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Abstract

With the ever continuing increase in the number of devices connecting

to one another, forming the Internet of Things (IoT), understanding how

the performance of these networks connect is of paramount importance.

Modelling the location of devices/base stations by random sets, tools from

stochastic geometry can be leveraged creating a framework which is far more

tractable than previous lattice models. As such there has been significant

progress into the fundamental capabilities of wireless networks, including con-

nectivity and scalability. To date, the majority of literature has presumed

a uniform Poisson Point Process in R2 to model the distribution of points

which represent base stations or smart devices. Although very tractable, the

model loses some important features that heavily influence real world net-

works. For example, within this model there is a notion of a “typical user”,

which is that the network performance (such as the probability you can send

a signal) is independent of location. Naturally, this contradicts what we as

consumers experience in reality, since connectivity varies due to base stations

being far away, or buildings/hills etc causing signal degradation.

Furthermore, as the IoT continues to grow, the network becomes increas-

ingly dynamic due to portable smart devices requiring connectivity. Moti-

vated by this, we study the impact boundaries ( examples are geographical

features like the body of water surrounding New York city) and human mobil-

ity have on the connectivity properties of wireless networks, both over single

and multiple time slots. To achieve this, we use a Poisson Point Process with

non-uniform measure in some finite domain and model the links between

points as probabilistic connection function. Through this general model, re-

ferred to as a Soft Random Geometric Graph, we are able to study a range of

different networks even within the wireless communication literature. These

include the classical device to base station architecture, to device-to-device

networks where information is relayed in a multihop fashion, to ultra dense

5G networks where the base stations may themselves be mobile, for instance



as drones. We later extend our work to spatio-temporal networks where we

analyse how these graphs evolve over multiple time slots. Our results there-

fore have a variety of applications ranging from the routing information and

scalability of mobile ad hoc networks to how 5G networks should be deployed

in urban environments to maximise user experience.



Acknowledgements

I would firstly like to thank Carl Dettmann, Orestis Georgiou and Woon

Hau Chin for their invaluable expertise, guidance and support that has made

the last four years so enjoyable. I would also like to extend that thank you to

everyone from the Spatially Embedded Networks group based in both Bristol

and Oxford; I know the continued dialogue between both groups has greatly

helped my research. I would also like to acknowledge the financial support

of the EPSRC and Toshiba who have helped to fund me during my studies.

My final thank you goes to my wife for helping to make the last four years

so enjoyable, and without whom this thesis would have been completed six

months earlier.





Author’s Declaration

I declare that the work in this dissertation was carried out in accordance

with the requirements of the University’s Regulations and Code of Practice

for Research Degree Programmes and that it has not been submitted for any

other academic award. Except where indicated by specific reference in the

text, the work is the candidate’s own work. Work done in collaboration with,

or with the assistance of, others, is indicated as such. Any views expressed

in the dissertation are those of the author.

Signed: Peter W Pratt

Date: February 2019





Contents

1 Introduction 1

1.1 So what is a Wireless Network? . . . . . . . . . . . . . . . . . 1

1.2 Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Results for the Random Geometric Graph and its generalisations 6

1.4 Finite Mobile networks . . . . . . . . . . . . . . . . . . . . . . 7

1.5 About this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 List of Notation . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Table of Abbreviations . . . . . . . . . . . . . . . . . . 13

2 Mathematical Preliminaries 15

2.1 Stochastic Geometry . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Poisson Point Process . . . . . . . . . . . . . . . . . . 18

2.1.2 Binomial Point Process . . . . . . . . . . . . . . . . . . 22

2.1.3 Results from Stochastic Geometry . . . . . . . . . . . . 22

2.2 Random Geometric Graphs and their generalisations . . . . . 25

2.2.1 RGGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Connection Functions . . . . . . . . . . . . . . . . . . . 26

2.3 Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Full connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Spatio-temporal Networks . . . . . . . . . . . . . . . . . . . . 41

2.6 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1 Random walk . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 Random waypoint model . . . . . . . . . . . . . . . . . 45
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Chapter 1

Introduction

As our dependency on technology continues to increase, so does our need to

be connected. We have all experienced the frustrations of not being able to

send that all important text message when we needed to most. These random

failures that occur locally can be very annoying from a personal perspective,

but can also have detrimental effects to the whole network when information

is instead relayed from device-to-device, leaving everyone unhappy. Cate-

gorising why our smart devices suddenly fail to connect to the network is

a problem this work aims to address, and it turns out it is probably not

because your phone hates you1. So whether it be for business purposes or

simply because you need to share that joke you thought over that last cup of

coffee, this work aims to provide insight into why our smart devices fail and

hopefully influence future network deployment to maximise user experience.

1.1 So what is a Wireless Network?

Lets first take a step back and consider the different types of networks we are

interested in. The traditional (Macro Cell) architecture of wireless networks

consists of base stations (BSs) and end users. Typically when one end-user

1although I cannot guarantee this
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tries to send a packet to another (reasonably far away), it first sends the

packet to its nearest BS, it then gets routed through the backhaul network to

a different BS which then transmits it to the intended target. A conventional

model is to do a Voronoi tessellation of the network, where every user in a cell

is served by the same BS, meaning a single BS serves many users [Kou16a].

This type of network is unlikely to scale well with the number of users.

That is, as the number of devices in the network increases, so does the

strain on the network architecture, after all a BS can serve only so many

users at any one time, all the rest will impact negatively on the performance

through interference. One solution is to introduce more sophisticated network

protocols, where instead of everyone transmitting at once, only a subset can

access the channel at any one time, or alternatively you could include more

antennas and/or channels in which devices can communicate. However, these

mechanisms are unlikely to cope with the exponential growth in devices, and

simply adding more BS is not a viable solution mainly due to financial and

geographical restrictions.

The antithesis of the archetypal network consisting of BSs and users,

are wireless mesh networks. A wireless mesh network has no centralised

system, but instead information is transferred through the network in a mul-

tihop fashion. One example of a mesh network is a mobile ad hoc network

(MANET) where mobile smart devices continually make and break links as

they move around. MANETs have various advantages over a fixed network

architecture with the main advantage being they can easily resolve problems

of isolated nodes due to their self-configuring nature. Other advantages of

MANETs include: they are easily deployable since they require no fixed in-

frastructure; easily scalable since devices can easily be added to the network

and random node failures are less likely to cause cascading network failures

as data can take multiple paths [Hel14]. However, MANETs are not without

their flaws, for example they are susceptible to: variations in network perfor-

mance (no fixed connections); interference depends on location and can lead

to isolated users or a waste of resources (data has to be repeatedly resent
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due to links failing), and the allocation of resources as devices have to relay

information [Hel14].

Another solution to meet the increasing demand of cellular traffic are

heterogeneous networks (HetNets) [Boc14b, DR13]. HetNets are formed by

adding smaller versions of BSs, namely pico and femto cells, more generally

called Access Points (APs). There is a general consensus that network den-

sification, both spatially and over the frequency domain, can help cope with

the expected 1000-fold increase in traffic demand over the coming decade

whilst remaining cost effective [Bhu14, DR13]. By deploying smaller pico

and femto cells can help to improve network throughput, bring about higher

data rates along with improving mobile user coverage [Bhu14]. Moreover,

HetNets have the added appeal of being far more scalable, as smaller APs

are cheaper and easier to deploy, with fewer initial costs compared with their

macro cell counterparts. Furthermore, smaller APs provide greater network

flexibility, for example drones have been proposed to offset spikes in traffic

demand during sporting events or music festivals [Ors17].

1.2 Network Models

Traditional models for wireless networks assumed a hexagonal lattice struc-

ture for cells in which a BS is located at the centre [Rin47]. Naturally, this

is a very idealised model since it simply would not be possible to build such

a network in reality both financially and due to geographically restrictions.

It turns out that the locations of BS appear far more random [Li15], prob-

ably because few foresaw such rapid growth in technology and didn’t plan

accordingly; people are generally opposed to having a BS in their front room

to ensure a nice regular structure.

As a result it has become common practice to model the location of BSs

via a point process embedded in R2. The usual model utilises a uniform

Poisson Point Process (PPP) for mathematical tractability, but the point

set can be modelled by a wide range of different point patterns found in

3



Stochastic Geometry [Bac09, Hae12, Det18b] and they need not be uniform.

However, other point processes have been used to model different network

features with varying degrees of success. For example, the Gibbs process is an

extremally powerful point process as it allows the user to interpolate between

networks with attraction and repulsion via a density function that is defined

by the pairwise interaction of points, but rarely results in a tractable solution

[Guo13, Det18b]. On the other hand the determinantal point process, first

used to model the distribution of fermions in thermal equilibrium [Kul12],

has been used to model the intrinsic repulsion between BSs with far more

success, see [Miy14] for example. Regardless of the point process chosen, the

question of whether any network analysis can be done often boils down to

whether the spatial average can be computed; one of the reasons the PPP

is so popular is due to its complete spatial randomness yielding a nice form

for the probability generating functional (PGFL). As a consequence we now

have a mathematical framework for calculating network metrics such as the

coverage probability which was not previously possible. However, creating

these networks with a fixed architecture is both costly and time consuming,

and as early as the 1960’s it was proposed that mesh networks, which have

little start up cost and time, could be used for wireless communications

[Gil61]. It is these mesh networks, with mobility, that we are particularly

interested in and are discussed in more detail below.

In 1961, Gilbert introduced the Random Plane network [Gil61], more

commonly referred to now as the Random Geomtric Graph (RGG), where

points are randomly dropped in some space and and pairs of nodes are linked

if they are mutually close [Wal11,Bar11,Det18b]. The location of points in a

RGG are modelled by a spatial point pattern, with the original model being

a uniform PPP where N points are uniformly distributed in the domain and

N is a Poisson random variable (rv). RGGs have been applied to the study of

wireless sensor networks where the power of devices is relatively low [Kar08].

The scope of RGGs are certainly not limited to communication networks, for

example they have also been to used model the spread of diseases [Bal08],
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Figure 1.1: A RGG in a circular region with radius R = 5, and a non-uniform
PPP with density λ0 = 1.5 and a connection range of r0 = 1. The darker
colours represent a higher degree.

and are studied in combinatorics as unit disk graphs [Cla90]. It should be

noted that most rigorous statements are for infinite RGGs, for example on

R2, or on a sequence of RGGs in finite domains for which N̄ → ∞, with

further discussion on how the system scales left to [Coo15,Det18b].

More recently, the RGG has been generalised to the Soft Random Geo-

metric Graph (SRGG) which includes an additional source of randomness in

terms of link probabilities. Similar to the RGG, the points are modelled by

a point process, but instead of a deterministic connection model, the proba-

bility two nodes connect depends on some link function H : r → [0, 1], where

r is the separation between the two nodes. In most cases H(r) decays as

a function of distance, but this is not always true as we will discuss in the

following chapter. As a result, SRGGs are able to model a wider variety of

networks including neural [Shi92, Rou04], social [Cho11, Won06] and more

diverse communication networks [Det18b], simply by choosing a suitable H.

As is sometimes the case in mathematics, different communitiies refer to

it with different names which include the Waxman graph (named after its
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creator) [Wax88], the random connection model [Pen16, Kri16, Mül15] and

spatially embedded random networks [Bra14,Iye18,Mao17] which once again

is indicative of its wide array of applications. One particular connection

function of interest is the interference-limited connection function. In this

case, the connection probability not only depends on the distance between

the receiver and transmitter, but the locations of all other transmitting de-

vices in the network (which are acting as interferers). Interestingly, for this

model it is possible to obtain closed form expressions for network metrics

using stochastic geometry which was not previously possible from a purely

information theoretic standpoint [Bac97]. In the following chapters we will

see why this is such a powerful model in understanding wireless networks.

1.3 Results for the Random Geometric Graph

and its generalisations

The main question addressed in [Gil61] was one of network criticality. Namely,

what are the conditions needed for a RGG to transition from being comprised

of connected components of finite size almost surely, to one where there is

almost surely an infinite (giant) component [Det18b]: a phenomenon known

as percolation [Gri99]. In fact, the original paper on RGGs [Gil61] provides

an upper bound by tiling the plane and drawing from results on bond perco-

lation and a lower bound using a branching process [Wal11]. Improvements

on these bounds have since been given, largely by refining the original tech-

niques used in Gilbert’s paper [Hal85].

However, perhaps a more pertinent question is when does a finite RGG

become fully connected? A graph is said to be fully connected when there

exists a multihop path between any two nodes in the network. One of the

most celebrated results was by Penrose [Pen97] who showed that for points

uniformly distributed on the unit cube, the RGG becomes fully connected

when there are no more isolated nodes with high probability, as the number
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of nodes goes to infinity. This phenomenom also appears in classical random

graphs [Bal08] and SRGGs [Mao13,Mao17,Pen16], albeit only for a particular

class of connection functions. This result not only identifies the bottleneck

to full connectivity, but also a simple approximation which has been used

extensively in the study of wireless networks. Interestingly in 1D this result

does not hold as the network is more likely to split into two disconnected

clusters, and remains an open problem.

1.4 Finite Mobile networks

The scaling adopted in the above results means the impact of boundaries are

hidden. It turns out that in more realistic networks where the number of

nodes is large but finite, boundaries play an important role when studying

network connectivity. Moreover, these results assume that points are uni-

formly distributed within a domain, but this is unlikely to be the case in

reality. As networks become increasingly mobile, the distribution of devices

becomes less uniform: mobility induces inhomogeneity. As people with smart

devices move around in their every day lives, a higher proportion of network

traffic will occur in popular places such as shopping centres and sporting

events.

In fact, it is the impact user mobility has on network performance that

is of particular interest to us in this thesis. Human mobility itself is a

very rich area of research with a wide range of models claiming to capture

the key behaviours that categorise human mobility [Bet02, Ben07, Lee12].

The importance of mobility on network performance is illustrated by the

results in [Gup00] and [Gro01]. When the network is not mobile, the perfor-

mance in terms of its ability to transmit data (network capacity) decreases

as the number of nodes increases, due to the increased competition for re-

sources [Gup00]. On the other hand, Grossglauser and Tse [Gro01] showed

that the converse is true if the nodes are mobile, even for an interference-

limited environment; albeit at the cost of increased delay. Essentially, a
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mobile network can handle more data but it is transferred at a slower rate.

In this work we largely focus on the Random Waypoint (RWP) model to

represent human mobility, as it is both intuitive and tractable. The RWP

model converges to a stationary distribution which can be computed exactly

(see Chapter 3) where the distribution of users is highest in the middle of the

domain and decreases towards the boundaries, making for a very intuitive

model for cities. The stationary distribution of the RWP model, coupled

with tools from stochastic geometry, allows for a more mathematical analy-

sis when compared with other models. However, we do not limit ourselves

to analysing the RWP, but study more general non-uniform distribution of

users, allowing us to capture a wider range of human mobility behaviour.

This has the further benefit of enabling us to more precisely isolate whether

it is boundaries, inhomogeneity or both that determine network connectivity.

1.5 About this thesis

In this thesis our primary aim is to address the following question: how does

mobility impact the performance of Soft Random Geometric Graphs?

To tackle this question we first begin by trying to understand how we can

model mobility in wireless networks. We particularly focus on the popular

Random Waypoint Mobility model that has been widely studied as it con-

verges to a stationary distribution. In chapter 3 we calculate, for the first

time, the exact spatial distribution for the rectangle and triangle cases, and

compare them with existing approximations within the literature. Although

the approximations differ quantitatively to the exact calculations, they still

capture the same qualitative nature; the density goes to zero at the boundary

and is highest in the bulk. Motivated by this we study a more general distri-

bution of points which allows us to interpolate between the RWP model, the

widely studied uniform model and one where the density of points is highest

near the boundary (referred to as convex). By using a PPP with non-uniform

measure and a general connection function it allows us to capture the diverse
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array of impacts of inhomogeneity, a result of mobility, on a wide range of

networks, which we can compare with existing results in the literature.

Indeed, within this general framework we first highlight the impact in-

homogeneity and boundaries have on the average number of connections a

device can have in MANET in chapter 4. Of particular interest is the in-

terference model where the probability a link is formed also depends on the

locations of other nodes. In this case the mean degree is not only highly lo-

cation dependent, but also very sensitive to the choice of path loss function;

for a non-singular path loss function the mean degree has a distinct density

which maximises the mean degree, beyond which it decays to zero.

