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Abstract

Light carrying orbital angular momentum (OAM) has many applications ranging

from optical manipulation, imaging and remote sensing, and optical communications,

and can be used to perform fundamental studies in quantum mechanics and quantum

information. Moreover, single photons with high-order OAM allow for increasing the

amount of information carried per photon in quantum communication. This thesis

describes the study of methods for the preparation and detection of OAM of light in

high mode order by utilizing beam shaping techniques using spatial light modulators

(SLMs). The quality of the generated high-order OAM mode is limited by optical

aberrations which are induced by optical elements in realistic systems and propagation

through realistic channels. In order to create and characterize the OAM modes with

high quality, we investigate methods for aberration detection and correction using

SLMs. These beam shaping techniques for the correction of optical aberrations allow

us to generate and detect light carrying OAM with mode order ranging from l = 0

to l = 8 with good quality, and to generate high quality superpositions of OAM

modes with high mode order or in high dimensions. Furthermore, we observe low

crosstalk and good levels of mode discrimination between different OAM modes of
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light. Our experimental setup can be applied in future studies to investigate and test

different protocols in quantum information with high dimensional systems, such as

high dimensional quantum state tomography.
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Chapter 1

Introduction

Photons are ideal carriers of information. Light has different degrees of freedom

that can be used for encoding and transmitting information, such as frequency,

polarization, and the spatial degree of freedom. In particular, leveraging the spatial

degree of freedom of light allows for increasing the amount of information that can

be encoded in a single photon. Laguerrre-Gaussian (LG) modes which have a well

defined OAM, can be used to decompose the transverse field profile of light, and to

define a high-dimensional (multimode) photonic states for investigations in quantum

information and communication. In this thesis, we investigate the generation and

measurement of states of light carrying OAM, with the goal of demonstrating an

experimental setup that can perform state preparation and measurement of OAM

states of light with high quality. This setup will be useful for future investigations

of quantum state tomography (QST) protocols for the characterization of high-

dimensional quantum states of photons.

Light consists of photons, each photon with with energy ~ω and linear momentum

~~k. Photons can carry spin and orbital angular momentum. Photon with left circular

polarization carries spin angular momentum with an amount of ~ and with right

circular polarization carries spin angular momentum of −~ per photon along the

propagation direction. Light with OAM has an azimuthal phase dependence exp(ilθ),

where θ is the polar angle of the phase front of light, and each photon in this light
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beam contains l units of OAM (l~), first recognized by Allen et al. [2] in 1992. In

1995, He et al. [3] showed it is possible to experimentally observe the transfer of

OAM from photons to absorptive particles. This OAM transfer process induced a

rotational motion in the particles, showing that the OAM is a physical property

contained in the photon, which can be transferred to different systems, not only a

mathematical novelty. Beyond OAM transfer between light and matter, the OAM

has other applications in optical tweezers for micromechanical or microfluidic control

[4], digital imaging [5] and astronomy [6, 7].

Light carrying OAM can be generated in different ways, for example, sending

the light through a spiral phase plate [8], a q-plate [9], and using beam shaping

techniques based on spatial light modulators (SLMs) [10]. Neshev et al. [11] observed

experimentally the formation of a robust discrete optical vortex solitons in two-

dimensional optically induced photonic lattices. Moreover, there are different processes

that can be used to generate correlated light beams and photon pairs carrying OAM.

In the spontaneous parametric down-conversion (SPDC) processes, the two generated

photons are entangled with OAM [12, 13]. Two photons entangled in OAM can also

be generated in spontaneous four wave-mixing (SFWM) process in a hot atomic

ensemble [14]. Fickler et al. [15] showed that using spiral phase mirrors, it is possible

to transfer the state of polarization of a photon to a state with OAM encoding with

OAM mode order l of 10010.

The OAM degree of freedom of light allows for fundamental studies of high

dimensional (quantum) systems and quantum correlations. The fundamental studies

of OAM include the demonstration of a spatially split coincidence pattern at the

output of a parametric down converter pumped by a beam carrying OAM detected

by directly using two point detectors [16]. Nagali et al. [17] observed a two-photon

Hong-Ou-Mandel coalescence of photons carrying nonzero OAM. Leach et al. [18]

demonstrated strong Einstein, Podolsky, and Rosen correlations between the angular

position and the OAM of two photons created by SPDC. Mair et al. [13] provided

a practical route to generate entanglement that involves many orthogonal OAM

quantum states by using the SPDC source. Krenn et al. [19] created and verified the
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two-photon entangled state of OAM in 100× 100 high dimension. Bell inequality is

used to demonstrate entanglement of two photons carrying OAM in high dimension

[20–22]. These fundamental studies with photons carrying OAM show that the OAM

is an useful degree of freedom for investigations of quantum communication and

quantum information processing involving high-dimensional states.

OAM has other applications in quantum information science for informaiton

processing and computation [23]. Garćıa-Escart́ın and Chamorro-Posada [24] theoret-

ically proved a single photon encoded across several OAM modes can be manipulated

with phase shifters, beamsplitters, holograms and OAM filters to implement any

desired quantum computation. Another scheme implemented quantum walks with

both OAM and spin angular momentum [25, 26]. Experiments realized Deutschs

algorithm using linear optical components and CNOT gate with OAM modes [27–30].

The OAM degree of freedom of light can be used for information encoding for

both classical and quantum communication. In classical communication, the OAM

of light can be applied to increase the data transmission rate by multiplexing OAM

together with frequency and polarization [31]. Data-transmission that is multiplexed

by using OAM has allowed data transmition at the Terabit-scale, implemented in

both free space [31] and fiber-based platforms [32]. In quantum communication,

the OAM allows for encoding more than 1 bit of information per photon, which

increases the channel capacity allowing for higher secret key rates and is used to

tolerate noise and eavesdropping [33, 34]. High dimensional quantum key distribution

(QKD) was implemented with OAM in free space [35–37]. Long-distance OAM

transmission through free space in quantum communication process is of significant

importance, since transmission of OAM in multimode fibers can’t be implemented due

to multimode mixing [38, 39]. However, it is challenging to transmit spatial modes over

long distance since the transmission is distorted seriously by atmospheric turbulence.

Paterson [40] characterized the decoherence effect of atmospheric turbulence on a

communication system based on single-photon carrying OAM. Krenn et al. [41]

investigated the transmission of OAM light modes and their superpositions over

a 143-km free-space. Recently, the first experimental demonstration of QKD by
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transmitting quantum states using photons prepared in four OAM modes in an

air-core fiber has been demonstrated [42].

Beyond the applications in information processing and communication, light

carrying OAM provides an ideal platform for investigations of protocols of state

preparation and characterization of quantum states in high dimensions. A fundamental

problem in quantum information science is the efficient and accurate determination

of the state of a quantum system and the characterization of quantum processes via

quantum tomography [43]. Quantum state tomography (QST) is the information

processing task that allows for the reconstruction of an unknown state via measurement

on multiple copies of the state [43]. Reconstruction of the quantum system requires

making measurements to gather data that can provide sufficient information for

accurate restoration. The most general kind of measurement is specified by a particular

choice of positive-operator valued measure (POVM) [43]. The second step is the

processing of the measurement outcomes, yielding a state that is most consistent with

the data set given a particular estimation method, for example, maximum-likelihood

estimation, together with constrains imposed by the physical system [44]. QST for high

dimensional systems requires performing efficient, robust and accurate measurements

in high dimensional spaces. Moreover, as the dimensionality of the system increases,

the number of measurements required for QST substantially increases [45]. Different

POVMs for QST can provide different ways for substantially reducing the number of

measurements required for reconstructing the state by using prior information about

the physical system, while still providing complete information about their quantum

state [43]. For example, the symmetric informationally complete (SIC) POVM [46]

and mutually unbiased bases (MUB) [47] are informational complete identifying

uniquely a quantum state with the measurement statistics. However, the number of

measurements for QST required by these two POVMs are substantially different [48].

This is because SIC POVMs use prior knowledge about the state, e.g., the state is

close to pure, which allow them to reduce the number of meausrements for QST, a

process that is called compress sensing [45]. Compressed sensing tomography is a

powerful tool for investigating and characterizing high dimensional quantum states
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that are close to pure, and quantum processes that are low rank. Techniques for

compressed sensing can be applied to different processes for certain Hilbert dimension,

and for different physical systems including photons [45] and atoms [43].

The goal of this thesis is to demonstrate a platform that can be used for the future

investigations of different methods for QST for high dimensional quantum systems

based on photons in Laguerre Gaussian (LG) modes in high dimensions, which is

in principle, able to implement a diverse set of measurements that are used for the

implementation of different POVMs [10]. By implementing different POVMs using

the same platform, could allow for studies to compare the performance of various

QST protocols and investigate their inherent efficiency, accuracy, and robustness to

different sources of noise.

The work in this thesis is described as follows. In Chapter 2, we discuss the

mathematical description of the Laguerre-Gaussian (LG) modes and the OAM content

for beams in the paraxial approximation. This chapter also contains the description for

the techniques used to generate and measure light in the LG basis, and the description

of the experimental setup for this study. Chapter 3 describes the techniques that

are used for correction of aberrations in the optical system, and the experimental

implementation for state preparation of states of light with high OAM order. Chapter

4 describes our work in the investigation of projective measurements of states of light

with OAM based on phase shaping techniques, and the characterization of efficiency

and crosstalk achieved in the experimental setup. Chapter 5 contains the conclusions

of this thesis.
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Chapter 2

Generation and detection of light

with OAM with SLMs

Light carries both spin angular momentum and OAM. The spin angular momentum

is associated with circular polarization with amount of ~, and the OAM is caused

by the azimuthal phase dependence exp(ilθ) of the phase front of the field, in which

each photon in the beam carries an ammount of OAM equal to l~. In this chapter,

we describe the formulation of light beams in Laguerre-Gaussian modes and different

methods for the generation and detection of light in the OAM basis. We describe the

working principle of the spatial light modulator (SLM), which is a versatile tool for

performing state preparation and detection of light carrying OAM with high fidelity

and describe our the experimental setup for investigating the OAM mode generation

and detection. We then discuss the theoretical efficiency limit for OAM detection

based on the phase flattening technique using a SLM and a single mode fiber for

performing projective measurements in the OAM basis [10].

2.1 OAM and Laguerre-Gaussian modes

Light carrying OAM has a helical phase, and results from the solution of the
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paraxial Helmholtz equation in cylindrical coordinates. The solutions, containing

information of the field distribution in cylindrical coordinates, are given by the

Laguerre-gaussian modes. The light with helical phase exp(ilθ) can be decomposed

with the complete set of Laguerre-Gaussian modes, which is the solution to paraxial

Helmholtz equation in cylindrical coordinates. The Laguerre-Gaussian modes LGp
l

with radial and OAM quantum numbers p and l, respectively, are [49]:

LGp
l (ρ, θ, z) =

√
2p!

π(|l|+ p)!

