x-direction elicits pressure forces

which are accounted for in equation (3.13). Dividing both sides of equation (3.13)

by the area ∆x∆y forms this excess stress in addition to normal stresses. The ex-

cess stress is normal to the surface in the x-direction represented mathematically as
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∂(τxx)
∂x

∆x and likewise tangentially as ∂(τyx)

∂y
∆y. Gravitational body force affects are

accounted for by equation (3.14) with ρgx and ρgy being the x and y components

respectively.

(3.13) p∆y −
(
p
∂p

∂x

)
∆y = −∂p

∂x
∆x∆y

(3.14) ρ~F∆x∆y = (ρgx + ρgy)∆x∆y

By neglecting other external physical affects such as radiation pressure and then

equating terms, one can derive the momentum change per unit time for the x-

component, i.e., the momentum transport equation in the x-direction as equation

(3.15).

(3.15)
dρu

dt
∆x∆y +

(
∂ρu2

∂x
∆x∆y +

∂ρvu

∂y
∆y∆x

)
= −∂p

∂x
∆x∆y +

∂τxx
∂x

∆x∆y + ρgx∆x∆y

In 2D dividing the area through each side of equation (3.15) and taking the limit

as both ∆x and ∆y approach the infinitesimal steps dx, dy reduces equation (3.15)

to that of equation (3.16). Taking the partial derivative and rearranging terms in

equation (3.16) yields equation (3.17). The fourth term on the left hand side of

equation (3.17) is zero via the conservation of mass.

(3.16)
dρu

dt
+

(
∂ρu2

∂x
+
∂ρvu

∂y

)
= −∂p

∂x
+
∂(τxx)

∂x
+
∂(τyx)

∂y
+ ρgx
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(3.17) ρ
du

dt
+ ρ

∂ρu2

∂x
+ ρ

∂ρvu

∂y
+ u

(
− dρ

dt
+
∂ρu

∂x
+
∂ρv

∂y

)
= −∂p

∂x
+
∂(τxx)

∂x
+
∂(τyx)

∂y
+ ρgx

Equation (3.18) is the final form of the x-component of conservation of instantaneous

momentum. Equations (3.2), (3.3), and (3.4) constitute the more general cartesian

3D forms of (3.18) for the x, y, and z-components of the conservation of instantaneous

momentum. The 3D forms introduced in (3.2), (3.3), and (3.4) are derived similarly

with simple extension from the 2D derivation that was just performed, by including

the z-spatial gradient terms.

(3.18) ρ
du

dt
+ ρ

∂u2

∂x
+ ρ

∂vu

∂y
= −∂p

∂x
+
∂(τxx)

∂x
+
∂(τyx)

∂y
+ ρgx.

3.1.3 Stress and Strain Relationships in Fluids

The stress exerted on a fluid is related to the strain rate and for Newtonian fluids

this is a linear relationship stemming from the stress tensor provided in equation

(3.19). The partial derivative ∂uk
∂xk

sums the velocity derivatives over the index k and

is multiplied by (2/3µ− κ) defined as u
′

in equation (3.19).

(3.19) τij = −µ′ ∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)

The bulk viscosity is taken as zero, for ideal monotonic gases, therefore equation

(3.18) can be expressed in more detailed form as (3.20). For incompressible flows

mass conservation implies ∇~V = ∂u
∂x

+ ∂u
∂x

= 0, in 2D.

(3.20) ρ
du

dt
+ ρ

∂u2

∂x
+ ρ

∂vu

∂y
= −∂p

∂x
+ 2

∂

∂x
µ
∂ui
∂xj

+

∂

∂y
µ

(
∂u

∂y
+
∂u

∂y

)
− ∂

∂x
µ′
(
∂u

∂x
+
∂v

∂y

)
+ ρgx
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(3.21) ρ
∂~V

∂t
+ ρ

Vj
∂Vi
∂xj︷ ︸︸ ︷

~V (∇ · ~V ) = ρ~F −∇p−∇ · µ∇~V

Using vector notation the conservation of instantaneous momentum for an incom-

pressible fluid is shown in equation (3.21) and with the common substantial derivative

in (3.22)

(3.22) ρ
D~V

Dt
= ρ~F −∇p+∇ · (µ∇~V ).

3.2 Turbulent Flows and Reynolds Time Averag-

ing

The realistic modeling of fluid flow requires an explanation of turbulence. Turbulent

fluids are governed or approximated by complicated coupled systems of non-linear

partial differential equations. The inherently 3D nature of turbulence is visible in

fluid structures well known to be notoriously difficult to model. Topological fluid

dynamics are highly observed at the kinematic level where the common continuous

deformation of transported scaler and vector fields are prevalent [30], i.e., problems

where stirring and mixing occur. The regional locations of viscous pockets in ade-

quately high Reynolds number flows produces violent cascades of turbulent eddies.

For these appreciably high Reynolds number flows there exists instabilities in the

shear layer of the flow that are responsible for turbulent fluctuations. As result of

these turbulent fluctuations a cascade forms various length scale eddies. The smaller

eddies are responsible for the dissipation of turbulent kinetic energy and the larger

scale eddies are more likened to scales similar in length to that of the mean flow.

While the governing equations give rise to this turbulence, solving them directly is

another field called Direct Numerical Simulations (DNS).
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Reynolds was the first to derive the system of averaged turbulent-motion equations

in 1895 [29]. The Reynolds averaging of Navier-Stokes equations is a process of

separating the dynamical fields into slowly varying mean fields and rapidly changing

turbulent components [29]. Turbulence in the case of dynamical systems is theorized

to exhibit a single strange attractor that is fractal in structure [31]. The process

of time averaging transient turbulent information numerically is representable as an

average with some small error. Unfortunately, there is no way to find the analytical

value of an upper bound on this error. By splitting the instantaneous variable of

interest into the constitutive mean and fluctuating components, i.e.,
∂(ui+u

′
i)

∂xi
= 0.

In summary, the observed behavior of turbulent conditions exhibit period dou-

bling behavior, i.e., chaotic motion, thought to only have one strange attractor [32],

although this is yet to be proven. Solving turbulent systems ellicit the problem that

the present determines the future, but the present does not always dictate the future

in a non-chaotic way [33]. In response the engineer can choose alternative methods

to solve turbulent systems, such as the solving the RANS equations. The equations

of motion for cartesian coordinates representing an incompressible fluid, the RANS

set of equations, are shown in (3.23), (3.24), and (3.25).

(3.23)
∂ρ

∂t
+
∂ρui
∂xi

= 0

(3.24)
∂ρui
∂t

+
∂ρuiuj
∂xj

=
∂

∂xj

(
µ
∂sij
∂xj

)
− ∂p

∂xj
− ∂τij
∂xj

(3.25) ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= −∂P
∂xi

+
∂

∂xj
(µsij − ρu′iu′j)



CHAPTER 3. CONTINUUM EQUATIONS FOR FLUIDS 16

Equation (3.25) is the incompressible form of the momentum equation where sij

is the strain rate tensor that accounts for the affects of molecular viscosity defined in

equation (3.26) and the Reynolds stress tensor τij defined by equation (3.27).

(3.26) sij ≡
(
∂ui
∂xj

+
∂uj
∂xi

)

(3.27) τij ≡ ρuiuj = ρ(ūi + u′i)
(
ūj + u′j

)
= ρ
(
ūiūj + ūiu′j + u′iūj + u′iu

′
j

)
=

ρ
(
ūiūj + u′iu

′
j

)
The system of equations now has 6 new unknowns introduced by the addition of the

Reynolds stress tensor. For the 3D system there are now 10 unknowns. The closure

problem arises from the introduction of the Reynolds stress tensor. Two-equation

turbulence models take higher order moments to allow for closure coefficients, deter-

mined by analysis, to close the system. Considering the turbulent kinetic energy and

taking the trace of Reynolds stress gives the form of equation (3.28). The turbulent

viscosity term, µt = ρcuk
2/ε is introduced where ε is the rate of turbulent dissipation.

A full derivation is not included but is given by time averaging the moment of velocity

of the governing equations and subtracting the kinetic energy of the mean flow, this

leaves only the turbulent kinetic energy.

(3.28) τij ≡ µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δijk

The transport of turbulent kinetic requires terms that both produce and dissipate

turbulent effects. The Boussinesq eddy viscosity conjecture of 1887 [34], states that

the momentum transfer caused by turbulent eddies can be modeled with an eddy

viscosity and effectively the Reynolds stress tensor is proportional to the trace-less

mean strain rate tensor, equation (3.29). Equation (3.30) now assumes all velocities
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are averaged, except where noted, and c2 is a closure coefficient. The production

term Pk in (3.30), is given by (3.31). The turbulent diffusion is Dk = −ρµt
σk

∂k
∂xj

and

ε = µ
∂u
′
i

∂xj

∂u
′
i

∂xj
. The units of turbulent kinetic energy are length squared over time

squared (l2/t2), and the units for specific dissipation are length squared over time

cubed (l2/t3).

(3.29) τij =
2

3
Kδij − 2µsij

(3.30) ρ
∂~k

∂t
+ ρ(~u · ∇)~k = c2µt∇2~k + ~Pk −∇ ~Dk − ~ε

(3.31) Pk = τij
∂ui
∂xj

=

[
µt

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− δij

2

3
ρk

]
∂ui
∂xj

3.2.1 Two-Equation Shear-Stress Transport Closure Model

The improved Menter two-equation turbulence model or improved two-equation k-ω

turbulence model [5] introduced the new Baseline (BSL) model. The BSL model

was designed to give results similar to Wilcox k-ω without the strong dependency on

arbitrary free-stream values [5]. The BSL model is identical to that of the Wilcox

k-ω in the innermost 50% of the boundary layer and changes gradually to the Jones-

launder k-ε model [35] in a blended k-ω formulation closer to the boundary-layer

edge [5]. The second version of the model Menter introduced is based upon the BSL

model, the SST model, and has the additional ability to account for the transport of

the principal shear-stress in adverse pressure gradient boundary layers [5].

The original Jones-launder k-ε is transformed into the k-ω formulation. The dif-

ference between the original Jones-launder k-ε and the k-ω model is the additional

cross diffusion terms appear in the ω equation and that closure constants are differ-
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ent. Equations (3.32) and (3.33) are the original formulation of the k-ω model and

equations (3.34) and (3.35) are the transformed k-ε equations. Equations (3.32) and

(3.33) are multiplied by a blending function F1 and equations (3.34) and (3.35) are

multiplied by (1−F1) and the corresponding equations of each set are added together

to yield the new model, equations (3.36) and (3.37).

(3.32)
∂ρk

∂t
+
∂ρujk

∂xj
= Pk − β∗ρωk +

∂

∂xj

[
(µ+ σk1µt)

∂k

∂xj

]

(3.33)
∂ρω

∂t
+
∂ρujω

∂xj
= γ1Pω − β1ρω

2 +
∂

∂xj

[
(µ+ σω1µt)

∂ω

∂xj

]

(3.34)
∂ρk

∂t
+
∂ρujk

∂xj
= Pk − β∗ρωk +

∂

∂xj

[
(µ+ σk2µt)

∂k

∂xj

]

(3.35)
∂ρω

∂t
+
∂ρujω

∂xj
= γ2Pω − β2ρω

2 + 2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[
(µ+ σω2µt)

∂ω

∂xj

]

(3.36)
∂ρk

∂t
+
∂ρujk

∂xj
= Pk − β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]

(3.37)
∂ρω

∂t
+
∂ρujω

∂xj
= γPω−βρω2 +2ρ(1−F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[
(µ+σωµt)

∂ω

∂xj

]

The equations (3.32) through equation (3.37) reference the Lagrangian derivative

which is not identical to Menter’s original paper [5], as his paper suffered typos. The

equations (3.32) through equation (3.37) are been shown above in proper conservation

form, this is consistent with Wilcox’s versioning [2]. A blending function Φ is defined

in equation (3.38), where Φ1 ≡ is any constant in the original model, i.e., (σk1 , ...),
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Φ2 ≡ (σk2 , ...) being any constant in the transformed model, and Φ ≡ (σk, ...) any

constant in the new model.

(3.38) Φ = F1Φ1 + (1− F1)Φ2

Equation’s (3.39), (3.40), (3.41) follow similarly to previous and the turbulent eddy

viscosity is computed from equation (3.42).

(3.39) P = τij
∂ui
∂xj

(3.40) τij = µt

(
2Sij −

2

3

∂uk
∂xk

δij

)
− 2

3
ρkδij

(3.41) Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

(3.42) µt =
ρα1k

max(α1ω,ΩF2)

The set of constants corresponding to the Wilcox equations are, Set 1 (Wilcox):

σk1 = 0.5, σω1 = 0.5, β1 = 0.0750, β∗ = 0.09, κ = 0.41, γ1 = β/β∗ − σk2κ2/
√
β∗ and

Set 2 (Jones-Launder): σk2 = 1.0, σω1 = 0.856, β2 = 0.0828, β∗ = 0.09, κ = 0.41,

and γ2 = β/β∗ − σω2κ
2/
√
β∗. Each of the constants is a blend of an inner and outer

constant, blended with equation (3.38).

The additional functions are provided in equations (3.43) through (3.47), where

ρ is the density, νt = µt/ρ is the turbulent kinematic viscosity, and µ is the molecular

dynamic viscosity. Of particular interest and one of the more difficult aspects of

integrating the SST model into an FEM code, is d the distance from the field point
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to the nearest wall used in equations (3.43) through (3.47).

(3.43) F1 = tanh(arg4
1)

(3.44) arg1 = min

[
max

( √
k

β∗ωd
,
500ν

d2ω

)
,

4ρσω2k

CDkωd2

]

(3.45) CDkω = max

[
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

]

(3.46) F2 = tanh(arg2
2)

(3.47) arg2 = max

(
2

√
k

β∗ωd
,
500ν

d2ω

)

Here, Ω =
√

2WijWij is the vorticity magnitude, with Wij defined in (3.48) below.

(3.48) Wij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)

The boundary conditions are implemented the same as the existing k-ω and will be

shown in the following sections herein that develop the PCS solution method.

3.2.2 Turbulent Energy Transport

In computational fluid dynamics the turbulent kinetic energy (TKE) is the mean

kinetic energy per unit mass associated with the eddies that develop under turbulent

conditions [36]. Assuming incompressible flow the TKE equation is given in (3.49). It

is common to define a variable k, the average fluctuating kinetic energy per unit mass.

Each term in equation (3.49) has a distinct role in the overall kinetic energy balance.
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It is important to understand which mechanisms are relevant to certain flow regimes.

Similar to how the transport of fluctuating momenta influences the transport of mean

momentum, so too does the mean flow feed kinetic energy to the turbulent field [37].

(3.49)

∂k

∂t︸︷︷︸
Local

derivative

+ uj
∂k

∂xj︸ ︷︷ ︸
Advection

= − 1

ρo

∂u′ip
′

∂xi︸ ︷︷ ︸
Pressure
diffusion

− 1

2

∂u′ju
′
ju
′
i

∂xi︸ ︷︷ ︸
Turbulent
transport

+ ν
∂2k

∂x2
j︸ ︷︷ ︸

Molecular
viscous

transport

−u′iu′j
∂ui
∂xj︸ ︷︷ ︸

Production

− ν ∂u
′
i

∂xj

∂u′i
∂xj︸ ︷︷ ︸

Dissipation

− g

ρo
ρ′u′iδi3︸ ︷︷ ︸

Buoyancy flux

Conservation of energy is commonly described by equation (3.50), relating the time

rate of change of energy to work done on the system, the rate of advected energy

through the boundaries, and the diffused energy into the system via molecular dif-

fusion or conduction: system, in this description is referring to fluid control area or

volume in 2D or 3D, respectively.

(3.50) dĖi = dẆ + dĖc + dĖd

3.2.3 Derivation of the Enthalpy Transport Equation

Summing contributions into and out of the control volume, in the x-direction from

internal energy, kinetic energy, body forces, pressure, heat flux or radiation energy

density changes, advection, and stress forces, similar to the derivation of the momen-

tum transport equation, one can derive an equation for the total enthalpy or energy

transported into and out of the control volume [38]. The net rate of internal energy

flowing into the control volume is equal to u∂ρe
∂x

+ u∂ρe
∂y

. Equation (3.51) shows the
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total change in energy flux in the control volume.

(3.51)

(∂uρ(e+

(u2+v2)/2︷︸︸︷
V 2

2
)

∂x
+
∂vρ(e+ V 2

2
)

∂y

)
=
∂uiρ(e+ V 2

2
)

∂xi
=
uiρe

∂xi
+
∂uiρ

V 2

2

∂xi

Because the work done on the fluid includes pressure forces, body forces and stress

forces the rate of work on the control volume is given by equation (3.52). The rate

of stress forces contributing to work done on the fluid acting in the direction normal

to the surface area of the volume are shown in tensor form as equation (3.52) and

similarly in the tangential direction by equation (3.53). The rate of work due to stress

is incorporated into the dissipation term in equation (3.49) as shown in (3.54), and

for a Newtonian fluid in equation (3.55).

(3.52) −
(
∂(pu)

∂x
+
∂(pv)

∂y

)
= −

(
u
∂p

∂x
+ v

∂p

∂y

)
−
(
p
∂u

∂x
+ p

∂v

∂y

)

(3.53) − ∂(uiσijδij)

∂x
= −∂(uσxx)

∂x
− ∂(vσyy)

∂x

(3.54) φ = σij
∂ui
∂xj

= σxx
∂u

∂x
+ σxy

∂u

∂y
+ σyx

∂v

∂x
+ σyy

∂v

∂y

(3.55) φ = 2µ

(
∂u

∂x

)2

+ 2µ

(
∂v

∂y

)2

+ µ

(
∂u

∂y
+
∂v

∂x

)2

+

(
β − 2

3
µ

)(
∂u

∂x
+
∂v

∂y

)2

The heat flux diffused per unit area into the control volume is −
(
∂q̇x
∂x

+ ∂q̇y
∂y

)
and the

rate of work done due to gravitational body force is ρf · V dxdy = ρugx + ρvgy. By

Fourier’s Law for heat flux, i.e., q̇ = κ∂T
∂x

, and adding equations (3.51),(3.52),(3.53),(3.54),

(3.55), while neglecting radiation energy density, and the divergence of radiation flux
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one derives the transport total energy equation (3.56). Applying the rule for taking

derivatives of a product to the second term on the right side of equation (3.56) and

applying mass conservation the total energy equation is (3.57).