Our second main contribution comes in chapter 5 which regards ultra-

dense networks and looks at how HetNets can bring about the improved

performance promised by 5G networks. Here we use a nearest neighbour

communication model to represent how devices and APs communicate, and

provide insight into the optimal deployment of APs for a range of different

network scenarios.

Our final main contribution in chapter 7 is to use the insight from the

previous chapters and apply it to mobile networks over multiple time slots.

In this case we provide two methods to approximate the probability a node is

isolated near a corner in a range of different networks, and discuss how these

boundary nodes influence the overall connectivity. The insight obtained is

then applied to how routing in wireless mesh networks could be optimised.

A publication list is provided in Appendix A, along with a break down

of my contributions for each paper.

The thesis is divided into the following chapters.

Chapter 2: A discussion of the mathematical preliminaries used throughout the

thesis.

Chapter 3: The Random Waypoint Model is formally defined, and exact expres-

sions for the spatial distribution are computed for the triangle and

rectangle.
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Chapter 4: The average degree is computed for a range of SRGGs in a rectangle

with different non-uniform densities, including the stationary distribu-

tion of the RWP. The result is then related to percolation in SRGGs

with interference.

Chapter 5: We analyse the coverage probability in ultra-dense heterogeneous net-

works with non-uniform measures. We then use these results to analyse

how to deploy access points in order to optimise user experience.

Chapter 6: We build upon the work of Chapter 5, and apply it to Low Power Wide

Area networks, which have a modified connection model yielding some

interesting results.

Chapter 7: A range of different SRGGs are analysed over multiple time slots,

analysing how boundaries and non-uniform distribution of points af-

fect network connectivity.

Chapter 8 We extend our analysis beyond a single node to how long clusters of

size two or more are isolated for.

Chapter 9: We draw together our results and highlight some interesting open prob-

lems.
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1.5.1 List of Notation

Notation Description

Φ Point Process

Λ(·) Intensity measure of the point process

λ(x), ρ(x) Intensity of points in the point process

λ0, ρ0 Density of the point process

λc Critical density for which a graph percolates

N̄ Mean number of points in the point process

R Radius of a circular domain

Bx(r) The ball centred at the point x with radius r.

Ax(r1, r2) The annulus centred at the point x with inner ra-

dius r1 and outer radius r2.

VB(x, r) The void probability at the point x with radius r.

H(r) The connection probability that two points sepa-

rated by a distance r connect.

r0 Typical connection range, used to scale the con-

nection function

rc Critical connection range for the network to per-

colate

g(·) Path loss function

η Path loss exponent

σ2 The amount of noise in the channel

γ A parameter that thins the number of points in

the process, often used to reduce the number of

interferes.

℘ Probability a node is transmitting.

|h|2 Channel gain, assumed to be exponential random

variable with mean one
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Notation Description

q Threshold required for a successful transmission to

take place

LI(s) Laplace transform of the interfering signals in the

point process evaluated at s

qsf Threshold required for a successful transmission to

take place, where SF refers to the spreading factor

ψ The carrier wavelength

l̄ The mean length between consecutive waypoints

in the random waypoint model.

µ(x) The mean degree of a point at x

Fx(r) The Cumulative density function of the nearest

neighbour distribution

fNND(x) The probability density function of the nearest

neighbour distribution

C(x) The location dependent coverage probability.

CK(x) The coverage probability in a network where K

nodes cooperate.

C̄(·) The average coverage probability.

Piso(x) The probability a node at x is isolated from the

rest of the nodes in the network.

Pfc Probability of full connectivity

GK A connected subgraph of size K nodes.

CTGK The expected number of clusters of size K that are

connected within themselves, but are disconnected

from the rest of the network.

Table 1.1: A Table of all the notation used in this Thesis.
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1.5.2 Table of Abbreviations

Abbreviation/ Ini-

tialism

Full name/ Description

AP Access Point

BPP Binomial Point Process

BS Base station

CoMP Cooperative Multipoint transmission scheme

CSMA/CA Carrier-Sense Multiple Access with Collision

Avoidance (channel access scheme)

HetNet Heterogeneous Network

IoT Internet of Things

LoRa Long Range (Type of Low Power Wide Area Net-

work)

LPWAN Low Power Wide Area Network

LTE Long term evolution standard for the fourth gen-

eration (4G) of networks

MANET Mobile Ad hoc network

MIMO Multiple input Multiple output model

PGFL Probability Generating Functional

PPP Poisson Point Process

QD Quasi Disk (connection model)

RGG Random Geometric Graph

RW Random Walk (mobility model)

RWP Random Waypoint (mobility model)

SA Soft Annulus (connection model)

SD Soft Disk (connection model)

SF Spreading Factor

SINR Signal-to-Interference-plus-Noise-Ratio

SIR Signal-to-Interference-Ratio
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Abbreviation/ Ini-

tialism

Full name/ Description

SLAW Self-similar Least Action Walk (mobility model)

SNR Signal-to-Noise-Ratio

SRGG Soft Random Geometric Graph

MU Mobile User

Table 1.2: A Table of all the abbreviations and initialisms

used in this thesis.
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Chapter 2

Mathematical Preliminaries

The purpose of this chapter is to introduce the key concepts that are contin-

ually used throughout. Many of the results stated can also be found in the

review I did jointly with Carl Dettmann and Orestis Georgiou Ref [Det18b].

My main contributions in the review were the chapters on point processes

(Sec 2 of Ref [Det18b]); percolation (Sec4.2 of Ref [Det18b]); temporal net-

works (Sec 7 of Ref [Det18b] and mobility (Sec 8 of Ref [Det18b]), much of

which is discussed below. This chapter will also contain some overlap with the

introductions in Ref [Pra16,Pra17,Pra18] of which I was a co-author where

my contributions to each are outlined in the publication list in Appendix A.

Finally, I also edited the following Wikipedia pages: Edgar Gilbert, Mobile

ad hoc network and Random Geometric Graph [Wik18a,Wik18b,Wik18c] as

part of the spatially embedded networks project between Oxford and Bristol,

as such there may also be some overlap in some of the discussions.

The spread of diseases, fires and information through real world net-

works depends greatly on the underlying spatial structure [Det18b]. The

first spatial model was the RGG [Gil61], originally called a Random Plane

network but has since been generalised to SRGGs to model a wider variety

of networks. In this work we focus on the applications of SRGGs to wireless

communication networks where the nodes represent either a smart device

(which is possibly mobile), a base station (BS) in the classical architecture,
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or an AP in HetNets with the links representing channel conditions.

Before we discuss some results on RGGs we first need to introduce stochas-

tic geometry and the definition of a Poisson Point Processes (PPP), along

with some key results including Campbell’s theorem for sums and the Prob-

ability generating functional for the PPP. These results and definitions are

fundamental to the study of wireless networks and can be found in the fol-

lowing books and/or reviews [Hae12, Bac09, Bac10b, Las17, Det18b, B la18].

Throughout this chapter we will aim to motivate each definition by an asso-

ciated application that we use in the subsequent chapters, with that in mind

we will largely focus on the space R2 for brevity, although it is easily gen-

eralisable to higher dimensions. Other PPs, such as the determinantal PP,

can be used to model different situations in wireless networks but are not

discussed here; the reader is referred to the following references for a general

discussion on point processes [Dal07,Der17], and Ref [Hae12,B la18,Det18b]

which focus on their application to wireless networks.

2.1 Stochastic Geometry

Stochastic geometry is the study of random sets in space, most notably point

processes, that is, random sets of individual points. Initially, stochastic ge-

ometry was first used to further understanding in fields such as material

science, astronomy and biology [Sos00, Tor08, Bac10b]. Generally speaking,

in stochastic geometry, point processes need not model just collections of

points in some space, they can be used for more general sets such as balls,

lines, planes and fibres which are then mapped back into point processes us-

ing a suitable representation [Ken10,Sch14]. Examples of other applications

include: material science to model fibres and the hard core particle structure

of concrete [Bal06]; astronomy of which Olbers’ paradox is a nice example;

biology and ecology to model forestry distributions, the statistics of legion-

naires outbreaks [MB06] and wrinkles [Bat12]; vehicular networks [Che18b]

and more recently in machine learning [Kul12]. Our interest lies in the ap-
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Figure 2.1: A realisation of two PPP with different density functions λ(r) in
a disk with radius R. The blue dots represent point in Φ and the background
shading representing the density function λ(r). Left: A single realisation of
a PPP with uniform intensity measure. Right: A realisation of a PPP with
density λ(r) = 2

πR4 r
2.

plication of Stochastic Geometry to modelling wireless networks.

Prior to using random point models, traditional practice was to assume

a hexagonal lattice to model each cell with a corresponding BS located at

the centre that serves all the associated users within it [Rin47]. Already

a highly idealised approach, obtaining closed form expressions within this

lattice model for network performance metrics using a standard information

theoretic approach was not possible; the restriction largely being the spatial

average could not be computed. However, Ref [Bac97] showed that by al-

lowing the locations of BSs to be modelled by a random point pattern, and

leveraging standard techniques from stochastic geometry often resulted in

closed form expressions for metrics such as coverage and average rate. The

original model proposed in Ref [Bac97] used a uniform PPP in R2 to model

the locations of macro base stations (cell towers) which has been shown to

be consistent in terms of the spatial statistics of BSs in cities [Lu15]. Intu-

17



itively, this random model has the benefit of being able to incorporate the

irregularity in the distribution of base stations due to several factors, includ-

ing the availability of space and costs of building large cell towers in certain

locations. The Poisson model for BSs is highly generalisable to other cities

as the analysis is not based on a fixed data set but rather a typical urban

environment, allowing for key network features such as scalability to be stud-

ied more easily. Furthermore, the Point Process Φ can be more general in

order to capture different features of a network, including non-uniformity,

clustering or the repulsion of points.

In this thesis we will use a non-uniform Poisson point process, but other

point processes have been proposed to model different network scenarios such

as the Neyman-Scott process which can model user clustering [Zho13].

2.1.1 Poisson Point Process

We now formally define the PPP and discuss some of its useful properties.

Let Φ be a general Point Process (PP) on Rd with smooth density λ(x) where

the mean number of points in a compact set A ⊂ Rd is defined as

Λ(A) =

∫
A

λ(x)dx. (2.1)

Definition 2.1 (Poisson Point Process (PPP), Ref [Hae12] Definition 2.10).

The PPP on Rd with intensity measure Λ is defined by the following two

properties,

1. For every compact set A ⊂ Rd, the number of points in A (denoted

Φ(A)), is a Poisson random variable with mean Λ(A).

2. The number of points in mutually disjoint compact subsetsA1, A2, ..., An

are independent Poisson random variables.

The first point indicates that the probability that the number of points
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in a set A ⊂ Rd is k is given as,

P[Φ(A) = k] =
1

k!
e−

∫
A λ(x)dx

(∫
A

λ(x)dx

)k
. (2.2)

Note that the number of points in the process Φ may still be finite even if the

density function has global support (over Rd), for example if the PPP has

Gaussian intensity [Hae12, Det18a]. The second property ensures complete

spatial randomness of the PPP, which has led to it often being the preferred

model due to its tractability [Bac09].

We adopt the random set formalism to describe the point process which

ensures that all Point Processes are simple. That is the point process Φ =

{x1, x2, x3, ...} ⊂ Rd is a collection of points xi ∈ Rd and there is at most one

point at any given location [Hae12].

The following two definition of stationary and isotropic point processes

are fundamental to understanding why the PPP in Rd is so tractable.

Definition 2.2 (Stationarity, (Ref [Hae12] Definition 2.27)). A point process

is stationary on Rd if its distribution is translation invariant.

Definition 2.3 (Isotropic, (Ref [Hae12] Definition 2.28)). A PP in Rd is

isotropic if its distribution is rotationally invariant about the origin.

Combining the above two definitions gives the definition of motion-invariance

(Ref [Hae12] Definition 2.29) which gives rise to the concept of a “typical

user”. That is to say, the performance of a node is the same irrespective of

its location. Arguably it is the special case of a uniform PPP in Rd which

yields such elegant closed form expressions which ultimately lead to the surge

in interest in using stochastic geometry as a model for wireless networks. The

majority of this work will be focused on PPPs that are not motion-invariant

(although we do make use of some isotropic PPPs in Chapters 5 and 6) and

all notion of a typical user is lost as network performance becomes location

dependent.

19



An extremely useful property of a PPP is that a new (sparser) PPP is

easily obtained from another PPP via a random thinning and they need not

have the same distribution.

Theorem 1 (Thinning, Ref [Hae12], Theorem 2.36). Let ℘ : Rd → [0, 1]

be a thinning function and apply it to a PPP Φ by deleting each point x

with probability 1 − ℘(x), independently of all other points. This thinning

procedure generates a new PPP with intensity function ℘(x)λ(x).

The proof follows by computing the conditional distribution of the thinned

process. Importantly, this theorem provides an easy way to numerically gen-

erate a non-uniform PPPs in more interesting domains. For example, one

can obtain a non-uniform PPP ΦB with distribution λB(x), Λ(B) > 0, in

B ⊂ A from a uniform PPP ΦA in A with distribution λA(x) = λA and

Λ(A) > 0, provided λB(x) ≤ λA(x) almost everywhere.

1. Generate the uniform PPP ΦA such that Λ(A)� Λ(B). For simplicity

let A be the rectangle A = {(x, y)|0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly} . This is

obtained by generating M uniform random variables for each dimension

(in this case two for the rectangle), where M is a Poisson random

variable with mean Λ(A).

2. Retain only those points where λB(x)
λA
≥ U(0, 1) and x ∈ B

Some example code written in Python is given in Appendix B.

This random thinning can be used to model a random transmission scheme.

The simplest example of a random access channel scheme is the ALOHA

model [Abr70], where ℘ represents the probability that a device is on (off)

or, when devices have a single antenna, transmitting (receiving). For exam-

ple, in a city centre there may be more competition for resources so more

devices will need to be turned off so ℘(x) will be lower, conversely nearer the

suburbs ℘(x) may be high due to a lack of competition.

Now we have a way to model the locations of points in the network, we

need to understand how links between nodes are formed. Generally speaking
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a network has a transmission scheme which controls how devices connect,

and these can differ greatly depending on the network. Examples of different

transmission schemes include: a bipolar network where there is an assigned

receiver transmitter pair, short range communication for low power devices

or a cooperative network where nodes receive information concurrently from

its K nearest neighbours. As such the nearest neighbour distribution is

often required in the analysis which itself requires the definition of the void

probability.

Definition 2.4 (Void Probability). The void probability is defined as the

probability that there are no nodes from Φ in the ball Bx(r) centred at x

with radius r and can be written as

P[|Φ(Bx(r))| = 0] = e−
∫
Bx(r)∩A λ(y)dy. (2.3)

Here Bx(r)∩A is the region of the ball centred at x with radius r that inter-

sects the domain A where the PPP is defined. The relatively nice expression

for the void probability means that the nearest neighbour distribution is often

easily computed [Sri10], as discussed below and in Sec 5.

For the nearest neighbour communication model, one which is often em-

ployed in wireless mesh networks, the distribution is straightforward to cal-

culate from the void probability.

Definition 2.5 (Nearest Neighbour Distribution). For a PPP Φ in A the

cumulative density function (CDF) of the nearest neighbour distances for a

particular node located at x is given by the complement of the probability

that there is no node in Bx(r),

Fx(r) = 1− P[|Φ(Bx(r))| = 0] = 1− e−
∫
Bx(r) λ(y)dy. (2.4)

Therefore the pdf of the Nearest neighbour distribution (NND) is just the

derivative of eq.(2.4), or minus the derivative of the void probability. The
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Kth nearest neighbour distribution for a Binomial Point process (BPP) and

PPP has also been analysed [Sri10] and is formulated in the same manner.