1

w(z)

[√
2ρ

w(z)

]|l|
L|l|p

[
2ρ2

w2(z)

]
× exp

[
− ρ2

w2(z)

]
exp

[
− ikρ2z

2(z2 + z2
R)

]
× exp

[
i(2p+ |l|+ 1) tan−1(

z

zR
)

]
eilθ (2.1)

where ρ is the radial coordinate, θ is the azimuthal angular coordinate and z is the

coordinate that along the propagation direction of the beam. k is the wave vector.

w(z) is the spot size which is defined as the beam radius w(z) = w(0)
√

(z2 + z2
R)/z2

R

with minimum beam waist w(0). zR is the Rayleigh length defined as zR = kw(0)
2

2
and

(2p+ |l|+ 1) tan−1( z
zR

) is the the Gouy phase [49]. L|l|p are the associated Laguerre

polynomials [49] with azimuthal index l, which is the number of intertwined helices,

and radial index p, which is the number of radial nodes. Photons in an LG mode

have well defined OAM which is equal to l~, independently of their radial number.

Figure 2.1: LG0
l intensity and phase patterns. OAM mode order l takes the value

of l = 0,±1,±2,±3 and the intensity and phase patterns are observed at z = 0
transverse plane.

Figure 2.1 shows the intensity and phase patterns of LG modes with radial number
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p = 0. For a beam carrying OAM, its helical wavefront has a wavevector that spirals

around the beam propagation axis z. This means that the linear momentum of each

photon has an azimuthal component in addition to the linear momentum along z

direction [50]. The ratio between the azimuthal and the axial component of the linear

momentum is l
kρ

. The linear momentum of one photon is ~k along the z direction,

thus the azimuthal component of momentum is ~l
ρ

, which results in an orbital angular

momentum per photon of ~l [50].

There are several methods to generate light carrying OAM. One approach to

generate light with helical phase front consists of sending a plane wave through

an optical element with a helical surface, which is called the spiral phase plate [8].

The thickness of the spiral phase plate increases with azimuthal position according

to lθλ
2π(n−1)

, where n is the refractive index of the spiral phase plate and λ is the

wavelength [8, 49]. Another method for generating light carrying OAM is based on

the coupling between the OAM and spin angular momentum. The coupling between

the OAM and the spin angular momentum can be achieved by a q-plate [9], which

is a liquid crystal half-wave plate with a space-variant optical axis depending on

azimuthal position. The order number q in a q-plate, which can be electrically tuned,

denotes the rotating rate of the optical axis with respect to the azimuthal angle

[51]. Light having zero OAM with left (right) circular polarization incidenting on

a q-plate will be converted into light carrying OAM with +2q~, (−2q~) per photon

[52]. A third and widely used method to generate light carrying OAM is based on

the holographic beam shaping techniques with reconfigurable holograms achieved

with spatial light modulators (SLMs). This technique is very versatile, and allows for

inducing arbitrary phase shifts from 0 to 2π of an incoming beam. Efficient and high

fidelity generation of light beams with helical phase can be achieved by preparing a

diffracting fork grating with the SLM when the SLM is illuminated by a plane wave

and the desired beam is prepared in the first diffraction order. Moreover, phase-only

SLMs can be used to modulate both phase and amplitude of an incident beam by

using diffracting holograms with modulated diffraction depths. In our experiment,

investigation of state preparation and measurement of light with OAM is achieved by
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using phase-only SLMs, which is a powerful technique for preparation of light with

programmable field distributions, as discussed with more details in the next sections.

In analogy to state preparation of light with OAM, there are several techniques for

measurement of light with structured phase fronts. Different interferometric methods

can allow for distinguishing light in arbitrarily many OAM states. The interferometric

techniques based on mode converters can use a combination of cylindrical lenses to

induce a shift of the Gouy phase between the modes [53], or a dove prism that can

invert any image into its mirror image [54]. These induced phase shifts allow for the

OAM of a laser beam containing many photons in the same mode to be measured

via interfering a beam with its mirror image [55, 56]. In Ref. [57], Leach et al.

distinguished photons in arbitrary OAM states with a Mach-Zehnder interferometer

and a dove prism, which is capable of separating even and odd OAM modes. Cascading

additional Mach-Zehnder interferometers in principle enables to distinguish individual

photons in arbitrary OAM states with high mode order l. Recent advances in

interferometric techniques have been shown useful for sorting not only OAM modes

with different l orders but also modes with different radial orders at the single photon

level [58]. Even though these techniques are very powerful for mode sorting and

are expected to become more robust and scalable, these techniques are not easy to

implement, and require a careful alignment and high stability. In our work, we instead

investigate a much simpler technique for measurement of OAM modes that allows

for performing projective measurements onto arbitrary spatial modes. We detect the

OAM modes by using a SLM to project the LG modes into the fundamental Gaussian

LG0
0 mode and coupling it into a single mode fiber (SMF) which effectively works as

a spatial mode filter. This technique is called phase flattening [10]. The details of

the implementation are described in Section 2.4.

2.2 Spatial Light Modulator

The LCOS spatial light modulator (SLM) is a device that can be used to alter
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the polarization or the phase of an incident light beam utilizing the electrically-

modulated optical properties of liquid crystals (LCs). The LCOS SLM technology

combines the unique light-modulating properties of liquid crystal (LC) materials

and the high-performance silicon complementary metal oxide semiconductor (CMOS)

technology through dedicated LCOS assembly process [59]. A LCOS device can

be either transmissive or reflective. Currently, there are two types of LCOS SLMs,

amplitude modulation SLM and phase modulation SLM. For amplitude modulation,

the amplitude of the light is changed by varying the linear polarization direction of the

incident light passing through a linear polarizer. For phase-only modulation, the phase

delay is accomplished by electrically adjusting the optical refractive index along the

light path, which is possible because of the non-zero birefringence of the LC materials.

High light reflection efficiency can be achieved by using the phase modulation process

since no light is absorbed by the polarizers or other light absorbing components.

Moreover, it is possible to achieve both phase and intensity modulations using phase-

only SLMs, which then allows for preparation of light modes with arbitrary phase

and intensity profiles.

Figure 2.2: Structure of the SLM. The liquid crystal molecules are parallelly
aligned to the CMOS backplane and front surface. When voltage is applied to
the backplane, the arrangement of the liquid crystal molecules can be changed.
This produces a change in the refractive index and modulate the phase of the
incoming beam.

The basic structure of the LCOS SLM is a parallel aligned LC layer sandwiched

between a cover glass and a CMOS backplane. Figure 2.2 shows the structure of a

reflective SLM. The silicon CMOS backplane consists of the electronic circuit that
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Figure 2.3: The liquid crystal molecule alignment (a): The liquid crystal molecules
are parallelly aligned to the backplane in the same direction when zero voltage
applied to the CMOS back plane. (b): The molecules tilt and change the refractive
index.

is buried under pixel arrays to change the voltage for each pixel, allowing for local

control of the induced electric field. By applying the voltage to the pixelated electrode

on the CMOS backplane, the orientation of the liquid crystal molecules changes in

the LC layer and thus changes the refractive index. When the SLM is off, all the

LC molecules are parallelly aligned to the backplane in the same direction, as shown

in Fig. 2.3 (a). When the SLM is on, the molecules tilt as shown in Fig. 2.3 (b),

thus the phase retardation has been changed [60]. This procedure allows the SLM to

achieve controllable phase modulation and preserves the direction of polarization of

light when the polarization direction of the incident light is parallel to the direction

of the LC molecules. The dielectric mirror (see Fig. 2.2) enables the device to have

high reflectivity about 80 ∼ 95%, depending on the mirror design for optimized

performance for a given wavelength and bandwidth.

In our experimental investigations, we use a LCOS-SLM device from Hamamatsu

LCOS SLM X10468-01. This device is a reflective type phase-only spatial light

modulator, and its phase modulation can be accomplished by sending a computer-

generated hologram to the SLM via a digital-video-interface (DVI) signal. The SLM
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in our experiment has 600× 792 pixels, each pixel with square area 20µm× 20µm.

The response time measured of the SLM is about 30ms with a maximum refresh rate

of 60Hz. The SLM has a bitdepth of 8 bits, which means it has 256 signal levels

setting the resolution for phase modulation. The phase induced by the SLM on a

light beam changes linearly with the input signal voltage. This linear relation allows

to easily map changes in voltage to changes in phase. LCOS-SLM is designed to have

phase modulation of more than 2π radians over 400− 1500nm wavelength, and we

use a laser source of light at 850nm keeping the phase modulation within a range of

[0, 2π) [61].

This phase-only LCOS SLM shows high reflectivity, high light utilization efficiency,

and good linear phase dependence with voltage change and can be easily controlled

by computer. These advantages make phase-only LCOS SLMs very useful for diverse

applications, including real-time holography, optical correlators [62], wavelength

selective switches, reconfigurable optical add-drop multiplexers [31], and using them

as diffractive optical components [59]. We use phase-only SLMs for state preparation

and state projection of OAM states, and investigate different methods using SLMs

for aberration correction due to experimental imperfections with the goal of achieving

high fidelity on the preparation and measurement of OAM states in high l orders.

Below we describe the principles for the generation and detection of OAM modes

using phase-only SLMs, including the description of the optical transformation by

lenses required for preparing and filtering modes in the spatial structure, and for

performing projective measurements onto arbitrary OAM states.

2.3 Optical Fourier transform

State preparation and detection of OAM modes using beam shaping techniques

based on SLMs with high efficiency and fidelity, require specific optical arrangements

for filtering and performing optical Fourier transforms in the spatial domain based

on lenses and free-space propagation, as described below.
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Figure 2.4: A light field incident on a lens at a distance equal to the focal length
f with field U0(x0, y0) and the light field at the focal plane of the lens becomes
U3(x3, y3).

Consider a beam with electric field U0(x0, y0) incidents on a lens at a distance

equal to the focal length of the lens f , as shown in Fig. 2.4. Denoting the field at the

front surface of the lens as U1(x1, y1), the field right after the lens as U2(x1, y1) and

the field at the focal plane as U3(x3, y3), it is possible to describe the relationship

between these fields by using difraction theory. (x0, y0), (x1, y1), (x3, y3) represent the

coordinates on the transverse plane. By applying the Fresnel diffraction equation, as

described in the Appendix A, Eq. (A.16), we obtain:

U1(x1, y1) =
−e−ikf

iλf
e
−ik
2f

[x
2
1+y

2
1 ]

∫∫ +∞

−∞
U0(x0, y0)e

−ik
2f

[x
2
0+y

2
0 ]ei

2π
λf

[x0x1+y0y1]dx0dy0 (2.2)

which describes the electric field at an arbitrary point (x1, y1) before the lens, expressed

as the integral of the electric field U0(x0, y0) over the whole transverse plane (x0, y0),

assuming x0 and y0 are much smaller than f .