(3.56)
dρEt
dt

= −
(
∂ρe

∂x
+ v

∂ρe

∂y

)
−
∂uρV

2

2

∂x
−
∂vρV

2

2

∂y
+

∂

∂x

(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂x

)
− p
(
∂u

∂x
+
∂v

∂y

)
−
(
u
∂p

∂x
+ v

∂p

∂y

)
+ φ+ ρugx + ρvgy

(3.57) ρ
DEt
Dt

+ p

(
∂u

∂x
+
∂v

∂y

)
+

(
u
∂p

∂x
+ v

∂p

∂y

)
=

∂

∂x

(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂y

)
+ φ+ ρugx + ρvgy

With the thermodynamic property for enthalpy defined as the internal energy of the

system plus the product of pressure and volume h = e + p/ρ [39] the rate of total

enthalpy change per unit time is shown as equation (3.58). Applying the relationship

for mass consistency, Dρ/Dt = ρ∂vi/∂xi, to equation (3.58) we get the enthalpy

equation (3.59).

(3.58)
Dh

Dt
=
De

Dt
− Dp

Dt
+

p

ρ2

Dp

Dt

(3.59) ρ
Dh

Dt
=

[(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂y

)]
+
∂p

∂t
+ φ+ ρugx + ρvgy

From the symmetry of second derivatives and application of Euler’s reciprocity rela-

tion to the thermodynamic characteristic functions [38], Maxwell derived his relation

dh = cpdT + (1/ρ)(1− βT )dp where β is the coefficient of thermal expansion we can

derive equation (3.60). Equation (3.60) can be simplified to equation(3.61) assuming

incompressible flow using the ideal gas law, h = ρcpT , providing the final form of the
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conservation of energy equation (3.62).

(3.60)
cpdT

dt
+
βT

ρ

dp

dt
=

(
u
∂e

∂x
+ v

∂e

∂y

)
+

1

ρ

[(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂y

)]
+

1

ρ

(
u
∂p

∂x
+ v

∂p

∂y

)
+

1

ρ
φ

(3.61) ρcp
∂T

∂t
+ ρcpuj

∂T

∂xj
+ (1− βT )

[
∂P

∂t
+ uj

∂P

∂xj

]
=

∂

∂xj

(
κ
∂T

∂xi

)

(3.62) ρcp
∂T

∂t
+ ρcpuj

∂T

∂xj
=

∂

∂xj

(
κ
∂T

∂xi

)

3.2.4 Derivation of the Turbulent Energy Transport Equa-

tion

The instantaneous rate of change for thermal energy of an incompressible fluid pro-

vided in equation (3.62) can be separated into mean and fluctuating components sim-

ilar to the derivation of the momentum equation [40]. Upon averaging an equation

for thermal transport can shown in equation (3.63) where we introduce the turbulent

heat flux as the second term on the right hand side. The representation of turbulent

heat flux is provided in similar manner to that of the turbulent inertial term shown in

equation (3.64), where εh is defined as the turbulent eddy viscosity for enthalpy trans-

port and Prt is introduced as the turbulent Prandtl number [38]. Plugging equation

(3.64) into (3.63) and assuming averaged values for temperature and velocity we can

drop the average over bar notation to get equation (3.65).

(3.63) ρcp
∂T̄

∂t
+ ρcpuj

∂T̄

∂xj
=

∂

∂xj

(
κ
∂T̄

∂xi

)
− ∂T̄ ū′

∂xi
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(3.64)
∂T̄ ūj′

∂xj
= εh

∂T̄

∂xj
=

µt
Prt

∂T̄

∂xj

(3.65) ρcp
∂T

∂t
+ ρcpuj

∂T

∂xj
=

∂

∂xj

((
µt
Prt

+ κ

)
∂T

∂xi

)

(3.66)
de

dt
= −

(
u
∂e

∂x
+ v

∂e

∂y

)
+

1

ρ

[
∂

∂x

((
µt
Prt

+ κ

)
∂T

∂x

)
+

∂

∂y

((
µt
Prt

+ κ

)
∂T

∂y

)]
+

1

ρ

(
u
∂p

∂x
+ v

∂p

∂x

)
+

1

ρ
φ

Equation (3.65) is the final form of the turbulent energy transport equation, and

equation (3.66) is the equivalent internal energy only equation.

3.3 The Finite Element Method (FEM)

The finite element method (FEM) is a proven numerical method for solving many

types of problems in engineering and useful for application to mathematical methods

in physics. The FEM segments a domain into elements, then connects the elements

with nodes which result in solvable system of simultaneous algebraic equations. The

term finite in FEM is in reference to the number of degrees of freedom, which is

-finite- unlike the continuums infinite representation. The FEM is rooted in appli-

cations to solid mechanics problems, yet the FEM process for applications to fluid

dynamics began with the mathematical development of the weighted-residual method

(WRM) form of variational statements to non-linear equations describing fluid flow.

It is the relationship that arose from the WRM that the foundational set of math-

ematics the FEM relies on began. The WRM was by introduced by Galerkin in

1915 [41]. The FEM is widely regarded as clever and works well, producing ac-

curate solutions to difficult partial differential equations. This section outlines the
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basics of WRM and the specifics of the Galerkin method with the specific application

to solving Navier-Stokes equations for viscous incompressible fluid flows in 3D. The

base LANL FEARCE code allows for h-adaptation and runs in parallel with multi-

ple processors using message-passing-interface (MPI) on decomposed computational

domains. To simplify the implementation of the SST turbulence model into the ex-

isting FEARCE code a serial version without h-adaptation was was used. FEARCE

employs a Petrov-Galerkin up-winding time increment adjustment for numerical sta-

bility and Legendre integration that will be developed later in subsequent sections.

What follows is the Galerkin WRM FEM solution of the Navier-Stokes and species

transport equations for turbulent incompressible fluid flows. Specifically, the time de-

pendent Poisson formulation for the pressure form if the governing equation is solved

without h-adaptation.

3.3.1 The Weighted Residual Method

The WRM, norms and bilinear formulation are developed in this section.

Often solutions to structural mechanics problems often rely on the Raleigh-Ritz

variational process that introduces the functional. The functional is a minimization

of energy applied where the integrand is the potential for stress [42]. The WRM also

includes another process that finds the orthogonal projection of the residual equation.

Functional analysis includes the subset of these type of projection techniques with

goal of WRM to find an easy method for developing the variational statement, or

often called weak statement.

Typically FEM solutions to second order partial differential equations start with

an application of Green’s theorem [43] which gives a way to produce the weak formula-

tion of the governing residual equation by reducing a second order partial differential

equation to a first order equation. Depending on the problem, Green’s theorem relates

a line integral around a closed curve and a double integral over some plane region
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bounded by the closed curve or volume integrals involving the Laplacian to surface

integrals. For someone who is versed in field equations, vector calculus or has worked

in applied electrodynamics Green’s contributions are very familiar. However, it is

interesting to note Green’s original essay [43] did not actually derive Green’s Theo-

rem, rather he derived a form of the divergence theorem and only later did Cauchy

actually publish, “Green’s theorem”, albeit without proof [44].

Consider a problem domain that is a discrete system. Then the FEM seeks to min-

imize the residual error over the domain of this discrete system. Using a Taylor series

to expand the heat conduction equation with constant conductivity with an internal

heat source in an isotropic material we can derive concepts needed for WRM. The

residual R is shown in (3.67) for the heat equation. The approximated temperature

can be represented by the function T̂ shown in (3.68) as a polynomial expansion of

order n. The terms Ni and Ti in equation (3.68) are the Galerkin weights and nodal

values of the trial temperature, respectively.

(3.67) R(T̂ , xi) ≡ −K∇2T̂ −Q

(3.68) T̂ (xi) =
n∑
i=1

TiNi

The FEM seeks to minimize equation (3.67) over the domain [45]. Equation (3.67)

is multiplied by a weighting function, Wi so that on average it will be zero when

integrated over the domain. Equation (3.69) shows the integral of the inner product

of the weighting function and residual over the domain Ω which is defined as a Hilbert

space projection.

(3.69)

∫
Ω

Wi ·R(T̂ , xi)dΩ = 0
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In the orthogonal projection the Galerkin approximation is a weak formulation

which can be stated mathematically as P : find u ∈ V , such that a(u, v) = f(v),

∀v ∈ V , where V is a Hilbert space, a(·, ·) is an inner-product in V , and f(·) is a

continuous linear form in V . The problem can be stated for computational purposes

as the need to discretize the continuous problem P to a finite dimensional problem.

In this development P would be the heat equation and on a subspace of dimension

N : Vh ⊂ V , and the Galerkin WRM restricts P to Vh, and leads to a finite dimensional

problem Ph : to find uh ∈ Vh, such that a(uh, vh) = f(vh), ∀ uh ∈ Vh ⊂ V . There

is an important convergence method built into equation (3.69). The convergence

method can be seen by letting Vh → V increase the dimension N of Vh, such that

the convergence of Ph → P would be expected to produce the optimal approximation

to P . Therefore, equation (3.69) can be stated in more general mathematical terms

as a(u − uh, h) = 0,∀uh ∈ Vh. This implies the approximation uh, often denoted by

a hat (û), is nothing more than the orthogonal projection of u on to the subspace

Vh with respect to the inner-product a(·, ·). The FEM solution uh ∈ Vh ⊂ V is

the projection of u ∈ V in the bilinear form a onto the subspace Vh and is because

of this, the optimal solution approximation of u in Vh. This makes uh the optimal

approximation of u because ||u − hh||a = minvh∈Vh||u − vh||a is the closest distance

wherein the energy norm is ||u||a =
√
a(u, u).

The Hilbert space as defined in equation (3.69) is a complete inner-product vec-

tor space and as such includes piecewise differentiable functions on the order of the

weights, W . In other words when the integrand of equation (3.69) is set to zero it is

an orthogonal projection of the residual that seeks to find the values of T that meet

satisfy the equivalence statement. When equation (3.69) is applied over a domain

that is discretized into finite control volumes the resulting set of algebraic equations

are solved for the unknown variables, for the heat equation example these would be

the values of T and the nodes of the {Ti}.
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3.3.2 Error and Convergence Estimations (FEM)

The error and convergence estimations of the inner product projections of equation

(3.69) are calculated using a vector space of functions equipped with a norm that

is a combination of Lp-norms of the given function and its derivatives up to some

specified order referred to as a Sobolev space [46]. In the generalization of the concept

of a derivative of a function, the weak derivatives are understood to make the space

complete, a Banach space. Sobolev spaces are used in the FEM to define function

spaces with derivatives involving integral forms such that sufficiently many derivatives

can be used for some application domain. The Sobolev space of order m consists of

the functions that are square integrable, e.g, if there is no derivative then a relevant

Sobolev space would be H0(Ω) = L2(Ω). The functions that are belonging to L2(Ω)

including their partial derivatives to order m that have an inner product are also

included in this Sobolev space. This implies the Sobolev spaces are subsets of the

Hilbert spaces [47], Hm(Ω) ⊂ L2(Ω).

The Sobolev spaces can be defined mathematically as in equation (3.70). The

derivative terms Dαu in (3.70) are the weak derivatives or variational derivatives,

while the Sobolev inner product space is defined by equation (3.71) and subspace

of the Sobolev space Hm
o (Ω) defined by equation (3.72). The Sobolev space Hm

o (Ω)

defined by equation (3.72) contains derivatives that vanish on the boundaries found

in boundary value problems commonly solved for momentum and heat transfer prob-

lems. Equation (3.72) allows for semi-norms commonly associated with weak topol-

ogy. Poincare’-Friedrichs inequality [48] provides the equivalency of norms in the sub-

spaces Hm
o (Ω) and Hm(Ω) [45] as shown mathematically in equation (3.73) where

the semi-norm | · |2m is defined as
∑
|a|=m

∫
Ω
|Dαu|dΩ and the norm, || · ||2L2 is de-

fined as ||u||2Ho = ||u||2L2 =
∫

Ω
u2dΩ with C being dependent on the discretization of

the domain Ω along with the curvature of the exact solution and the degree of the
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polynomial interpolation [45].

(3.70) Hm(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) ∀ α such that |α| ≤ m}

(3.71) (u, v)HM =

∫
Ω

∑
|α|≤m

(Dαu)(Dαv)dx ∀ u, v ∈ Hm(Ω)

(3.72) Hm
o (Ω) = {u ∈ Hm(Ω) : u = 0 ∈ Γ}

(3.73) ||u||2L2(Ω) ≤ C|u|2m

To find the exactness of an approximated solution mathematical procedures must

be employed as part of variational methods with the associated norms to determine

the exactness of a solution. The solution to any projection is as exact as the polyno-

mial’s interpolation will allow [45]. For example, the exactness of the equation 3.67

and it’s bilinear representation are defined by the norm ||T − T̂h||H0 ≤ chp, where c

is a constant dependent on the domain, h is the spacing, length or size of an element,

and p is the order of the approximating polynomial.

3.3.3 Galerkin Method of Weighted Residuals

By choice the interpolating functions can be made to equal the weight as in equa-

tion (3.74), a process referred to as the Galerkin weighted residual method (WRM).

Choosing the weights to equal the interpolating functions in this way allows for one

set of basis functions. The problem domain is integrated over the integral equations



CHAPTER 3. CONTINUUM EQUATIONS FOR FLUIDS 31

particular to the elements comprising the domain, producing a system of equations.

(3.74) Wi = Ni

Using Green’s theorem we can show the variational form of the integral equations

that weaken the original heat equation example into first order differentials, equation

(3.75). Surface fluxes are expressed automatically by this process, as shown in equa-

tion (3.76), where the flux of energy (q) is passed through the boundary surfaces of

the domain. The first term on the left hand side of equation (3.75) is the bilinear

form of the governing equation and the inner product it produces allows for the de-

termination of a weak statement that includes the surface fluxes at the boundaries,

equation (3.77).

(3.75)

∫
Ω

∂Wi

∂xi

(
k
∂T̂

∂xi

)
dΩ−

∫
Ω

WiQdΩ +

∫
Γ

Wi

(
− k∂T̂

∂n

)
dΓ = 0

(3.76) q =

∫
Γ

Wi

(
− k∂T̂

∂n

)
dΓ

(3.77) b(T,W ) =

∫
Ω

∂Wi

∂xi

(
k
∂T̂

∂xi

)
dΩ

Four popular textbooks used to introduce the Galerkin WRM can be outlined. The

first by Reddy [49], makes use of the weighted residuals via variational calculus and

development of the strong to weak formulation, but seems to lack some important as-

pects of WRM and there is no clear connection made between direct stiffness methods,

shape function utilization and WRM. Logan [50], develops a method of analysis using

sparse explanation of WRM and similar to Reddy does not draw clear connections

to shape function utilization and limits the problem scope to 1D bar elements. Two
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series of texts by Pepper and Heinrich, an introductory text [51], and an intermediate

text [52], do well in developing a presentation of the WRM and Galerkin formulation,

trial and test function spaces, error estimates and the stability analysis necessary for

applications to fluid flow and heat transfer problems.

3.3.4 FEM Computational Space: Global Coordinates and

Natural Coordinates

The weakened derivative form of the dependent variable still requires the choice of an

appropriate weight function. The first order Lagrangian interpolating polynomial can

be used as the eigenfunction, and the process of interpolating functions and relating

the natural coordinates to the computational space follows in this section. Using nor-

malized transformations for interpolating functions along with the approximation of

the Galerkin WRM also requires a choice in elements. Isoparametric elements or brick

rectangular elements offer advantages over triangular elements, but can be restrictive

in application. To build quadrilateral elements that can handle curved boundaries,

one must overcome two critical difficulties [52] 1) finding shape functions for general

quadrilateral elements in a global frame of reference, because the shape functions will

no longer be bilinear and 2) integrating over arbitrary quadrilateral regions. These

two difficulties can be overcome by using transformations of coordinates. The amazing

uniqueness FEM offers is that coordinate transformations can be performed locally

on arbitrary geometries, but we will also need numerical integration to do so. The use

of numerical integration is necessary because the integrals found in the weak WRM

are no longer simple polynomials [52]. The linear system of equations is assembled

from individual elements in the problems geometric domain, which is transformed to

an element of normalized length in the computational domain. A one to one and

onto mapping is performed between the geometric and computational domain. This

transformation allows one to use generic interpolating functions, there are commonly
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referred to as shape function in the FEM. The shape functions for isoparametric

tri-linear hexahedral elements are shown in equation (3.78). The derivatives of the

shape functions are shown in equation (3.79), and are obtained by simple application

of derivative rules. The derivatives of a global quantity in the computational domain

can be found from the shape functions and a matrix of all first-order partial deriva-

tives, the Jacobian, equation (3.80). The Jacobian and it’s application are shown in

equation (3.81).

(3.78)



N1

N2

N3

N4

N5

N6

N7

N8



=
1

8



(1− ξ)(1− η)(1− ζ)

(1 + ξ)(1− η)(1− ζ)

(1 + ξ)(1 + η)(1− ζ)

(1− ξ)(1 + η)(1− ζ)

(1− ξ)(1− η(1 + ζ)

(1 + ξ)(1− η)(1 + ζ)

(1 + ξ)(1 + η)(1 + ζ)

(1− ξ)(1 + η)(1 + ζ)



(3.79)
∂Ni

∂ξ
=
∂Ni

∂xj

∂xj
∂ξ

δij

(3.80) J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ
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(3.81)


∂
∂ξ

∂
∂η

∂
∂ζ

 = J


∂
∂x

∂
∂y

∂
∂z


The global and computational domain derivatives of a function are given by equation

(3.82). Equation (3.82) is a one-to-one and onto the natural coordinate domain, and

notably a non-singular transformation. Each element and that elements correspond-

ing derivatives of variables, otherwise known as trial functions in the global domain,

are shown in equation (3.83), and the inverse Jacobian is shown in equation (3.84).