First consider the probability there are K − 1 points in Bx(rK),

P[|Φ(Bx(dK))| = K − 1] =
K−1∑
i=0

(Λ(Bx(dK) ∩ A))i

i!
exp

(
−Λ(Bx(dK) ∩ A)

)
,

(2.5)

then the probability density function of the Kth nearest neighbour is minus

the derivative of eq.(2.5), which as usual simplifies for the uniform case with

no boundaries. In Chapter 5 we will use the Kth NND to analyse cooperative

transmission schemes such as the Coordinated Multipoint (CoMP) scheme

for LTE [Nig14], where multiple nodes transmit to a single device, maybe by

exploiting a large antenna array on the receiver.

2.1.2 Binomial Point Process

In the later chapters we also need the Binomial Point Process (BPP), which is

equivalent to a PPP conditioned on there being N points. This conditioning

on the number of points in the PPP means that there is no longer complete

spatial independence. For example let there be N points in a BPP defined

in A = A1 ∪ A2, where A1, A2 are disjoint sets. If there are m points in A1

then there must be N −m points in A2. The close relationship between the

BPP and PPP is well known and often a BPP is approximated by a PPP for

simplicity in the regime when the number of points is large; the validity of

this assumption is discussed more rigorously in [Pen16].

2.1.3 Results from Stochastic Geometry

The complete spatial randomness of the PPP means that it is possible to anal-

yse a particular point in the network through Palm theory [Hae09, Bac10a,

And11]. A Palm process is the result of conditioning on there being a point x
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in Φ, provided x is in the support of λ(x), and is the probability of an event

happening given x ∈ Φ [Hae12]. Notice that the probability of there being

a point at x in the PPP is a null event, since the PP is diffuse, but Palm

theory can still make sense of this. With the point x added to Φ, it is often

desirable to compute a metric for x based on the remaining set of points (i.e.

excluding the point x), such as its connection probability; this is called the

reduced palm measure. For a PPP, Slivnyak’s theorem [Ken10] tells us that

the reduced palm measure has the same distribution as the original PPP.

Simply put, conditioning on x ∈ Φ for a PPP is the same as adding a point

at x to Φ. Certainly in most of the literature Slivnyak’s theorem has been

used extensively, and formalises the idea of a typical user.

One of the primary tools needed to analyse wireless networks is to com-

pute the spatial average, this is achieved through the probability generating

functional (PGFL).

Theorem 2 (Probability Generating Functional (PGFL) for a PPP (Ref [Hae12]

Theorem 4.9)). Let V be the family of all measurable functions v : Rd → [0, 1]

such that 1−v has bounded support and Φ be a Poisson process with intensity

measure Λ. Then

E

[∏
x∈Φ

v(x)

]
= exp

(
−
∫
Rd

(1− v(x))Λ(dx)

)
. (2.6)

As we alluded to earlier, the ability to compute the spatial average of the

network has led to closed form expressions not previously possible. Another

important result is Campbell’s theorem that shows that the sum of mea-

surable functions of the point process is a random variable [Chi13]. More

formally,

Theorem 3 (Campbell’s Theorem (Ref [Chi13] Theorem 4.1)). The sum of

a measurable function f : Rd → R over the point process Φ is a random

23



variable with mean,

E

[∑
x∈Φ

f(x)

]
=

∫
Rd
f(x)λ(x)dx, (2.7)

Later on in this thesis we will apply Campbell’s theorem to study the

differences in how signals are typically modelled, see section 2.2.2.

The final theorem we discuss is the Campbell-Mecke theorem which is a

combination of the two previous statements, and is needed to analyse ap-

proximate the connectivity in cooperative networks in chapter 5.

Theorem 4 (Campbell-Mecke for PPP, Theorem 8.9 [Hae12]). Let Φ be a

PPP with mean Λ and measurable f : Rd → R and v : Rd → [0, 1],

E

[∑
x∈Φ

f(x)
∏
y∈Φ

v(y)

]
= exp

(
−
∫
Rd

(1− v(x))Λ(dx)

)∫
Rd
f(x)v(x)Λ(dx).

(2.8)

This theorem has since been further generalised in Ref [Sch12] allowing

the computation of the expected values of sum-products of functions over a

PPP. In general, the above expressions can be given in closed form for a PPP

with uniform intensity measure in Rd, but this is not often the case in finite

networks [Geo15].

We conclude this section by remarking that the uniform assumptions in

R2 provide insight into network performance but do not account for spatial

inhomogeneities or boundaries and in particular mobility, which is a partic-

ular focus of this thesis.
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2.2 Random Geometric Graphs and their gen-

eralisations

2.2.1 RGGs

In 1961 Gilbert introduced one of the first spatial models to study how infor-

mation flows through a network. In the original RGG the location of points

were modelled by a uniform PPP in R2 with constant density λ0, and points

were connected if their Euclidean separation was less than some critical value

r0.

RGGs have since been generalised to SRGGs by allowing for an extra

source of randomness in terms of the link probabilities, this allows for a

wider array of applications including: neural [Shi92, Rou04], social [Cho11,

Won06] and a longer range communication model. In addition SRGGs has

also been extended to non-Euclidean spaces. As an example, SRGGs in

hyperbolic space have also been studied which share the same characteristic

features as real world networks such as high clustering and heavy tailed degree

distributions whilst still being receptive to a more mathematical analysis

[Kri10,Kle07,Gug12]. A network is said to have a high clustering if a node’s

immediate neighbours are themselves neighbours (lots of local triangles in

the graph, an individual’s friends are also likely to be friends) whilst the

heavy tailed degree distributions are a result of there existing a fraction of

the nodes that have a very high degree, for example influencers or celebrities

on social networks) [Wat98,Boc14a].

More formally, a SRGG is a random collection of points embedded in

some space X where points are joined by a probabilistic connection function

H : R→ [0, 1] based on a notion of distance, with the usual case being longer

links are increasingly less likely. Interestingly, in wireless communication

networks each of the metric space axioms are violated [Det18b]. Consider

the distance function D : X ×X → R, then:

1. The distance D(x, y) between two points x and y, with x 6= y can
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be zero when two smart devices are located at the same point but

with different antenna orientations, assuming a non-simple PP has been

used.

2. The triangle inequality is violated if signals are not allowed to propagate

through obstacles and instead are reflected around them.

3. D(x, y) 6= D(y, x) due to differing transmission powers of devices at x, y

respectively. This is apparent in interference-limited networks, where

the graph can become highly directional.

Due to the many variations of wireless networks there is no universal

model that accurately describes the network, rather there are a range of con-

nection functions that are used in different network scenarios. For example,

when nearby nodes transmit on the same channel they generate interference

which may result in outage; to mitigate this the network can employ different

protocols to ensure both a fairer distribution of resources and connectivity.

We now introduce two different classes of connection functions that model

a diverse range of network scenarios: those with compact support and those

with infinite or global support. The choice of connection function is naturally

dependent on what is being modelled. For example, RGGs are more likely

to model smart devices that are battery powered since they typically have

smaller transmission ranges, whilst “softer” connection functions are better

suited to capture the longer range transmission power of BSs. We will often

include a parameter r0 (or some variant thereof) as the “typical connection

range” which acts to scale the connection function.

2.2.2 Connection Functions

In this work we focus on the following connection functions found in the

wireless literature and begin with discussing the soft disk model.

The classical RGG discussed previously is sometimes referred to as the

(hard) disk model, or unit disk model if r0 = 1 . By construction this is
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a deterministic connection model, but can be generalised to one which is

probabilistic by including the parameter ℘ ∈ (0, 1], that is H(r) = ℘1r≤r0 ,

where ℘ = 1 is the usual RGG and ℘ = 0 is normally excluded else the

edge set is empty. This generalisation allows the modelling of random link

failures in the network or a simple ALOHA transmission protocol as described

earlier. The soft disk (SD) model is an interpolation between the classical

hard disk model and the Erdos-Renyi graph with fixed probability ℘ [Det16,

Pen16], where the latter is independent of the spatial configuration of points.

We include the probability ℘ for all the connection functions with compact

support, largely due to our interest in spatio-temporal networks which are

discussed in Chapter 7.

The soft annulus model (SA) is defined as H(r) = ℘1r−≤r≤r+ , where ℘

is as above. Intuitively, the SA model can be thought of as employing an

interference management scheme where it introduces a “guard zone” where

pairs of node closer than r− do not connect. Similar to the SD model the

parameter ℘ acts to model temporal variations in the channel.

The Quasi Disk (QD) model has connection function

H(r) =


℘ r ≤ r−,

℘
(

r+−r
r+−r−

)
r− < r ≤ r+,

0 otherwise.

Initially the QD model behaves like the soft disk model and then the prob-

ability decays linearly to zero on the interval (r−, r+]. Intuitively, this can

be thought of as the medium being clutter/obstacle/interference free on the

interval [0, r−] and then transitioning into an environment which has increas-

ingly more clutter/obstacles/interference which degrade the channel. There

are further examples of connection functions with compact support that are

used in the literature but these capture the main characteristics of short

range networks.

Next we discuss those connection functions with infinite support and start
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with the most interesting case which models interference for neighbouring

nodes.

The interference connection function has two particular cases, the uplink

and downlink cases. The downlink (respectively uplink) case refers to when

a device tries to receive (send) a message from (to) a particular transmitter

(receiver). For the large part we will mainly focus on the downlink case

except in chapter 6 where we discuss a modified connection model for Low

Power Wide Area (LoRa) networks. As such, we will proceed by discussing

the connection probability in the downlink case and only discuss the uplink

case when needed.

Let Φ denote a PPP with density λ(x) in A ⊂ Rd. Let XR be the

receiver1 trying to decode a message from the intended transmitter XT ∈
Φ. The probability a link is formed between transmitter and receiver pair

XR,XT is equal to the probability that the signal to interference plus noise

ratio (SINR) measured at the receiver is greater than some threshold value

q, where q is a parameter of the device. If q is low then the device has little

sensitivity and can connect more frequently under more interference, whilst

the converse is true for larger q. To understand the SINR we first need to be

able to model the transmission of signals.

The quality of signal that is measured at the receiver is determined by

various different factors, which are usually decomposed into two categories:

small scale effects (of the order of a wavelength) and large scale fading (of

the order of many wavelengths). Large scale effects are those that capture

the average signal strength over a distance r due to scattering, reflections,

refractions, absorption, path loss etc and small scale effects are those that

account for the fluctuations around this average, for example due to multi-

path interference where waves arrive at the same point via multiple paths

causing both constructive and destructive interference [Tse05].

Statistical channel models are adopted to allow for a tractable analysis

of network performance, with the simplest case being the Rayleigh fading

1not necessarily a point in Φ
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model. The Rayleigh fading model assumes there is no dominant path be-

tween receiver and transmitter and instead the number of possible reflected

and scattered paths is large, and statistically independent [Tse05]. The re-

ceived signal h can be decomposed into an in-phase and quadrature compo-

nent, which are assumed to be independent Gaussian random variables and

therefore can be written as, [KG16,Tse05]

h = %+ iϕ (2.9)

The pdf of h is the joint pdf of the real and imaginary parts, and since

they are independent normals the joint pdf (and CDF) is the product of two

normally distributed random variables with zero mean and ζ variance. The

pdf of the absolute value of h can be found by first calculating the CDF in

polar coordinates,

P[−x ≤ h ≤ x] = 2P[h ≤ x]− 1 =
2π

2πζ

∫ x

0

e−
r2

2ζ rdr − 1

= 2(1− e−
x2

2ζ )− 1 = 1− 2e−
x2

2ζ .

(2.10)

Thus, differentiating the CDF to obtain the pdf of |h| gives,

fX(x) =
x

ζ
exp

(
−x

2

2ζ

)
, (2.11)

which is Rayleigh distribution, hence the name Rayleigh fading. We are

interested in the distribution of the amplitude of the received signal, |h|2, so

we make the transformation X = Ψ(Y ) = Y 2 and use the following formulae

fY (y) = fX(Ψ−1(y))
d

dy
Ψ−1(y). (2.12)
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Direct application of eq.(2.12) gives

fY (y) = fX(
√
x) · 1

2
√
x

=

√
x

2
√
xζ

exp

(
− x

2ζ

)
=

1

2ζ
exp

(
− x

2ζ

)
. (2.13)

The channel gain is therefore an exponential random variable, where the

parameter 1
2ζ

is set to one for simplicity (the parameter is effectively absorbed

in the subsequent calculations for connectivity in threshold parameter q).

The Rayleigh model assumes that there is no line of sight between the

receiver and transmitter, with there being no constant component of the

signal, however in models where a LoS connection is guaranteed then the

fading is more often modelled by a Rician distribution [Hae12, Tse05]. All

of the subsequent work that is done in this thesis can be generalised to the

Rician models, but we much prefer the Rayleigh model due to its tractability.

Next we need to understand how the signal behaves over larger distances,

and this is captured through the path loss function g(.). The most common

path loss function used to model how the signal decays with distance is,

g(r) = r−η, (2.14)

where r is the separation between a transmitter and receiver pair, and η

is the path loss exponent. Typically η ∈ [2, 6], where η = 2 models free

space, the usual inverse square law found in physics, and larger η represents

a more cluttered environment. Empirical values show for a typical urban

environment η = 4 and η = 6 models cities that are very cluttered such as

New York city [Mac13]. Intuitively, a larger η corresponds to a decreasing

likelihood of making long range connections. This singular model provides

a more tractable analysis but can lead to some interesting behaviour due

to it not being well defined when r goes to zero. For example, if a signal

is modelled as the product of the channel gain (assumed to be exponential

with mean one) and a path-loss function with power law decay, the mean

interference in the network is infinite for any η [Geo15, Hae12]. For a set Φ
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of interferers modelled by a uniform PPP in R2,

E[
∑
x∈Φ

|h|2|x|−η] = 2πλ0

∫ ∞
0

r1−ηdr =

2πλ0
2−η r

2−η
∣∣∞
0

2πλ0 log r
∣∣∞
0

=∞. (2.15)

In fact the mean interference diverging can be shown to be true in any di-

mension [Hae12]. The important behaviour here is not that the mean of the

interference diverges, but that the sum of the interfering signals is absolutely

convergent a.s only if η > dimension [Hae12]. We will see in subsequent chap-

ters that when η = dimension the impact of interference goes from being a

local one (η > dimension) to a global one (η ≤ dimension) ultimately leading

to outage [Geo15]. In the literature this phenomenon is often likened to Ol-

bers paradox, where the sky should be uniformly bright if the stars constitute

a uniform PPP in R3, yet we still see a dark night sky [Bad07,Geo15]

To overcome this behaviour, often a small parameter ε is included into

the path loss function to overcome this

g(r) =
1

ε+ rη
(2.16)

In a rather unimaginative fashion we refer to these two models as the singular

and non-singular path loss models. Variants of the latter path loss model are

included in [Hae12].

Now we have all the ingredients for calculating the connection probability

with interference. To achieve this, first lets define the connection function

as the probability that the SINR is greater than the threshold parameter

q. Then condition on the set of interferers, and then compute the spatial

average using the PGFL. We outline the derivation below.

Let dR be the distance between the receiver XR and the intended trans-

mitter Xτ , and dI be the distance between receiver and all other interfering
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signals located at XI ∈ Φ\Xτ .

H(r) = P [SINR ≥ q] = P

[
|hτ |2g(dR)

σ2 + γ
∑
XI∈Φ\XT |hI |

2g(dI)
≥ q

]

=(0) E|hI |2,dI

[
P

[
|hτ |2g(dR)

σ2 + γ
∑
XI∈Φ\XT |hI |

2g(dI)
≥ q

∣∣∣∣|hI |2, dI
]]

=(1) E|hI |2,dI

[
exp

(
−
qσ2 + qγ

∑
XI∈Φ\XT |hI |

2g(dI)

g(dR)

)∣∣∣∣|hI |2, dI
]

=(2) exp

(
− qσ2

g(dR)

)
E|hI |2,dI

 ∏
XI∈Φ\XT

exp

(
−qγ|hI |

2g(dI)

g(dR)

)∣∣∣∣|hI |2, dI


= exp

(
− qσ2

g(dR)

)
EdI

 ∏
XI∈Φ\XT

1

1 + qγg(dI)
g(dR)

∣∣∣∣dI


H(r) =(3) exp

(
− qσ2

g(dR)

)
exp

(
−
∫
A

(
1− 1

1 + qγg(dI)
g(dR)

)
λ(XI)dXI

)
= exp

(
− qσ2

g(dR)

)
exp

(
−
∫
A

1

1 + g(dR)
qγg(dI)

λ(XI)dXI

)
(2.17)

In (1) and (2) we have used that |h|2 is an exponential r.v with mean one, and

that the channel gains are i.i.d, (3) uses the PGFL for Poisson Point Processes

given in eq.(2.6), and the last term in the final line is the Laplace transform of

the random variable
∑
XI∈Φ\XT |hI |

2g(dI) evaluated at qγ
g(dR)

(
LI
(

qγ
g(dR)

))
.