When the beam passes through a thin lens, it undergoes a phase transfor-

mation, and the phase transformation function can be expressed as t(x1, y1) =

e−ikn∆0ei
k
2f

(x
2
1+y

2
1) (See Appendix A, Eq. (A.29)), where ∆0 is the lens thickness in

the optic axis and n is the refractive index. The field U2(x1, y1) after the lens can be

described as:

U2(x1, y1) = U1(x1, y1)t(x1, y1) (2.3)
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=
−e−ikf

iλf
e−ikn∆0

∫∫ +∞

−∞
U0(x0, y0)e

−ik
2f

[x
2
0+y

2
0 ]ei

2π
λf

[x0x1+y0y1]dx0dy0

Applying the Fresnel diffraction equation again, we obtain U3(x3, y3):

U3(x3, y3) =
−e−i2kf

λ2f 2 e−ikn∆0e
−ik
2f

(x
2
3+y

2
3)

∫∫∫∫ +∞

−∞
U0(x0, y0)e

−ik
2f

[x
2
0+y

2
0 ]ei

2π
λf

[x0x1+y0y1]

e
−ik
2f

[x
2
1+y

2
1 ]ei

2π
λf

[x1x3+y1y3]dx0dy0dx1dy1 (2.4)

Consequently,

U3(x3, y3) =
−e−i2kf

iλf
e−ikn∆0∫∫ +∞

−∞
U0(x0, y0)e−i

π
fλ

(x
2
0+y

2
0)ei

2π
fλ

(x3x0+y3y0)dx0dy0 (2.5)

By making a far field approximation (assume x0 and y0 are much smaller than f)

and ignore the constant phase factor,

U3(x3, y3) =
1

λf

∫∫ +∞

−∞
U0(x0, y0)ei

2π
fλ

(x3x0+y3y0)dx0dy0 (2.6)

Figure 2.5: The 4f system is a commonly used optical relay that consists of two
positive lenses with the input plane located on the focal length f in front of the
first lens with input field U0(x0, y0) and the output plane located on the focal
length f after the second lens with output field U5(x5, y5).
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This calculation shows that the lens performs a Fourier transform for the initial

field U0 with a scale factor. An additional operation/manipulation required in the

optical setup in the experiment for OAM state preparation and detection is spatial

filtering and imaging based on a 4f-system. This filter allows for selecting the first-

order diffraction from the blazed grating induced in the SLM for preparation of

OAM modes, and image the state prepared in one SLM onto a second SLM. This

procedure will be described in the next section. A 4f-system is composed by a two-lens

arrangement with focal length f, separated as shown in Fig. 2.5. Considering the

initial field U0(x0, y0) and the field U5(x5, y5) at the focal plane of the second lens, we

can investigate the transformation of U0(x0, y0) by 4f-system by applying Eq. (2.6)

twice to obtain U5(x5, y5):

U5(x5, y5) =
1

λ2f 2

∫∫∫∫ +∞

−∞
U0(x0, y0)ei

2π
fλ

(x3x0+y3y0)ei
2π
fλ

(x5x3+y5y3)dx0dy0dx3dy3

= 4π2 1

λ2f 2

∫∫ +∞

−∞
U0(x0, y0)δ(

2π

λf
(x5 + x0))δ(

2π

λf
(y5 + y0))dx0dy0

= U0(−x5,−y5) (2.7)

We observe that the 4f-system image the initial field on the focal plane of the second

lens. We use the 4f-system to image SLM1, which is used to prepare the input state,

onto a second SLM (SLM2), which is used to perform mode transformations for

projective measurements onto the OAM space. Thus we can perform the projective

measurement. This will be shown in the next section.

2.4 OAM mode generation and detection

SLMs provide an easy and versatile way to generate and manipulate optical fields

from using computer generated holograms. Phase-only SLMs allow for manipulating

the phase of the light beams with an arbitrary phase profile Ψ(x0, y0), in the 0− 2π

range, where x0, y0 are the transverse coordinates on the SLM plane. For an input

plane wave, the phase transformation induced by a SLM converts the plane wave
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into T (x0, y0) = exp(iΨ(x0, y0)) when reflected by the hologram. A direct way of

generating OAM modes using phase-only SLMs is to encode a diffraction phase grating

and a helical phase profile lθ in the SLM. The diffraction grating diffracts the input

beam into different diffraction orders on the far field. We select a particular diffraction

order, commonly the first order, which allows for preparation of arbitrary modes,

such as LG modes, as shown in Fig. 2.6. Using a lens to perform an optical Fourier

transform on the focal plane of the lens, allows to achieve a similar transformation

as what would be achieved in the far field (see Section 2.3 and Appendix A). After

we generate the LG mode with SLM1, it is possible to use a lens to detect the

intensity pattern of LG mode by a CCD at the focal plane of a Fourier lens (F3),

and using an iris to select the first order diffracted mode. The experimental setup

for the preparation of OAM states with a SLM and the observation of the far field

intensity distribution are shown in Fig. 2.7. Thus an input Gaussian light beam can

be converted into a helical mode whose wave front resembles a l fold corkscrew [49]

at the focal plane of lens F3, and the intensity pattern can be detected on the CCD.

Phase-only SLMs allow for simultaneously modulating both phase and amplitude of

an optical field by using diffraction techniques, as described below for the preparation

of optical fields with arbitrary phase and intensity distributions. In general, it is

possible to control the intensity of the diffracted modes by modulating the grating

depth in the SLM. To understand how to encode intensity and phase with a phase-

only SLM, we can consider first the effect of the diffraction grating, and then the

modulation of this grating.

A blazed grating has a phase profile Ψ(x0, y0) = mod(2πx0MD, 2π), where 1/D

is the spatial period and M defines the extent of the phase shift over each period of

the grating, which varies in the range 0 ≤M ≤ 1. The phase in the grating increases

linearly from a minimum value of zero to a maximum value of 2πM . Considering an

incident plane wave, then the output wave after diffraction by this grating becomes

T (x0, y0) = exp[i ·mod(2πx0MD, 2π)] and can be expanded in a Fourier series as [63]:
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Figure 2.6: A beam incident on a SLM with a hologram containing a phase
grating and the phase profile lθ with l = 1. The light diffracted on the first order
mode is the desired field of LG0

1.

T (x0, y0) =
+∞∑
−∞

Tn exp(i2πnDx0) (2.8)

where the coefficients Tn are given by:

Tn = exp[i(n−M)π]
sin[π(n−M)]

π(n−M)
(2.9)

After taking the Fourier transform [63], the field in the Fourier plane is:

t(x3, y3) =
+∞∑
−∞

Tnδ(x3 − nD) (2.10)

where x3, y3 are coordinates on the Fourier plane, which is the focal plane of lens F3.

Therefore the diffraction pattern consists a series of delta functions whose amplitudes

are given by the coefficients Tn, and the total energy is distributed between different

diffraction orders n. For M = 1, all the light is, in theory, diffracted into the first

order n = 1, since T1 ≤ 1. As M decreases, the intensity of the light diffracted

into the first order decreases when the light energy in the zeroth order increases.

Then, by using a spatially varying function M(x0, y0), it is possible to modulate

the amplitude of the diffracted modes in the first order. Therefore, this possibility
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Figure 2.7: Experiment setup for the generation of LG modes. A quarter (QWP)
and a half (HWP) waveplates are used to ensure linear polarization for the
incident field, and lenses F1 and F2 expand the beam by ×3. After diffraction
by the spatial light modulaator (SLM1), the lens F3 allows to perform a Fourier
transform for the light diffracted by SLM1 on its focal plane. The iris filters
out other order modes except for the first order diffracted mode by the grating
encoded in the SLM1. The LG modes intensity generated by SLM1 can be
detected by the CCD after the iris.

allows for encoding both the desired phase and amplitude by using a phase-only SLM.

The amplitude can be encoded on to the hologram, such that the desired pattern is

diffracted into the first order, while the unwanted light remains in the zeroth order.

An exact solution for encoding both the phase and amplitude profile with a phase

only SLM for any given paraxial mode in the focal plane of F3, is described in Ref.

[64]. Consider a desired output beam at the focal plane of F3:

E(x3, y3) = A(x3, y3)e(iΦ(x3,y3)) (2.11)

It is in principle possible to generate this target field by a phase-only SLM from a

given input field. For an incident plane wave, the field after diffraction by the SLM

can be expressed as:

T (x3, y3) = exp[iM(x3, y3)mod(H(x3, y3) + 2πx0D, 2π)] (2.12)

where M(x3, y3) is a normalized bounded positive function of amplitude of the target

field in Eq. (2.11) with 0 ≤ M(x3, y3) ≤ 1, which modulates the depth of the

diffraction grating. H(x3, y3) is an analytical function of the amplitude and phase

profiles of the desired field in Eq. (2.11). Then, the first order diffraction has a
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Fourier coefficient given by [64]:

T1(x3, y3) = −sinc(πM − π)ei(H+πM) (2.13)

with

M = 1 +
1

π
sinc−1(A)

H = Φ− πM (2.14)

where sinc(x) = sin(x)
x

is sinc function and sinc−1 stands for the inverse sinc function.

This is an exact way of encoding the amplitude and the phase of an optical field into

a phase-only hologram and can be used to control both the phase and amplitude of

the incident light. Using this technique, it is possible to prepare modes with arbitrary

phase and intensity. Figure 2.7 shows the experimental setup to investigate the state

preparation using a CCD camera. Figure 2.8 shows the intensity pattern for the

generation of LG mode LG0
5 and superpositions including the theoretical predictions.

Figure 2.8: LG modes generated at the focal plane of lens F3. The figure
displays the generated mode intensity pattern of LG0

5, 0.5 ·LG0
1 + 0.5 ·LG0

−1 and
0.5 ·LG0

3 + 0.5 ·LG0
−3, comparing with the theoretical intensity pattern of those

modes.

The transformations enabled by phase-only SLMs allow also for performing projec-

tive measurements onto different spatial modes, such as LG modes and superpositions.

These projective measurements can be achieved by using a second SLM to perform a
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Figure 2.9: Experimental setup. SLM1 is imaged on SLM2 by a 4f-system with
an iris on the focal plane of lens F3. By encoding SLM2 with a conjugate mode
of the mode generated by SLM1, the mode generated can be project into a LG0

0

mode, which overlaps with the fundamental mode of the fiber and can be coupled
into the single mode fiber.

mode transformation and a single mode fiber (SMF) used as a spatial filter to select

only one spatial mode, in which the projection is being performed. Consider that the

mode generated by a first SLM (SLM1) is LGp
l (ρ, θ, z), then a second SLM (SLM2)

can be encoded to perform a mode transformation corresponding to the conjugate

mode [LGp
′

l
′ (ρ, θ, z)]

∗. After diffraction by the second SLM (SLM2), the light field

becomes [LGp
l (ρ, θ, z)[LGp

′

l
′ (ρ, θ, z)]∗]. Therefore, the far field distribution by taking a

2D-Fourier transform [1] is:

Fp,l(r,φ) = FT [LGp
l (ρ, θ, z)[LGp

′

l
′ (ρ, θ, z)]∗] (2.15)

in which FT represents the 2D Fourier transform and r,φ are the cylindrical co-

ordinates in the far field. This transformation can be performed by a second lens.