(3.82)


∂Nj
∂ξ

∂Nj
∂η

∂Nj
∂ζ

 =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ




∂Nj
∂x

∂Nj
∂y

∂Nj
∂z



(3.83)


∂f
∂x

∂f
∂y

∂f
∂z

 = J−1


∑
fi
∂Nj
∂ξ∑

fi
∂Nj
∂η∑

fi
∂Nj
∂ζ



(3.84) J−1 =
1

|J|


∂x
∂ξ
− ∂y

∂ξ
∂z
∂ξ

−∂x
∂η

∂y
∂η
− ∂z

∂η

∂x
∂ζ
− ∂y

∂ζ
∂z
∂ζ


3.3.5 Numerical Integration

The nodes that comprise the computational domain are sampling points for integra-

tion. The transformation to a normalized computational domain and use of Gauss-

Legendre quadrature for numerical integration is applied to the integral equations [51].
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Integration is commonly referred to as quadrature in 1D and cubature for higher di-

mensions, FEM common terminology is the use of quadrature to refer to numerical

approximations. The limits are not changed and in 3D the general integration is per-

formed by the algorithm presented in equation (3.85), where wi are the Gauss weights

evaluated at Gauss points ξ, η, ζ. In 3D eight weighting points are applied and higher

accuracy is possible by use of more integrating points.

(3.85)

∫ 1

−1

∫ 1

−1

∫ 1

−1

f(ξ, η, ζ)|J|dξ =
n∑
i=1

n∑
i=1

n∑
i=1

wiwjwkf(ξ, η, ζ)J(ξ, η, ζ)

It should be noted the use of isoparametric elements is essential to making the FEM a

useful numerical tool. Because the transformations are local, i.e. element-by element

they free one from having to deal with the domain geometry globally and allow the

discretization of a geometry with any degree of complexity.



Chapter 4

Predictor Corrector Split (PCS)

Solution Method

A Predictor-Corrector Split (PCS) projection method in a FEM frame work has been

developed for application to combustion modeling, Carrington [53]. The software and

the algorithms the software uses are part of the newly invented LANL KIVA devel-

opment code named Finite Elements for Accurate, Robust, Continuum, Engineering

(FEARCE). FEARCE is combined with KIVA spray and chemistry models and uses

a moving marker Arbitrary-Lagrangian Eulerian (ALE) type algorithm, and is con-

sidered the next version of software from LANL in a long history of codes dating back

to the 1980’s. The FEARCE code allows for both h-adaptation and parallel execution

on decomposed computational domains. The specifics of h-adaptation and parallel

execution or compressible solver options included in the FEARCE code suite are not

included here, rather implementation of the SST turbulence model that has been

added to the existing and installed k-ω and Large-Eddy Simulation (LES) turbulence

models will be explained and developed. The serial PCS solution method for tur-

bulent reactive incompressible flow regimes and the newly installed SST turbulence

model using the Navier-Stokes solver follows in subsequent sections of this chapter.

36
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[53]

The PCS solver formulation follows similarly to two other general algorithm for-

mulations for incompressible flow by Zienkiewicz and Codina [54] and Zienkiewicz et

al. [55]. Both [54] and [55] make use of a characteristic FEM with a fractional-step

method. The primary difference between these systems is the use of the Petrov-

Galerkin (P-G) weighting for advection [56], that is similar to the Streamline Up-

winding Petrov-Galerkin (SUPG) [57], in place of the characteristic terms shown

in [55]. The modified method now works particularly good for for changes in im-

plicitness that range from closely implicit to full explicit. When used in full explicit

mode the code is optimal for parallel high performance computing (HPC) on multi-

core processors. The parallelized code has been shown to have super-linear scaling in

the characteristic based split (CBS) stabilization.

The discretization of the PCS system is conservative for both the compressible

and incompressible momentum transport equations and the other transport equations

used for reactive flow [53]. Having the governing equations in conservative form for

the incompressible solver is not common and is a direct result of designing the system

to handle all flow regimes. The PCS method used is more commonly used in a semi-

implicit fashion [53]. If a semi-implicit solve is wanted, the pressure will range from

implicit to explicit. The FEM method, in general for equal-order type projection

approximation is outlined in detail in Pepper and Carrington [58]. The solution to

the Navier-Stokes equations is similar to Carrington et. al [4] and Wang et. al [59],

however the equation set is altered to span all flow regimes in the PCS algorithm,

as described in Carrington [60]. The PCS system solves the set of turbulent Navier-

stokes equations in a multi-component formulation also as described in [60].
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4.1 Projection Algorithms

A major difficulty for the numerical simulation of incompressible flows is that the

velocity and the pressure are coupled by the incompressibility constraint [61]. Pro-

jection methods are used to solve Navier-Stokes equations, and are known as an

effective way of numerically solving time-dependent incompressible CFD problems.

Although many have contributed to the advancement of projection type algorithms

or methods the concept was originally introduced by Chorin in 1967 [62] and also

Téman [63]. Later Gresho [64], and others [65], [66] continued to refine the formu-

lation and address concerns on the validity of excluding the pressure gradient term

from the auxiliary velocity, i.e. uncoupling the velocity from the pressure. The un-

coupling of these two variables is what gives the projection method efficiency and

allows the system of equations to be separately solved. In 3D the system is effectively

6th order, Gresho [64] states, “the velocity and pressure are not really meant to be

uncoupled for viscous incompressible flow”. Gresho is describing how a flow is driven

by advective and viscous terms in the momentum equation and how the velocity and

pressure co-evolve such that the velocity remains divergence free. However, in pro-

jection methods an auxiliary velocity is used that is allowed to evolve absent of the

influence of a contemporaneous pressure gradient [67]. By decoupling the velocity and

pressure fields in Navier-stokes equations a self-adjoint system is created, and allows

for a Helmholtz-Hodge decomposition [68] of the momentum equation into a curl-free

and divergence-free part. The process performs the projection of a predicted velocity

onto a divergence free space such that one can maintain a divergence free velocity

field. More specifically it can be described as the Helmholtz-Hodge decomposition of

a vector field into a solenoidal and irrotational part, a two part algorithmic process.

The first part performed by computing the intermediate velocity at each time step.

This intermediate velocity, as initially computed, lacks the ability to meet the incom-

pressibility constraint. It is used in the second step where the pressure projects the
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intermediate velocity onto the the divergence-free velocity field. Thus, giving at the

next time step the updated velocity and pressure [69]. The obvious advantage of this

type of projection algorithm is a more efficient solving of the incompressible Navier-

Stokes equations, yet the primary reason remains in the decoupling of the velocity

and pressure fields.

The projection algorithm or projection step method that is used herein, is based

on [70] and [71]. We can begin to derive the projection algorithm by application of

the previously mentioned Helmholtz-Hodge decomposition of a vector field in domain

Ω. Equation (4.1) is uniquely decomposed where U is the divergence free velocity.

A divergence free velocity implies ∇ ·U = 0 in Ω, while U · n = 0 on the boundary

Γ. Equation (4.1) can now be clearly referenced as the segment of the decomposition

that is responsible for the projection onto the divergence-free field.

(4.1) V = U +∇P

The curl of a vector function that is a function of the gradient of a scalar is always

irrotational and curl free. The projection of the velocity V in (4.1) has the benefit of

the gradient having zero curl under the decomposition as ∇×∇P = 0. The projection

seeks to find a proper P such that we have equation (4.2). By taking the divergence

of (4.2) we see the resulting equation (4.3).

(4.2) ∇P = V + U

(4.3) ∇ · ∇P = ∇2P = ∇ · (V + U) = ∇ · (V) +∇ · (U) = ∇ · (V)

The linear orthogonal projection operator L is applied to the incompressible Navier-

Stokes vector field as shown in equation (4.4) since L is a linear operator it has the
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quality, L(∇P ) = 0 resulting in the pressure being removed from the set of equations.

Thus, the projection under the linear operator L is given by equation (4.5) with U

being the divergence-free averaged time velocity.

(4.4) L

(
∂U

∂t
+∇P

)
= L(−(U · ∇)ρU + µ∇2U)

(4.5)
∂U

∂t
= −(U · ∇)ρU + µ∇2U

(4.6) ρ
V∗n+1 −Vn

dt
+ ρVn · ∇Vn = µ∇2Vn

The fractional split is accomplished by splitting the velocity into two averaged com-

ponents V∗ and V, in fractionally splitting the momentum equation (4.5) under the

linear orthogonal projection applied via equation (4.4) we are able derive equation

(4.6). In equation (4.6) the velocity components of V are from either the initial guess

or from the previously computed time step. This process still requires the acquisition

of a divergence-free velocity through a proper P or more precisely ∇P . The advanced

velocity is marched forward explicitly and a velocity V is sought that satisfies the

continuity equation (3.23). One seeks to find the projection of a perturbed velocity

V∗ onto the divergence free space to complete the calculation of the velocities that

are subject to the incompressibility constraint. Under the decomposition of the vec-

tor field L(V∗) a projection is made producing equation (4.7). The pressure Poisson

equation is now easily derive by applying the gradient operator to both sides of equa-

tion (4.7) giving equation (4.8). Equation (4.8) can be represented in discretized finite

element form by (4.9), where M is the mass matrix. The Euler-Lagrange equations are

formed from equation (4.7) and equation (4.8) and are used to derive equation (4.9)

where C is defined as the gradient operator. The equation (4.10) is subject to the
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continuity constraint CTV = 0, the system then solved by sequentially creating a

diagonal form of the mass matrix which is a process commonly referred to as lump-

ing and produces the lumped mass matrix by multiplying by it’s inverse matrix and

taking applying the gradient operator to both sides all while enforcing continuity we

derive equation (4.12).

(4.7) V∗ = V + dt∇P s.t ∇ ·V = 0

(4.8) ∇2P =
−∇ ·V∗

dt

(4.9) M
(V −V∗)

dt
+∇P = 0

(4.10)
M

dt
(V −V∗) = −CP

(4.11) CTM−1CP = −CTV∗

(4.12) V = V∗ − dtM−1CP

Equation (4.9) is subject to the continuity constraint CTV = 0, the system is then

solved by sequentially creating a diagonal form of the mass matrix which is a process

commonly referred to as lumping and produces the lumped mass matrix [53]. By

multiplying the lumped mass matrix by the inverse lumped mass matrix, applying

the gradient operator to both sides, and finally enforcing the continuity requirement

we derive equation (4.12).
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4.2 Weak Form of Governing Equations

In the following equations, [ ] is used to refer to a matrix and {} will be used to

refer to a column vector. The weak statement for the projection algorithm or more

commonly referred to as the Euler-Lagrange variational is shown in equation (4.13).

The summation on the left hand side of equation (4.13) creates the diagonalized mass

matrix, which can be solved for the averaged velocity V with the help of the weighted

residual statement, equation (3.69), produces the divergence free velocity shown in

equation (4.13).

(4.13)

∫
Ω

[
∂Nj

∂xj

]
{Nk}

n∑
l=1

[Nl]

{
∂Ni

∂xi

}
{Pi}dΩ =

∫
Ω

[
∂Nj

∂xj

]
{V∗i }

dΩ

dt

(4.14) {Vi} = {V∗i } − dt
[
{Nk}

n∑
i−1

[N1]dΩ

]−1[ ∫
Ω

[Nj]{Pj}dΩ

]

Once the inverse matrix for the pressure field is created, next is the most computa-

tionally intensive and time-consuming part of the process, computing the solution of

the Euler-Lagrange equation enforcing mass matrix [53].

The application of the FEM to the solution of governing equations requires the

weak statement formulations derived first then coded. In this section a derivation of

the weak form of the energy and mass transport equations is performed before deriving

the weak form of the SST turbulence model. The MWR is applied to the weak

statements to show the representation of the governing equations. The dependent

variables are replaced with their trial functions as in equation (4.15), where Zi are

the dependent variables, [Nj] are the shape or basis functions for the element, [ ] is a

row matrix or row vector, and { } is a column vector.

(4.15) Zi =
n∑
i=1

φn(x)zni (t) = [Nj]{Zi}
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4.3 Matrix Equations

The boundary terms and their evaluation will be described in subsequent sections

after showing the matrix forms of the equations. The boundary terms become the

load vector in the weak form of the matrix statement. By substituting the dependent

variable trial functions into the governing equations the following sets of integral

ordinary differential equations are produced.

4.3.1 Weighted Residual Statement of Velocity under Helmholtz-

Hodge Decomposition for k − ω

The term f(xi) in equation (4.16) is the body force per unit mass that is typically

prescribed as the force of gravity. If the fluid of interest is slightly compressible

needing the Boussinesq approximation for density change as function of temperature

then this body force term f(xi) is modeled as the difference in gravity and buoyant

forces, i.e. (ρo − ρ)gxi .

(4.16)

(
ρ

∫
Ω

{Nk}
n∑
l=1

[Nl]dΩ

)
{V̇i}+ ρ

(∫
Ω

{Ni}(NkVk)

[
∂Nj

∂xi

]
dΩ

)
{Vi}

+

∫
Ω

{Ni}
[
∂Nj

∂xi

]
{Pi}dΩ +

∫
Ω

{Ni}
2

3

[
∂Nj

∂xi

]
dΩ

)
{ki}

−
∫

Ω

{Ni}
[
∂Nj

∂xi

]
{µt}

[
∂Nj

∂xi

]
dΩ{Vi}

+

(∫
Ω

[µ+ µt]

{
∂Nj

∂xi

}[
∂Nj

∂xi

]
dΩ

)
{Vi}

+ ρ

∫
Ω

f(xi){Ni}dΩ−
∫

Γ

{Ni}[µ+ µt]

[
∂Nj

∂xi

]
{Vi}n̂idΓ = 0



CHAPTER 4. PCS Solution Method 44

4.3.2 Weighted Residual Statement of the Thermal Energy

Equation

(4.17)

(
ρcp

∫
Ω

{Nk}
n∑
l=1

[Nl]dΩ

)
{Ṫi}+

(
ρcp

∫
Ω

{Ni}(NkVk)

[
∂Nj

∂xi

]
dΩ

)
{Ti}

−
∫

Ω

{Ni}
([

∂Nj

∂xi

][
µt
Prt

][
∂Nj

∂xi

]
dΩ

)
{Ti}+(∫

Ω

[
κ+

µt
Prt

]{
∂Nj

∂xi

}[
∂Nj

∂xi

]
dΩ

)
{Ti}

−
{∫

Ω

{Ni}{Qi}dΩ

}
−
(∫

Γ

{Ni}{qi}ΓdΓ

)
= 0

4.3.3 Weighted Residual Statement of the Turbulent Kinetic

Energy for k − ω

(4.18)

(
ρ

∫
Ω

{Nk}
n∑
l=1

[Nl]dΩ

)
{k̇i}+

(
ρ

∫
Ω

{Ni}(NkVk)

[
∂Nj

∂xi

]
dΩ

)
{ki}

−
(∫

Ω

{Ni}
[
∂Nj

∂xi

]
{σ∗µt}

[
∂Nj

∂xi

]
dΩ

)
{ki}

+

(∫
Ω

[
µ+ σ∗µt

]{
∂Nj

∂xi

}[
∂Nj

∂xi

]
dΩ

)
{ki}

+

(
ρβ∗

∫
Ω

(
{Ni}[Nj]{ki}[Nj]{ω̃i}dΩ

)
− {Pk} −

(∫
Γ

{Ni}qkΓdΓ

)
= 0

where:

(4.19) {Pk} =

∫
Ω

[
{Ni}[µt]

([
∂Nj

∂xi

]
{ui}+

[
∂Ni

∂xj

]
{ui} −

2

3

[
∂Nk

∂xk

]
{uk}δij

)
− δij

2

3
ρ[Nj]{ki}

]
dΩ
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4.3.4 Weighted Residual Statement of the Specific Dissipa-

tion Rate for k − ω

(4.20)

(
ρ

∫
Ω

{Nk}
n∑
l=1

[Nl]dΩ

)
{ ˙̃ωi}+

(
ρ

∫
Ω

{Ni}(NkVk)

[
∂Nj

∂xi

]
dΩ

)
{ ˙̃ωi}

−
(∫

Ω

{Ni}
[
∂Nj

∂xi

]
{σµt}

[
∂Nj

∂xi

]
dΩ

)
{ω̃i}

+

(∫
Ω

[
µ+ σµt

]{
∂Nj

∂xi

}[
∂Nj

∂xi

]
dΩ

)
{ω̃i}

+

(
ρβ

∫
Ω

(
{Ni}([Nj]{ω̃i})2dΩ

)
− {Pω}dΩ−

(∫
Γ

{Ni}qω̃ΓdΓ

)
= 0

where:

(4.21) {Pω̃} = α

∫
Ω

[
{Ni}[µti]

([
∂Nj

∂xi

]
{ui}+

[
∂Ni

∂xj

]
{ui} −

2

3

[
∂Nk

∂xk

]
{uk}δij

)
− δij

2

3
ρ[Nj]{ki}

](
[Nj]{ω̃i}
[Nj]{ki}

)
dΩ

4.3.5 Weighted Residual Statement of the Specific Dissipa-

tion Rate for MSST

For convenience the two-equation SST closure model presented in section 3.2.1 is re-

stated here as equation (4.22) through equation (4.28) with closure constants and the

blending procedure. The weak form derivation immediately follows after after the

closure constants are re-shown.

(4.22)
∂ρk

∂t
+
∂ρujk

∂xj
= Pk − β∗ρωk +

∂

∂xj

[
(µ+ σk1µt)

∂k

∂xj

]
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(4.23)
∂ρω

∂t
+
∂ρujω

∂xj
= γ1Pω − β1ρω

2 +
∂

∂xj

[
(µ+ σω1µt)

∂ω

∂xj

]

(4.24)
∂ρk

∂t
+
∂ρujk

∂xj
= Pk − β∗ρωk +

∂

∂xj

[
(µ+ σk2µt)

∂k

∂xj

]

(4.25)
∂ρω

∂t
+
∂ρujω

∂xj
= γ2Pω − β2ρω

2 + 2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[
(µ+ ω2µt)

∂ω

∂xj

]

(4.26)
∂ρk

∂t
+
∂ρujk

∂xj
= Pk − β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]

(4.27)
∂ρω

∂t
+
∂ρujω

∂xj
= γPω−βρω2 + 2ρ(1−F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[
(µ+ωµt)

∂ω

∂xj

]

In the new model a blending function Φ is defined in equations (4.28), where Φ1 ≡

is any constant in the original model, i.e., (σk1 , ...), Φ2 ≡ (σk2 , ...) being any constant

in the transformed model, and Φ ≡ (σk, ...) any constant in the new model.