The parameter γ ∈ [0, 1] acts as a random independent thinning of the

interfering signals (see Sec.1 on ALOHA) with the extremal cases being γ = 1

where all nodes share the same channel and are transmitting, and γ = 0

corresponds to no interference.

The Laplace transform cannot be given in closed form for an arbitrary

density λ(x) in a domain A, but special cases can be given including for

a uniform density in the plane [Bac97], centre of a circular disk, see Sec 4

32



(including an illustrative example in Fig 4.3 ) and Sec 5 for further details.

We do however remark that whilst a closed form expression can be obtained

for a uniform PPP in Rd, it is independent of location and transmission

power making it rather unrealistic. In this scenario the connection probability

depends only on the point to point distance between two devices, but it

should also depend on the underlying distribution of all other devices. For

example, if the distribution of devices is non-uniform then the interference

field varies as a function of position, thus so should the outage probability.

The interference model is the only connection model we consider that

depends on the underlying point process. The other connection models can

be thought of as having networking protocols which mitigate the impact of

interference, hence the restriction that r0 � L due to a finite amount of

network resources.

The Signal-to-Noise-Ratio (SNR) model is obtained from the SINR model

by setting γ = 0 ensuring there is no interfering signal, i.e.

H(r) = exp

(
− qσ2

g(dR)

)
, (2.18)

We will use the terms SNR and Rayleigh model interchangeably, with the

latter being a reference to the assumed channel conditions. For simplicity

we will often write qσ2 = 1
r0

making clear that r0 acts to scale the connec-

tion function. Prior to this now more standard model, Waxman [Wax88]

introduced the connection function H(r) = βe
− r
r0 , which can be obtained

from the Rayleigh case by introducing a constant before the exponential and

allowing η = 1. In addition when η →∞ we retrieve the disk model used in

RGGs, therefore we can see that for higher η longer links become increasingly

unlikely.

Finally, the last connection function we study is the Multiple Input and

Multiple Output (MIMO) connection function. In this network scenario

nodes have multiple antennas such that they can conceivably transmit and re-

ceive a signal to/from neighbouring nodes simultaneously provided the cross
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channel interference is not too great. In fact, the increased diversity at the

node (increased number of antennas) has been shown to improve network ca-

pacity [Kan03a]. The connection probability in MIMO systems is simply the

CDF of the output SNR which was initially given in closed form (in the form

of a determinant) by Ref [Dig03] through calculation of the largest eigen-

value in the case of i.i.d Rayleigh channels. This has since been extended to

independent channels with non-identical Rician channels [Kan03b, Kan02],

and then again to incorporate cross channel interference [Kan03a].

Later on in Chapter 7 we apply the MIMO model with Rayleigh channels

to a mesh network where the nodes represent mobile devices, thus due to

power/size/financial constraints it is unlikely devices will have more than

two antennas. This allows us to write H in a much simpler expression to

that given in [Dig03],

H(r) = e
−
(
r
r0

)η (
2 +

(
r

r0

)2η

− e−
(
r
r0

)η)
. (2.19)

Naturally there are many other connection functions used in the literature

[Det16], including MISO (multiple input and single output), SIMO (single

input multiple output), with a comprehensive tableau found in Ref [Det16].

Now we can discuss some of the main results found in the literature on RGGs

and SRGGs.

2.3 Percolation

From their introduction one of the main questions regarding RGGs was

one of network criticality [Gil61]. Namely, what are the conditions needed

for the network to transition from being comprised of connected compo-

nents of finite size almost surely, to one where there is almost surely an

infinite (giant) component [Det18b]: a phenomenon known as percolation

[Gri99]. At the time the question of percolation was based on the lattice
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Model Connection Function, H(r)

SD ℘1r≤r0
SA ℘1r−≤r≤r+

QD


℘ 0 ≤ r ≤ r−

℘
(

r+−r
r+−r−

)µ
r− ≤ r ≤ r+

0 otherwise

Rayleigh e
− 1

r
η
0 g(r)

Waxman βe
− r
r0

Interference e
− 1

r
η
0 g(r) exp

(
−
∫
A

1

1+
g(r)

qγg(|x−y|)
λ(x)dx

)
MIMO e

−
(
r
r0

)η (
2+
(
r
r0

)2η

−e−
(
r
r0

)η)

Table 2.1: Table of connection functions for a PPP defined in A which are
discussed in section 2.2. The location of the receiver is at y, with the distance
between the receiver and transmitter pair being r. Parameters: r0 is the
typical connection range, ℘ ∈ (0, 1] is the probability a node is active; η ∈
[2, 6] is the path loss exponent; µ > 0 defines how fast the function decays
with distance; q is the threshold signal quality and σ2 is the channel noise.
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Figure 2.2: A realisation of Φ in a triangular region for the different con-
nection functions in Table 2.1, and a representation of how the link prob-
ability behaves as a function of distance. The colours represent the size
of the connected components of the corresponding graphs. Parameters are
L = 10; r0 = 0.5; η = 4; β = 1;℘ = 0.5;µ = 1; r− = 0.5; r+ = 0.8.

model [Bro57], and Gilbert extended the question of percolation to this ran-

dom point model which led to the field of “continuum percolation”. Since

then percolation has been used to explain the composite material phenom-

ena such as electrical conductivity, magnetism and the localisation of elec-

trons [Bor88, OG06, Kiw01]. In fact, a nice example of percolation is given

in Ref [Gri99]. Initially a glass of Pernod is transparent, and adding a single

drop of water does nothing to change this. Even when additional drops of

water are added the Pernod still retains its transparency, until at some point

a drop is added then the Pernod suddenly becomes opaque. This is exactly

the percolation point/transition where the global behaviour of the system

changes; the straw that broke the camel’s back if you will.

Returning to Gilbert’s question of percolation on the RGG, he aimed to

find the critical value where the network has a positive probability of perco-

lating through increasing the mean degree of the network (λ0πr
2
0). Recent

convention is to express network criticality in terms of either the density

(denoted λ0) or transmission range (denoted r0), rather than both, where we
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adopt the former by fixing r0.

To obtain an upper bound on the critical density, which we denote as λc,

Gilbert drew from established results from bond percolation. By tiling the

plane with squares of size r0√
8

so any points in adjacent squares are connected,

then the corresponding edge can be labelled as open if the square contains

at least one point. By construction this means the probability an edge is

open is independent due to the spatial independence of the PPP. All that

remains is to use the results from bond percolation on the square lattice

to provide an upper bound for continuum percolation, albeit a rather loose

one. A suggested improvement for this bound was provided in the same

paper2 by tiling the plane using hexagonal tiles and using results from site

percolation on the triangular lattice (or face percolation on the hexagonal

lattice) [Wal11].

A lower bound was also obtained by relating the problem to a branching

process. Starting with an arbitrary point in the process (this exploits the

stationarity property of the PPP in Rd) explore its nearest neighbours, i.e.

find all nodes within distance r0, and call these the daughters of the starting

node. After which, find all subsequent “grand-daughters” (or daughters of

the daughters) of the starting node, and repeat this approach until it dies

out. By introducing a growth model where each node has a Poisson number

of offspring with mean λ0πr
2
0, we have an associated branching process which

can now be solved [Hae12]. The double counting of points results in a lower

bound for λc. For example, the connection disks in the RGG overlap meaning

a sixth generation node may have two fifth generation nodes as its neighbours

and “recount them”, thus the total number of points in the nth generation

of the branching process stochastically dominate that of the disk graph.

Percolation on SRGGs has largely been unexplored. Initial investigations

have drawn inspiration from continuum percolation with interference to de-

rive for example the network capacity [Fra07]. One interesting result is for

2originally Gilbert assumed that the critical probability for percolation was 1/2 which
was later proved to be correct [Kes82]
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a SRGG in R2 generated by a uniform PPP and links are made according

to the SIR link function. This model has the additional complexity of the

link probabilities between any two points also depending on the underlying

spatial distribution of the PPP. These models are constructed such that they

are not directional by constructing links if and only if the SIR condition can

be met at both end points. First note that we should expect percolation in

the RGG with soft connectivity (as for the case with hard connectivity) to

be monotonic in λ0, such that the probability of percolation is zero when

λ0 < λc, and the λ0 > λc the graph percolates almost surely. An SIR graph

can be shown to percolate for a small enough γ > 0 (recall that γ is the

random thinning of interferers) provided λ0 ≥ λc and the path loss function

is integrable on R2\B0(ε) [Dou06]. Namely, by randomly thinning the num-

ber of nodes transmitting concurrently on the same channel the graph can

percolate, provided the density is larger than the critical density needed for

percolation when there is no interference. In a similar vein, [Vaz12] showed

that for small enough q (recall q is the minimum threshold value for the

signal measured at the receiver in order for there to be a successful link,

assuming a non-singular path loss with no thinning), percolation only occurs

for a certain interval of densities; when the number of nodes in the network

is small percolation is obstructed due to large gaps, whilst when the den-

sity is too large interference effects begin to dominate. So once again, it is

possible for the network to transition from sub-critical to super-critical back

to sub-critical again as the node density increases for a fixed set of network

parameters.

2.4 Full connectivity

Percolation in networks describes the transition from one where the network

is disconnected a.s, to one where only a fractional set of nodes are isolated.

Often in a wireless network having any nodes that are disconnected is usually

not good enough. A better, and more desirable question is, what is the
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probability there is a multihop path between every node in the network?

One of the most celebrated results for RGGs was by Penrose [Pen97] who

showed that for a RGG with uniform measure on the unit cube, the network

becomes fully connected with high probability when the last isolated node

forms a link3. The result is based on showing that the longest edge in the

minimum spanning tree and the longest edge in the nearest neighbour graph

(the minimum r0 needed to connect the network) converge in probability

as N̄ → ∞, which is done through application of the Chen Stein method

[Pen03, Mao13, Hsi05]. The proof uses the fact that edges of a node only

depend on its neighbourhood, as very long edges are extremely rare, then

using the Chen stein method to show the asymptotic distribution of the

longest edge of the MST. A more detailed proof can be found in Ref [Wal11].

It turns out that the isolated nodes in this case are located far from the

boundaries due to the adopted scaling of r0 → 0 as N̄ → ∞ such that Pfc

remains fixed [Pen03]4.

Similar work has been done on the RGG with a large class of densities in

2 dimensions by Hsing and Rootzen [Hsi05], in higher dimensions when nodes

are normally distributed [Pen98] and when the connection range is location

dependent [Iye12]. So far all the above work assumes that the transmis-

sions range is identical throughout the network but perhaps a more accurate

model is one where r0 is location dependent, devices in sensor networks may

have different transmit powers if they are in a highly populated region to

those in regions where the network is sparse. This problem was addressed in

Ref [Iye12] who provided a location dependent critical r0 for densities with

polynomial rates of decay. For a more comprehensive review of the many

results on RGGs the reader is referred to Ref [Wal11].

This work has since been generalised to SRGGs where isolated nodes

are also the last to connect. Mao and Anderson [Mao13, Mao17] looked at

3This phenomenon also appears in classical random graphs [Bal08]
4For networks in Rd where the location dependent connectivity mass is finite, the

probability a node at x is isolated is non-zero resulting in the network being disconnected.
As a result, much of the analysis is done on networks in a finite domain.
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a uniform PPP on the unit cube with a connection function H(r/r0) that

satisfies the more restrictive condition of H(x) = o(1/(x2 log2 x)) as opposed

to the usual H(x) = o(1/x2) [Mao12],and once again make use the Chen

Stein method to show the number of isolated nodes converges to a Poisson

distribution. Moreover, they show that the network is a.a.s fully connected

if and only if there is no isolated nodes in the network [Mao13,Mao17].

These results are of great importance in the wireless literature community

as they provide not only insight into the bottleneck of Pfc but also a simple

approximation, Pfc ≈ P[No Isolated Nodes]. It is straight forward to use the

PGFL (eq.(2.6)) to explicitly write the probability a node at x is isolated

from every other node in the network.

Piso(x|Φ) =
∏

y∈Φ\{x}

1−H(|x− y|)

Piso(x) = exp

(
−
∫
A

H(|x− y|)Λ(dy)

)
.

(2.20)

The integral is the mean degree of the node at x, and for the uniform case

the isolation probability is sometimes written as Piso(x) = e−λM(x) where

M(x) is the location dependent connectivity mass [Coo12a]. Realising that

isolated nodes are the bottleneck to full connectivity we have,

Pfc ≈ P[No Isolated Nodes] ≈ exp

(
−
∫
A

exp−
∫
AH(|x−y|)Λ(dy) Λ(dx)

)
= e−e

−λM(x)

.

(2.21)

The simple approximation of Pfc is used widely throughout the literature

provided the connection function is not too “long range”. In uniform RGGs

isolated nodes can be modelled by a limiting Poisson Point Process. An

important difference between RGGs and SRGGs is that isolated nodes are

unable to be close to each other else they would connect, but this is not the

case for SRGGs.
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So far the results we have discussed have either no boundaries or negate

their impact via the adopted scaling. It is reasonable to think that as bound-

aries restrict the number of close neighbours, boundary nodes are likely to

be more isolated and thus dominate connectivity. However, since there are

fewer nodes near the boundary, the isolated nodes in the bulk dominate.

This is not the case in dense but finite networks. For a SRGG with an ex-

ponential connection function, a cluster expansion approach was utilised by

Coon, Georgiou and Dettmann to show that Pfc can be decomposed into

contributions from the bulk and the different types of boundary, where the

latter tend to dominate [Coo12a]. This result was later extended to a more

general class of connection functions showing that boundaries can obstruct

Pfc in dense networks [Det16]. Conversely, in interference-limited networks,

boundary nodes can be more connected due to a reduction in the interference

field [Geo15, Coo12b]. Importantly all these results assume a uniform PPP,

and neglect any variations in the node density due to mobility, which we will

discuss in the following two subsections.

2.5 Spatio-temporal Networks

Having focused so far on the single snapshot connectivity behaviour of SRGGs

under various limits, we now turn our attention to spatio-temporal networks.

There are many different examples of a spatio-temporal networks, with vary-

ing degrees of complexity. In general, a spatio-temporal network is one which

changes with time due to fluctuations in channel conditions, mobility and

nodes disconnecting and reconnecting to the network. Of particular interest

are the impacts of spatial structure and boundaries on network properties

such as the expected delay (the time it takes for a node to make a link), or

the minimum time for paths to form. Even when ignoring any underlying

spatial geometry of the network it is often difficult to provide closed form

expressions for things such as path formation. Recently, [Taj17] provided

upper and lower bounds for the probability of accessibility (probability there
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is a path between i and j at time T) of a network for the general case when

links between nodes are random, and possibly time dependent, and is only

tractable when the link probabilities are identical across the network. Inter-

estingly, their predictions for the accessibility probability perform well when

compared with the inter-contact time of taxis in Rome, where taxis are said to

be connected if they are within some critical distance [Taj17]. By modelling

the probability a link is made in a given time slot by an exponential random

variable they are able to capture the characteristics of a spatio-temporal net-

work. For further discussions on space free temporal networks,the reader is

referred to [Hol12] for a review while [Boc14a] provides a thorough overview

of dynamics on multi-layer networks.

Incorporating the spatial structure of wireless networks naturally increases

the complexity of the analysis. One solution is to model the network dynam-

ics by fixing the underlying structure of the point process Φ and only allowing

for the set of edges to vary with time. Indeed, by this model [Det17] obtained

closed form expressions for the probability the network is fully connected as a

function of time by analysing the distribution of isolated nodes for a uniform

PPP on the torus (enabling N̄ <∞ which negates the impact of boundaries)

where the pairwise link probability depends on their Euclidean separation.