Considering the case p = p′ = 0 and only when l = l′, the transformed mode in the

far field is close to the fundamental Gaussian mode, and this mode shows a high

overlap with the fundamental mode of a SMF, which only transmits its fundamental

mode. As a result, when SLM2 encodes the conjugate mode that is generated by

SLM1 (LG0
l ), thus Eq. (2.15) becomes (with p = p′ = 0):

Fp,l(r,φ) =
2πe

iπ
λf
r
2

iλf

∫ ∞
0

ρdρ|LG0
l |2J0(

2π

λf
rρ) (2.16)
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where J0 is the zero order Hankel transform. The intensity distribution of the

projection in the far field shows in Fig. 2.10. The mode projection results in a bright

center spot with a ring outside it. The radius of the spot changes with the mode order

l. Figure 2.11 shows the experimental result for the preparation of projection of state

LG0
3. Note that after the projection operation, the intensity at the focal plane of the

fourier lens after the SLM2 approximates a Gaussian intensity distribution. Since the

Gaussian modal distribution has a high overlap with the fundamental mode of the

SMF, we can place a SMF in the far field as a Gaussian mode filter to implement the

projective measurement. The coupling efficiency of the spatial mode after projection

to a SMF is obtained by integrating the far field modal distribution over the Gaussian

mode of the SMF [1]:

ηlp =
2

πσ2 |
∫ ∞

0

rdr

∫ 2π

0

dφFp,l(r,φ)e
− r

2

σ
2 |2 (2.17)

where σ is the beam waist radius of the SMF. For p = 0,

ηl0 =
|l|!2

(2|l|)!
C2|l|+1G (2.18)

where C = 2/(1+ σ
2

a
2
0

), G = 2/(1+ a
2
0

σ
2 ) and a0 =

√
2λf

πw(0)
is the natural scaling factor at the

fiber. Figure 2.12 shows the theoretical coupling efficiency of projective measurements

for the LG0
l modes changing with l = 0, 1, · · · , 5.

In our experiment, the LG mode is generated by SLM1 and projected onto the

second SLM (SLM2) via a 4f-system mentioned in Section 2.3. The first-order

diffracted mode is selected by the iris placed at the focal plane of lens F3. SLM2

converts the LG modes generated by SLM1 to the LG0
0 in the far field and then this

mode is coupled into a single mode fiber (SMF). Figure 2.11 shows the projective

measurement result for a prepared state LG0
3 and the images after projection in the

far field by replacing the SMF with a CCD after the iris.
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Figure 2.10: Intensity of LG0
l at the input to the fiber with l = 0, 1, · · · , 5 as a

function of the radius distance r. The plots are generated based on the equations
in Ref. [1].

Figure 2.11: Intensity pattern of LG0
3 projection on the far field taken by the

CCD. The SLM1 generates a LG0
3 mode and the SLM2 encodes a conjugate LG0

−3

mode. The projection in the far field shows a Gaussian spot in the center with
rings outside.
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Figure 2.12: Coupling efficiency for projective measurements for the LG0
l mode

changing with l = 0, 1, · · · 5. The plots are generated by using equations described
in Ref. [1]

2.5 Conclusions

In this chapter, we reviewed the description of light beams with helical phase

front, which have a well defined orbital angular momentum (OAM). The Laguerre-

Gaussian modes which are the solutions to paraxial Helmholtz equation in cylindrical

coordinates, form a complete basis of the spatial distribution of light carrying OAM.

We described our experimental setup that can be used to generate and detect light

beams in arbitrary LG modes, as shown in Fig. 3.8. We use phase-only LCOS SLMs

to control both the intensity and the phase of the beams profile by imprinting a

computer generated hologram on SLM, which allows to generate the LG modes and

their superpositions and perform projective measurements in the LG basis. The

projective measurements of the prepared mode are performed by encoding on the

second SLM the phase of the conjugate mode which we want to project onto. This

operation generates a Gaussian-like mode in the far field. Coupling this mode into

the SMF allows to perform the projective measurement of specific LG mode. The

coupling efficiency into the SMF of the mode resulting from the projection is mode
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dependent and shows a bias towards higher mode order l.
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Chapter 3

Wavefront distortion correction

based on SLMs

The generation of spatial modes carrying OAM using beam shaping techniques

is very susceptible to imperfections and misalignments of realistic optical setups,

and result in distorted modes. This is due to the aberrations caused by all optical

components in the mode generation process. In this chapter, we provide an overview

of the main optical aberrations that cause mode distortion in our setup in Section

3.1. Then we discuss different optical aberration correction methods that can be

implemented with beam-shaping techniques based on SLMs. We introduce the method

we use to correct the aberrations in our experiment and describe our experimental

results for mode generation and mode projection operations after aberration correction

using SLMs.

3.1 Wavefront aberration

The departure from idealized conditions of Gaussian optics are known as aber-

rations. In an ideal optical imaging system, all rays of light from a point in the

object plane would converge to the same point in the image plane, forming a clear
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image. The effects which cause different rays to converge to different points are

called aberrations [65]. More specifically, it can be defined as the departure from

paraxial optics of an optical system [66]. There are two main types of aberrations:

chromatic aberrations (which arise from the fact that refraction index depends on

the frequency of the light) and monochromatic aberrations. For monochromatic light,

only monochromatic aberrations need to be considered. An aberration-free imaging

system can be treated as a combination of linear optical components, so the image

can be traced back to each point on the object via those rays. This image is called

an aberration free image, the quality of the image is only diffraction-limited.

Aberrations ignored by the paraxial approximation which is used to derive the

first-order theory of the geometric optics are crucial. The paraxial treatment of light

propagation in optical systems is based on the assumption that a light should be

incident in an optical element with a small angle and very close to the optical axis,

namely sinϕ ≈ ϕ, where ϕ is the angle between the ray and the optical axis. However,

to consider more realistic situations, the third order theory of light propagation should

be taken into account including the first two terms in the following expansion as an

improvement of the paraxial approximation [67]:

sinϕ = ϕ− ϕ3

3!
+
ϕ5

5!
− ϕ7

7!
+ · · · (3.1)

Departure from the first order theory are embodied in the five primary aberrations:

spherical aberration, coma, astigmatism, field curvature and distortion [65]. These

are the aberrations that influence our mode generation quality.

3.2 Methods for wavefront correction

Encoding information in the transverse field profile of light using orthogonal

modes, such as Laguerre-Gaussian modes, can allow for increasing the amount of

information that can be carried by single photons for communication and information

processing. However, any aberration experienced by light caused by optical wavefront
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manipulations and propagation through optical components will severely limit the

ability to decode this information. Therefore, to achieve transmission of information

with high fidelity, it is necessary to have efficient and reliable techniques for aberration

correction. SLMs are important tools for beam shaping and can be in principle used

for preparation of light in different transverse spatial modes and for correction of

aberrations. The reflective SLM, which has a shorter reaction time compare to

transmissive SLM, has a non flat (uneven) reflective surface and usually lead to

unwanted, mostly astigmatic distortions in the phasefront of the incident light beams.

In a typical experiment where SLMs are used for state preparation, the beam is

subject to wavefront distortion due to the non-Gaussian profile of the incoming beam,

the non ideal behavior of all the optical components before the final target plane (the

plane where we detect the generated modes) and the surface curvature of the SLMs.

These aberrations decrease the performance of beam shaping for state preparation,

especially for the Laguerre-Gaussian (LG) modes, which are very sensitive to such

distortions [68]. Even small phase irregularities would cause significant deformation

of the circular shaped OAM modes on the image plane of the fourier lens in the

optical systems for detecting such modes (see Chapter 2). This makes the process of

generating LG modes and performing projective measurements with SLMs challenging,

particularly for LG modes living in a high dimensional Hilbert space for applications

in quantum information protocols.

State preparation of OAM modes using SLMs requires calibration of the surface

flatness of the SLM, since any deviation from a flat surface causes unwanted phase

distortion in the transverse modes. Different methods have been proposed to calibrate

the flatness of the SLMs surface and correct for phase distortion. In the early work

[69, 70], interferometric methods used for surface metrology were applied to measure

small wavefront deformations caused by SLMs. In [69], Dou, et al., used a Mach-

Zehnder interferometer to obtain the interference from a transmissive SLM with a

reference beam. This interference pattern represents the relative phase front variation

of the two paths, and the fringe distortion on the pattern provide information about

the surface curvature of the SLM. In these experiments, aberration correction was
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performed using closed loop adaptive method with the SLM to operate as a wavefront

corrector. Adaptive wavefront control can also be performed in other interferometric

systems such as, based on Twyman-Green[70], Fizeau, Zygo inteferometers [71].

These methods achieve reduction of phase aberration and reach the diffraction-limited

wavefront correction of static aberrations by using SLM for precise wavefront control.

As an alternative to interferometry method, a quite powerful method uses the

Shack-Hartmann wavefront sensor to calibrate the distorted wavefront, which is not

only simple and compact, but also relatively insensitive to vibration [72, 73]. In

this technique, the SLM screen is divided into small circular apertures, each of the

aperture is encoded with a different blazed diffraction grating. The displacement

of each spot on the image plane of a Fourier lens is proportional to the wavefront

distortion which can be used to recover a phase map of the aberration [72]. However,

while this method is relatively simple to implement, the size of each spot increases

when decreases the pitch grating size on the SLM. This places an upper bound on

the spatial frequencies which can be detected and corrected for.

Another widely used method for phase distortion correction is phase retrieval,

which utilizes the iterative Gerchberg-Saxton (GS) algorithm to reconstruct the phase

map. The algorithm can be implemented by a SLM encoded with a LG0
1 phase only

hologram with a finite circular aperture [68]. The initial hologram provides the ideal

field distribution on the image plane of a lens. The theoretical amplitude on the

image plane is compared with the amplitude of the real image. The aberration phase

map is extracted by subtracting the initial LG0
1 phase hologram. This method not

only corrects the phase error caused by the SLM, but also the phase errors introduced

by the other optical components in the optical pathway. However, the method is

highly sensitive to the initial conditions. It assumes that the correct phase hologram

lies close enough to the original phase hologram. The phase retrieval is not unique

and the algorithm converges to the local minimum.

Another method for aberration detection and correction based on interference,

uses the idea of directly interfering two or more active regions on the SLM to obtain

information about the phase distortion that can be used for error correction. This
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technique, described in Ref. [74], Čižmár, Tomáš et al. use two small patches on

the SLM in which they encode a blazed grating to diffract the incoming beam and

optimize the intensity value on the Fourier plane. As an extension of this method,

it is possible to use multibeam interference on the focal plane of the Fourier lens

in which beams are diffracted by different small pieces of grating on the SLM [75].

The method that we use in our experiment follows [76], which is also a method of

using the diffracted beam interference from two part of the SLM to construct the

phase map for wavefront correction. In general, the aberration correction method we

use can correct for optical aberrations caused by all optical components in the mode

generation and detection process without inducing extra optical aberrations. The

resolution of correction phase map doesn’t limit by the grating size which diffract

the beam to interfere. The phase correction map describes the real phase difference

caused by optical aberrations thus is unique and stable. The phase correction map

doesn’t depend on any initial value and is also mode independent and works for all

OAM modes. We will describe this method in detail in the next section.