(4.28) Φ = F1Φ1 + (1− F1)Φ2

The set of constants corresponding to the Wilcox equations are, Set 1 (Wilcox):

σk1 = 0.5, σω1 = 0.5, β1 = 0.0750, β∗ = 0.09, κ = 0.41, γ1 = β/β∗ − σk2κ2/
√
β∗ and

Set 2 (Jones-Launder): σk2 = 1.0, σω1 = 0.856, β2 = 0.0828, β∗ = 0.09, κ = 0.41, and

γ2 = β/β∗ − σω2κ
2/
√
β∗.

The weak form of the k-ω turbulent dissipation equation, equations 4.20 and 4.19,

are modified for the SST turbulent dissipation equation, shown in equations 4.29

and 4.30. The SST turbulent dissipation equations 4.29 and 4.30 are modified in such

a way to account for the constants and blending that occur in the SST model.
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(4.29)

(
ρ

∫
Ω

{Nk}
n∑
l=1

[Nl]dΩ

)
{ ˙̃ωi}+

(
ρ

∫
Ω

{Ni}(NkVk)

[
∂Nj

∂xi

]
dΩ

)
{ ˙̃ωi}

−
(∫

Ω

{Ni}
[
∂Nj

∂xi

]
{σµt}

[
∂Nj

∂xi

]
dΩ

)
{ω̃i}

+

(∫
Ω

[
µ+ [Nj]{ω̃i}µt

]{
∂Nj

∂xi

}[
∂Nj

∂xi

]
dΩ

)
{ω̃i} − 2ρβ([Nj]{ω̃i})2

+ 2ρ(1− F1)σω2

(∫
Ω

(
1

[Nl]{ω̃l}
{Ni}

[
∂Ni

∂xj

]{
kj
}[∂Ni

∂xj

]{
ω̃j
})

dΩ

− γ{Pω}dΩ−
(∫

Γ

{Ni}qω̃ΓdΓ

)
= 0

where:

(4.30) {Pω̃} = α

∫
Ω

[
{Ni}[µti]

([
∂Nj

∂xi

]
{ui}+

[
∂Ni

∂xj

]
{ui} −

2

3

[
∂Nk

∂xk

]
{uk}δij

)
− δij

2

3
ρ[Nj]{ki}

](
[Nj]{ω̃i}
[Nj]{ki}

)
dΩ

4.4 Time Evolution of the Semi-Implicit Scheme

for Mass, Momentum, and Energy Equations

Time stepping of the semi-implicit scheme for the mass, momentum and energy equa-

tions is performed by integrating over each element in the computational domain and

adding each contribution from individual elements to the common nodes of adjacent

elements [53]. Integrating in this manner forms a matrix equation which is solved for

dependent nodal values. This forms matrix equations and is commonly referred to as

assembly. The integration is what forms the assembled matrix equations by summing

each elements nodal value contributions. The matrix equations are currently solved

using either a direct method, i.e. Cholesky or Krylov iterative method with various
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options like the gradient residual method or left or right preconditioning. The iter-

ative method requires some form of preconditioning. Krylov iterative methods are

very simple to thread and or vectorize. The algorithm lends itself to parallel scaling

and future efforts in exascale computing.

4.4.1 Momentum in Turbulent Flow with Multi-Species

Equations (4.31), and (4.32) are for applications to Newtonian and non-Newtonian

fluids and also for incompressible solids and fluid structure interaction problems.

Equations (4.31), and (4.32) are the form used by the fractional-step FEM method

developed in [53] and [72]. Equations (4.31), and (4.32) are the Reynolds mass and

momentum averaged equations [2].

∂ρ

∂t
+
∂ (ρui)

∂xi
= 0(4.31)

∂ (ρui)

∂t
+
∂ (uiuj)

∂xj
=
∂tij
∂xj
− ∂p̄

∂xi
+
∂τij

∂xj
+ f̄drop + ρ

NumSpecies∑
k=1

γ̄kfk,j(4.32)

where τij is the same Reynolds stress tensor as in (3.1), (3.2), (3.3), (3.4), and

(3.5). In equation (4.32) the fluctuating components of the body forces from species

ρ
′∑NumSpecies

k=1 γ
′

kfk,j are neglected along with the terms f
′

drop, and fdrop. It can be

noted that the contribution from the terms f
′

drop, and fdrop impart momentum ex-

changes of spray droplets into the gas fluid when injection of particles or droplets

or in combustion simulations fuel spray. The f
′

drop, and fdrop are excluded from the

simulations used in this thesis study.

4.4.2 Fractional Split Method

The creation of a fractional split method begins with the initial guess of velocity

that is marched forward in time for prediction [53] [72]. The weak variational form
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for the predictor velocity march is shown in matrix form, given by equation (4.33).

The individual matrices shown in equation (4.33) are the mass matrix
[
Mv

]
, the

advection matrix
[
Au

]
, and the fluid stress matrix

[
Kτu

]
, lastly the vector

{
Fvi

}
being the velocity boundary gradient.

(4.33) {∆U∗i } = −∆t

[[
M−1

v

][
Au

]{
Ui

}
+
[
Kτu

]{
Ui

}
−
{
Fvi

}]n

where

(4.34) {∆U∗i } = {U∗i } − {Un
i }

The pressure and density calculations are determined by solving the implicit Pressure

Poisson equation. The previous section on projection methods addressed the solution

process for the implicit Pressure Poisson equation, which followed as a result of mass

conservation [53] [72].

The value for P ′ is derived in [56] from conservation principles. The conserva-

tion of mass derivation is repeated here for convenience in equation (4.35), and the

time advance in discrete terms for continuity in equation (4.36). A velocity corrector

is required for the projection algorithm and is shown in equation (4.37) [53]. The

intermediate pressure is defined notationally by P ′ and assures that the mass conser-

vation over the split is enforced, and equation (4.38). Equation (4.37) is the velocity

corrector which is derived from equations (4.35) and (4.36).

(4.35)
∂ρ

∂t
= −∂ρui

∂xi
=
∂Ui
∂xi

(4.36)
ρn+1 − ρn

∆t
=
∂U

′
i

∂xi
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(4.37) Un+1 − U∗ = ∆t
∂P

′

∂xi

(4.38) U
′
= θ1

(
∆t
∂P

′

∂xi
+ U∗

)
+ (1− θ1)Un

i

Equation (4.39) describes the change in pressure and or density that satisfies mass

conservation, where ∆P = P n+1 − P n.

(4.39)
1

c2
∆P = ∆ρ = −∆t

∂U
′
i

∂xi
=

∆t2θ1

(
θ2
∂2P n+1

∂x2
i

+ (1− θ2)
∂2P n

∂x2
i

)
−∆t

(
θ1
∂∆U∗i
∂xi

+
∂U∗i
∂xi

)

(4.40)
1

c2
∆P − θ1θ2

∂2∆P

∂x2
i

= ∆t2θ1
∂2P n

∂x2
i

−∆t

(
θ1
∂∆U∗i
∂xi

+
∂Un

i

∂xi

)

Green’s theorem is applied to weaken the second order partial derivatives in equa-

tion (4.40) to a first order ordinary differential equation, and employing the ther-

modynamic relation (∆P/c2) = ∆ρ creates a weak form of ∆P and leads to equa-

tion (4.42). It is worthwhile to note P n+1 = ∆P + P n which allows one to solve for

P ′ = θ2P
n+1 + (1 − θ2)P n = θ2∆P + P n and gives gives the final expression for the

specific momentum, equation (4.41).

(4.41) ∆Ui = Un+1 −Un = ∆U∗ −Un = ∆U∗∆t
∂P ′

∂xi
= ∆U∗ −∆t

(
θ2
∂∆P

∂xi
+
∂P n

∂xi

)

The matrix form of equation (4.41) is given by equation (4.42).

(4.42)

([
Mp

c2

]
+ ∆t2θ1θ2H

)
{∆Pi} =

∆t2θ1H{P n
i } −∆t

(
θ1G{∆U∗i }+ G{Un

i } −∆t{Fpi}
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The tensor H is a weakened second derivative term that gives the pressure boundary

conditions. The values of θ1 in equation (4.42) ranges from 0.5 to 1 and θ2 from 0 to 1

depending on the amount of semi-implicitness is needed to solve the system [53]. The

choice that θ2 = 0 allows the system to run an explicit time march and would work

well for future pursuits towards exascale computing. If solving for ∆ρ in compressible

flow problems, the velocity is updated as required by ∆P = c2∆ρ.

The FEM form of ∆U is given in equation (4.43), below. The final velocity is given

using the corrector equation (4.44), which allows the mass velocity φn+1un+1
i = Un+1

i

to be solved with the extracted velocity as in equation (4.45).

(4.43) {∆Ui} = ∆U∗ −∆t
[
M−1

u

](
θ2

[
G
]
{∆pi}+

[
G
]
{pni }

)

(4.44) {∆Un+1
i } = {∆Ui}+ {∆Un

i }

(4.45) un+1 =
Un+1

ρn+1

The updated density φn+1 is recovered from the equation of state and is used in

equation (4.45) to extract the updated velocity for the specific momentum. The

speed of sound is determined by c =
√
γRT , where R is the specific gas constant.

Specifically for air, R = 287j/kg ·K, if the process involves multi-species transport

then R can be determined by a mass-averaging process [53] [72].
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4.4.3 Energy Conservation for Multi-Species and Turbulent

Energy Transport

The equation for total energy with additional terms added to model species is given

by equation (4.46). A full derivation of equation (4.46) can be found in [73].

(4.46)
∂E

∂t
= − ∂

∂xi
(Eui + pui) +

∂

∂xi

(
κ+

µt
Prt

)
∂T

∂xi
+

∂

∂xi
(tij + τij)uj +

∂

∂xi

[
ρ

Nspecies∑
k=1

H̄k

(
Dk +

µt
Sct

)
∂γk
∂xi

]

+ ρ

Nspecies∑
j=1

γjfj(xi) · Ui −
Nspecies∑
k=1

Hokωk

The shear stress is a function of the the molecular viscosity and the term tij is given

by equation (4.47).

(4.47) tij = µ

(
∂ui
∂xj

+
∂uj
∂xj
− 2

3

∂uk
∂xk

δij

)

The rate of flux for heat is given by (4.48), where the Dufour and Soret effects are

neglected and reflect the assumption that radiation has some minimal effect for engine

simulation combustion processes [72] that do not involve much soot formation, or a

long latent fuel combustion in the combustion arena in an engine.

(4.48) q̇ = q̇d + ḋDufour + q̇Soret + q̇radiation

The heat flux rate from species diffusion is given (4.49).

(4.49) q̇d = ρ

NumSpecies∑
j=1

HjγjVj
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The enthalpy on the right hand side of equation (4.49) is given by equation (4.50).

(4.50) Hj = Ho,j + H̄j = Ho,j +

∫ T

To

cp,jdT

The application of Fick’s Law of mass diffusion, to the mass species velocity γjVj

gives equation (4.51), where D is assumed to be equal for all species.

(4.51) γjVj = −D∇γj

The simplification or assumption can be made that all but one of the species exists

in small quantities so that the diffusion velocity of the jth species interacts primarily

with the most abundant species, N. This assumption leads to the simplified form of

equation (4.51) as equation (4.52).

(4.52) γjVj = −Dj,N∇γj

The flux rate for heat can finally be shown as equation (4.53).

(4.53) q̇d = −
NumSpecies∑

j=1

Ho,jωj − ρ
NumSpecies∑

j=1

HjDj,N∇γj

The effect of weakening the second order PDE to a first-order differential equation

gives the flux on the boundary {Fei}. For a thermally perfect gas, enthalpy and

internal energy are functions of temperature only, so by solving for the energy equa-

tion, by default the temperature is evaluated. The final total energy is calculated by

summing all in-source terms explicitly. Because equation (4.46) is already shown as

the incompressible change in thermal energy for an incompressible fluid, we can see

after separating the instantaneous parts into mean and fluctuating components we

get the internal energy transport equation. Again, same equation (4.46). In equa-
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tion (4.46) we are choosing to neglect species body forces and drop the notation used

for averaging because our equation is now shown in closed form which accounts for

Reynolds stress terms and species fluctuations.

4.4.4 Species Transport

The conservation of the species terms and the fluxes and sources of these species

into and out of the domain results in a species transport mass fraction given by

equation (4.54), in conservative form.

(4.54) γj =
ρj

ρ

(4.55)
∂ργj
∂t

= −∂ρuiγj
∂xi

+
∂ρD

∂xi

∂γj
∂xi

+ γjfj(xi) + ẇichem + ẇjspray

The terms in the species transport equation (4.55), ẇichem+ ẇjspray are for chemical

reactions and spray evaporation which are not investigated herein. For breadth, the

term γjfj(xi) would be the jth body force term.

4.4.5 Turbulent Species Transport

If and when the species concentration is not affected by the momentum they can

be properly advected by use of the mean fluid flow. In these particular situations

a scalar transport equation is used similar to that of the thermal energy transport

equation. It full derivations can be found in [73] and other references [53] [72], but

the weak form of the turbulent species transport equation in matrix form is given in

equation (4.56):
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(4.56) ρ∆γjj = −∆t
[
M−1

γ

][[
Aγ

]{
γji
}

+
[
Kγ

]{
γji
}

+
{
Fγsji

}
+
{
Qγsji

}]n

The matrix terms in the turbulent species transport equation (4.56) are for the

jth species, i.e., advection
[
Aγ

]{
γji
}

, species diffusion
[
Kγ

]{
γji
}

and via the process

to create a weakened equation one can see that the flux on the boundary elements

in the FEM is the species body force term
{
Fγsji

}
. There is also great care needed

to account for the aggregate material properties, commonly referred to as composite

material, which are determined from the molar fractions for the jth species at each

computational node i, this derivation is done properly in [73].

4.4.6 Petrov-Galerkin Stabilization Scheme

The advection terms are stabilized by use of the up-winded Petrov-Galerkin (PG)

weighting method, which is used in addition to the characteristic terms. The weight-

ing method is developed in [74] which uses the weighting as shown in equation (4.57).

(4.57) Wi = Ni +
αhe
2V

(
V · ∇Ni

)
In Equation (4.57) he is the element size and direction of local velocity given by:

α = coth(Pe/2−2/Pe). The cell Peclet number is given by Pe = ρhe|V |/2Ke, where

Ke is considered an effective diffusion within the cell Peclet number itself [53].

Adjustments are made to correct for inviscid flow by removing the viscosity, which

can be done by setting α = 1. By using this weighting method, one introduces a se-

lective approach to artificial diffusion upon the numerical scheme that propagates

along the local steam-wise direction of flow and effectively removes numerical dis-

persion effects [74]. The error that is introduced from dispersion from the advection
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modeling is measured before advancing the is then appropriately removed during the

integration.

4.4.7 Finite Element Matrix Terms for the Mass, Momen-

tum, Energy and Species Equations

When integrating over the elements and summing the contributions the surface flux

cancels everywhere except at the boundaries [53]. A clear distinction between other

numerical methods and the FEM can be seen by noticing this. This leads to to the

understanding that FEM is precisely conservative unlike the FVM which induces a

truncation error when evaluating the surface flux contributions at all points within

the domain. The momentum predictor matrix equations for advection and diffusion

are given by equation (4.58), and equation (4.59). The matrix equation for body

forces and boundaries is provided by equation (4.60). The pressure or density cor-

rector equation matrices are shown for the Laplacian by (4.61), gradient (4.62) and

boundary (4.63).

(4.58) Au =

∫
Ω

{
Ni

}
uj

([
Nk

xj

]){
Ui
}
dΩ

(4.59) Kτu = −
(∫

Ω

{
Ni

}[Nj

∂xi

]
{µt}

([
∂Nj

∂xi

]
+

1

3

[
Nj

∂xi

]){
uj
})

dΩ+∫
dΩ

([
µ+ µt

]({
Nj

∂xi

}[
Nj

∂xi

]{
ui
}

+
1

3

∂Nj

∂xi
{ui}

)
− 2

3
δijρk

)
dΩ
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(4.60) Fu = −
∫

Ω

{
Ni

}
ρ

NumSpecies∑
k=1

[
Nj

]{
γkfk(xi)

}
dΩ +

∫
Ω

{
Ni

}[
Nj

]{
fdropi

}
dΩ+∫

dΓ

{
Ni

}[
µ+ µt

][∂Nj

∂xj

]{
Ui
}
dΓ

(4.61) H =

∫
Ω

{
∂Ni

∂xj

}[
∂Nj

∂xi

]
dΩ

(4.62) G =

∫
Ω

{
∂Ni

∂xj

}[
∂Nj

]
dΩ

(4.63) FPi =

(∫
Γ

{
Ni

}[Nj

∂xi

]{
∆Pi

})
+

({
Ni

}[ Nj

∂xk

{
P n
i

})
dΓ

The momentum phase interaction corrector matrices and energy related vectors

and matrices are defined for the advection of energy in equation (4.64) and the pres-

sure work term by equation (4.65)

(4.64) Ae =

∫
Ω

{
Ni

}
uj

([
∂Nk

∂xj

]){
Ei
}
dΩ

(4.65) Cp =

∫
Ω

{
Nm

}[
Nl

]{
pi
}[∂Nl

∂xk

]{
uk
}
dΩ

The equation for thermal diffusion is shown in equation (4.66) where weakening

the equation produces the boundary flux integral [53] given by equation (4.71), while
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the viscous dissipation is given by equation (4.67).

(4.66) KT = −
(∫

Ω

{
Ni

}[∂Nj

∂xi

]{
µt
Prt

}[
Nj

∂xi

]
dΩ

)
+

∫
Ω

([
κ+

µt
Prt

]
∂Ni

∂xj

∂Ni

∂xj

)
dΩ

(4.67) Kτ =

∫
Ω

(
µ

{
∂Ni

∂xj

}[
∂Nj

∂xi

]
− 2

3
δij

[
∂Nj

∂xi

]){
ui
}
− 2

3
δijρk

)[
Nj

]{
uk
}
dΩ

The body forces applied to the boundaries require the divergence free heat flux,

equation (4.68), which includes the diffusion of species with individual chemical prop-

erties that require the diffusion velocity to be converted from a diffusive flux [53]. The

full derivation is not shown here, but provided by equation (4.69), carefully note that

the process of weakening the residual gives rise to a flux boundary of heat for the

species that is absorbed by the term Fes via the boundary integral term. The volume

forces acting on the jth species are given by equation (4.70).