In these uniform static networks, it is again those nodes that are highly iso-

lated that hinder the flow of information through the network but can be

improved if a random re-wiring of the network is done, akin to that in space

free random graphs.

An interesting variation of this model is when an ALOHA channel access

scheme is employed, in this scenario a node can either transmit or receive

(referred to as half-duplex) a message during each time step. This model

adds directionality to the network where the possible edge set varies with

time. By considering a connection function where two nodes connect if they

form a receiver-transmitter pair, a noise condition is met and there is no

intermediate node that is transmitting, [Gan09] showed that the time for

a path to form between a source and destination scales linearly with their
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Euclidean separation. Moreover, [Bac10a] highlighted that for the SIR model

there is a phase transition for a critical transmit probability ℘ where the

mean delay becomes infinite. Even conditioning on there being two points

in Φ, the expected shortest delay between the points grows faster than their

Euclidean separation [Bac11]. This work was extended to nearest neighbour

communication models by [Hae13], where they also provide bounds on the

delay of Poisson networks.

Alternatively, it is often convenient to assume an infinite mobility model

in the network where there is a new, independent, realisation of Φ at each

time slot, i.e. there is no spatial correlation between time slots, and as a

consequence the analysis simplifies significantly. By employing this method,

coupled with the static case, one can obtain upper and lower bounds for the

performance of these spatial-temporal networks with mobility. For the high

mobility case the local delay is always finite for the SIR model [Hae13] due

to lack of correlation between time slots, this alludes to how mobile networks

have the potential to resolve problems of disconnectivity.

2.6 Mobility

In mobile networks there is no fixed network topology; instead, nodes move

around the domain according to a particular set of rules. This resultant

mobility causes links to be continually made and broken. Wireless commu-

nication networks are a natural application where the nodes could represent

hand-held smart devices or vehicles say. Of particular interest are decen-

tralised MANETs since they can help alleviate the strain on the pre-existing

network architecture. By relaying packets in a multi-hop fashion, rather

than through a centralised router, the network becomes easily scalable with-

out large overheads (no need for costly base stations) [Hel14], and provided

the devices are mobile can resolve problems of node isolation due to their

self configuring nature. The importance of mobility on network performance

was highlighted by both [Gup00] and [Gro01]. For the static case, comprised
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of n nodes with fixed transmit power, Ref [Gup00] showed the capacity per

node of the network scales like O
(√

1
n logn

)
, suggesting network performance

decreases with node density. However, Grossglauser and Tse [Gro01] showed

that in an interference-limited environment mobility can in fact improve net-

work capacity, albeit at the cost of increased delay. Furthermore, one can

show that mobile networks perform better than their static counterparts by

studying the extremal case where nodes have infinite mobility [Hae13];and

any realistic mobility model falls somewhere in between these two cases.

As one might expect, network performance remains sensitive to the choice

of mobility model used, for instance [Lin04, Sha04, Nee05] showed that the

delay-capacity trade-off differs for the random waypoint and Brownian mo-

tion models (see below), and thus characterising the level of inhomogeneity

is important [Sch17]. For the remainder of this chapter we discuss a number

of interesting and practical mobility models.

2.6.1 Random walk

One of the simplest mobility models is the random walk (RW). The RW

models the random displacement of small particles such as Pollen, and is

often referred to as “Brownian” motion after Robert Brown who studied

(amongst other things) the motion of pollen on the surface of water [Mör10,

Kla96]. Since then, random walks have been applied to numerous areas

of research including: the movement of animals [Hof83]; the modelling of

financial markets [Fam95] and even in Psychology to model decision making

[Nos97]. In this work, we use a random walk to model the mobility of humans,

and their associated smart devices.

In one RW model that has been used to model human mobility nodes

move independently from one another, and at each time step T a node has

a new velocity chosen uniformly at random. A particular nodes position at
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time t is therefore described by the following equation,

x(t) =

(
t− T

⌊
t

T

⌋)
vb t

T
c +

b t
T
c−1∑
i=0

viT, (2.22)

where vi is the velocity at time i, and b·c is the usual floor function. The

sum represents all the random displacements in all the previous time steps,

whilst the first term represents the latest displacement.

The RW is diffusive and for dim ≤ 2 it is recurrent, resulting in a uniform

spatial node distribution [Ban07], with the usual approach for finite domains

being to reflect off the boundary5. As a consequence, RW mobility is often

analysed in terms of MANETs through a uniform point process [Gon14]

(non-uniformity is very short lived and averages out over time) and results are

compared with other models that have an asymptotic stationary distribution.

Discrete variations have also been proposed where vertices represent in-

tersections in cities like New York, thus the mobility of a vehicle/pedestrian

can be seen as a 2D RW on a lattice. One such example is the correlated

RW, which is a generalised version of the standard RW [Ban07]. On the two

dimensional lattice a user continues in the same direction with probability

℘, opposite direction with probability q and orthogonal direction with prob-

ability 2r, such that ℘ + q + 2r = 1. A further extension of the RW is the

Manhattan model where q = 0, i.e you never revisit the last lattice site, and

the speed between consecutive time steps and other users on the same street

are correlated [Ban07].

2.6.2 Random waypoint model

The next, and arguably most popular mobility model for MANETs, is the

Random waypoint (RWP) mobility model. In the RWP node movements

are independent from one another and a single node chooses a waypoint uni-

5alternatively one could “wrap” the domain round, for example in 1D forming a circle,
2D a Torus
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formly at random, travels to it with a constant speed, pauses with a proba-

bility ℘ then repeats the process. The time a node waits at each waypoint,

i.e. its “think time”, can be either be constant or vary from waypoint to

waypoint depending on the model. In the RWP model, unlike the RW, a

node continues on a path often for multiple time slots. Its simple formula-

tion, coupled with the fact it converges to a stationary distribution, makes it

a very good starting point for a more mathematical analysis. The continual

crossing of paths in the middle of the domain means the probability of finding

a node in the bulk is higher compared with the boundaries; intuitively this

is what we might expect in cities where the centres are densely populated

during working hours or busy shopping periods. The stationary distribution

of the RWP has a simple closed form in 1D [Bet03a] and an integral form

for any convex polygon which is easily computed numerically [Hyy06], see

Sec 3 for further details. Interestingly the spatial distribution of the RWP

model is proportional to the betweenness centrality of a uniform RGG in a

disk (and other convex domains), in the limit as the number of nodes goes

to infinity [Gil]. Betweenness centrality measures the proportion of short-

est paths a particular node lies on between any two nodes in the graph and

is thus a measure of a node’s “importance”. Therefore, nodes within the

bulk have a higher betweenness as they are more likely to lie on the shortest

multi-hop path between any pair of nodes. This is of particular importance

in wireless routing where a network could easily become disconnected due to

a cascading of node failures originating from a failed single node which had

a high betweenness; for example a node could be a bridge between two clus-

ters or a hub in a star graph. The mobility of the RWP leads to the outage

probability being both spatially, and temporally, correlated [Kou16b,Gon14]

in an interference-limited environment; an effect which increases in a dense

network with blockages [Kou17].

The RWP model can be modified to include “hot spots” where the dis-

tribution of waypoints is no longer uniform, or else focused along the bound-

aries [Bet03b]; although interesting extensions they provide little further
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insight whilst increasing the complexity of the problem and more general

non-uniform measures are usually preferred.

2.6.3 Lévy

A Lévy mobility model is a modified RW where the path lengths are taken

from a heavy tailed distribution fX(l) ∼ l−α−1, with 0 < α < 2, which has

infinite second moment [Rhe11, Hug95, Che06]. As a consequence, the long

“flights” occur with a power law frequency rather than being exponentially

rare , as is the case for the RW [Man94]. In contrast to a typical RW, the

Lévy mobility model has no characteristic length scale for the flight lengths

and is sometimes referred to as a scale free RW [Ben07]. Simply put, Lévy

mobility models how a small neighbourhood is explored then a large jump

occurs which is subsequently explored, this process repeats until the end of

the simulation. It turns out that heavy tailed distributions of path lengths are

characteristic of human mobility [Ben07, Bro06, Lee11], which was observed

from the traces of bank notes [Bro06]. As such, Levy mobility has been used

to model the spread of infectious diseases due to air travel, and the mobility

of portable smart devices in wireless networks [Lee11].

There are typically two cases studied: the Lévy flight and Lévy walk, the

former has each flight taking a fixed time, and the latter having finite velocity

culminating in a strong spatial-temporal correlation [Lee11]. The scale free

nature of Lévy mobility models leads to a super-diffusive behaviour [Rhe11].

Analogously to how the normalised sum of i.i.d random variables with

zro mean and finite second moment converges to a Gaussian under the CLT,

the sum of these i.i.d random variables with infinite second moment tends to

a symmetric stable Lévy distribution law with density [Kol68,Che08,Deta]

fα,cstable(x) =
1

2π

∫ ∞
−∞

exp (−itx− |ct|α) dt,

where c > 0 is a scale factor. For α = 1 it reduces to the Cauchy distribution,
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whilst the Gaussian distribution is recovered when α→ 2. For the Lévy flight

model Ref [Lee11] show that the critical delay6 behaves like N̄α, whereas for

the Lévy walk the delay is N̄
1
2 for α < 1 and for α ≥ 1 it behaves like the

Lévy flight. This transitional behaviour at α = 1 for the Lévy walk is a

consequence of the mean flight length being infinite for α < 1 [Lee11,Lu14]

The truncated Lévy flight was later introduced to ensure a finite second

moment [Shl86]. Each flight has length l chosen from a Lévy stable distri-

bution, and is re-sampled if the length is less than zero or greater than some

cut off length lmax. Similar to the normal Lévy flight model the direction

of travel and speed are chosen uniformly from U(0, 2π) and U(vmin, vmax)

respectively; as such the mobility can be described by a sequence of flights

and pauses. At each destination, the pause time is sampled from a different

Lévy stable distribution and is re-sampled if it is less than zero or greater

the specified maximum time tmax [Detb].

2.6.4 Self-similar Least Action Walk

Arguably, the Self-Similar Least Action Walk (SLAW) model [Lee12] provides

a more accurate model for human mobility when simulations are compared to

real life traces, but in contrast to other models lacks a rigorous mathematical

formulation. (You can download the simulation in a link provided in the

paper). It aims to capture the 4 key features of human mobility: flights and

pause-times follow a truncated power-law; inter-contact times also follow

a similar power-law decay; human mobility exhibits heterogeneous features

and waypoints are fractal in nature. Essentially this model captures how

humans continuously revisit the same places (work, home, gym etc) in their

daily lives, which defines a concept of a local area of mobility, but they

occasionally travel long distances (visit family, days out), whilst the places

they do visit tend to be popular.

6The critical delay is the minimum delay required to achieve greater throughput per
node than that of a static network which is of the order of the square root of the number
of nodes [Lee11]
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More generally, [San05] studied the (critical) transmission range needed

for the graph to become fully connected with high probability for a MANET

with a hard-disk connection model where nodes move according to a general

mobility model M (including the RWP model). In particular for the RWP

they show that the critical transmission range is O

(√
logn
n

)
for a non-zero

pause time. Their analysis holds more generally for any bounded mobility

model without blockages.

There is a plethora of other models which claim to capture at least

one feature that characterises human mobility; the reader is referred to

Ref [Ban07,Cam02,Har09] for relevant surveys. In Ref [Cam02] they discuss

some group models where the mobility of an individual node also depends

on the behaviour of other nodes in the network. The analysis of MANETs is

primarily focused on comparing them to real life traces and simulating net-

work behaviour. Therefore, for the application of wireless networks it largely

remains a balancing act between mathematical tractability and model ac-

curacy. One approach is to focus on particular aspects of human mobility

such as regions of high/low densities (such as shopping centres, concerts,

sport stadiums etc) or the fractal distribution of waypoints [Che18a,Det18a]

that capture mobility through the inhomogeneity of the fixed spatial distri-

bution [Gon08, Rhe11]. In addition, one can compare this approach to one

where the nodes have infinite mobility, and thus the performance of real life

mobile networks is bounded above and below by the two cases.
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Chapter 3

Random Waypoint Model

As discussed in Sec 2.6, the Random Waypoint (RWP) model is a popu-

lar model for Mobile Ad hoc networks (MANETs). In this chapter we first

provide a formal definition of the RWP model and then discuss the one di-

mensional case for which the stationary distribution is already known. We

then compute the exact spatial distribution of the RWP in the rectangle and

triangle for the first time. We compare these results with previous approx-

imations in the literature which are used in the subsequent chapters. We

published the result for the RWP in the rectangle in Ref [Pra16], whilst the

approximation for the RWP near a boundary was used in Ref [Pra18].

Definition 3.1 (Random waypoint, Ref [Bet04]). Initially N points are

placed inside a convex domain A via a BPP. Label each node in the model

from i = 1, . . . N , and at time t the location of the ith node is given by

ri ∈ A. Every node moves independently from all other N − 1 nodes, so it

suffices to describe the motion of a single node i (refer to Fig ??). At the

initialisation of the model, the node i has starting waypoint P1. The node

then chooses its next waypoint P2 ∈ A uniformly at random, and a velocity

v1 is drawn from a distribution fV (v) (which is non-zero for v ∈ [vmin, vmax]

where 0 < vmin < vmax <∞) independent of the past. The node then travels

from P1 to P2 in a straight line with constant speed v1, called a leg and
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denoted as l1 = ¯P1P2. At P2 the node pauses with probability ℘ for a time

τ℘ taken from the uniform distribution U(0, τmax). The process then repeats

itself. The result is the path of each node is characterised by a sequence of

waypoints {P1, P2, . . .} and legs {L1, L2, . . .}.

The above model is slightly modified to some earlier versions to incorpo-

rate a distribution of pause times. This can be generalised further to make

the pause times be dependent on location [Hyy06], but this does little to

affect the overall nature of the model. The parameter ℘ ∈ [0, 1] is the prob-

ability that a node is thinking (i.e. is not moving), and is given by [Bet04]

℘ =
E[Tp]

E[Tp] + E[T ]
, (3.1)

where E[T ] is the mean time for a single leg and E[Tp] is the expected pause

time. Clearly, ℘ = 0 corresponds to the case when the nodes do not pause

once they reach the waypoint, conversely when ℘ = 1 then the nodes are

static for all time, in which case the spatial distribution of nodes in A is

uniform by definition. The expected time taken for a leg is [Bet04]

E[T ] =
log[κ]l̄

(κ− 1)vmin

(3.2)

where κ is the ratio of the maximum and minimum speeds, vmax/vmin > 1,

and l̄ is the mean leg length given later by eq. (3.6). All of the above enables

us to express the spatial distribution of nodes under the weighted sum of the

static (fX,p = 1
|A|) and moving (fX,m) probability density functions [Bet03a],

fX(x) = ℘fX,p(x) + (1− ℘)fX,m(x), (3.3)

where
∫
A
fX(x)dx = 1. Importantly, the mobile part of eq.(3.3) (fX,m(x))

converges to a stationary distribution, making the RWP model a great math-

ematical object to study. The continual crossing of the domain as a node

travels from waypoint to waypoint results in the probability of finding a node
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in the bulk being much higher than at the boundaries, which is zero when the

think time is zero (℘ = 0), as illustrated by the exact and approximate pdf

in Fig 3.4. A non-zero ℘ acts to shift the density at the boundaries upwards,

and as ℘ continues to increase towards one the distribution becomes more

and more uniform as the time spent at each waypoint is much larger than

the time spent travelling between them.

The RWP for the 1D case was first acehieved in Ref [Bet02] whereby

they compute the pdf by recording the locations of a node at a particular

time instance in a continuous histogram. In the same paper, they provide

a simple approximation of the pdf of a rectangle from two, independent,

one-dimensional processes [Bet02]. The same authors later gave an alternate

method for the 1D case, and an improved approximation for the unit square

by looking at the average time spent on a particular leg [Bet03a]. However,

Ref [Hyy06] pointed out that the approximations made in [Bet03a] are in

fact not needed and an exact expression can be found via an almost identical

method, which results in the following equation,

fX,m(r) =
1

l|A|2

∫ π

0

a1a2(a1 + a2)dφ (3.4)

Here l̄ denotes the mean leg length which is the average distance a node

travels to its next waypoint; a1(r), a2(r) are the lengths of the line to the

right and left of the point r at an angle φ to the horizontal, this is better

illustrated in Fig 3.2. The derivation of eq.(3.4) is outlined below.