3.3 Correction of beam distortion

Phase error correction is critical for preparation and measurement of light in

well-defined transverse spatial modes, which can be used to encode and transmit

information. In our experimental approach, we use phase-only SLMs for state

preparation and state detection of light carrying OAM in LG modes. To construct

the described system aberrations, we need to extract the phase error caused both

by the SLM and optical elements in the optical system. This phase map can then

be used to perform aberration correction by implementing the inverse phase map

transformation with the SLMs. In a simplified experimental scheme shown in Fig. 3.1,

this is achieved by using the SLM as a grating to diffract different regions of the input

beam and let the beams come from two different regions interfere. This interference

provides information about the relative phase between the two regions. By observing

the inferference of different regions of the SLM with a specific, fixed region used as a
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phase reference, it is possible to reconstruct the map of relative phases among regions

of the SLM, which can be used to infer the distortion of the incoming beam. The

phase error correction method that we use in our experiment follows the work in [67].

For a simplified case which only need to correct the wavefront distortion caused by

the input beam deviation from Gaussian, a SLM and a Fourier lens, the experiment

set up is showed in Fig. 3.1.

Figure 3.1: Simplified setup: The SLM is illuminated by a collimated beam. The
beam is reflected by two patches of grating on the SLM and focused on the image
plane by a Fourier lens. We set a 30µm pinhole on the focal point and a power
meter after the pinhole.

The SLM is illuminated by a collimated beam with a beam diameter of 0.6cm,

which covers the most area of the 600× 792 pixels SLM. The light is diffracted into

the first order diffraction mode by a diffraction grating encoded on the SLM and

focused on the image plane by a Fourier lens, as shown in Fig. 3.1. In this scheme,

we encode a small square diffraction grating on the SLM in the region coinciding

with the center of the incoming beam. This is a small patch grating referred to as

reference grating and with the size of 18× 20 pixels, each pixel is 20µm by 20µm. In

this method a second grating, called a sample grating of the same size as the reference

grating, is generated on another region of the SLM which is also illuminated by the

input beam. Thus for the input beam, only the two parts incident in these two small

regions are diffracted by the SLM, one part is on the beam center, the other part

is on the outer region, as shown in Fig. 3.1. The interference of the two regions in

the Fourier plane results in interference fringes and provides information about the

relative phase between the two regions of the beam. By scanning the second region
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over the spatial extend of the light beam on the SLM while keeping the reference

grating constant and observing the interference between these two fractions of the

incident beam, it is possible to obtain phase distortion information of the optical

system over the beam spatial extend [67]. This method of scanning the sample grating

is illustrated in Fig. 3.2.

Figure 3.2: The reference grating is on the center of the SLM and the sampling
grating scans over the area covered by the incoming beam.

After passing through the Fourier lens, the diffracted first order mode will interfere

on the focal point on the image plane. We set a 30µm pinhole at the focal point and

a power meter after the pinhole to detect the intensity at a point of the interference

fringes while changing the relative phase between the reference grating and the sample

grating. The beam diffracted by the reference grating on the focal plane can be

described by:

Eref = aeikz (3.2)

with amplitude a, the wave vector k = 2π
λ

, and the distance z from the SLM surface

to the focal point. Similarly, the sample beam can be described by:

Esamp = bei(kz−∆φ) (3.3)

with b representing the amplitude of the diffracted sampling beam and ∆φ is the

phase difference including the phase difference caused by γ and the phase aberration
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due to the SLM and the lens. γ is the intersection angle between the two beams

diffracted by the sample and reference grating after the Fourier lens. The intensity of

the interference pattern at the Fourier plane of the lens is then given by:

I = |Eref + Esamp|2 = a2 + b2 + 2ab cos(∆φ) (3.4)

To retrieve the phase difference ∆φ which describes the phase distortion over the

illuminated area on the SLM by the incoming beam, we need to scan the sample

grating to cover the whole area of the incoming beam three times with the reference

grating maintaining the same phase and the sample grating with a 2π
3

phase step

increment each time. Thus in each step during the process of sample grating scanning,

the phase of the sample grating takes the following values: 0, 2π
3

, 4π
3

. Then the sample

beam in each scanning step becomes:

Eq
samp = bei(kz−∆φ+q( 2π

3
)) (3.5)

with q = 0, 1, 2 and the interference intensity after the pinhole is:

Iq = |Eref + Eq
samp|2 = a2 + b2 + 2ab cos(∆φ− q(2π

3
)) (3.6)

From three intensity measurements with q = 0, 1, 2, the phase map can be retrieved

by calculating the quantity p defined as:

p =
−1

3
(I3 + I2 − 2I0) +

i√
3

(I1 − I2) (3.7)

with

I1 = a2 + b2 + 2ab cos ∆φ

I2 = a2 + b2 + 2ab cos(∆φ− 2π

3
)

I3 = a2 + b2 + 2ab cos(∆φ− 4π

3
) (3.8)

so that the phase error at a given point in the (x, y) transverse plane equals:

∆φ = arg(p) (3.9)



Chapter 3. Wavefront distortion correction based on SLMs 33

and:

2ab = |p| (3.10)

The interference pattern obtained on the focal plane by scanning the sample grating

corresponds to fringes with periodicity λ
sinβ

. λ represents the laser wavelength, and

β is the smallest intersection angle between the two diffracted beams, namely the

smallest γ. The interference fringes can be detected at the origin using a point

detector, such as a detector behind a pinhole or a small region on an image sensor

[76]. By setting a 30µm pinhole before a power meter, we can obtain the interference

intensity of a particular point. The pinhole size should be smaller than the smallest

interference period expected for the setup, λ
sinβ

, and the angle β could be estimated

as the ratio of the size of the reference grating divided by the focal lens.

To get a smooth phase map to be used for aberration correction, we make use of

oversampling. For a sample grating of size 18× 20, the displacement of the sampling

grating is performed in steps of 5 pixels in the x or y direction each time. This

oversampled array allows us to take linear interpolation to get a full phase map which

matches the size of the SLM screen.

Figure 3.3: Phase map data matrix without oversampling procedure. Note
that the phase map is pixelated and the relatively large phase changes among
consecutive pixels make the process of phase unwrapping to break.

Figure 3.3 shows the phase map obtained by directly shifting the sampling patch

in steps equal to the size of this patch to cover the whole beam without overlapping.
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Figure 3.4: phase map data matrix with oversample method.

Figure 3.5: Sample of phase map for different values of x for a fixed y pixel,which
is a horizontal cut of the phase map matrix at y = 0. The green dots are the
wrapped phase value and the blue dots represent the phase value after unwrapping.

It is pixelated and does not allow to retrieve a continous phase map. Figure 3.4

depicts the oversampled phase map. This map contains many more data points which

allow to perform a good linear interpolation between those points to construct the

full phase map with relatively low background noise ratio. The obtained data usually

shows discrete jumps of 2π in phase as discontinuities in the phase map. We use a

phase unwrapping method to get rid of the apparent phase discontinuity on the phase

map, similar to [75]. The phase discontinuity appears in our aberration correction

map because it is obtained using the function arg(p), which projects all the phase

values to the range of phases (−π, π]. In cases where the phase exceeds the range of

(−π, π], it would contain more than 2π jumps between the two consecutive points.
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Figure 3.6: (a): phase map after unwrapping and linear interpolation. (b):
hologram obtained by mapping the phase map into a 2π range.

Thus, correct phase relations between neighboring sample points need to be found

prior to interpolation. This process is called phase unwrapping.

Figure 3.5 illustrates a horizontal cut of the phase map matrix before and after

unwrapping. Multiples of 2π are added to the adjoint points when absolute jumps

between consecutive points are greater than or equal to the default jump tolerance

of π radians. The oversampling method also confirms the phase difference between

adjacent points is no bigger than π. At the edges of the matrix points corresponding

to the boundaries of the light beam, the phase unwrapping method tends to give

nonconsistent answers and incorrect phase shifts. This effect is due to the low intensity

at the edges of the beam compared to the background, the large observed intensity

fluctuations in these regions. In these situations, we define the phase values at

certain points where the large intensity fluctuations produce unphysical spikes and
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phase jumps to the average level around these points. This step is performed by a

discrimination procedure done in an automatic manner in our analysis. Thus we

get a fluent phase map and the LG mode intensity pattern is stable when generated

by the phase map after time pass. After the correction for unphysical phase spikes

and applying the phase unwrapping procedure, we perform a linear interpolation

to construct a full phase map which can be encoded into the SLM for aberration

correction. The full phase map corrects for the SLM’s flatness and compensate for

the aberrations of the other optical elements in the system. The final phase map and

the hologram that is encoded in the SLM for aberration correction are shown in Fig.

3.6.

The phase error correction beam shaping method allows for accurate generation

of LG modes. Using this method, we investigate the improvement of phase detection

and aberration correction for the preparation of different LG modes at different mode

orders. For this investigation, we use the experimental setup that has been described

in Chapter 2 and Fig. 3.8 for the generation of LG modes with and without aberration

correction. For aberration correction, the correction map is added to the hologram

encoded in the SLM for the generation of different modes. Figure 3.7 shows examples

for the preparation of different OAM modes with different orders with and without

aberration correciton. The SLM encodes a hologram corresponding to a LG mode

and the image is observed on the focal plane taken via a CCD camera. Comparison

of the different LG modes with different OAM orders, modes before and after adding

the phase aberration correction map ∆φ to the SLM show the improvement in the

intensity pattern. We can observe that while the uncorrected fundamental (l = 0)

Gaussian mode shows some degree of ellipticity, the corrected mode is closer to

a 2D Gaussian intensity distribution. It improves the OAM modes quality in the

preparation process. We note that the highest dimension we can reach for LG modes

with good quality depends on the size of the LG mode beam waist used to generate

the hologram, comparing with the phase correction map size, and the distortions in

the edges of the map. In general, the phase map edge deviates more from the real

phase map than the center part, and this limits the performance for phase correction
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and state preparation for OAM modes. Figure 3.7 shows the preparation of OAM

modes in different orders with and without correction showing a good improvement

even at high l, e.g., l = 8.

Figure 3.7: Beam shaping performance before and after applying the phase map
correction for different LG modes with the image taken on the Fourier plane of
the lens F3.
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Figure 3.8: Experimental setup. SLM1 is imaged on SLM2 by a 4f-system with
an iris on the focal plane of lens F3. By encoding SLM2 with a conjugate mode
of the mode generated by SLM1, the mode generated can be project into a LG0

0

mode, which overlaps with the fundamental mode of the fiber and can be coupled
into the single mode fiber.