(4.68) qdiv = ∇ · q =
∂

∂xi

(
ρ

NumSpecies∑
k=1

HkDk
∂γk
∂xi

)

(4.69) qdiv =

∫
Ω

(
ρ

NumSpecies∑
l=1

HlDl,N

{
∂Ni

∂xj

}[
∂Ni

∂xj

]{
γli
})

dΩ =

∫
Ω

ρ

(NumSpecies∑
l=1

cplDl,N

{
∂Ni

∂xj

}[
∂Ni

∂xj

]{
γli
}
T

)
dΩ

(4.70) Feb =

∫
Ω

{
Ni

}(
ρ

NumSpecies∑
l=1

[
Nj

]}
Uk
}[
Nj

]{
γlfl(xk)i

})
dΩ
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(4.71) Fes =

∫
Γ

{
Ni

}
n̂·
({
Nj

}{
qi
})
dΓ+

∫
Γ

{
Ni

}
n̂·
(NumSpecies∑

k=1

[
∂Nj

∂xi

]{
Dknγk)i

})
dΓ

Source and sink terms for energy injections are applicable to spark injection di-

rection injection combustion engines and other applications, but not relevant to the

SST development herin. The overall heat associated with destruction or birth of a

source and sink can be modeled by a term Qss, and another volumetric heat source

Qvs. The species flux matrix equations are not shown, but follow similarly and are

both conservative and weakened to a first order differential and can be found in [53].

In order to evaluate the species flux one need only consider the boundaries of the

domain in question [53].

4.4.8 Turbulent Model Matrices

The boundary term on the domain for turbulent flux is usually zero, thus not often

needing to be defined, and is easily identified as the first term in equation (4.71). The

advection for the k-ω turbulence model is shown in equations (4.72) and (4.73) and

dissipation equations (4.74) and (4.75).

(4.72) Ak =

∫
Ω

{
Ni

}
uj

([
∂Nk

∂xj

]){
ki
}
dΩ

(4.73) Aω =

∫
Ω

{
Ni

}
uj

([
∂Nk

∂xj

]){
ωi
}
dΩ

(4.74) Kk = −
∫

Ω

{
Ni

}[∂Nj

∂xi

]{
σ∗µt

}[
Nj

∂xi

]
dΩ +

∫
Ω

[
µ+ σ∗µt

]
∂Ni

∂xj

∂Ni

∂xj
dΩ
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(4.75) Kω = −
∫

Ω

{
Ni

}[∂Nj

∂xi

]{
σµt

}[
Nj

∂xi

]
dΩ +

∫
Ω

[
µ+ σµt

]
∂Ni

∂xj

∂Ni

∂xj
dΩ

The production term shown in equation (4.76) is in its weakened matrix form and

is modeled by using a switch that applies the weakened version of the SST equation

given in equations (4.29) and (4.30) that were previously derived in section (4.3.5).

(4.76) Pk =

∫
Ω

[{
Nj

}{
µti
}([∂Nj

∂xi

]{
ui
}

+

[
∂Ni

∂xi

]{
ui
}
− 2

3

∂Nk

∂xk

{
uk
}
δij

)
− δij

2

3
ρ
[
Nj

]{
ki
}]
dΩ

4.5 Boundary Conditions

4.5.1 Boundary Conditions for Velocity

The boundary conditions for the velocity of an incompressible flow only require Dirich-

let boundary conditions for an average velocity in viscous flows and are modeled as

either a non-slip condition for boundaries located on solid objects and as fixed ve-

locity at inlets as specified. The outlet boundary conditions require more thought

and are produced by assuming a zero gradient for velocity, which is referred to as the

common Neumann condition. The Neumann condition can be stated without regard

for the traction terms [53]. The zero gradient assumption is needed on velocities

at outflow boundaries and requires the computational a grid to be generated that

matches the pressure outflow condition, in GridPro this is set as Pressure Outflow

from the properties tab after the grid is generated. By not allowing traction at the

outlet boundaries one allows for the vorticity leaving the domain to be unchanged by

the zero gradient constraint associated with the Neumann boundary condition [53].
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This statement or requirement can be relaxed if one chooses to use a viscous boundary

condition such as that found in [64].

4.5.2 Viscous and Inviscid Boundary Conditions for Velocity

A second type of boundary condition is produced when the weak statement is derived.

This boundary condition results in the viscous term shown in equation (4.77). Equa-

tion (4.77) is appropriately zero for walls where non-slip conditions are prescribed

and also for inlet and or outlet velocities that are normal to the boundaries [53]. If

these requirements are not met then these components are effectively found from the

boundary integral and evaluated to allow for a relaxing of the zero gradient velocities

at the appropriate pressure outflow boundaries [53].

For those non-penetrating or tangential velocity components the normal compo-

nent is found and specified to be zero. This would be for the case of inviscid flow at

velocity wall boundaries.

(4.77)

∫
Γ

{
Ni

}{
µ+ µt

}[∂Nj

∂xi

]{
Ui
}
nidΓ

4.5.3 Boundary Conditions for Turbulent Kinetic Energy and

Specific Dissipation Rate

For boundary layer flow in the presence of turbulence a defect layer and inner layer

region [2]. The so-called defect region can be made to include a buffer zone between

the defect layer and the viscous sublayer located next to the wall nodes. Where these

two layers meet is considered the buffer zone if one is considering a three equation

inner region, otherwise the viscous sublayer and defect region are blended by using

single logarithmic equation and only the sublayer and the defect layer exist.
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A logarithmic sub-layer meets to join the defect layer to that of the buffer zone

with the outer region or it models the defect layer with the outer region, depending

on whether or not the wall in question is modeled as a 2 or 3 equation wall. The

outer portion of the defect region is considered a fully turbulent region, and the idea

of requiring a 3rd buffer region to distinguish the fully turbulent portion of the defect

layer is presumed.

Most codes and in general most turbulence models only use a specific point that

is close to the wall boundaries and not fully through to the inner layer. This is done

as the the alternative to integrating directly to the wall which considerably increases

computational time, to avoid this a wall function is used as an an assumption of the

physics in this region. The two primary constituents needed to facilitate a wall func-

tion are the non-dimensional terms u+ and y+, which are defined in equations (4.78)

and (4.79).

(4.78) y+ =
yρu∗

µ

(4.79) u+ =

√
u

u∗

The term u∗ is given by equation (4.80) which is the friction velocity. The wall

shear stress is given by (4.80), which is that shear stress found at the wall in the

viscous shear sublayer [2].

(4.80) u+ =

√
τw
ρ

(4.81) τw = µ

(
du

dy

)
y=0
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In the viscous shear layer we find the condition held by equation (4.82).

(4.82) u+ = y+ = yρ

√
τw
ρ
µ−1

Equation (4.82) is valid for y+ ≤ 2 ≈ 8. If equation (4.82) sits above the range

for incompressible flow over a smooth surface in the absence of a pressure gradient,

the buffer zone is located in the range 8 < y+ ≤ 50 and the wall equation [2] is used

as shown in equation (4.83) and at larger distances up to 50 < y+ ≤ 200 ≈ 400

by equation (4.84). Equations (4.83) and (4.84) are the definition of the boundary

conditions at the points within the inner layer, depending on the location of that

point.

(4.83) u+ = 5ln(y+)− 3.05

(4.84) u+ = 2.5ln(y+) + 5.0

The wall function is solved by progressively iterating the transcendental relation, as

described in [2]. Wilcox [2] states the appropriate equation to solve at a distance

yp from the wall in the presence of an adverse pressure gradient by calculation of

equation (4.85). In equation (4.85), up is the tangential velocity at that grid point, B

is a surface roughness factor, and kvk = 0.41, which is the von Karman constant. The

equations for turbulent kinetic energy and turbulent dissipation in the inner layer are

given by equation (4.86) and equation (4.87) with the turbulent energy production,

P+, provided equation (4.88).

(4.85) up = u∗
[

1

kvk
ln

(
ρu∗yp
µ

)
+B − 1.13

yp
ρ(u∗)2

dP

dx

]
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(4.86) kp =
(u∗)2

√
β∗

[
1 + 1.16

ρu∗yp
µ

P+

]

(4.87) ωp =
u∗

kvky
√
β∗

[
1 + 0.30

ρu∗yp
µ

P+

]

(4.88) P+ = ντxy
(∂u
∂y

)

µ4
τ

4.5.4 Artificial Compressibility

The PCS-fractional step method requires the usage of an artificial compressibility

contribution or factor for the flow regimes that are close to, or fully incompress-

ible [53]. The previously shown thermodynamic relation given in matrix form by

equation (4.42) is locationally proper to apply this artificial compressibility factor.

By distributing
{

∆Pi
}

on the left hand side of equation (4.42) to both bracketed

terms as shown in equation (4.89), one isolates the 1st term,
[
Mp/c

2
]
{∆Pi}. The

Pressure Poisson equation is now solvable, but has the specific requirement that both

θ1 and θ2 are not equal to zero, and lie in the respective ranges: 0.5 < θ1 ≤ 1 and

0 < θ2 ≤ 1. This caveat would require unreasonable time-stepping constraints for

most problems.

(4.89)

[
Mp

c2

]
{∆Pi}+ ∆t2θ1θ2H{∆Pi} =

∆t2θ1H{P n
i } −∆t

(
θ1G{∆U∗i }+ G{Un

i } −∆t{Fpi}

In order to relax the unreasonable time-stepping constraints, an artificial compress-

ibility method is deployed by rearranging the 1st term in equation (4.89) as shown

in equation (4.90). The artificial compressibility parameter β is introduced in equa-
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tion (4.90) which is given as a constant through out the domain or can be found by

inspecting the diffusive time step constraint [53]. Zienkiewicz [45] suggests finding

the artificial compressibility parameter by inspecting the diffusive the time step con-

straint as it helps to mitigate issues that arise in global time step sizes and produces

reasonable local time step sizes. This suggestion by Zienkiewicz [45] is the combined

approach of dual-time stepping so one can recover the transient solution. The full

approach to dual-time stepping not shown, but can be found in [75], in entirety.

(4.90)

[
Mp

c2

]
{∆Pi} ≈

[
Mp

β2

]
{∆Pi} =

∆t2
(
θ1H{P n

i } − θ1θ2H
{

∆Pi
}
−∆t

(
θ1G{∆U∗i }+ G{Un

i }
)
−∆t{Fpi}

The value for β is found by application of equation (4.91) so to allow the convec-

tive and viscous time stepping to compete. In equation (4.91) ε is considered typi-

cally to be small as to ensure β is not too close to zero and velconv, veldiff are the

convective and diffusive velocities, respectively. Both velconv, veldiff are defined in

equations (4.93) and (4.93) with he the given element size.

(4.91) β = max
(
ε, velconv, veldiff

)

(4.92) velconv = ||u||

(4.93) veldiff =
µ

ρhe

It should be noted that no exact coupling exists between the energy equations and

other equations in this algorithm. Specifically, the artificial compressibility method

algorithm is valid for steady flows, and aids in the process to recover the transient
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flow solutions that lie inside the inner iteration loops on the momentum and pressure

solves. This is required for time steps smaller than the outer loop value and are

continued until true convergence is reached. Using the the artificial compressibility

parameter β by finding a global value has been validated [53] in addition to the use

of the maximum value found for the locally determined values.

The specifics of PCS fractional step method are shown in this section. The math-

ematical concepts and applications developed in this section are referenced from the

main work of Carrington [53], [60], but also other investigators [58], [69], [74], [75].

The MSST coding research outline and step-by-step implementation of the new

turbulence model into the existing k-ω code is located in Appendix (A). The purpose

of showing the MSST coding research outline is to aid any future development and

give a detailed look into the process to implement the SST into the existing k-ω

FEARCE code.



Chapter 5

Method Validation

5.1 Method Validation

The algorithms and performance of the FEARCE code using the new SST turbulence

model were verified and validated with experimental data. Verification involves the

process of understanding the model equations and their implementation, and seeks

to understand if they are modeled correctly. Validation is an important part of the

process to determine whether or not the model equations are numerically represented

correctly and will give a physically reasonable solution to modeled phenomena.

The 2D axisymmetric duct is compared to both well established numerical data

from Wilcox [2] and direct numerical simulation (DNS) data from Mansour et al. [3]

for turbulent channel flow at Re= 13, 750. The 2-D axisymmetric backward-facing

step is validated with the use of both experimental data from Vogel and Eaton [1] and

previous benchmarks for the k-ω PCS code using h-adaptation [58] [4] [59]. The two

problem geometries are modeled in 2D because of the time constraint and technical

de-bugging required to build and test the SST turbulence model. However, the 3D

versions have shown excellent results in comparison to their 2D counterpart, only the

2D versions are validated. The meaning of 2D is misleading in someways for these
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the two problems studied herein, the term axisymmetric is a better choice because

the code is inherently 3D and the choice of grid design and prescription of symmetry

boundary conditions acts to represent a 2D solution and reduces the computational

effort for de-bugging.

Note: The use of GridPro grids for these two benchmark problems was only pos-

sible after extensive development and integration of GridPro for LANL KIVA and

FEARCE codes prior to coding the SST turbulence model, see Appendix B. The

technical capability from integrating GridPro into the LANL KIVA and FEARCE

codes is what made grid production using GridPro a possibility for these two bench-

mark problems.

The grids for the two benchmark problems were built using Gridpro for the 2D

axisymmetric duct and the 2-D axisymmetric backward-facing step. The process to

build these grids for their corresponding geometries are outlined herein.

The geometric configuration for turbulent flow the 2D duct is shown in Fig. (5.1),

where the length of the grid was set to be L = 25 cm long, allowing for the extraction

of data in the developed flow region at Lhd = 22 cm. The height of the duct, H is set

to be 1 cm.

Figure 5.1: Schematic of the 2D duct, H = 1 cm and L = 25 cm.
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The backward facing step geometric configuration for turbulent flow is shown in

Fig. (5.2). The backward facing step with heat transfer is significantly more difficult

benchmark problem. Specifically the choice for using the backward facing step with

heat transfer is because it is an interesting problem to researchers in the areas of com-

bustion, solidification, environmental flow and also compact heat exchanger design,

Carrington et al. [59].

Figure 5.2: Schematic of the 2D backward facing step, the step height H = 3.8 cm,
Le = 22.0 cm and Ld = 100 cm.

The study of flow over the backward facing step with heat transfer is historically

a good benchmark within the CFD community due to the simplicity of the geometry

and plethora of rich flow physics that can be garnered from its analysis. The flow

over a backward facing step includes physical phenomena interesting to the study of

unsteady flow behavior, recirculation regions, flow separation and adverse pressure

gradient specific problems. All of these are found in and useful to simulating the

complexity of combustion engines where combustion reactions and radiation play

important roles. The process to create the grid is done so by creating a 2D problem
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by applying FEARCE periodF and periodD periodic boundary properties to the side

boundaries of the backward facing step domain. The FEARCE convention and recent

integration of the KIVA4 boundary properties allows for these to be set in the GridPro

graphical user interface and exported to the FEARCE file format, a review of these

surface properties can be found here [76]. The side boundaries are located to the

left and right of the channel as viewed looking down the center of the grid over the

step shown in Fig. (5.2), in the direction of flow, similarly for the duct as shown

in Fig. (5.1). These nodes are given a zero normal velocity component to the side

boundaries prescribed periodD and periodF. The use of periodD and periodF in

GridPro for these side boundaries is simply to place these nodes in a list that the

converter and FEM can see, and then later in the setup parameter files that drive

FEARCE they can be dealt with. This, when coupled with a single element thick

grid yields a 2D representation of the problem from the 3D code. This was done as

a work around to de-bug and integrate the SST turbulence model.

Figure 5.3: U -component of velocity [cm/s] streamline plot for the SST FEARCE
turbulence model on a 375, 000 element, wall bounded 3D GridPro grid at t = 0.33s.
The solution looks very promising, further study will need to be continued with the
addition of the SST model to the parallel FEARCE code.

The 2D backward facing step is somewhat likened to the solution one obtains from

taking a center line plane cut of the 3D simulation shown in Fig. (5.3). However,
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the current study and application of symmetry type boundary conditions is more

representative of a 2D solution. In the future the code can be easily run in 3D when

the SST subroutines are added to the primary FEARCE parallel LES code. Coarse

grids have already been tested and working well, they are not shown in this manuscript

due to the long computational time needed to allow the simulation to fully develop

when the code is run in serial.



Chapter 6

Conclusions, Solutions and Results

for 2D Duct

6.1 Solutions and Results for 2D Duct Flow

The solutions for the 2D duct channel flow in comparison to both DNS Mansour et

al. [3] and Wilcox k-ω [2] are presented in this section. The 2D duct was used as a

precursor to assist the 2D BFS study. It helped de-bug wall-function problems that

arose and offered numerous insights into the codes behavior useful in predicting the

more complicated 2D BFS flow in section (7.1). The 2D duct channel flow for the two-

equation FEARCE SST was at Reynolds number 13, 750 as determined by hydraulic

inlet diameter of 1 cm. The inlet was prescribed a U velocity of 2060 [cm/s] and the

density, dynamic viscosity and turbulence inlet settings and clips follow identically

to that of the 2D BFS FEARCE SST parameters in the next section (7.1). The grid

was generated using GridPro and consisted of 1684 nodes and 784 elements.

The turbulent energy production and dissipation, or creation and destruction as

it is sometimes referred to, is shown in Fig. (6.3). One must take into account

the coarse grid that was used for the 2D BFS FEARCE SST result. The dip in
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Figure 6.1: Duct channel flow Re=13,750 comparing the two-equation FEARCE
SST code vs. Wilcox k-ω [2] vs. DNS Mansour et al. [3] at 22 hydraulic diameters
from the inlet.

the production term is likely due to the span-wise gradient of the grid. Wilcox [2]

defines P+ and e+ as the sublayer scaled value of turbulent energy production and

dissipation. respectively. The terms plotted on the vertical axis of Fig. (6.3) are

defined by equations (6.1) and (6.2). The predictions match reasonably well to both [2]

vs. DNS Mansour et al. [3] considering this data is from a significantly finer grids. The

reason to use a coarse grid for the turbulent energy production and dissipation data

shown in Fig. (6.3) is because many changes to the turbulence parameters and clips

were needed to be tested in order to match the DNS Mansour et al. [3] and Wilcox [2]
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Figure 6.2: U+ vs. Y+ comparison of the two-equation FEARCE SST code vs.
Wilcox k-ω [2].

data. A couple days per simulation on a serial code using a fine 2D channel duct

GridPro grid was not accessible to tune the turbulence parameters and clips shown

in (7.1).