1. Writing the pdf as the expected portion of time spent in an elemental

region dA per unit area noting that the speeds on each leg are fixed.

fX,m(r) =
E
[
l∩dA
V

]
E
[
l
V

]
dA

=
E[l ∩ dA]

E[l]dA
(3.5)

2. Condition on the location of r1

3. Using simple geometrical arguments involving the area of a segment,
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this conditional argument can be written as the product of that ele-

mental region, radial distance r and distance from r1 to the boundary.

4. Integrating over all possible locations of r1 then gives the result ob-

tained in eq.(3.4)

This method has since been generalised to n−dimensional space by the same

authors [Hyy05], for example in 3D the area of interest is a cone rather than

a segment.

In the same paper as eq.(3.4) polynomial approximations for 2D domains

are given [Hyy06], improving on those originally provided in Ref [Bet03a].

However, the increased complexity of the polynomial approximations limits

the potential for analytical analysis and as such are often ignored in favour

of a more tractable approach which still captures the important qualitative

nature of the problem.

The mean leg length can be directly calculated from eq.(3.4) by integrat-

ing both sides over the domain A, and rearranging for l̄ since
∫
A
fx,m(r)dr =

1. An alternative method is also provided in Ref [Hyy06]. Starting with the

definition of the mean leg length

l̄ =
1

|A|2

∫
A

∫
A

|r2 − r1|dr1dr2

=
1

|A|2

∫
R2

rD(r)dr

(3.6)

The first equality is the definition of the mean leg length, the second is

achieved by using a change of variable r = r2 − r1 and introducing the

parameter D(r) =
∫
A
1r1∈A∩(A−r)dr. Although, it doesn’t appear so, it is

usually straight forward to calculate the mean leg length from this equation,

and we give examples for the 1D case and the triangular domain later on in

this chapter.
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3.1 One-dimensional case

Consider the RWP on the line [−L,L]. We begin by first calculating the mean

leg length l̄ from eq.(3.6). In this example, D(r) =
∫
A
1r1∈|A∩(A−r)|dr =∫ L

−L |x2 − x1|dx2, and all is left is to integrate over all possible locations of

x1.

l̄1d =
1

|A|2

∫
A

∫
A

|x2 − x1|dx2dx1 =
2L

3
(3.7)

Of course, for the 1D case we need not use eq.(3.6), but we can see from

inspection that the first integral in the above expression is l̄.

To compute the pdf we use the method outlined by [Hyy06], and first

start by calculating E[l∩dA|r1]
dA

, where a1(x) = L− x and a2(x) = L+ x.

E[l ∩ dA|r1]

dA
=

E[l ∩ dx|x1]

dx
=

1

2L
(L− x)1x2>x1 +

1

2L
(x+ L)1x2<x1 (3.8)

Deconditioning on the location of x1 gives

E[l ∩ dx]

dx
=

1

2L

∫ x

−L

1

2L
(L− x)dx+

1

2L

∫ L

x

1

2L
(x+ L)dx =

1

2L2
(L2 − x2)

(3.9)

Combining these results yields the pdf of the RWP on the interval [−L,L]

f 1d
X,m(x) =

1

l̄
E[l ∩ dx] =

3

4L3
(L2 − x2) (3.10)

In Ref [Bet02] they propose two 1D processes to model the stationary

distribution of the RWP in a rectangle with dimensions [−a, a]× [−b, b].

f�,approx
X,m (x, y) =

9

16a3b3
(a2 − x2)(b2 − y2), (3.11)

We now proceed by comparing this approximation with the exact expression

obtained through application of eq.(3.4).
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Figure 3.1: A schematic of the RWP in a rectangle, where Pi represents the
position of the ith waypoint.

Figure 3.2: A schematic of how a1(x, y), a2(x, y) in eq.(3.4) are computed for
a specific point r.
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Figure 3.3: A schematic of the symmetry exploited to compute the closed
form expression of the RWP in the triangle

3.2 Exact pdf for the RWP in the rectangle

The mean leg length can be computed via eq.(3.6) and was previously given

in [Hyy06].

l̄� =
1

30a2b2

(
2a5 + 2b5 + 3a2b2c− c(a4 + b4) + 5a4b log

[
2b+ 2a+ c

2a+ c− 2b

]
− 5ab4 log

[
2b

2a+ c

])
(3.12)

where c = 2
√
a2 + b2.

We now use eq.(3.4) to compute the exact distribution. Due to the sym-

metry of the problem we need only calculate the pdf for one section (an

eighth) of the rectangle, depicted in Fig 3.1. In order to solve eq.(3.4) for

the area labelled A1 we need expressions for a1(x, y) and a2(x, y), which are
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Figure 3.4: Top Left: The approximate stationary distribution. Top right:
The exact stationary distribution in the rectangle. Bottom: The difference
between the exact and approximate distributions. Parameters: a = 1, b = 2.
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given below.

a1(x, y) =


a−x
cos θ

0 ≤ θ < arctan
[
b−y
a−x

]
b−y

sin(θ)
arctan

[
b−y
a−x

]
≤ θ < π − arctan

[
b−y
a+x

]
− (a+x)

cos(θ)
π − arctan

[
b−y
a+x

]
≤ θ < π

a2(x, y) =


a+x
cos θ

0 ≤ θ < arctan
[
b+y
a+x

]
b+y
sin θ

arctan
[
b+y
a+x

]
≤ θ < π − arctan

[
b+y
a−x

]
x−a

cos(θ)
π − arctan

[
b+y
a−x

]
≤ θ < π

(3.13)

For presentation purposes we only state the result here and provide the (some

what tedious) calculations in Appendix ??.

fA1
X,m(x, y) =

1

4l̄�a2b2

(
(2x+ a)(b+ y)(a− x)

a+ x
c1 +

(a− x)(b+ y)(b− 2y)

b− y
c2

(b− y)(a− x)(b+ 2y)

b+ y
c3 +

(a+ 2x)(b− y)(a− x)

a+ x
c4

+ (b− y)(a− x)2 log

[
(c3 + x− a)(b− y)

(c4 − a− x)(b+ y)

]
+ (b+ y)(a− x)2 log

[
(a+ x+ c1)(b− y)

(b+ y)(a− x+ c2)

]
+ (b+ y)2(a− x) log

[
(b− y + c2)(a+ x)

(a− x)(b+ y + c1)

]
− a(a+ x)(a− x) log

[
−b+ y + c4

c1 − y − b

]
+ (b− y)2(a− x) log

[
(b+ y + c3)(a+ x)

(a− x)(b− y + c4)

]
+ b(b− y)(b+ y) log

[
(a− x+ c2) (b+ y)

(b− y) (−a+ x+ c3)

])

(3.14)
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Figure 3.5: Left: Set up of the random waypoint model in an isosceles tri-
angle, where a1(x, y), a2(x, y) are drawn on for an arbitrary point (x, y).
Right: The exact spatial distribution of the RWP in the triangle, given in
Appendix C.2

where l̄� is the mean leg length calculated earlier and we have defined,

c1:
√

(a+ x)2 + (b+ y)2

c2:
√

(a− x)2 + (b− y)2

c3:
√

(a− x)2 + (b+ y)2

c4:
√

(a+ x)2 + (b− y)2

(3.15)

We now have all the ingredients for the distribution for the whole rect-

angle. Using symmetry we can use eq.(3.14) to assemble the pdf for the

complete rectangle. The density at any point in the rectangle is given in

terms of fA1
X,m(x, y).

f�X,m(x, y) =


fA1
X,m(x, y) if 0 ≤ x ≤ a, 0 ≤ y ≤ b

a
x

fA1
X,m(x,−y) if 0 ≤ x ≤ a,− b

a
x ≤ y ≤ 0 (A2)

fA1
X,m

(
a
b
y,− b

a
x
)

if 0 ≤ x ≤ a,−b ≤ y ≤ − b
a
x (A3)

(3.16)
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f�X,m(x, y) =



fA1
X,m

(
−a
b
y,− b

a
x
)

if − a ≤ x ≤ 0,−b ≤ y ≤ b
a
x (A4)

fA1
X,m(−x,−y) if − a ≤ x ≤ 0, 0 ≤ y ≤ − b

a
x(A5)

fA1
X,m (−x, y) if − a ≤ x ≤ 0, b

a
x ≤ y ≤ 0 (A6)

fA1
X,m

(
−a
b
y, b

a
x
)

if − a ≤ x ≤ 0,− b
a
x ≤ y ≤ b (A7)

fA1
X,m

(
a
b
y, b

a
x
)

if 0 ≤ x ≤ a, b
a
x ≤ y ≤ b (A8)

(3.17)

We now proceed by discussing some particular cases, and make comparisons

with the approximation in eq.(3.11).

Particular cases

Centre

f�X,m(0, 0) =
1

8l̄(4ab)2

(
4ab
√
a2 + b2 + 2b3 log

[
a+
√
a2 + b2

b

]

+ 2a3 log

[
b+
√
a2 + b2

a

]) (3.18)

At the centre of the rectangle the exact distribution still has a logarithm term,

meaning that analysis further down the line is likely to rely on numerical

calculations. As such we want to now see if the approximation given in

eq.(3.11) is suitable.

Square

Letting a = b = 1 the density at the centre of the square for each case is

given by,

f�X,m(0, 0) = .695

f�,approx
X,m (0, 0) = .563

funiform = 0.25

(3.19)
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Clearly, the density of users in the middle of the domain for the RWP is

at least twice that of the uniform model, with the exact and approximate

models also deviating.

Approximation near the boundary

Without loss of generality we assume that b >> a, and approximate near

the boundary with x ≈ a.

f�X,m(x ≈ a, 0) = c(x− a)− c∗ log[x− a](x− a) +O((x− a)2), c, c∗ ∈ R

f�,approx
X,m (x ≈ a, 0) = − 9

8a2b
(x− a) +O((x− a)2)

(3.20)

Qualitatively we can see that the profiles of the exact, approximate and

simulated (mobile) distributions are the same, see Fig 3.4. That is to say,

the density of nodes is higher in the bulk of the domain, and goes to zero

at the boundaries. However, the behaviour of the approximate and exact

expressions differ near the boundaries. For the approximate solution of the

RWP it grows linearly away from the boundary, whilst the density actually

grows like log[x−a](x−a) away from a vertical boundary. Furthermore, it can

be shown near the corner the RWP grows linearly, whilst the approximation

actually grows as a quadratic.

To facilitate a more tractable approach we will invariably use the approx-

imate form of the RWP in our analysis. To qualify this, we first point out

that we are not analysing the performance of a network with RWP mobility,

but instead we are analysing the impact more general mobility models and

boundaries have on the performance of MANETs. As a result, we are often

not concerned with the exact distribution of the RWP but are interested in

its qualitative features, such as having a higher density of nodes in the bulk

compared with near the boundary.
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3.3 Triangle

We now move onto the RWP in a triangular region defined as T =
{

(x, y)|−
a ≤ x ≤ a, 0 ≤ y ≤ min

[
b
a
(x+ a),− b

a
(x− a)

] }
, illustrated in Fig 3.2.

The purpose to analyse the RWP in T is to see the impact corners have, in

particular we look at the role boundaries have on spatio-temporal networks in

Sec 7. Most of the working is given in AppendixC.2, since the calculations are

similar to those discussed in the rectangle, and we merely state the results.

Mean leg length

l̄4 =
4

30(a2 + b2)3/2

(
4a2b2 log

[
a

a+
√
a2 + b2

]
+ b4 − a4 + 4a3

√
a2 + b2

)

+
a
√
a2 + b2 + b2 log

[
a+
√
a2+b2

b

]
15a

(3.21)

As a sanity check, let a =
√

3, b = a
√

3 such that we have an equilateral

triangle with height 3, then l̄4 reduces to the following,

l̄4 =
a(4 + log[27])

10
= 1.263 (3.22)

which is consistent with that given in Ref [Hyy06].

Triangle pdf

Through symmetry we only need to calculate the pdf for the case when

x ≥ 0, which we denote as f+,4
X,m(x, y, a, b) to generate the full pdf for the tri-

angle f4X,m(x, y, a, b) (for x < 0 it is equivalent to f4X,m(−x, y, a, b)) 1. Even

for f4,+X,m(x, y, 1, 1) the expression is very lengthy, and are unable to do any

meaningful analysis with it. As such, we will need to use an approxima-

tion. The exact expression for f4,+X,m(x, y, a, b) is included in Appendix C.2

for completeness.

1We could work out the exact distribution for the RWP in any triangular region using
the exact same method, but in this case we may not be able to rely on symmetry which
doubles the workload.
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Triangle Approximation

Lets now consider a translated version of the isosceles triangle T =

{(x, y)|0 ≤ x ≤ L, 0 ≤ y ≤ min(x tanφ,−(x − L) tanφ)}. The motiva-

tion for this is that in the exact solution making it symmetrical about the

origin enabled a simpler final result, whilst here we will ultimately want to

approximate it near a corner; doing it at the origin is simpler. Naturally, if

we want to switch between the two, a straight forward transformation of co-

ordinates is needed. Our approach is to use three 1D processes (see eq.(3.10))

to model the RWP in a triangle, like that done in for the rectangle with two

1D processes. The justification for this is to try to achieve a more tractable

form of the spatial distribution, albeit with the knowledge that it will only

capture the qualitative behaviour of the RWP. Furthermore, the simple form

of the 1D processes means any numerical computations are far quicker than

compared with using the exact form, including the closed form expression

we given in Appendix C.2. By translating each 1D process appropriately we

obtain the following approximation.

f4approx(x, y) = c4f1d(y)f1d

(
x cos

(π
2
− φ
)
− y sin

(π
2
− φ
))

× f1d

(
(x− L) cos

(π
2

+ φ
)
− y sin

(π
2

+ φ
))

= c4y(L− 2y cot(φ))(x− y cot(φ))(L+ y cot(φ)− x)

× (L− csc(φ)(y cot(φ) + x))(csc(φ)(L+ y cot(φ) + x)− L)

(3.23)

The first term is the density of a one dimensional process in the y-direction

(base of the triangle) with length L
2

tanφ, the second and third terms are

processes from the corresponding left and right boundary lines respectively

with the 1D process with length L sinφ, c4 is an additional normalisation

constant such that
∫
T
f4approx(x)dx = 1, where c4 in the second equality has

absorbed some extra constants. Since we will largely concern ourselves with

what happens near the corner for a large domain, we first transform the

64



above into polar coordinates and then take the leading order expansion for

small r =
√
x2 + y2.

f4approx(r, θ) = −c4L4(csc(φ)− 1) sin(θ)(cot(φ) sin(θ)− cos(θ))r2 +O(r3)

∼ sin(θ) sin(φ− θ)r2 +O(r3),

(3.24)

The appeal of this approximation is that the density near the corner is far

more tractable. However, we should note that from eq.(3.4) it can be shown

that the exact solution grows linearly away from the corner, not quadratically.

In this case, we tried the simplest approximation possible to try to achieve

a tractable form but, as might be expected, it once again fails to accurately

describe the boundary behaviour. However, as a result of us not having a

good approximation for the RWP in the triangle, it led us to study a more

general non-uniform density near a corner in Chapter 7. In that chapter we

use the density λ(r, θ) = c̄rαgφ(θ) to model the distribution of points near a

corner. Within this model we have the added flexibility of comparing different

“levels” of inhomogeneity since we can easily interpolate between different

network scenarios by tuning the parameter α and varying gφ(θ) leading to a

more robust analysis.

3.4 Circular Domain

Unlike in the previous cases the integral in eq.(3.4) cannot be solved explicitly

for the circle [Hyy05], instead it is an elliptic integral of the second kind.