This aberration correction method can not only be applied to increase the quality

for state preparation but also can be applied to improve state detection of OAM states

based on SLMs. Using a SLM (SLM1) for state preparation, a second SLM (SLM2)

can be used to perform projective measurements, as shown in Fig. 3.8. After state

preparation with SLM1, the mode can be imaged onto SLM2 by using a 4f-system.

The SLM2 converts the LG modes generated by SLM1 to the LG0
0, which has a

high overlap with the fundamental mode of single mode fiber, thus can be coupled

into the single mode fiber. In our experiment, we first correct for the aberration

caused by SLM1, lens F1, lens F2 and lens F3 by setting the pinhole at the Fourier

plane of lens F3 and scanning the grating patch to get the phase correction map for

state preparation (map1). Then, we add the phase correction map map1 on SLM1

and obtain the phase correction map for state projection (map2) for lens F4, SLM2

and lens F5 by locating a pinhole on the focal plane of lens F5, following the same

procedure for phase correction. After adding the phase correction map2 on SLM2,

we correct for almost all the aberrations caused by the optics in our experiment. The

results for aberration correction show in Fig. 3.9. By applying the phase map map1

and map2, we can generate and detect LG modes in high quality.
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Figure 3.9: Beam shaping performance before and after applying the phase map
correction for different LG modes. The hologram encoded the LG mode is added
on SLM1. We get the distorted LG modes without any phase correction and add
the phase map corrections for the two SLMs to get the improved LG modes.

3.4 Conclusions

LG modes are very sensitive to optical aberrations. In this chapter, we investigated

a method for aberration correction based on beam interference to extract the phase

map that represents the aberrations of the optical system including all optical

components. By using the method, the obtained phase map can be used to correct

for all the aberrations. We applied the obtained phase correction maps to the two

SLMs for the LG modes generation and the detection process. We observed this

aberration correction method allowed for increasing the quality of the preparation

of optical modes with high OAM order l. This method can also be applied to the

operation used for state projection to improve the performance for projection and

detection of states of light in LG modes.
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Chapter 4

OAM normalization in mode

generation and detection process

The investigation of protocols for quantum state tomography requires methods

for state preparation and measurement of OAM states in high dimensions with high

fidelity and good efficiency. In this chapter, we investigate the efficiency of the beam

shaping method for preparing states of light in OAM modes and in superpositions of

OAM states with different OAM order, and projective measurements implemented

by mode conversion and detection using SLMs and a single mode fiber (SMF).

The SMF works as a spatial mode filter that mainly transmits the fundamental

Laguerre Gaussian (LG0
0) mode, which has large overlap with the fundamental mode

of the fiber. We find that the efficiencies for the generation and projection of

modes with spatial information using SLMs are mode dependent. We also find that

efficiency calibration and compensation are essential for achieving good performance

for state preparation and state measurement for future investigations of quantum

state tomography protocols.
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4.1 State preparation for photons with OAM

As investigated in the previous chapters, the methods for aberration correction

based on beam shaping techniques with SLMs can allow for the generation and

detection of OAM or LG modes with high quality. However, the efficiency of the

generation of light with OAM and the efficiency of projective measurement depend

strongly on the specific LG mode that is prepared and detected. Moreover, this

dependence substantially degrades the performance of state preparation and projection

when generate and detect more complicated states, such as superpositions of LG

modes with different mode order l.

Figure 4.1: Intensity of the generated modes with different OAM order l. The
LG modes generated by SLM1 change the mode order l from l = −5 to l = 5.
The first order mode diffracted by the phase grating is selected and the power of
the generated LG mode varies when the mode order l changes.

For LG modes generated by the first SLM (SLM1) with the state preparation

method mentioned in Chapter 2, the intensity of OAM mode varies when the mode

order l changes. The generation efficiency of LG modes decreases when the OAM

mode order increases, and the LG0
0 mode has an unexpectedly low generation efficiency,

as shown in Fig. 4.1. The unequal mode generation efficiencies indicate that the

superpositions of different LG modes have different generation efficiencies. A general

approach to solve this problem is to make different LG modes to have the same
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generation efficiency, namely normalizing the generated LG modes. The normalization

procedure can be achieved by modifying the phase grating depth for each LG0
l mode,

thus modifying the intensity of the OAM mode which is diffracted by the phase

grating. The efficiency of the generated LG mode depends on the Taylor Fourier

expansion coefficient in Eq. (2.13) with parameters M and H from Eq. (2.14). We

describe the LG mode used to generate the hologram encoded in SLM1 as:

LG0
l = Ale

iΦl (4.1)

where Al is the LG mode amplitude, and Φl is the phase of the LG mode. The LG

mode generated and detected in the Fourier plane is described as |l〉. The first order

Taylor Fourier coefficient shows that the intensity of the generated LG mode |l〉 has

a linear relationship with the intensity of the LG mode |Al|2 used to generate the

hologram. To normalize the LG modes, we choose to lower the generation efficiency

of LG modes down to the lowest value of the generation efficiency among all LG

modes. The mode generation efficiency can be linearly lowered by multiplying a

normalization factor to the intensity |Al|2 of each LG mode which is used in the

process of generation of hologram. The normalization factor Norm(l) is obtained

by using the minimum intensity of the generated LG mode dividing the intensity of

each generated mode accordingly. For example, the normalization factor Norm(3)

for mode LG0
3, |l = 3〉 is obtained by the generated intensity of mode |l = 5〉 divided

by the generated intensity of mode |l = 3〉 while generating the LG mode with OAM

order changing from l = −5 to l = 5.

In our experiment, the intensity of the LG mode (|l〉) prepared doesn’t change

strictly linearly when varies the intensity (|Al|2) which is used to generate the hologram

in SLM1. Suppose the relative weight P (i) is a viable changes from 0 to 1, and we

use the intensity |Al|2 of LG mode times P (i) to generate the hologram. The relation

between the intensity of the prepared LG mode and P (i) is illustrated in Fig. 4.2.

We use an iterative method to solve this nonlinearity problem. Suppose the

initial hologram encodes the mode LG0
l in the iterative procedure. To achieve uniform

generation efficiency of LG mode |l〉, we first encode the LG mode LG0
l in the hologram
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Figure 4.2: Nonlinear relation between the mode intensity used to generate the
hologram in SLM1 and the power of the generated LG mode. The intensity of
|l = 1〉 (red line), |l = 3〉 (green line), |l = 5〉 (black line) and |l = 0〉 (blue line)
mode varies as linearly changing relative weight P (i) used in hologram generation.
P (i) changes from 0 to 1. The hologram used in the mode preparing procedure is
obtained by P (i) times the LG mode intensity.

Figure 4.3: Generation power of the normalized LG modes. The two horizontal
axes represent mode order l1 and l2 changing from −5 to 5. The vertical axis
represents the generation power of LG mode superposition when generating
0.5|l1〉+ 0.5|l2〉 by SLM1.

in SLM1 by:

LG0
l /max(|Al|) (4.2)

where max picks the maximum value of the amplitude pattern |Al| of the desired LG
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mode. Then obtain the normalization factor Norm(l) in the first iteration. After

obtaining the normalization factor Norm(l), we encode the hologram with the LG

mode of the form LG0
l /max(|Al|) ·

√
Norm(l), detect the generation intensity of the

LG mode and update normalization factor in the next iteration. The normalization

factor is updated by multiplying the initial normalization factor with the updated

normalization factor obtained in the next iteration. The LG modes can be normalized

by using the normalization factors obtained after a few iterative loops to generate

the hologram.

The diagonal terms of the matrix in Fig. 4.3 shows the normalized |l〉 modes, with

equal intensity for each LG mode. Since the |l = 0〉 mode intensity is much lower

than other modes, we ignore |l = 0〉 and normalize among other LG modes. In the

normalization process for generated LG mode, we normalize the generation efficiency

based on |l = 5〉. The mode generation efficiency after normalization is 19.98%.

In fact, the same normalization factors can be applied to generate superpositions

of LG modes and obtain uniform intensity when mode order l varies, as shown in

the off diagonal terms in Fig. 4.3. To obtain uniform generation efficiency with

superpositions of LG modes, the superposition of LG modes with the normalization

factors, which is used to generate the hologram, should be:∑
l

P (l)eiΩlLG0
l /max(|Al|) ·

√
Norm(l) (4.3)

where P (l) is the relative weight of superposition for each |l〉 and should sum to 1.

Norm(l) is the normalization factor and Ωl is the relative phase. We obtain uniform

generation power of LG mode superposition as shown in the off diagonal terms of the

matrix in Fig. 4.3. The value of P (l) influences the generation efficiency of LG mode

superposition. Suppose the value of P (l1 = 1) varies as P (i), which also varies from

0 to 1, the generation efficiency of LG mode superposition changes with P (l1 = 1)

is shown in Fig. 4.4. The dimension of the LG mode superposition also affects the

minimum intensity that mode generation can reach. These limit the measurement

protocols that can be tested in this experimental platform. The relative phase Ωl

between each LG0
l mode in the superposition doesn’t influence the generation intensity

of the superposition.
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Figure 4.4: Measured power of LG superpositions as a function of relative weight
P (i) changes in two LG mode generation process. The two generated LG modes
are P (i)|l = 1〉+ (1− P (i))|l = −5〉 and P (i)|l = 1〉+ (1− P (i))|l = −3〉. These
superpositions of LG mode are generated by SLM1.

4.2 Projective measurements of OAM modes

We normalize the generation efficiency for different LG mode in the above section.

The efficiencies obtained by different LG modes projective measurement also need

to be normalized since the projection efficiencies depend on the LG mode which is

used to perform the measurement. The experimental procedure for the projective

measurement of LG modes is described in Chapter 2. The intensity distributions

of the projections of LG modes at the transverse Fourier plane are shown in Fig.

4.5, which are also the intensity distribution at the SMF facet. The mode resulting

from the conjugate transformation performed by the SLM2 has large overlap with

the fundamental mode of the fiber and can be coupled into the SMF. The radius and

the intensity of the mode on the Fourier plane after projective measurement decrease

when the orbital angular momentum number l increases. Thus we maximize the

coupling efficiency of the mode which has the smallest radius on the Fourier plane
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after projective measurement. For example, when OAM mode order changing from

l = −5 to l = 5, we maximize the coupling efficiency for the mode |l = 5〉.

Figure 4.5: Intensity distribution of |F0,l|2 at the Fourier plane of SLM2. The
intensity distributions of LG modes are obtained by the projective measurements
with OAM mode order l = 0, 1 · · · 5. The figure comes from [1].

We can normalize the efficiency for LG0
l mode projective measurement after

maximizing the coupling efficiency for the projection of mode |l = 5〉. The mode

obtained by the LG mode projective measurement is coupled into the SMF when

LG0
l modes vary from l = −5 to l = 5, as shown in Fig. 4.6. The input-output

matrix describes the power obtained by performing different projective measurements.

The non-normalized input-output matrix is shown in Fig. 4.6, which indicates that

different LG modes have different projection efficiency when the mode generation

efficiency is the same. By using the iterative method we described in the section

above, we can find the normalization factors for the holograms encoded on SLM2

to normalize the projection efficiency for different LG0
l modes, as shown in Fig. 4.7.