(6.1) P+ = ντxy
(∂u
∂y

)

µ4
τ

(6.2) ε+ =
νε

µ4
τ
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Figure 6.3: Turbulent energy production P+ vs. turbulent energy dissipation e+
for duct channel flow at Re=13,750 comparing the two-equation FEARCE SST code
vs. Wilcox k-ω [2] vs. DNS Mansour et al. [3].



Chapter 7

Conclusions, Solutions and Results

for 2D BFS

7.1 Solutions and Results for 2D BFS flow

In this section the solution for the 2D BFS for the incompressible flow regime with

turbulence is shown. This result seeks to demonstrate the PCS algorithm with newly

added SST turbulence model and show, to a reasonable level, validation of the SST

turbulence model with the PCS method in the FEARCE code using semi-structured,

automated GridPro grids.

In Fig. (7.1), the FEARCE PCS algorithm with the SST turbulence model is

demonstrating 2D turbulent flow over a backward facing step as experimentally stud-

ied by Vogel and Eaton [1]. The Reynolds number is Re = 28, 000 as determined

by a step height H = 3.8 cm, with temperature entering the domain at 298 K, and

Pr = 0.71. Downstream an applied constant heat flux surface behind the single-sided

sudden expansion is prescribed 270 W/m2. The insulating upper, and lower walls are

given non-slip, Dirichlet, boundary conditions. The inflow face and corresponding

nodes are applied the inlet U -velocity of 11.3 cm/s, while at the outflow boundary

76



CHAPTER 7. CONCLUSIONS, SOLUTIONS AND RESULTS FOR 2D BFS 77

located at X = 26.31H behind the step, there is a zero gradient in the weak form

sense for both velocity and heat transport. The outflow boundary face is assigned the

pressure outflow 2D surface property in GridPro, and the inflow boundary given the

velocity inflow 2D surface property. The symmetry walls are those that sit adjacent

to the inflow, outflow, top, and bottom walls. They can also be described as sitting

to the left and right of the inflow face, perpendicular to the Z-axis. The symmetry

condition is set as periodD to the left wall and periodF to the right wall in the 2D

surface property tab in GridPro. The nodes are saved in sets and converted using

a GridPro to FEARCE converter after initially being exported as the FEARCE file

type from GridPro. The non-slip walls are applied by default and the heat flux face is

set as TFLX under the same GridPro property tab. In this process great care is taken

to correctly form the adjacency node and face lists. The side walls then have their

respective normal component of velocity, in this case the W -velocity component, set

to zero. In the FEM and weakening process the zero W -velocity component forces

a symmetry boundary condition on the side walls, mimicking a 2D solution within a

3D code.

The solutions that are presented for the 2D BFS FEARCE SST model at Reynolds

number Re = 28, 000, are determined for a density ρ = 0.0012323 [g/cm3], dynamic

viscosity 1.846e-4 [g/(cm · s)] that correspond to air. The inlet turbulent kinetic

energy, kinlet, is determined by a scale factor 0.00216 multiplied by the inlet velocity

squared. The resulting free stream turbulent kinetic energy is then clipped to be above

0.0005 for this particular problem, and also the channel flow duct benchmark . The

specific dissipation rate at the inlet was calculated based on µscalein, where mutinlet =

µscalein · µ, then ωinlet = kinlet/µtinlet. The reattachment could then be adjusted by

ωclip. By increasing or decreasing the ωclip value the reattachment can be lengthened

or shortened. The value for ωclip was tested to be 50 for the 2D SST FEARCE code

which yielded the corresponding predicted reattachment at Xre = 6.655H.
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Figure 7.1: U -velocity
[
cm/s

]
BFS shown at Re=28,000 for the two-equation

FEARCE SST code at solution time 1.35 [sec]. The solution reaches state state
appreciably quicker than k-ω h-adapted FEM [4] that reported stable recirculation at
around 0.33 [sec]. The two-equation FEARCE SST code finds stable recirculation at
approximately 0.15 [sec]. At solution time 1.35 [sec] the max L2 norm was 4.32e−12,
and the FEARCE SST code solution was considered converged. The reattachment
is 25.29 cm corresponding to a Xre = 6.655H.

The chemical species composition for the fluid is that of air. The chemical

species and corresponding mass fractions at 1.060e + 6 dynes/cm2 are shown in Ta-

ble (7.1).The fluid is modeled with two species, and tests the species aggregation

process [58].

Table 7.1: Species Composition for Air.

species 1 species 2 species 3
O2 N2 Ar
0.22 0.78 0.0

A wall function [4] with Wilcox [2] adverse pressure gradient formulation is used.

The wall function requires we solve a transcendental stress equation for the wall

friction velocity or wall shear stress τw. This is a Picard iterative procedure [77] that

is formed at each time step.

The FEARCE SST code is shown in Fig. (7.1) for the BFS at Re=28,000 for the

two-equation FEARCE SST code at solution time 1.35 [sec]. The solution reaches

state state appreciably quicker than k-ω h-adapted FEM [4] that reported stable

recirculation at around 0.33 [sec]. The two-equation FEARCE SST code reaches
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a stable recirculation pattern at approximately 0.15 [sec]. At solution time 1.35

[sec] the max L2 norm was 4.32e − 12, and the FEARCE SST code solution was

considered converged. The measured point of reattachment Fig. (7.2) was 25.29 cm

corresponding to a Xre = 6.655 H in comparison to the experimentally determined

Xrevogel = 6.66667 H from Vogel and Eaton [1], it is in considerably good agreement.

Typical simulation reattachments have been seen ranging from 6.8 to 7.2. This is a

considerable improvement considering the data comparison to k-ω h-adapted FEM [4]

result was performed with a final h-adapted grid approximately 153, 000 nodes, and

the two-equation FEARCE SST code used a semi-uniform, locally gradient GridPro

grid with only 6014 nodes and 2880 elements.

X [cm] 

0 5 10 15 20 25 30 35 40

U: 300 0 200 500 800 1100

Figure 7.2: U -velocity
[
cm/s

]
BFS reattachment shown at Re = 28, 000 for the two-

equation FEARCE SST code at solution time 1.35 [sec]. At solution time 1.35 [sec]
the max L2 norm was 4.32e−12, and the FEARCE SST code solution was considered
converged. The measured point of reattachment was 25.29 cm corresponding to a
Xre = 6.655 H in comparison to the experimentally determined Xrevogel = 6.66667 H
from Vogel and Eaton [1], it is in considerably good agreement. Typical simulation
reattachments for Vogel and Eaton [1] at Re = 28, 000 have been seen ranging from
Xre =6.8H to 7.2H.

The conservation of mass states that the average mass flow rate is the same if at

steady state or if incompressible, also the average speed is the same if the material

is constant density. The verification analysis in Fig. (7.3) and in Fig. (7.4) was per-

formed to ensure that the principle mass conservation is upheld for the incompressible
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flow SST turbulence model. The principle mass conservation is clearly shown to be

upheld for the SST turbulence model. The initial bump at the downstream location

X/H = 20 is simply due to the fluid that is occupying that location in the domain

at the initial start of the simulation. As the simulation proceeds the mass flow rate

quickly approaches steady state at both sliced areas, X/H = −3 and X/H = 20.

Figure 7.3: U -velocity
[
cm/s

]
BFS shown at Re=28,000 for the two-equation

FEARCE SST code where the location of slices at X/H = −3 and X/H = 20
were integrated over to calculate the mass flow rate for Fig. (7.4). The location
X/H = −3 was chosen for the reference velocity Uref by Vogel and Eaton [1] as the
mean velocity for the velocity profile analysis.

Fig. (7.5) shows the temperature and Fig. (7.6), and Fig. (7.7) show the ther-

mal profiles for the backward facing step for Re=28,000 comparing the two-equation

FEARCE SST code vs. k-ω h-adapted FEM [4], at X/H = 0.33 and X/H = 4.3,

respectively.

Fig. (7.8) shows the velocity profiles for the backward facing step for Re=28,000

comparing the two-equation FEARCE SST code vs. k-ω h-adapted FEM [4], at

x = −0.67xre, x = −0.33xre, x = 0.0xre, and x = 0.33xre. The velocity profiles are

also compared to the experimental data from Vogel and Eaton [1] for x = −0.67xre,
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Figure 7.4: BFS mass flow rate analysis for comparing the mass flow rates at
X/H = −3 and X/H = 20 at Re=28,000 for the two-equation FEARCE SST code.

x = −0.33xre, x = 0.0xre, and x = 0.33xre. The reference velocity Uref was taken at

X/H = −3 as described in [1].
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Figure 7.5: Temperature
[
K
]

plot for the backward facing step at Re=28,000 for
the two-equation FEARCE SST .
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Figure 7.6: Thermal profiles for the backward facing step for Re=28,000 comparing
the two-equation FEARCE SST code vs. k-ω h-adapted FEM [4]. The thermal
profiles are also compared to the experimental data from Vogel and Eaton [1] at
X/H = 0.33.
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Figure 7.8: U -component velocity over Uref velocity profiles for the backward facing
step at Re=28,000 comparing the two-equation FEARCE SST code on a GridPro
grid with 6014 nodes vs. h-adapted k-ω FEM [4] with a final adapted node count
of 153, 000 nodes. The velocity profiles are also compared to the experimental data
from Vogel and Eaton [1] for x =−0.67xre, x =−0.33xre, x = 0.0xre, and x = 0.33xre.
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Figure 7.9: Turbulent viscosity plot for the backward facing step at Re=28,000 for
the two-equation FEARCE SST .

X [cm] 

25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0
2

4
6

8
1

0
1

2
1

4
1

6
1

8

Y
 [c

m
]

0
2

4
6

8
1

0
1

2
1

4
1

6
1

8

TKE: 348.725 923.871 1110.33 1183.07 1315.68 6000 12000

Figure 7.10: Turbulent kinetic energy plot for the backward facing step at
Re=28,000 for the two-equation FEARCE SST .
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Figure 7.11: Turbulent dissipation plot for the backward facing step at Re=28,000
for the two-equation FEARCE SST .



CHAPTER 7. CONCLUSIONS, SOLUTIONS AND RESULTS FOR 2D BFS 87

X [cm] 

25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0
2

4
6

8
1

0
1

2
1

4
1

6
1

8

Y
 [c

m
]

0
2

4
6

8
1

0
1

2
1

4
1

6
1

8

POMG: 0.297247 0.340024 0.747828 1.22282 1.56409 7.04748 15.8144 16.8607

Figure 7.12: Turbulent energy dissipation plot for the backward facing step at
Re=28,000 for the two-equation FEARCE SST .
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Figure 7.13: Turbulent energy production plot for the backward facing step at
Re=28,000 for the two-equation FEARCE SST .



Appendix A

Appendix: Coding the Improved

MSST

A.1 MSST Research Outline

The purpose of this appendix is to aid any future development and give a detailed

look into the process, bug fixes and code changes to implement the SST into the

existing k-ω FEARCE code.

A.1.1 Minor Bug Fixes

Looking at PRODOMG in file:

TwoEq Turbulence Wall ALE Sub 092117SUPG.f90

and comparing it to either of...

https://turbmodels.larc.nasa.gov/wilcox.html

http://highorder.berkeley.edu/proceedings/aiaa-annual-2007/paper0547.pdf

the following line...

+ WZ*( MUTT*( (4.0*WZ/3.0)-(2.0/3.0)*(UX*VY) ) &

is incorrect. It should read...

88



APPENDIX A. APPENDIX: CODING THE IMPROVED MSST 89

+ WZ*( MUTT*( (4.0*WZ/3.0)-(2.0/3.0)*(UX+VY) ) &

The line occurs on lines...

1565

1783

2002

2214

in the following subroutines...

SUBROUTINE ASSMEB TURBULENCE DISS Hexsub

SUBROUTINE ASSMEB TURBULENCE DISS cHexsub

SUBROUTINE ASSMEB TURBULENCE DISS Prismsub

SUBROUTINE ASSMEB TURBULENCE DISS Pyramidsub

PRODTKE is defined 4 times depending on the subroutine...

SUBROUTINE ASSMEB TURBULENCE TKE Hexsub

SUBROUTINE ASSMEB TURBULENCE TKE cHexsub

SUBROUTINE ASSMEB TURBULENCE TKE Prismsub

SUBROUTINE ASSMEB TURBULENCE TKE Pyramidsub

The first subroutine uses NODE, but the final 3 times use NODE1. Also, the follow-

ing factors are different when defining PRODTKE...

* NHex(KK,IQ)*detJac(K,IQ)

* NHex(KK,IQ)*detHex(m,IQ)

* NPri(KK,IQ)*PridetJac(m,IQ)

* NPyr(KK)*volpyr(m)

Each of the 4 instances of the following line...

-(2.0/3.0)*(UX*WZ) )-(2.0*RhoTilda*TKEN/3.0) ) &

should be...

-(2.0/3.0)*(UX+WZ) )-(2.0*RhoTilda*TKEN/3.0) ) &
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The line occurs on lines...

425

A.1.2 Coding MSST-Step1:

Summary: Add something to PRODOMG and pass TkeSub, OmgSub to many more

subroutines. Then calculate KX,OX, KY,OY, KZ, and OZ in each of the 8 subrou-

tines.

Looking in file... TwoEq Turbulence Wall ALE Sub 092117SUPG.f90

Production term of interest is PRODOMG.

PRODTKE is defined 4 times depending on the subroutine...

SUBROUTINE ASSMEB TURBULENCE TKE Hexsub

SUBROUTINE ASSMEB TURBULENCE TKE cHexsub

SUBROUTINE ASSMEB TURBULENCE TKE Prismsub

SUBROUTINE ASSMEB TURBULENCE TKE Pyramidsub

The first subroutine uses NODE, but the final 4 times use NODE1. Also, the follow-

ing factors are different when defining PRODTKE...

* NHex(KK,IQ)*detJac(K,IQ)

* NHex(KK,IQ)*detHex(m,IQ)

* NPri(KK,IQ)*PridetJac(m,IQ)

* NPyr(KK)*volpyr(m)

PRODOMG is defined 4 times depending on the subroutine...

SUBROUTINE ASSMEB TURBULENCE DISS Hexsub

SUBROUTINE ASSMEB TURBULENCE DISS cHexsub

SUBROUTINE ASSMEB TURBULENCE DISS Prismsub

SUBROUTINE ASSMEB TURBULENCE DISS Pyramidsub
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The first subroutine uses NODE and TKEN > 1.0e-06, but the final 4 times use

NODE1 and TKEN > 1.0e-03. Also, the following factors are different when defining

PRODTKE...

* NHex(KK,IQ)*detJac(K,IQ)

* NHex(KK,IQ)*detHex(m,IQ)

* NPri(KK,IQ)*PridetJac(m,IQ)

* NPyr(KK)*volpyr(m)

The term we have to add to PRODOMG is...

2 (1 - F1) ρ σ ω2 / ω (dk/dx dω/dx + dk/dy dω/dy + dk/dz dω/dz)

Where the following parameters are not yet in the ReactCFD code...

• σ ω2 = 0.856, and let’s call this SigOmega2

• F1 is the blending parameter (which will have to be dynamically determined)

The following are in ReactCFD code...

• ω is called OMEG

• ρ is called RhoTilda ???

• dk/dx i are called KX, KY, and KZ

• dω/dx i are called OX, OY, and OZ

So we get that the term to add to PRODOMG is (would be added 4 times)...

2 *(1 - F1 MSST) *RhoTilda*Sig2 / OMEG*(KX*OX + KY*OY + KZ*OZ)

For example the following code:

DO KK = 1, NUMN

L=NODE(K,KK)

IF ( TKEN > 1.0e-06 ) THEN

PRODOMG(L) = PRODOMG(L) + ( ( Alp*OMEG/TKEN ) &
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* ( UX*( MUTT*( (4.0*UX/3.0)-(2.0/3.0)*(VY+WZ) ) &

-(2.0*RhoTilda*TKEN/3.0) ) &

+ VY*( MUTT*( (4.0*VY/3.0)-(2.0/3.0)*(UX+WZ) ) &

-(2.0*RhoTilda*TKEN/3.0) ) &

+ WZ*( MUTT*( (4.0*WZ/3.0)-(2.0/3.0)*(UX+VY) ) &

-(2.0*RhoTilda*TKEN/3.0) ) &

+ MUTT*(UY*UY+2.0*UY*VX+VX*VX) & ! tau 1 2 + tau 2 1

+ MUTT*(VZ*VZ+2.0*VZ*WY+WY*WY) & ! tau 2 3 + tau 3 2

+ MUTT*(UZ*UZ+2.0*UZ*WX+WX*WX) ) ) & ! tau 1 3 + tau 3 1

* NHex(KK,IQ)*detJac(K,IQ)

PRODOMG(L) = ABS(PRODOMG(L))

END IF

END DO

The code is changed into the following:

DO KK = 1, NUMN

L=NODE(K,KK)

IF ( TKEN > 1.0e-06 ) THEN

PRODOMG(L) = PRODOMG(L) + ( ( Alp*OMEG/TKEN ) &

* ( UX*( MUTT*( (4.0*UX/3.0)-(2.0/3.0)*(VY+WZ) ) &

-(2.0*RhoTilda*TKEN/3.0) ) &

+ VY*( MUTT*( (4.0*VY/3.0)-(2.0/3.0)*(UX+WZ) ) &

-(2.0*RhoTilda*TKEN/3.0) ) &

+ WZ*( MUTT*( (4.0*WZ/3.0)-(2.0/3.0)*(UX+VY) ) &

-(2.0*RhoTilda*TKEN/3.0) ) &

+ MUTT*(UY*UY+2.0*UY*VX+VX*VX) & ! tau 1 2 + tau 2 1

+ MUTT*(VZ*VZ+2.0*VZ*WY+WY*WY) & ! tau 2 3 + tau 3 2

+ MUTT*(UZ*UZ+2.0*UZ*WX+WX*WX) ) +++
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2 *(1 - F1 MSST) *RhoTilda*Sig2 / OMEG*(KX*OX + KY*OY + KZ*OZ) ) & !

tau 1 3 + tau 3 1

* NHex(KK,IQ)*detJac(K,IQ)

PRODOMG(L) = ABS(PRODOMG(L))

END IF

END DO

Notice that there is a KX and an OX in the new terms. Because of this and because

other MSST calculations will require both KX and OX, make the appropriate lines

from the KIVAhpFE3d main 071216.f90 be the following:

allocate( TkeSub(NNODE) )

allocate( OmgSub(NNODE) )

Do I = 1, NUMSUBCYCLERANS

TkeSub(1:NNODE) = TKE(1:NNODE)

OmgSub(1:NNODE) = OMG(1:NNODE)

Call ASSMEB TURBULENCE TKE Sub(TkeSub, OmgSub)

End Do

Do I = 1, NUMSUBCYCLERANS

TkeSub(1:NNODE) = TKE(1:NNODE)

OmgSub(1:NNODE) = OMG(1:NNODE)

Call ASSMEB TURBULENCE DISS Sub(OmgSub, TkeSub)

End Do

deallocate( TkeSub )

deallocate( OmgSub )
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In the TwoEq Turbulence Wall ALE Sub 092117SUPG.f90 TKEsub, do the follow-

ing replacements.