Interestingly, the same integral form represents the betweenness centrality in

dense uniform SRGGs [Gil16].

f ◦X,m(r) =
2(R2 − r2)

l̄π2R4

∫ π

0

√
R2 − r2 cos2 θdθ (3.25)

However, a simple approximation was provided in Ref [Bet02] for a circle
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with radius R which we will use,

f ◦X,m(r) =
2

πR2

(
1− r2

R2

)
(3.26)

Again the pdf shares all the same characteristics of the exact solution,

with the density going to zero at the boundaries and maximum in the middle,

whilst also being radially symmetric. Interestingly, in this case the curved

boundary leads to linear decay near the border meaning the approximation

is far better than the ones discussed previously. In Chapters 5,6 this is a

special case of a more general distribution that is used2.

Having looked at a range of different mobility models, both in this chapter

and the literature review, we are well placed to compare how mobility impacts

connectivity. Hopefully it is clear by now that we are motivated by doing

network analysis that is both interesting and mathematically tractable. As a

starting point we begin by comparing the performance of a range of SRGGs

with non-uniform distributions, which are motivated by the RW and RWP

models.

2In Chapters 5,6 we refer to the density in eq.(3.26) as “concave”, whilst this is true
for the approximate form it is not correct for the exact density.
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Chapter 4

Mean degree

In the last chapter we discussed the RWP as a mobility model used to rep-

resent Mobile ad hoc networks (MANETs). In this chapter we use the RWP

model, along with tools from stochastic geometry, to analyse the performance

of MANETs in terms of the average number of connections. This chapter

follows the work published in Ref [Pra16], of which I was a co-author; refer

to Appendix A for more details on my contributions.

MANETs have been proposed as a model for environmental monitor-

ing [Cho03], disaster relief [Kha16], military communications [Hel14] along

with the next generation of mobile phone networks [Asa14,Teh14]. As such

there has been a proliferation in research into MANETs over the past couple

of decades as networks become increasingly mobile. As people, and therefore

smart devices, move around, the spatial configuration evolves with time and

the network properties fluctuate accordingly. For example, the number of

users a base station serves may vary dramatically as people complete their

daily commute to work. Much of the previous research is highly centralised

and assumes a static architecture, which may not be able to cope with the

expected increase in traffic demand, as it is not easily scalable as building

further BSs is both costly and time consuming. By allowing smart devices to

relay information through the network in a multi hop fashion can help allevi-

ate the increases in traffic demands and reduce the end-to end delay, helping
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to facilitate the transition into the next generation of wireless communication

networks [Teh14,Tse05].

The question this chapter aims to address is How does the spatial con-

figuration of points, boundaries, the location of the user and the connection

model impact upon network connectivity?

To this end we analyse the average number of connections a user can

make during a single time slot in a bounded domain, where the distribution

of users is modelled by a non-uniform PPP. The density of nodes is chosen

such that we can easily interpolate between a uniform, convex (more nodes

near the boundary) and concave (more nodes near the centre) distribution

of users, which have applications to real life scenarios; the uniform and con-

cave distributions can can be used to approximate the RW and RWP models

respectively. We further compare the mean degree for three different con-

nection functions (Disk, Rayleigh and interference connection models) which

represent different network scenarios, coupling this with our analysis of the

non-uniform distribution of users. Finally, we use our results to discuss the

scalability of finite MANETs and relating it to the field of percolation. We

start by formally introducing the mean degree and system model.

4.1 Mean degree and system model

The mean degree is the average number of successful links a node at x1 can

make, and is defined as,

µ(x1) =

∫
A

λ(x)H(|x1 − x|)dx (4.1)

where H(.) is the connection function, λ(x) is the distribution of users in the

region A, and |x1 − x| is the Euclidean distance between the user x1 and a

transmitter x.

In general we can discuss a range of distributions, but we focus on the

stationary distribution of the RWP discussed previously and compare it with
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the uniform and convex case. For tractability we assume that the distribu-

tion is modelled by two 1D processes, and generalise it such that we can

interpolate between a uniform, convex (nodes are found near the corners

predominately) and concave (RWP) distribution of devices. As such, let us

define the distribution of points as,

λ(x, y) = λ0

(
cxx

2 + 1− cxL
2
x

3

)(
cyy

2 + 1−
cyL

2
y

3

)
(4.2)

where λ0 is the average number of nodes per unit volume, the first bracket is

a general 1D process in the x-direction, and the second is the same but in the

y-direction. The constant cx determines the profile of λ(x) in the x-direction,

whilst cy does the same but for the y-direction. For simplicity, we consider

only three cases of cx, cy: when (cx, cy) = (0, 0) we have the uniform distribu-

tion, (cx, cy) =
(
− 3

2L2
x
,− 3

2L2
y

)
is the RWP model and (cx, cy) =

(
3
L2
x
, 3
L2
y

)
is

the convex case. The latter refers to a model where the distribution is higher

near the boundaries, particularly near the corners. This helps us compare

between the standard case of the RW (uniform) and the more interesting

stationary distribution of the RWP model (the distribution is higher in the

middle of the domain), along with better isolating whether it is boundaries

or the distribution of devices that influence network performance.

We now compute the mean degree for three different connection functions:

the disk, Rayleigh and interference-limited connection models, as defined in

Sec 2.2. We proceed by first discussing the Hard Disk and Rayleigh connec-

tion model.

4.2 Mean degree in the hard disk model

First recall the connection model isH(r) = 1r≤r0 for the hard disk connection

model, as in the standard RGG. The mean degree in this case is simply the
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mean number of points in the region A ∩ Bx1(r0),

µ(x1) =

∫
A∩Bx1 (r0)

λ(x)dx (4.3)

Provided the ball, which defines the connection radius, does not intersect the

boundary of the rectangle then the mean degree is given by,

µ(x1) = πr2
0λ0 +

cyπr
2
0

(
−4L2

y + 3 (r2
0 + 4y2

1)
)
λ0

12

+
cxπr

2
0 (−4L2

x + 3 (r2
0 + 4x2

1))λ0

12

+
cxcyπr

2
0λ0

72LxLy

(
8L2

xL
2
y − 6L2

yr
2
0 + 3r4

0 − 24L2
yx

2
1 + 72x2

1y
2
1

+ 18r2
0

(
x2

1 + y2
1

)
− 6L2

x

(
r2

0 + 4y2
1

))
(4.4)

Clearly for the uniform case, where the user is far from the boundary, then

the mean degree is simply λ0πr
2
0. When either cx or cy are non-zero then

there are spatial variations in the mean degree which correspond to those in

the distribution of points, see Fig 4.2.

The introduction of boundaries creates further spatial variations in the

mean degree, but often leads to a less tractable approach. For example, as

the ball intersects (only) the right hand boundary of the rectangle the mean

degree is written as,

µ(x1) =

∫ min[Lx,x1+r0]

x1−r0

∫ y1+
√
r20−(x−x1)2

y1−
√
r20−(x−x1)2

λ(x)dx, (4.5)

and can only be solved in semi-analytic form for a general density λ(x).

Again, for the uniform case the mean degree is simply proportional to the

size of the intersecting region, µ(x1) = λ0|Bx1(r0)∩A|. As such we only give

the two extremal cases, that is when the receiver is located at the corner

x1 = (Lx, Ly) and the boundary x1 = (Lx, 0).
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µ(Lx, 0) =
πr2

0λ0

2
+
cyr

2
0

(
−120L2

yπ + 90πr2
0

)
λ0

720

+ cx
r2

0 (240L2
xπ − 960Lxr0 + 90πr2

0)λ0

720

+
cxcyr

2
0λ0

720

(
−80L2

xL
2
yπ + 320LxL

2
yr0 + 60L2

xπr
2
0

− 30L2
yπr

2
0 − 192Lxr

3
0 + 15πr4

0

)
(4.6)

µ(Lx, Ly) =
πr2

0λ0

4
+
cyr

2
0

(
240L2

yπ − 960Lyr0 + 90πr2
0

)
λ0

1440

+
cxr

2
0 (240L2

xπ − 960Lxr0 + 90πr2
0)λ0

1440

+
cxcyr

2
0λ0

1440

(
160L2

xL
2
yπ − 640LxLy (Lx + Ly) r0 + 720LxLyr

2
0

+ 60
(
L2
x + L2

y

)
πr2

0 − 192 (Lx + Ly) r
3
0 + 15πr4

0

)
(4.7)

From the above two equations the role of boundaries acts to reduce the

number of possible connections, with the mean degree being halved each

time for the uniform case as it goes from the centre (eq. (4.4)), boundary

(eq.(4.6)) and then the corner (eq.(4.7)). Furthermore, it is not difficult to

see that the mean degree scales with λ0, capturing the local behaviour of the

network.

4.3 Mean degree in the Rayleigh model

To capture the effects of soft connectivity we use the Rayleigh connection

model, H(r) = e
− (ε+rη)

r
η
0 . Through application of eq.(4.1) we can obtain closed

form expressions for the mean degree in the square for particular parameters
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Figure 4.1: Surface plots of the mean degree for the Disk model, with pa-
rameters r0 = 1;Lx = 10, Ly = 5, λ0 = 1 and thus the average number of
nodes is N̄ = 200.

of the path loss exponent η. For simplicity in our analysis we chose η = 2

(free space); we discuss the impact of different values of η later on in this

chapter.

µ(x) =

∫ Lx

−Lx

∫ Ly

−Ly
e
− ε

r
η
0 e
−
(√

(x−x0)2+(y−y0)2

r0

)η
λ(x, y)dxdy

=
e
− ε+(Lx+x1)

2+(Ly+y1)2

r20 r2
0λ0

144LxLy
Q(x1, Lx, r0, cx)Q(y1, Ly, r0, cy)

(4.8)

where

Q(x, Lx, r0, cx) = −6cxr0

(
Lx − x1 + e

4Lxx1
r20 (Lx + x1)

)
+ e

(L2
x+x

2
1)

r20

√
π
(
6 + cx

(
−2L2

x + 3r2
0 + 6x2

1

))
×
(

erf

(
Lx − x1

r0

)
+ erf

(
Lx + x1

r0

))
.

Although a lengthy expressions, the important behaviour is that µ scales with

λ0, similar to the disk model. We can further simplify eq.(4.8) by considering
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the uniform case,

µ(x1, y1) =
πr2

0λ0

4
e
− ε

r20

×
(

erf

[
Lx + x1

r0

]
+ erf

[
Lx − x1

r0

])(
erf

[
Ly + y1

r0

]
+ erf

[
Ly − y1

r0

])
≈ πr2

0λ0e
− ε

r20

(4.9)

where the approximation is for when x1, y1 are not near the boundary, i.e

Lx � x and Ly � y. Notice that the average number of connections includes

an additional factor e−εr
−2
0 . In fact we can generalise the approximation for

a region with no boundaries and general η. Consider the integral over R2

instead, which yields the following simple expression

µRayleigh
∞ = 2π

∫ ∞
0

λ0e
− (ε+rη)

r
η
0 rdr = λ0πr

2
0Γ

[
2 + η

η

]
e
−
(
ε
r0

)η
(4.10)

To inspect the role of η let us compare µRayleigh
∞ with the mean degree in

the disk model (for a uniform PPP in R2), denoted as µDisk
∞ . First recall

that µDisk
∞ = λ0πr

2
0. Comparing µDisk

∞ and µRayleigh
∞ highlights there is an

extra factor Γ
[

2+η
η

]
e
−
(
ε
r0

)η
in µRayleigh

∞ , due to the long range nature of

the connection functions. Therefore for the disk model to outperform the

Rayleigh model (µDisk
∞ > µRayleigh

∞ ) then Γ
[

2+η
η

]
e
−
(
ε
r0

)2
< 1 must hold. Since

Γ
[

2+η
η

]
e
−
(
ε
r0

)2
≤ Γ

[
2+η
η

]
< 1 then it follows that for all finite η > 2 then

µDisk
∞ > µRayleigh

∞ regardless of the choice of ε1. As a result the mean de-

gree only benefits from these “soft” connections when they are very soft, i.e.

when η < dimension as is the case in highly reflective media. Of course,

allowing η →∞ means µRayleigh
∞ → µDisk

∞ e
−
(
ε
r0

)2
, namely the Rayleigh model

approaches the disk model scaled by the factor e
−
(
ε
r0

)2
which originates from

the non-singular nature of the path loss model.

1For ε > 0 then µDisk
∞ > µRayleigh

∞ can occur before η > dimension
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Figure 4.2: A surface plot of the mean degree for the Rayleigh connection
function in the square with density given by eq(4.8), parameters: Lx =
10, Ly = 5, λ0 = 1; r0 = 1

It is difficult to interpret the mean degree via eq.(4.8) so instead we use

use Fig 4.3. We can see that for the Rayleigh connection model (like the disk

model) the mean degree roughly mirrors the spatial distribution of nodes,

which is what we would expect; the more nodes there are nearby, the greater

the number of connections. The far right panel of Fig 4.3 highlights the non-

trivial interplay between boundaries and the node distribution, the maximum

mean degree is found near, but not at, the boundary where the density is at

its highest.

4.4 Mean degree in the interference model

The dependence on the underlying point process in the interference case

means that the mean degree cannot be given in closed form when the domain

is finite, even for the uniform case. In fact, closed form expressions for H(.),

eq(2.17), can only be given for particular cases, for example in R2 or the

centre of a circular domain. We can approximate a square domain by a

circular one to investigate the behaviour of H(0, 0), particularly since any

interference from the boundaries will become increasingly negligible when

η > 2. Let the radius of the disk be R = 2Lx√
π

, with Lx = Ly, and the

distribution of users in the circle be λ(r, θ) = λ0

(
1− bR2

2
+ br2

)
where b =

0,− 2
R2 ,

2
R2 are the uniform, RWP and convex case respectively. Then by
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transforming the integral in eq.(2.17) to polar coordinates, and using the

λ(r), then the interference part of the connection probability at the centre

can be written as

L◦((0, 0), r) = exp

(
−
∫ 2π

0

∫ R

0

λ(z, θ)
1

1 + g(r)
qγg(z)

zdzdθ

)

= exp

(
− qγ(rη + ε)R2

4(rηqγ + ε+ εqγ)

×
(

(2−R2) 2F1

(
1,

2

η
, 1 +

2

η
,− Rη

rηqγ + ε+ qγε

)
+ bR2

2F1

(
1,

4

η
, 1 +

4

η
,− Rη

rηqγ + ε+ qγε

)))
(4.11)

Here 2F1(., ., ., .) is the Gauss hypergeometric function. The expression can

be simplified further for specific values of η and /or ε. For example when

η = 4,

H(r) = exp

(
−r

η + ε

rη0

)
exp

(
−λ0π

qγ(r4 + ε)

2(ε+ qγ(r4 + ε))

(
(2− bR2)

√
ε+ qγ(r4 + ε) arctan

[
R2√

ε+ qγ(r4 + ε)

]

+ b(ε+ qγ(r4 + ε)) log

[
1 +

R4

qγ(r4 + ε) + ε

])) (4.12)

Even for this (and others) simplified case only semi-analytic forms of the

mean degree can be given, thus we generate surface plots for both the con-

nection probability of H(.) in the domain, and the mean degree in python.

The top panel of Fig 4.3 represents the interference field in the rectangle

for all three cases, which is − log of the interference part of the connection

model given by eq.(2.17). Regions with high interference correspond to re-

gions where the node density is highest. The effect a rectangular domain

has on the connectivity is further highlighted by seeing that the side with

the shortest length has a smaller portion of nodes and thus the impact of
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interference is less.

Analysing Fig 4.3 we first note the boundaries reduce the interference

field which increases H(x), but also increasing the average distance to other

nodes in the network. For example, in Fig 4.3 we see that µ decreases at the

border for a uniform density of nodes (left panel), with the maximal value

being in the region located near the boundary (particularly the corner); µ is

maximised by ensuring the interference field is at its lowest and the average

distance to neighbouring nodes is not too high. The complicated interplay

between boundaries and interference is well demonstrated by the convex case.

We can see that the interference field is not maximised at the regions where

the density is highest (i.e. at the corners), but instead in regions where

the density is high but also away from the boundary. In addition, the mean

degree is lowest in regions where the density is minimised. This demonstrates

the balance between having too few nodes to connect and too many which

causes outage due to interference. We also note that the mean degree is

higher along the horizontal (longer) edge of the rectangle, as the number of

nodes is higher compared with the interior and vertical sides of the domain.