We set the fiber and the coupling lens by maximizing the coupling efficiency of the

projective measurement for |l = 5〉. The projection efficiencies of LG modes are

normalized according to the projection efficiency of |l = 1〉. As shown in Fig. 4.7, the

LG modes with mode order l varying from l = −5 to l = 5 have the same coupling

efficiency for the projective measurement. For example, for the detection process
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of |l = 5〉, the diffraction efficiency of mode |l = 5〉 is 29.44% when the mode is

diffracted by the phase grating encoded on SLM2. The coupling efficiency of the

projective measurement for mode |l = 5〉 is 25.67%. The efficiency of the projective

measurement including the process of the beam diffracted by SLM2 and coupled into

the SMF for all normalized LG modes is 7.53% when mode order l changes from

l = −5 to l = 5. As a result, the total efficiency containing mode generation and

projection process for all normalize LG modes is 1.51%.

Figure 4.6: Non-normalized input-output mode matrix of projective measurements
for LG modes ranging from l = −5 to l = 5. The vertical axis shows the power
measured by performing the projection of the LG mode |l1〉 generated by SLM1
onto the mode 〈l2| implemented by the mode transformation with SLM2 and
mode projection with the SMF. The coupling power into the SMF is maximized
by the projective measurement of mode |l = 5〉.

We use visibility to describe the crosstalk in the normalized input-output matrix

obtained by the projective measurement, as shown in Fig. 4.7. The visibility is

defined as the sum of the diagonal terms of the input-output matrix divide by the

sum of all input-output matrix elements [77]:

V =
∑
i

Cii/
∑
ij

Cij (4.4)

where Cij corresponds to the input-output matrix element. The visibility of the

normalized input-output matrix is 95.36%. Figure 4.8 shows the input-output matrix

obtained by optimizing the coupling efficiency of |l = 10〉 in the projective measure-
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Figure 4.7: Normalized input-output mode matrix of projective measurements
for LG mode ranging from l = −5 to l = 5. The vertical axis shows the power
measured by performing the projection of the LG mode |l1〉 generated by SLM1
onto the mode 〈l2| implemented by SLM2 and mode projection with the SMF.
The coupling power into the SMF is maximized by the projective measurement
of mode |l = 5〉.

ment process, compared with Fig. 4.7, which shows the input-output matrix obtained

by optimizing the coupling efficiency of the projection of |l = 5〉. There are more

overlaps of the off diagonal elements in the input-output matrix while maximizing

the coupling efficiency of the projection of |l = 10〉, and the visibility is 88.60%, lower

than optimizing the coupling efficiency of the projection of |l = 5〉.

We can use a CCD for the projective measurement instead of coupling the mode

into a SMF. The same normalization factors are obtained by using a CCD to detect

the center intensity of mode which is projected on the Fourier plane, comparing with

measuring the power of the mode coupled into the fiber. The center intensity of the

projective measurement of mode |l = 5〉 is the area to measure in both cases.

As for projective measurement of LG modes in superpositions, the detection

efficiencies are different for different superpositions. The superposition of LG modes

should in a form as:∑
l

P (l)eiΩLG0
l /max(|Al|) ·

√
Norm(l) (4.5)

with
∑

l P (l) = 1 to generate the hologram encoded on SLM1 and use the conjugate
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Figure 4.8: Input-output mode matrix of projective measurements for |l〉 mode
with normalization. The vertical axis shows the power measured by performing
the projection of the LG mode |l1〉 generated by SLM1 onto the mode 〈l2|
implemented by SLM2 and mode projection with the SMF. The mode order l
changes with l = −5,−4, · · · , 5. The coupling power into the SMF is maximized
by the projective measurement of mode |l = 10〉.

form to generate the hologram encoded on SLM2. Different normalization factors

should be applied to holograms encoded on SLM1 and SLM2, corresponding to

the LG mode generation and detection process. The projection efficiency is equal

when detect superposition of LG modes with different OAM mode order l and equal

relative weight P (l) = 0.5, as shown in Fig. 4.9. The equal projective efficiency of

normalized LG mode superposition allows us to test certain measurement protocols

in state tomography, e.g., using MUB to reconstruct the density matrix. However,

the efficiency of the projective measurement changes when the relative weight P (l)

of the superposition of LG mode changes, as shown in Fig. 4.10, in which P (1) is

represented by the viable P (i). The lowest projection efficiency of superpositions of

LG modes is obtained when the relative weight P (l) of the superpositions are equal

for different mode order l. This is illustrated in Fig. 4.10. The efficiency of projective

measurement, which depends on the relative weight P (l), limits the possible POVMs

that could be tested with the experimental setup for state tomography.
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Figure 4.9: Measured output power coupled into the SMF of LG mode super-
position. SLM1 generates mode 0.5|l1〉 + 0.5|l2〉 and the mode is imaged onto
SLM2 by the 4f-system, which encodes 0.5〈l1|+ 0.5〈l2|. The mode orders l1 and
l2 change from −5 to 5. The two horizontal axes represent l1 and l2, and vertical
axis represents the power of projective measurement.

Figure 4.10: Power coupled into the SMF obtained by LG modes projection.
SLM1 generates mode P (i)|l1〉+(1−P (i))|l2〉 and the mode is imaged onto SLM2
by the 4f-system, which encodes P (i)〈11|+ (1− P (i)〈l2| with the relative weight
P (i) changes from 0 to 1.

Figure 4.11 shows the coupling power of projective measurements when we change

the relative phase of the superposition of LG modes encoded on SLM2. We also

find that the projection efficiency of LG mode decreases when the dimension of

superposition of LG mode increases. The low efficiency of the projective measurement
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of LG mode superposition in high dimensions also limits the possible measurement

protocols that could be applied to the experimental platform.

Figure 4.11: Power coupled into SMF obtained by projection of LG modes. SLM1
generates mode 0.5|l = 1〉+ 0.5|l = −3〉 and 0.5|l = 1〉+ 0.5|l = −5〉 in different
mode generation process. These two mode are imaged on SLM2 by the 4f-system,
which generates 0.5〈l = 1| + ei−φ0.5〈l = −3| and 0.5〈l = 1| + ei−φ0.5〈l = −5|
with the relative phase φ changing.

The MUBs consist of d + 1 basis measurements and the overlap between two

states among different basis is equal to 1/d. MUBs are one applicable POVM for

our experimental platform for state tomography. Figure 4.12 shows the projective

measurements between the MUBs for 2D. The MUBs in 3D are shown in the Tab.

4.1. The MUBs in 2D and 3D as shown in the Tab. 4.1 are not normalized since

the experimental setup requires the relative weights sum to 1. Figure 4.13 shows the

projective measurements for MUB basis in 3D. The results of projective measurement

indicate that the experiment system can be applied to perform state tomography in

2D and 3D.
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Figure 4.12: Detection power coupled into the SMF after LG modes projection.
SLM1 generates |Ψ1〉, |Ψ2〉 and they are projected on SLM2, which generates 〈Ψ1|,
〈Ψ2| accordingly. |Ψ1〉 is 0.5|l = 1〉+ 0.5|l = −1〉 and |Ψ2〉 is 0.5|l = 1〉 − 0.5|l =
−1〉.

Figure 4.13: Detection power coupled into the SMF obtained by LG modes
projection. (a): SLM1 generates |Ψ11〉, |Ψ12〉, |Ψ13〉 and these modes are projected
on SLM2, which generates 〈Ψ11|, 〈Ψ12|, 〈Ψ13|. (b): SLM1 generates |Ψ21〉, |Ψ22〉,
|Ψ23〉 and they are projected on SLM2, which generates 〈Ψ21|, 〈Ψ22|, 〈Ψ23|. (c):
SLM1 generates |Ψ31〉, |Ψ32〉, |Ψ33〉 and are projected on SLM2, which generates
〈Ψ31|, 〈Ψ32|, 〈Ψ33|. The projective measurements are based on MUBs as shown
in Table. 4.1
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m j

1 |Ψ11〉 1
3
|l = 1〉+ 1

3
|l = −1〉+ 1

3
|l = 3〉

|Ψ12〉 1
3
|l = 1〉+ 1

3
ei

2π
3 |l = −1〉+ 1

3
e−i

2π
3 |l = 3〉

|Ψ13〉 1
3
|l = 1〉+ 1

3
e−i

2π
3 |l = −1〉+ 1

3
ei

2π
3 |l = 3〉

2 |Ψ21〉 1
3
|l = 1〉+ 1

3
ei

2π
3 |l = −1〉+ 1

3
ei

2π
3 |l = 3〉

|Ψ22〉 1
3
|l = 1〉+ 1

3
e−i

2π
3 |l = −1〉+ 1

3
|l = 3〉

|Ψ23〉 1
3
|l = 1〉+ 1

3
|l = −1〉+ 1

3
e−i

2π
3 |l = 3〉

3 |Ψ31〉 1
3
|l = 1〉+ 1

3
e−i

2π
3 | − 1〉+ 1

3
e−i

2π
3 |l = 3〉

|Ψ32〉 1
3
|l = 1〉+ 1

3
|l = −1〉+ 1

3
ei

2π
3 |l = 3〉

|Ψ33〉 1
3
|l = 1〉+ 1

3
ei

2π
3 |l = −1〉+ 1

3
|l = 3〉

4 |Ψ41〉 1
3
|l = 1〉

|Ψ42〉 1
3
|l = −1〉

|Ψ43〉 1
3
|l = 3〉

Table 4.1: MUB in 3D. |Ψmj〉 denotes the jth element of the mth orthonormal

basis of a set of MUBs in 3D. |Ψmj〉 satisfies |〈Ψmj|Ψm
′
j
′〉|2 = 1

9
when m 6= m′.

When m = m′, |〈Ψmj|Ψmj
′〉|2 = 1

9
δj,j′ . The MUB are not normalized considering

the projective measurement we can perform in our platform in 3D.

4.3 Conclusions

In this chapter, we analyse the generation and detection efficiency of LG modes for

single LG0
l mode and their superpositions. We obtain the normalization factors which

can be applied in the LG modes generation and detection process. The normalization

factors for each LG0
l are obtained by an iterative process. The superposition of LG

modes has lower generation and detection efficiency. The projective measurements

of the superpositions have the same detection efficiency if we make the LG modes
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which compose the superposition with equal relative weight P (l). The low projection

efficiency and the request for the equal relative weight of superposition limit the

measurement protocols that we can apply by our experimental platform for state

tomography. The relative phase change of the LG mode superposition causes a

sinusoid power change in the projection process of LG modes. We test the POVM

protocols based on MUBs in 2D and 3D, and the results indicate that it is eligible to

perform state tomography in our experimental platform.
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Chapter 5

Conclusions

The orbital angular moementum (OAM) of photons is a useful degree of freedom

with applications ranging from microscopy, imaging, to quantum information. In

this thesis, we describe the experimental implementation of a platform which can be

used in the future to test different quantum state tomography protocols via photons

carrying OAM in high dimensional Hilbert space. Photons carrying OAM that lives in

the unbound Hilbert space are able to perform the high-dimensional state tomography.