1 time:

Call VIRTUAL NODES CALCULATION(OMGsub)

Call VIRTUAL NODES CALCULATION( OMGsub )

9 times:

TkeSub)

TkeSub, OmgSub )

9 times:

OmgSub)

OmgSub, TkeSub )

5 times:

DOUBLEPRECISION, dimension(NNODE), Intent(inout) :: TkeSub

DOUBLEPRECISION, dimension(NNODE), Intent(inout) :: TkeSub,OmgSub

5 times:

DOUBLEPRECISION, dimension(NNODE), Intent(inout) :: OmgSub

DOUBLEPRECISION, dimension(NNODE), Intent(inout) :: OmgSub, TkeSub

4 times:

DOUBLEPRECISION :: KY,KX,KZ

DOUBLEPRECISION :: KY,KX,KZ,OX,OY,OZ
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4 times:

DOUBLEPRECISION :: OX,OY,OZ

DOUBLEPRECISION :: OX,OY,OZ,KX,KY,KZ

Search the file for the phrase “FIRST DERIVATIVE TERMS”,

1st and 5th should have all of these

OX=OX+HexX(K,KK,IQ)*OmgSub(L)

OY=OY+HexY(K,KK,IQ)*OmgSub(L)

OZ=OZ+HexZ(K,KK,IQ)*OmgSub(L)

KX=KX+HexX(K,KK,IQ)*TkeSub(L)

KY=KY+HexY(K,KK,IQ)*TkeSub(L)

KZ=KZ+HexZ(K,KK,IQ)*TkeSub(L)

2nd and 6th should have all of these

OX=OX+dqHexX(m,KK,IQ)*OmgSub(L)

OY=OY+dqHexY(m,KK,IQ)*OmgSub(L)

OZ=OZ+dqHexZ(m,KK,IQ)*OmgSub(L)

KX=KX+dqHexX(m,KK,IQ)*TkeSub(L)

KY=KY+dqHexY(m,KK,IQ)*TkeSub(L)

KZ=KZ+dqHexZ(m,KK,IQ)*TkeSub(L)

3rd and 7th should have all of these

OX=OX+PriX(m,KK,IQ)*OmgSub(L)

OY=OY+PriY(m,KK,IQ)*OmgSub(L)

OZ=OZ+PriZ(m,KK,IQ)*OmgSub(L)

KX=KX+PriX(m,KK,IQ)*TkeSub(L)
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KY=KY+PriY(m,KK,IQ)*TkeSub(L)

KZ=KZ+PriZ(m,KK,IQ)*TkeSub(L)

4th and 8th should have all of these

OX=OX+dPyrX(m,KK)*OmgSub(L)

OY=OY+dPyrY(m,KK)*OmgSub(L)

OZ=OZ+dPyrZ(m,KK)*OmgSub(L)

KX=KX+dPyrX(m,KK)*TkeSub(L)

KY=KY+dPyrY(m,KK)*TkeSub(L)

KZ=KZ+dPyrZ(m,KK)*TkeSub(L)

A.1.3 Coding MSST-Step 2:

Edit the following module in KivaVarAllocateModuleMPI 091917.f90

MODULE WILCOX DATA ! For k-w and MSST turbulence model

IMPLICIT NONE

PUBLIC

DOUBLEPRECISION :: Alp, Beta, Srf, Sig, Sigstr, Clim

DOUBLEPRECISION :: Betastr, Karman

PARAMETER (Alp=5.0d0/9.0d0) ! approximately 5/9

PARAMETER (Beta=3.0d0/40.0d0)

PARAMETER (Betastr=9.0d0/100.0d0)

PARAMETER (Srf=9.0d0)

PARAMETER (Karman=0.41d0)

PARAMETER (Sig=0.5d0)
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PARAMETER (Sigstr=0.5d0)

PARAMETER (Clim=0.875d0)

!

!

!

! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! MSST MODULE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

DOUBLEPRECISION :: Beta1,Beta2, BetaBlend

DOUBLEPRECISION :: Sigstr1, Sigstr2, SigstrBlend

DOUBLEPRECISION :: Sig1, Sig2, SigBlend

DOUBLEPRECISION :: Alp1, Alp2, AlpBlend

DOUBLEPRECISION :: a1 MSST, F1 MSST, F2 MSST

DOUBLEPRECISION :: ARG2,Omega MSST

DOUBLEPRECISION :: distTEMP,ARG1,CD komg

DOUBLEPRECISION, ALLOCATABLE, DIMENSION(:) :: distSmallestSST,

distSmallestElem

! DOUBLEPRECISION, ALLOCATABLE, DIMENSION(:,:) :: distAllWalln-

odes

PARAMETER (a1 MSST=0.31d0)

PARAMETER (Beta1=0.075d0)

PARAMETER (Beta2=0.0828d0)

PARAMETER (Sig1=0.5d0) ! Sig is sigma omega

PARAMETER (Sig2=0.856d0)

PARAMETER (Sigstr1=0.85d0) ! Sigstr is sigma k

PARAMETER (Sigstr2=1.0d0)

PARAMETER (Alp1=Beta1/Betastr-Sig1*Karman**2.0d0/(Betastr)**0.5d0) !Alp
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is gamma

PARAMETER (Alp2=Beta2/Betastr-Sig2*Karman**2.0d0/(Betastr)**0.5d0)

!

! BSL Step 3

! PARAMETER (Sigstr1=0.50d0) ! For BSL

! PARAMETER (F1 MSST=0.0d0) ! For BSL

! PARAMETER (BetaBlend=F1 MSST*Beta1 + (1.0d0-F1 MSST)*Beta2)

! PARAMETER (SigstrBlend=F1 MSST*Sigstr1 + (1.0d0-F1 MSST)*Sigstr2)

! PARAMETER (SigBlend=F1 MSST*Sig1 + (1.0d0-F1 MSST)*Sig2)

! PARAMETER (AlpBlend=F1 MSST*Alp1 + (1.0d0-F1 MSST)*Alp2)

!

!

END MODULE WILCOX DATA

A.1.4 Coding MSST-Step 3:

Summary: code baseline model setting F1 to be 0 or 1. Simplest case to begin. An-

noyingly Sigstr1 needs to be 0.5d0 in the MODULE MSST. Most of this is eventually

undone except for replacing some of the variables with their blended counterpart.

Also we will change the MODULE MSST by addding the following lines to determine

F1 and the blended values:

PARAMETER (F1 MSST=0.0d0)

PARAMETER (BetaBlend=F1 MSST*Beta1 + (1.0d0-F1 MSST)*Beta2)

PARAMETER (SigstrBlend=F1 MSST*Sigstr1 + (1.0d0-F1 MSST)*Sigstr2)

PARAMETER (SigBlend=F1 MSST*Sig1 + (1.0d0-F1 MSST)*Sig2)

PARAMETER (AlpBlend=F1 MSST*Alp1 + (1.0d0-F1 MSST)*Alp2)
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Making the following replacements to TwoEq Turbulence Wall Ale Sub 092117SUPZG.f90:

Beta -> BetaBlend (4 times)

Alp -> AlpBlend (4 times)

Sigstr -> SigstrBlend (to clarify 48 of the 52 times excluding the PeCell Sigstr) only

term that appears in the 4 TKE subroutines, where as all others appear in the DISS

subroutines

Sig -> SigBlend (to clarify 24 of the 28 times excluding the PeCell Sig)

Find and replace works for Beta if you search for Beta* (since Betastr exists).

Find and replace works for Sig if you search for Sig*

For the instances on the PeCell lines, search for PeCell and remove the blend terms,

leave them unblended.

A.1.5 Coding MSST-Step 4:

Summary: Keeping the code as the BSL model for simplicity, but now letting F1 MSST

vary. What we really want is Attempt 3’s distance calculations that go into main,

which will also be used for the actual MSST.

We have to get rid of the 5 parameter statements added in step 3.

Things needed to calculate F1 MSST:

RhoTilda (ρ)

TKEN (k)

OMEG (ω)

Betastr (β∧*)

MuElem/RhoTilda (ν = µ/ρ)
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sig2 (σ ω2)

KX (dk/dx) <– not defined in 4 TKE subroutines

OX (dω/dx) <– not defined in 4 DISS subroutine

Attempt 1:

Put the following code into the 8 subroutines just after the ”FIRST DERIVATIVE

TERMS”, outside the loop:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!! Calculate the “average” x,y,z of the cell

Xelem = 0.0d0 ! what unit is this if the SI switch is used?

Yelem = 0.0d0

Zelem = 0.0d0

DO KK=1,NUMN ! does this hit all nodes?

Xelem = Xelem + X(node(K,KK))

Yelem = Yelem + Y(node(K,KK))

Zelem = Zelem + Z(node(K,KK))

END DO

Xelem = Xelem / (NUMN*1.0d0)

Yelem = Yelem / (NUMN*1.0d0)

Zelem = Zelem / (NUMN*1.0d0)

!!!!!!!! Calculate the distance of the closest wall node

distSmallest = 1.0d10

DO LL=1,NNODE

IF (novb(LL) < 0) THEN

distTEMP = sqrt((Xelem-X(LL))**2 +(Yelem-Y(LL))**2 +(Zelem-Z(LL))**2)

IF (distTEMP<distSmallest) THEN
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distSmallest = distTEMP

END IF

END IF

END DO

!!!!!!! Now calculate F1 MSST, https://turbmodels.larc.nasa.gov/sst.html

CD komg = MAX(2*RhoTilda*Sig2*(KX*OX+KY*OY+KZ*OZ)/OMEG ,1.0d1**-

20)

ARG1 = MIN(MAX( sqrt(TKEN)/(Betastr∗OMEG*distSmallest), &

500*MuElem/(distSmallest**2*RhoTilda*OMEG) ), &

4*RhoTilda*Sig2*TKEN/(CD komg*distSmallest**2) )

F1 MSST = TANH(ARG1**4)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

BetaBlend=F1 MSST*Beta1 + (1.0d0-F1 MSST)*Beta2

SigstrBlend=F1 MSST*Sigstr1 + (1.0d0-F1 MSST)*Sigstr2

SigBlend=F1 MSST*Sig1 + (1.0d0-F1 MSST)*Sig2

AlpBlend=F1 MSST*Alp1 + (1.0d0-F1 MSST)*Alp2

Attempt 2:

May be better that we use the cntr variable in existing code instead of re-calculating

every-time to get the node center. The suggestion has been made that we calculate

the distance in the main function. May loose flexibility for moving parts overlay

systems, h-adaptation etc.

!!!!!!! Now calculate F1 MSST, https://turbmodels.larc.nasa.gov/sst.html

CD komg = MAX(2*RhoTilda*Sig2*(KX*OX+KY*OY+KZ*OZ)/OMEG ,1.0d1**-
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20)

ARG1 = MIN(MAX( sqrt(TKEN)/(Betastr*OMEG*distSmallest(K)), &

500*MuElem/(distSmallest(K)**2*RhoTilda*OMEG) ), &

4*RhoTilda*Sig2*TKEN/(CD komg*distSmallest(K)**2) )

F1 MSST = TANH(ARG1**4)

BetaBlend=F1 MSST*Beta1 + (1.0d0-F1 MSST)*Beta2

SigstrBlend=F1 MSST*Sigstr1 + (1.0d0-F1 MSST)*Sigstr2

SigBlend=F1 MSST*Sig1 + (1.0d0-F1 MSST)*Sig2

AlpBlend=F1 MSST*Alp1 + (1.0d0-F1 MSST)*Alp2

Changing the 3 instances of distSmallest to distSmallest(K).

In the main file, do the following just before the loop for time stepping...

use WILCOX DATA

In the main file, do the following just before the loop for time stepping...

!!!!!!!! Calculate the distance of the closest wall node

allocate(distSmallest(NELEM))

DO L=1,NELEM

distSmallest(L) = 1.0d10

DO LL=1,NNODE

IF (novb(LL) < 0) THEN
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distTEMP = sqrt((cntr(L,1)-X(LL))**2 +(cntr(L,2)-Y(LL))**2 +(cntr(L,3)-

Z(LL))**2)

IF (distTEMP<distSmallest(L)) THEN

distSmallest(L) = distTEMP

END IF

END IF

END DO

END DO

In the main file, NO NEED to do the following just after the loop for time step-

ping...

deallocate(distSmallest)

this will be used the whole time.

Attempt 3 - Better Yet:

To get more accurate results for hex cells when close to wall, put the following in

the WILCOX DATA module...

DOUBLEPRECISION, ALLOCATABLE, DIMENSION(:) :: distSmallestSST,

distSmallestElem

! DOUBLEPRECISION, ALLOCATABLE, DIMENSION(:,:) :: distAllWalln-

odes

And this in KIVAhpFE3d main 071216.f90 just before the time step loop:

!!!!!!!! Calculate the distance of the closest wall node

allocate(distSmallestSST(NNODE)) !,distSmallestElem(NELEM)) !,distAllWalln-
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odes(NNODE,NNODE))

! makes no sense to use distAllWallnodes in the above line, because not all the

values

! in the second dimension are wall nodes.

DO L=1,NNODE

! IF ( U(L) > zero ) CYCLE

distSmallestSST(L) = 1.0d10

DO LL=1,NNODE

IF (novb(LL) < zero .and. U(LL) /= 1130.0d0 ) THEN ! must match U inlet

velocity

distTEMP = dsqrt((X(L)-X(LL))**2 +(Y(L)-Y(LL))**2 +(Z(L)-Z(LL))**2)

IF (distTEMP<distSmallestSST(L)) THEN

distSmallestSST(L) = distTEMP

END IF

END IF

END DO

IF (distSmallestSST(L) == zero) THEN

distSmallestSST(L) = tiny

END IF

END DO

! DO L=1,NELEM ! take average of nodes in distSmallest for each element

! distSmallestElem(L) = 0.0d0

! DO LL=1,NUMN

! distSmallestElem(L) = distSmallestElem(L) + distSmallest(NODE(L,LL))

! END DO

! distSmallestElem(L) = distSmallestElem(L) / (1.0d0* NUMN)

! END DO
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Also need to change distSmallest(K) to distSmallestElem(K) in the 8 subroutines

of the the TwoEq Turbulence Wall ALE Sub 092117SUPG.f90 (goes right after the

“FIRST DERIVATIVE TERMS”) :

!!!!!!! Now calculate F1 MSST, https://turbmodels.larc.nasa.gov/sst.html

CD komg = MAX(2*RhoTilda*Sig2*(KX*OX+KY*OY+KZ*OZ)/OMEG ,1.0d1**-

20)

ARG1 = MIN(MAX( sqrt(TKEN)/(Betastr*OMEG*distSmallestElem(K)), &

500*MuElem/(distSmallestElem(K)**2*RhoTilda*OMEG) ), &

4*RhoTilda*Sig2*TKEN/(CD komg*distSmallestElem(K)**2) )

F1 MSST = TANH(ARG1**4)

BetaBlend=F1 MSST*Beta1 + (1.0d0-F1 MSST)*Beta2

SigstrBlend=F1 MSST*Sigstr1 + (1.0d0-F1 MSST)*Sigstr2

SigBlend=F1 MSST*Sig1 + (1.0d0-F1 MSST)*Sig2

AlpBlend=F1 MSST*Alp1 + (1.0d0-F1 MSST)*Alp2

Coding MSST-Step 5:

The Goal is to go from BSL to MSST. To do this µt will have to be calculated more

carefully and change to Sigstr1=0.85 from 0.5 as used in KivaVarAllocateModuleMPI 091917.f90

WILCOX => MSST module. Step 6 will be worried about clipping and boundaries,



APPENDIX A. APPENDIX: CODING THE IMPROVED MSST 106

which should be the final step.