The OAM is caused by the helical wavefront eilθ of the light. Each photon carries an

OAM of l~, in which l is the OAM quantum number. We use a holographic beam

shaping technique to generate light beam carrying OAM via spatial light modulators

(SLMs). The SLMs are beam shaping devices that can change the incident beam

phase in 2π radians. The exact solution for OAM beam shaping has been applied

to generate the hologram, and thus we can shape both the intensity and the phase

of the OAM beam. The beam shaping technique can be applied to shape arbitrary

phase and intensity beam profile. We generate the beam carrying OAM by encoding

the hologram on the first SLM (SLM1) and observe the OAM modes on the Fourier

plane of the Fourier lens. The Gaussian component of the beam can be filtered out by

adding a blazed phase grating on the hologram and using an iris on the Fourier plane

to pick the first order diffracted mode, which contains the desired OAM mode. We

image the OAM mode generated by SLM1 to a second SLM (SLM2) with a 4f-system.
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The SLM2 encodes a hologram which is the complex conjugate OAM mode of the

mode generated by SLM1, and thus the projective measurement can be accomplished

at the far field of SLM2. The projective measurement results in a Gaussian spot

which overlaps with the fundamental mode of the fiber, and therefore can be coupled

into the SMF.

To generate and detect the OAM modes in high quality, we correct the optical

aberrations caused by the SLMs and other optical elements using two beam interference

method to get the exact phase map utilizing the SLM. The aberration correction,

mainly involving phase distortion, is implemented by interfering two beams diffracted

by the two patches of blazed phase grating to obtain the the relative phase difference

between these two beams. The phase difference obtained represents the optical

aberration, and by subtracting the phase difference, we can produce and detect OAM

modes with high quality of OAM mode order l = 8.

The generation and detection efficiencies of OAM modes depend on mode order l,

and thus we apply different normalization factors of each LG mode on the hologram

for both the generation and the detection process to ensure the same efficiency for

different LG modes. The normalization factors are obtained by utilizing the linear

relation between the intensity of the LG mode used to generate the hologram and

the intensity of the mode which is detected on the Fourier plane. We use visibility to

describes the crosstalk between the LG modes in the projective measurement process.

The visibility of the projection of LG modes is 95.36%, which indicates that the

crosstalk is low between different LG modes when taking the projective measurement.

The projection efficiency is influenced by the superposition of LG modes, which mainly

depends on the relative weight of each LG mode which composes the superposition.

The restriction on the value of the relative weight of the LG mode superposition

limits the state tomography protocols we can perform in our experimental platform.

We take the projective measurements of MUBs in 2 dimensions and 3 dimensions,

and verify the orthogonality between the MUBs by using our experimental setup. In

general, we can generate and detect LG modes with good quality even with high

OAM mode order l. High dimensional quantum states of OAM which are performed
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by our experimental platform can be applied to test different POVMs for quantum

state tomography in the future research.
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Appendix A

Fourier optics and the phase

transform function

Figure A.1: Light diffraction through an aperture. Point P0(x0, y0) is on the
aperture plane and P1(x1, y1) is an arbitrary point on the observation plane. ~n is
the normal vector of the aperture.

Diffraction can be defined as any deviation of a light ray from rectilinear propaga-

tion, which is not caused by reflection nor refraction. Diffraction theory has been

developed by Huygens, Fresnel, Kirchhoff and Sommerfeld [78]. Suppose we want to

calculate the electric field in a point P1 shows in Fig. A.1 after propagation from

point P0. For free space propagation with index of refraction n = 1, the electric field

E and the magnetic field H of monochromatic light satisfy the Helmholtz equation

with wavenumber k:
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∇2 ~E + k2 ~E = 0

∇2 ~H + k2 ~H = 0 (A.1)

We use U to denote the scalar component of the electric field. The field U also

satisfies:

∇2U + k2U = 0 (A.2)

The field on point P1 after light diffraction through an aperture σ is shown in Fig

A.1:

U(P1) =

∫∫
σ

h(P1,P0)U(P0)ds0 (A.3)

with h(P1,P0) the weighting factor given by the field U(P0)

h(P1,P0) =
−1

iλ
cos(~n,~r0 − ~r1)

e−ik|~r0−~r1|

|~r0 − ~r1|
(A.4)

P0 are all the points on the aperture σ and U(P1) is obtained by integration over

the whole aperture plane σ. ~r0 − ~r1 is a vector from P1 to P0 and ~n is a normal

vector to the surface σ. Eq. (A.3) is known as the Rayleigh-Sommerfeld diffraction

formula [78]. It shows that the field is a superposition of spherical waves starting

from each point in the aperture, each with an appropriate amplitude and obliquity

factor cos(~n,~r0 − ~r1). This is called the Huygens-Fresnel principle [78]. The aperture

lies on a plane (X0,Y0) with P0 of coordinates (x0, y0). P1 with coordinates (x1, y1)

is on the observation plane (X1,Y1), which is parallel to the (X0,Y0) plane. So Eq.

(A.3) can be written as:

U(P1) =

∫∫
σ

h(x1, y1,x0, y0)U(x0, y0)dx0dy0 (A.5)

with

h(x1, y1,x0, y0) =
−1

iλ
cos(~n,~r0 − ~r1)

e−ik|~r0−~r1|

|~r0 − ~r1|
(A.6)
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and

|~r0 − ~r1| =
√
z2 + (x0 − x1)2 + (y0 − y1)2 (A.7)

Suppose the axial propagation distance z is much larger than the aperture size. Then

cos(~n,~r0 − ~r1) ∼= 1 (A.8)

and

h(x1, y1,x0, y0) ∼=
−1

iλz
e−ik|~r0−~r1| (A.9)

therefore |~r0 − ~r1| can be expanded as:

|~r0 − ~r1| =

√
z2 + (x1 − x0)2 + (y1 − y0)2

∼= z[1 +
1

2
(
x1 − x0

z
)2 +

1

2
(
y1 − y0

z
)2] (A.10)

This gives

h(x1, y1,x0, y0) ∼=
−e−ikz

iλz
e−

ik
2z

[(x1−x0)
2
+(y1−y0)

2
] (A.11)

When we integrate over the whole plane, we set U(x0, y0) = 0 outside the aperture

and the Eq. (A.5) gives:

U(x1, y1) =
−e−ikz

iλz

∫∫ +∞

−∞
U(x0, y0)e−

ik
2z

[(x1−x0)
2
+(y1−y0)

2
]dx0dy0 (A.12)

=
−e−ikz

iλz
e−

ik
2z

[x
2
1+y

2
1 ]

∫∫ +∞

−∞
U(x0, y0)e−

ik
2z

[x
2
0+y

2
0 ]ei

2π
λz

[x0x1+y0y1]dx0dy0

This is the Fresnel diffraction integral, which shows that the field U(x1, y1) in the

observation plane is the 2 dimensional Fourier transform of the field in the object

plane

U(x0, y0)e−
ik
2z

[x
2
0+y

2
0 ] (A.13)

with spatial frequencies:

fx = −x1

λz
, fy = − y1

λz
(A.14)
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This result is valid close to the aperture, and it is called the near-field approximation

[78]. If the distance z satisfies:

z � k(x2
0 + y2

0)

2
(A.15)

then

U(x1, y1) =
−e−ikz

iλz
e−

ik
2z

[x
2
1+y

2
1 ]

∫∫ +∞

−∞
U(x0, y0)ei

2π
λz

[x0x1+y0y1]dx0dy0 (A.16)

The region where this equation valid is called the far field or the Fraunhofer diffraction

regime [78]. Eq. (A.16) is applied in Eq. (2.2) in Chapter 2.

When a beam passing through a thin lens, it undergoes a phase transformation.

The beam leaves the lens surface at the same transverse position (x, y) as where

it enters the lens, as shown in Fig. A.2. U11(x, y) is the field incident on the lens,

U12(x, y) is the light field leaving the lens and t(x, y) is the phase transform function

of the lens, which satisfies:

U12(x, y) = t(x, y)U11(x, y) (A.17)

the phase transform function t(x, y) of the lens is given by the phase retardation

φ, with

t(x, y) = e−iφ (A.18)

in which

φ(x, y) = kn∆(x, y) + k[∆0 −∆(x, y)] (A.19)

∆(x, y) is the thickness between two surface of the lens and ∆0 is the length of the

lens center along z direction with x = 0 and y = 0. The first term in Eq. (A.19) is

the phase variance caused by the beam passing through the lens. The second term is

the phase variance between the front incident plane and the back plane of the lens

subtracting the phase change caused by the lens. The front surface of the lens has a

radius of curvature of −R2 and the radius of curvature of the back surface is R1. To

calculate ∆(x, y), we split the lens into two parts (Fig. A.2) such that:

∆(x, y) = ∆1(x, y) + ∆2(x, y) (A.20)
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Figure A.2: Parameters of a thin lens. ∆(x, y) is the lens’s thickness between
two surface and ∆0 is the thickness of the lens center. ∆1(x, y), (∆2(x, y)) is the
left (right) thickness of the lens, which satisfies ∆1(x, y) + ∆2(x, y) = ∆(x, y).
∆01(0, 0), (∆02(0, 0)) is the left (right) center thickness of the lens, which satisfies
∆01(0, 0) + ∆02(0, 0) = ∆0.

with

∆1(x, y) = ∆01 − (R1 − (

√
R2

1 − x2 − y2))

= ∆01 −R1(1−

√
1− x2 + y2

R2
1

) (A.21)

and

∆2(x, y) = ∆02 − (−R2 − (

√
R2

2 − x2 − y2))

= ∆02 +R2(1−

√
1− x2 + y2

R2
2

) (A.22)

thus

∆(x, y) = ∆0 −R1(1−

√
1− x2 + y2

R2
1

) +R2(1−

√
1− x2 + y2

R2
2

) (A.23)

in which

∆0 = ∆01 + ∆02 (A.24)
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By making the paraxial approximation for the beam passing through the lens, ∆(x, y)

can be simplified:

√
1− x2 + y2

R2
1

∼= 1− x2 + y2

2R2
1√

1− x2 + y2

R2
2

∼= 1− x2 + y2

2R2
2

(A.25)

hence

∆(x, y) = ∆0 −
x2 + y2

2
(

1

R1

− 1

R2

) (A.26)

since the focal length f of the lens has a relation with R1 and R2 as:

1

f
= (n− 1)(

1

R1

− 1

R2

) (A.27)

Consequently

∆(x, y) = ∆0 −
x2 + y2

2f(n− 1)
(A.28)

Substituting ∆(x, y) into Eq. (A.19) and Eq. (A.18), the phase transform function

becomes:

t(x, y) = e−ikn∆0ei
k
2f

(x
2
+y

2
) (A.29)

The phase transformation function t(x, y) of the lens is used in Eq. (2.3) in

Chapter 2. This equation can also be applied for other types of thin lens, e.g., the

convex lens.
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