Expanding the vorticity term to simplify it:

W = 1/2 (du i / dx j - du j / dx i)

Ω = sqrt( 2 W ij W ij)

Note that W is antisymmetric: W ij = - W ji

So, W = ( 0 W12 W13

-W12 0 W23

-W13 -W23 0 )

and W ij∧2 = W ji∧2

Ω = sqrt( 2 (W11∧2 + W22∧2 + W33∧2) + 2 (W12∧2 + W13∧2 + W23∧2 + W21∧2

+ W31∧2 + W32∧2) )

= sqrt( 2 (0∧2 + 0∧2 + 0∧2) + 4*(W12∧2 + W13∧2 + W23∧2) )

= sqrt( (du 1 / dx 2 - du 2 / dx 1)∧2 + (du 1 / dx 3 - du 3 / dx 1)∧2 + (du 2

/ dx 3 - du 3 / dx 2)∧2 )

= sqrt( (UY - VX)∧2 + (UZ - WX)∧2 + (VZ - WY)∧2 )

This can be coded and added to the eight subroutines

of the TwoEq Turbulence Wall ALE Sub 092117SUPG.f90 as:

! Now calculate MSST stuff, https://turbmodels.larc.nasa.gov/sst.html

Omega MSST = dsqrt((UY-VX)**2 + (UZ-WX)**2 + (VZ-WY)**2 ) ! sim-

plifies due to W being antisymmetric

CD komg = MAX(2*RhoTilda*Sig2*(KX*OX+KY*OY+KZ*OZ)/OMEG ,1.0d1**-

20)
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ARG1 = MIN(MAX( dsqrt(TKEN)/(Betastr*OMEG*distSmallestElem(K)),

&

500*MuElem/(distSmallestElem(K)**2*RhoTilda*OMEG) ), &

4*RhoTilda*Sig2*TKEN/(CD komg*distSmallestElem(K)**2) )

ARG2 = MAX( 2*dsqrt(TKEN)/(Betastr*OMEG*distSmallestElem(K)), &

500*MuElem/(distSmallestElem(K)**2*RhoTilda*OMEG) )

IF ( USE MSST .eq. 1 ) then

F1 MSST = DTANH(ARG1**4)

F2 MSST = DTANH(ARG2**2)

MUTT = a1 MSST*TKE(L)*Rhotilda /

max(a1 MSST*OMG(L), Omega MSST*F2 MSST) ! Nodal value, just as

above

SigstrBlend=F1 MSST*Sigstr1 + (1.0d0-F1 MSST)*Sigstr2

ELSE

F1 MSST = 1.0d0

SigstrBlend=Sigstr

END IF

BetaBlend=F1 MSST*Beta1 + (1.0d0-F1 MSST)*Beta2

SigBlend=F1 MSST*Sig1 + (1.0d0-F1 MSST)*Sig2

AlpBlend=F1 MSST*Alp1 + (1.0d0-F1 MSST)*Alp2

Need to change the above code to be nodal. Because the PG does not need blend-

ing, the visT is being advected. This will go just before the PROD terms (PRODTKE

or PRODOMG) in each of the 8 sub-routines.

! ideally the next block should be made into a sub-routine at some point
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! Now calculate MSST stuff, https://turbmodels.larc.nasa.gov/sst.html

IF ( USE MSST .eq. 1 ) then

IF (OMG(L) == ZERO ) THEN

OMG(L) = tiny

END IF

Omega MSST = dsqrt((UY-VX)**2 + (UZ-WX)**2 + (VZ-WY)**2 ) ! sim-

plifies due to W being antisymmetric

CD komg = MAX( 2.0d0* Rhotilda * Sig2*(KX*OX + KY*OY + KZ*OZ

)/ OMG(L) , 1.0d1**-20 ) ! Why? * Rhotilda should be here

ARG1 = MIN(MAX( dsqrt(TKE(L))/(Betastr*OMG(L)*distSmallestSST(L)),

&

500.0d0*MUFLUID(L) / ( Rhotilda * distSmallestSST(L)**2 *OMG(L)

) ), & ! Nu = Mufluid/Rhotilda

4.0d0*Rhotilda*Sig2*TKE(L) / ( CD komg*distSmallestSST(L)**2

) )

ARG2 = MAX( 2.0d0*dsqrt(TKE(L))/(Betastr*OMG(L)*distSmallestSST(L)),

&

500.0d0 * MUFLUID(L) / ( Rhotilda * distSmallestSST(L)**2 *OMG(L)

) )

F1 MSST = DTANH(ARG1**4)

F2 MSST = DTANH(ARG2**2)

MUTT = a1 MSST*TKE(L)*Rhotilda /

max(a1 MSST*OMG(L), Omega MSST*F2 MSST) ! Nodal value, just as

above

SigstrBlend=F1 MSST*Sigstr1 + (1.0d0-F1 MSST)*Sigstr2

ELSE

F1 MSST = 1.0d0
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SigstrBlend=Sigstr

END IF

BetaBlend=F1 MSST*Beta1 + (1.0d0-F1 MSST)*Beta2

SigBlend=F1 MSST*Sig1 + (1.0d0-F1 MSST)*Sig2

AlpBlend=F1 MSST*Alp1 + (1.0d0-F1 MSST)*Alp2

This now needs to be placed just before the TRAC terms into the each of the 8 sub-

routines. LL is wanted instead of L:

! Now calculate MSST stuff, https://turbmodels.larc.nasa.gov/sst.html

IF ( USE MSST .eq. 1 ) then

IF (OMG(LL) == ZERO ) THEN

OMG(LL) = tiny

END IF

Omega MSST = dsqrt((UY-VX)**2 + (UZ-WX)**2 + (VZ-WY)**2 ) ! sim-

plifies due to W being antisymmetric

CD komg = MAX(2.0d0 * Rhotilda * Sig2*(KX*OX + KY*OY + KZ*OZ

)/ OMG(LL) , 1.0d1**-20 ) ! Why? * Rhotilda should be here

ARG1 = MIN(MAX( dsqrt(TKE(LL))/(Betastr*OMG(LL)*distSmallestSST(LL)),

&

500.0d0*MUFLUID(LL) / ( Rhotilda * distSmallestSST(LL)**2 *OMG(LL)

) ), & ! Nu = Mufluid/Rhotilda

4.0d0 *Rhotilda*Sig2*TKE(LL) / ( CD komg*distSmallestSST(LL)**2

) )

ARG2 = MAX( 2.0d0 *dsqrt(TKE(LL))/(Betastr*OMG(LL)*distSmallestSST(LL)),

&
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500.0d0 * MUFLUID(LL) / ( Rhotilda * distSmallestSST(LL)**2

*OMG(LL) ) )

F1 MSST = DTANH(ARG1**4)

F2 MSST = DTANH(ARG2**2)

MUTT = a1 MSST*TKE(LL)*Rhotilda /

max(a1 MSST*OMG(LL), Omega MSST*F2 MSST) ! Nodal value, just as

above

SigstrBlend=F1 MSST*Sigstr1 + (1.0d0-F1 MSST)*Sigstr2

ELSE

F1 MSST = 1.0d0

SigstrBlend=Sigstr

END IF

BetaBlend=F1 MSST*Beta1 + (1.0d0-F1 MSST)*Beta2

SigBlend=F1 MSST*Sig1 + (1.0d0-F1 MSST)*Sig2

AlpBlend=F1 MSST*Alp1 + (1.0d0-F1 MSST)*Alp2

Edits to the KivaVarAllocate file : add

INTEGER :: USE MSST

to module runparam

put the following wherever you want...

READ(7,*)USE MSST

(just be sure to add a line in the correct spot in the .par file)

also add 1

USE MSST 0 = K-Omega, 1 = MSST” as the first parameter read in the .par main

file.
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A.1.6 Coding MSST-Step 6

Summary: Boundary conditions and wall function and clipping.

In the stability analysis routine, I made the following change:

! TURBULENT VISCOSITY EXCEPT AT WALL ELEMENT

!

! MUT(:) = zero

! IF ( FLOW == 1 .AND. Wall Func == 1 ) THEN

! DO L=1,NNODE

! LOOPEXIT=0

! IF ( IFNODE(L) /= L ) Cycle

! IF (TKE(L)<FREE STREAM TKE ) THEN

! TKE(L)=FREE STREAM TKE

! END IF

! IF (OMG(L)<FREE STREAM OMG ) THEN

! OMG(L)=FREE STREAM OMG

! END IF

! MUT(L)=RHO(L)*TKE(L)/OMG(L)

!! IF ( YPLUS(L) < 10.0 ) MUT(L) = zero

! IF ( MUTMAX < MUT(L) ) MUTMAX=MUT(L)

! TKE(WALLFNODE(L))=zero

! MUT(WALLFNODE(L))=zero

! OMG(WALLFNODE(L))=OMG(IFNODE(L))

! END DO

IF ( FLOW == 1 .AND. Wall Func >= 0) THEN
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DO L=1,NNODE

IF ( (NSTEP == 1 .OR. NADAPT == 1) .AND. TKE(L)<FREE STREAM TKE)

THEN!

TKE(L)=FREE STREAM TKE

END IF

IF ( OMG(L)<FREE STREAM OMG ) THEN

OMG(L)=FREE STREAM OMG

END IF

MUT(L) = zero

MUT(L)=RHO(L)*TKE(L)/OMG(L)

! IF ( YPLUS(L) < 10.0 ) MUT(L)=zero

IF (MUTMAX<MUT(L)) MUTMAX=MUT(L)

END DO

END IF

The Y+ ranges are modified in SUBROUTINE WALL FUNCTION to better suit

that of Wilcox suggestion as below:

IF (YPLUS(LL) >= 30.0d0 .and. YPLUS(LL) < 500.0d0 ) THEN

UPLUS(LL) = LOG(YPLUS(LL))/KARMAN + 5.5d0

IF ( mod(NSTEP,500) == 0 ) THEN

WRITE(101,*)’YPLUS(LL)> 30.0’,YPLUS(LL),UPLUS(LL),TAUw(LL),TKE(LL),LL

END IF

ELSE IF (YPLUS(LL) < 30.0d0 .AND. YPLUS(LL) > 5.0d0 ) THEN

UPLUS(LL) = 5.0d0*LOG(YPLUS(LL)) - 3.05

IF ( mod(NSTEP,500) == 0 ) THEN

WRITE(102,*)’YPLUS(LL)<= 30.0’,YPLUS(LL),UPLUS(LL),TAUw(LL),TKE(LL),LL
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END IF

ELSE IF ( YPLUS(LL) <= 5.0d0 ) THEN ! .AND. YPLUS(LL) >= zero) THEN

UPLUS(LL) = YPLUS(LL)

IF ( mod(NSTEP,500) == 0 ) THEN

WRITE(103,*)’YPLUS(LL)< 10.0’,YPLUS(LL),UPLUS(LL),TAUw(LL),TKE(LL),LL

END IF

END IF

IF (YPLUS(LL) < 10.0 ) THEN

! WRITE(*,*)’Y+ < 10.0’, YPLUS(LL),UPLUS(LL),TAUw(LL),DIST(I),I,LL

END IF

IF (YPLUS(LL) < 4.0 ) THEN

! WRITE(*,*)’Y+ < 4.0’, YPLUS(LL),UPLUS(LL),TAUw(LL),DIST(I),I,LL

END IF



Appendix B

Appendix: GridPro for KIVA and

FEARCE

KIVA is a large legacy Fortran program developed and maintained by LANL’s T3

solid mechanics and fluid mechanics group that solves turbulent reactive flows for in-

ternal combustion engines. KIVA-4mpi is an updated parallel version of KIVA4 that

still involves the labor intensive task of producing intricate computational grids. In

summary the legacy k-ε KIVA codes use traditional FV formulation while the parts

movement system is based on local node snapping, the parts must be matched and

the grid generation is painfully tedious. KIVA-4mpi is the current maintained avail-

able release from LANL, but will soon be overtaken with the release of FEARCE,

formerly KIVA4-hpFE, in the near future. FEARCE employs the FEM with a re-

cently invented moving marker parts overlay system that takes full advantage of the

high quality automatic grid generation of GridPro. The grids are also referred to as

semi-structured due to the way the hexahedral elements can be shaped vs. traditional

structured grid generation softwares. The moving parts surfaces are easy to gener-

ate and are overlaid onto hexahedral elements which are automatically generated for

complex convex domains. FEARCE and GridPro also give rise to even further au-

114
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tomating the grid generation process for complex geometries with the introduction

of modular based topology for spray injectors, spark systems and different port/head

and cylinder configurations.

The process to develop and implement GridPro into FEARCE began with KIVA-

4mpi grid generation and a full 2-valve combustion engine simulation example test as

shown in Fig. (B.1) and Fig. (B.2).

Figure B.1: Temperature distribution for a KIVA-4mpi turbulent combustion engine
simulation with snapping moving parts on a GridPro grid 2 valve, 2 port test system.

The KIVA-4mpi traditional meshing is labor intensive on domains with imbedded

bodies, requiring a node matched grid as shown in Fig. (B.3) for the snapping rou-
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Figure B.2: Turbulent kinetic energy plot distribution with bead stream-traces of a
KIVA-4mpi turbulent combustion engine simulation with snapping moving parts on
a GridPro grid 2 valve, 2 port test system.

tine. The meshing for KIVA-4mpi was made significantly easier by using GridPro’s

semi-structured, automated grid generation to produce small aspect ratio hexahedral

blocks that help facilitate stability in FV schemes. GridPro essentially reduces grid

generation to topology generation, and allows the primary user to input a pattern of

points referred to as the grid topology. Although more intuitive the embedded parts
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snapping routines of KIVA-4mpi where used as a proof of concept exercise and even

with GridPro still require a great deal of effort and work around for a quality mesh.

Figure B.3: KIVA-4mpi Snapping System for Moving Immersed Parts (GridPro 2
valve, 2 port idealized test system).

The newer FEM based FEARCE code can get by with less stringent requirements

on aspect ratio and near wall spacing. In addition, the newly invented moving marker

system for immersed bodies in the FEARCE code is presented here mainly for docu-

mentation reasons. The FEARCE overset, moving marker system takes full advantage

of the automatic grid generators used in GridPro, which can provide a quality grid in

a convex domain without consideration for internally attached grid nodes to moving

parts as was previously done in prior KIVA codes. In FEARCE the body immersion

is supplied by the FEM codes moving parts methods and uses triangulated surfaces

overlaying Eulerian fluid hexahedral grid elements to allow for the fluid system to be
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solved in the Eulerian frame. The development of the engine grids using GridPro for

older versions of KIVA and FEARCE were a precursor to the grids used in this study.

GridPro grids are far superior when a low aspect grid can be created. The ability

to modularize the topology and re-purpose its use is beneficial to the engine designer.

The ability to create complex features and realize complex domains is of great benefit,

however some of the control needed to enforce aspect ratio and similar element sizing

can become tedious but still far easier to maintain when compared to other grid

generators. This worry will be lessened with the introduction of module based toplogy.

The overlay system uses regional 3 dimensional block properties to turn the ports

on and off, as shown in Fig. (B.4). Trying to use a sheet made from an internal

surface first, then a slice 2-3 nodes about this internal surface exported and fed back

into the grid (to better align the converged grid to the slice that edges the block).

Figure B.4: Schematic breakdown of the FEARCE/GridPro moving marker valve
overlay 3D port blocking properties.
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With this technique we have had mild success, most recently this approach has

been abandoned in favor of sheets bisecting the domain and a small center cylinder

running the length of the combustion arena to increase aspect ratio so the 3D region

where the center of the head can have the lowest aspect as possible, shown in Fig.

(B.4) 2a and 2b.

A low aspect ratio, highly uniform grid domain with smooth gradients improves

the transfer of information from one cell to the next and would be considered preferred.

The inherent need to immerse a triangular surface .stl file, such as the valves depicted

in in Fig. (B.4) 2a, into the hexahedron of fluid grid must be scalable. For example,

a finer engine grid would imply a finer tet, on a moving surface such as a valve or

piston, is needed. 2-3 .stl tet surface elements are needed for one 3D element or iso-

parametric brick in the fluid domain upon which it is overlaid. This is done in order

to identify an immersed boundary, more or less tets per fluid hex causes un-needed

compute time, less may cause improperly recognized boundary.

In Fig. (B.7), the domain was extracted using x-ray tomography and the valves,

bowled piston, head, intake and exhaust ports where gridded using GridPro. This

extent of realism in a previous KIVA grid was not possible due to the organic shapes

of the surfaces involved. The process of topology based nodes building a skeletal

structure around these extracted x-ray tomography surfaces files, allows GridPro to

project a control net surface onto the shape. This control net surface generation is

something not seen in other grid generators, the technology more likened to that of the

Hollywood Pixar animation industry. Using the FEARCE approach to moving marker

overlay of moving components one further increases the quality of the fluid domain.

In previous legacy KIVA grid generation the moving parts had to be coupled to the

nodes in the domain, this perverting the fluid domain nodes as seen in the snapping

routines of older KIVA grids. This is no longer needing to be done with FEARCE

and significantly increases engine design from simulation to market.
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Figure B.5: Schematic breakdown of the FEARCE/GridPro moving marker overlay
grid system.

Modular based topology from GridPro is outlined in the figures that follow. The

parts overlaid are interchangeable and the topology modules are re-useable for differ-

ent engine designs, i.e., the spark and Spray-G modules can easily be fitted to a 2V
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Figure B.6: A 4-valve DISI moving marker system FEARCE test simulation on
GridPro grid. Bowled piston, valves, and manifold surfaces created in GridPro from
x-ray tomography.

engine design or as shown a 4V valve manifold. The process to build the topology in

GridPro is intuitive and gives the design engineer more freedom in the grid creation

process, significantly decreases the time and effort to produce, and also increases grid

quality.



APPENDIX B. APPENDIX: GRIDPRO FOR KIVA AND FEARCE 122

Figure B.7: A 1.2 million node 4 valve direct injection spark injection (DISI) engine
from x-ray tomography, with .stl triangulated (tet) moving marker valves and bowled
piston, grid generated by with GridPro. The grid has been sparsened down from 40
million.
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Figure B.8: Spray-G needle valve injector GridPro grid, the image shows an outer
ream of topology nodes along with the surfaces used to create the grid overlaid onto
the grid.

Figure B.9: Spray-G GridPro injector nozzle grid.
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Figure B.10: Spray-G GridPro injector nozzle grid with needle valve sleeve.

Figure B.11: Spray-G GridPro injector nozzle cell vs skew distribution, exhibiting
the high quality found in GridPro’s capability to mesh complex components.
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Figure B.12: The Spray-G GridPro injector was then ”modularized” by creating
a standalone topology, this module can now be effectively plugged into test engine
designs. Surfaces and Topology(left), Grid(right)

Figure B.13: A GridPro spark system was then ”modularized”, this module can
also now be plugged into test engine designs. Surfaces and Topology(left), Grid(right)
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Figure B.14: A GridPro 4V manifold with insert topology for spark and Spray-G
modules.

Figure B.15: A GridPro 4V manifold with insert topology for spark and Spray-G
modules, top down view.
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Figure B.16: A GridPro 4V manifold with inserted topology spark and Spray-G
modules.

Figure B.17: A GridPro 4V manifold with inserted topology spark and Spray-G
modules(left) and validated grid(right).
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