This is further demonstrated by the RWP case, where the mean degree is

maximised in a ring between the regions with high and low node density.

These results were for λ0 = 10, for a smaller average number of nodes we

should expect the mean degree to mirror the profile of nodes, as the impact

of interference becomes less. For larger values of γ the interference field will

continue to dominate, and will act to decrease µ, see the discussion next on

dense networks. Note that similar observations are expected to hold for the

average achievable rate between nodes i and j given by E [log[1 + SINRij]]

(see Ref [Geo15]).

4.5 Dense Networks

An interesting limiting case is to study the performance when the average

number of nodes N̄ goes to infinity. First note that taking the mean number
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Figure 4.3: Top panel : The interference field in the rectangular domain
for different distributions of users, assuming that the intended target is a
distance r = 0.5 away. Bottom Panel: The mean degree in an interference-
limited environment. Parameters: λ0 = 10, Lx = 5, Ly = 2.5; η = 4, γ =
0.1; q = r0 = 1 and ε = 0.01.
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of points to be infinite can be done by allowing λ0 → ∞ and fixing Lx, Ly,

or fixing the density λ0 but considering the PPP in R2. For simplicity we

consider the case when Lx, Ly → ∞, which results in λ(x) = λ0. Moreover,

because we assume there will be a large proportion of interfering nodes,

we neglect any noise in the channel and set σ2 = 0 in eq.(2.17). Let us

denote µ∗(x) = lim
N̄→∞µ(x), the mean degree as the average number of nodes

goes to infinity. Finally, we note for a PPP in the plane the mean degree

is independent of the location of the receiver x1 due to motion invariance,

where each node in the PP represents a typical user, therefore we can simply

analyse the node at the origin. Focusing on the interference component of the

connection probability given by eq.(2.17) (where r is the separation distance

between a user and transmitter, and dI is the distance between an interferer

and user),

LI
(
qγ

g(r)

)
= exp

(
−
∫
A

1

1 + g(r)
qγg(dI)

λ(XI)dXI

)
= exp

(
−
∫ 2π

0

∫ ∞
0

λ0

1 + g(r)
qγg(z)

zdzdθ

) (4.13)

To analyse eq.(4.13) we consider the singular and non-singular path loss cases

separately.

Singular path loss Model

The simplest path loss model is the singular one, which models how the

signal decays with distance and is given by, g(r) = r−η. By substituting g(r)

into eq.(4.13),

L∗I
(
qγ

g(r)

)
= exp

(
−
πλ0r

2
2F1

(
1, 2

η
; 1 + 2

η
;− rη

qγrη

)
η − 2

)∣∣∣∣∞
r=0

=

exp

(
−2π2(qγ)

2
η λ0r2 csc( 2π

η )
η

)
η > 2,

0 η ≤ 2.

(4.14)
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Some intuition behind this behaviour is given in Appendix D. Using the above

expression for the connection probability and substituting it into eq.(4.1),

µ∗ = 2πλ0

∫ ∞
0

exp

(
−

2π2(qγ)
2
ηλ0r

2 csc
(

2π
η

)
η

)
rdr

=


η sin( 2π

η )

2π(qγ)
2
η

η > 2,

0 η ≤ 2.

(4.15)

Since the uniform PPP in R2 is motion invariant, the coverage probability

is independent of the users location and for η > 2 the mean degree is a

constant. The intuition behind it is that adding nodes to the network seems

to simultaneously scale the corresponding signal powers such that it preserves

the mean degree of each node [Bac10b].

Non-singular path loss

Now consider the case g(r) = (ε + rη)−1 with ε 6= 0. Following a similar

approach to before,

L∗
(
qγ

g(r)

)
= exp

(
−
πλ0qγ(rη + ε)r2

2F1

(
1, 2

η
; 1 + 2

η
;− rη

ε+qγ(ε+rη)

)
ε+ qγ(ε+ rη)

)∣∣∣∣∞
r=0

= 0

(4.16)

Therefore, regardless of η, the mean degree tends to zero as λ0 → ∞. Es-

sentially the interference from the additional nodes dominate causing every

node in the network becoming isolated from every other node.

In Fig 4.4 we plot the mean degree at the centre, boundary and corner

for a range of different densities, illustrating how for non-zero ε = 0, µ → 0

under extreme densification, whilst for ε = 0 the mean degree tends to a

non-zero constant. Intuitively, this non-singular path loss model provides a

greater insight into how we expect wireless communication networks to work;

at low densities the mean degree is low since the total possible number of

connections is also low, but as the density increases so does the mean degree.
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Figure 4.4: A plot of the mean degree as a function of density for three
different locations in the domain for each different distribution. The dashed,
solid lines are for ε = 0, 0.01 respectively. Parameters: Lx = 5, Ly = 2.5; η =
4; γ = 0.1, q = r0 = 1 and ε = 0.01.

However, at some λ0 = λc the interference effects begin to dominate causing

more and more link outages (smaller µ), even though there are more possible

links available.

Interestingly, regardless of the value of ε, for γ = 0.1, the mean degree

is small. Even for more advanced network protocols than ALOHA, such

as carrier-sense multiple access with collision avoidance (CSMA/CA) which

ensures an absence of traffic before transmission, these results are expected

to hold, although the mean degree should increase (acts like a smaller value of

γ). This highlights the need for effective interference management to ensure

network connectivity.

4.6 Discussion

For both the disk and Rayleigh connection models the mean degree scales

with λ0. The former connection model captures the local behaviour of the

network, where the mean degree can be a crude estimator of how network sup-

port nodes need to be deployed in real time. For example, if the mean degree

is low at some particular location, then support nodes need to be deployed to

act as a bridge between disconnected subsets to improve network connectiv-

ity, particular if we think about isolated nodes being the main obstacle to full

connectivity [Pen91]. Conversely, the Rayleigh connection function captures
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the long range behaviour and can become greater in more reflective environ-

ments (smaller values of η) and becomes more “local” for larger values of η

; with the limiting case being when η →∞ giving the disk model.

For all connection functions with no dependence on the underlying PP Φ

we should expect similar behaviour; that is to say the mean degree is highest

in regions with a high node density (or close by if the density is maximum

near the boundary), and scales with λ0.

A more interesting analysis is for a connection function that depends on

the underlying PP Φ. For a singular path loss function the mean degree

is non-decreasing with density λ0. The mean degree increases with λ0 to a

maximum and then plateaus; whilst for ε > 0 the mean degree is uni-modal,

µ increases with λ0 until some critical λc and then decays to zero. The latter

reflects the percolation behaviour of the SIR graph in R2, where there is a

critical range of densities in which there is a positive probability that the

graph contains a component of infinite size [Dou06,Vaz12]. For the singular

path loss model, from these results, we expect there to be a critical λc where

for λ0 < λc the graph is disconnected and for λ0 > λc there is a positive

probability that the SIR graph percolates; this remains an open problem

since current results rely on
∫∞

0
rg(r)dr < ∞ [Vaz12]. We also note that

these results for the singular model are also very sensitive to the parameter

η, in highly reflective mediums (η ≤ dim) where very long links can occur

the aggregate interference causes outage, whilst for more local connections

(η > dim) then the mean degree is a constant.

This analysis provides insight into how connectivity of a node depends on

its location and the underlying distribution of nodes in the network. Impor-

tantly, these results give us insight into the scalability of interference-limited

networks under different channel conditions, and sophisticated network pro-

tocols need to be used to maximise connectivity when interference is ac-

counted for, particular in the case of dense networks.

In the following chapter we look at how the next generation of 5G net-

works should be deployed to maximise user experience.
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Chapter 5

Coverage in Ultra Dense

Networks

In the previous chapter we discussed the mean degree as a metric to analyse

global connectivity properties of MANETs and the interplay between mo-

bility and boundaries. More specifically the mean degree helps to highlight

areas where nodes are likely to be isolated, and we want to apply this insight

into better understanding the next generation of wireless networks (5G). Here

we discuss the work in Ref [Pra17] which was first posed as a problem by

my co-author Dr Georgiou whilst he was working at Toshiba. Our aim here

is to understand how mobility and boundaries will impact 5G networks, and

ultimately use this insight to help optimise network performance in terms of

user experience.

There is a general consensus that network densification, both spatially

and over the frequency domain, can help cope with the expected 1000-fold

increase in traffic demand over the coming decade whilst remaining cost effec-

tive [Bhu14,DR13]. By deploying smaller pico and femto cells (more generally

referred to as Access Points (APs)), and making use of more diverse areas

of the spectrum, a more heterogeneous network can help to improve network

throughput, bring about higher data rates along with improving mobile user

coverage [Bhu14]. One main advantage of utilizing a heterogeneous network
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Figure 5.1: Left: A depiction of the coverage set up, with a user represented
by a mobile phone connecting to its closest AP coloured red. Right: An
illustration of the change of coordinates used in eq.(5.14)

is that it becomes far more scalable with network demand and has increased

flexibility due to the size of APs. APs are easier to deploy since they have

less restrictions both geographically and financially in comparison with BSs,

whilst mobile APs (drones) can meet unusual peaks in network traffic such

as during music festivals.

In general, these APs will have fewer antennas and network resources

than typical BSs and thus transmit/receive data in a smaller region, to/from

a smaller number of users. Moreover, location aware interference manage-

ment techniques, such as making use of coordinated communication schemes

(CoMP) are likely to be employed to minimise delays and improve user expe-

rience [DR13]. A typical assumption is that each AP serves the same number

of users (i.e. smart devices), and since there are spatial variations in the Mo-

bile User (MU) distribution due to mobility understanding how these APs

should be deployed remains an important question. More specifically, the

deployment of APs need to take into account the network traffic as a func-

tion of position, and be flexible enough to meet peak demand whilst saving

resources when possible.

In this chapter we analyse how the probability a MU can connect to its
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nearest AP in an ultra-dense network where the deployment of APs is non-

uniform. Using this we then optimise the deployment of the APs for a given

distribution of MU which can be achieved in real time networks through a

thinning of the PPP. Much of this work is discussed in Ref [Pra17], with an

additional analysis on dense regimes and coordinated transmission schemes.

5.1 Coverage model

We start by modelling the distribution of APs using a non-uniform PPP Φ

with density λ(t) in a circular disk V ∈ R2 with radius R. For simplicity we

assume that the density is given by the radially symmetric function,

λ(r) = λ0

(
1− bR2

2
+ br2

)
, (5.1)

where t is the radial position, N̄ = λ0πR
2 > 0 is the density of APs and

b ∈
[
− 2
R2 ,

2
R2

]
acts to interpolate between different distributions. A partic-

ular case of interest is when b = −2/R2 which approximates the stationary

distribution of the RWP in the disk [Bet03b], whilst b = +2/R2 models the

case when nodes are predominately found near the boundary (referred to as

convex); a uniform distribution of APs is obtained by setting b = 0. This

model provides a simple method to analyse the impact regions with high and

low density, along with boundaries, have on coverage in finite domains.

The metric of focus is the K-coverage probability, the probability a MU

can successfully download a message from its K nearest APs. For simplicity

we neglect any interference from neighbouring MUs, and assume all inter-

ference arises from APs further away from the Kth nearest AP. Typically a

MU will try to connect to the AP with the strongest signal, and we make

the natural approximation that the strongest signal is from the closest AP to

achieve a more tractable analysis1. For the large part we will aim to provide

1For a MU connecting to the AP with the strongest signal it requires the use of order
statistics which often leads to a complicated approach that provides little insight. Also
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any expressions in terms of a MU connecting to K APs, and discuss the spe-

cial case when K = 1 separately. In order to proceed we first need to order

all the APs in the network in terms of their distances from a MU of interest.

As such let us denote the Euclidean distance between the ith AP at ti and a

MU located at r as di = |r− ti| and order them such that 0 ≤ d1 ≤ d2 ≤ ....

We take the standard approach of modelling the signal from each AP as

the product of the channel gain and path loss. As in Sec 2.2 we assume

the channel gain is an exponential random variable with mean one, and for

mathematical tractability we assume a singular path loss model and will

use the insight gained from the previous chapter to discuss the qualitative

changes a non-singular model would have in 5G networks at the end of this

chapter. Once again we assume slotted ALOHA, which is controlled by the

parameter γ ∈ (0, 1] which thins the set of interfering signals.

We proceed by first calculating the nearest neighbour distribution for Φ

in V , and then the probability a MU can connect to its K nearest APs, both

of which are later combined to compute the coverage probability in Sec 5.4.

5.2 Nearest neighbour distribution

The distribution to the Kth nearest neighbour is calculated through eq.(2.5)

in Chapter2 [Sri10]. By exploiting the natural ordering of the points within

our model, we only need the distribution of the Kth AP given the location of

the (K − 1)th AP, which we denote as fKNND(x, dK−1, dK). Recall, that this

can be achieved through calculating the derivative of the contact distribution,

which is the complement of the probability there are no nodes in the region.

Thus, we can write the distribution of the Kth nearest neighbour, given the

note that this approximation is not valid for the uplink case, since in regions of higher
density the AP may be closer but also be closer to other APs that may lead to outage.
The directed nature of these SINR graphs make for an interesting analysis.
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Figure 5.2: Plot of the nearest neighbour distribution given in eq.(5.10) for
MUs at different distances r ∈ [0, R] for different underlying distribution of
APs: Uniform (top panel), Concave (middle), and Convex (bottom). Each
plot has the same x-axis scale making for an easier comparison, with the
dashed lines representing where the maximum for each case occurs. Param-
eters: R = 5 and λ0 = 1.
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location of its K − 1 neighbours, as

fKNND(x, dK−1, dK) = − d

ddK
exp (−Λ(Ax(dK−1, dK))) ,

= − d

ddK
exp (−Λ(Bx(dK)) + Λ(Bx(dK−1))) ,

(5.2)

where Ax(dK−1, dK)) is the annulus centred at x with radius r ∈ [dK−1, dK ].

In actual fact to solve the K-coverage problem we need the product, and once

we cancel many of the exponential terms it can be written as,

fKNND(x, d1, ..., dK) = fNND(x, d1)f 2
NND(x, d1, d2)...fKNND(x, d1, ..., dK)

= exp

(
−Λ(|Bx(dK) ∩ V|)

) K∏
i=1

d

ddi
Λ(|Bx(di) ∩ V|).

(5.3)

The measure of the region is a piecewise defined function dependent on di, 1 ≤
i ≤ K due to the ball intersecting the boundary, see Fig 5.2 for the case

K = 1. Explicit calculation of the mean number of points in Bx(dK) ∩ V is

given below for the two cases when the ball does and does not intersect the

boundary.

Λ(Bx(dK) ∩ V) =

2π
∫ dK

0
λ(z)udu, |x|+ dK ≤ R

2
∫ π
θ̂

∫ dK
0

λ(z)ududθ + 2
∫ θ̂

0

∫ r̂
0
λ(z)ududθ, otherwise

(5.4)
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Λ(Bx(dK) ∩ V) =



πλ0d
2
K

(
1 + b

2
d2
K − bR2

2
+ br2)

)
, |x|+ dK ≤ R

−λ0
8

(
d2
K

(
5bd̄K + π (2b (R2 − 2r2)− 4)

)
+4bd4

K arctan
[

d̄K
R2−(dK−r)2

]
− 3πbd4

K

+2d2
Kb (d2

K+4r2−2R2) arctan
[
d2K+r2−R2

d̄K

]
+(b(r2 −R2) + 4)d̄K − 4πR2

+8d2
K arctan

[
d2K+r2−R2

d̄K

]
+8R2 arctan

[
−d2K+r2+R2

d̄K

])
,

otherwise

(5.5)

where we define θ̂ = π − arccos
[
r2+d2K−R

2

2dKr

]
;

r̂ = −r cos θ +
√
R2 − r2 sin2 θ; z =

√
u2 + r2 − 2ru cos(θ) and

d̄K =
√

(−dK + r +R) (dK + r −R) (dK − r +R) (dK + r +R). The corre-

sponding derivative of eq.(5.5) is,

d

ddK
Λ(Bx(dK) ∩ V) =



λ0π(2dK(1 + br2) + 2bd3
K − bdKR2), |x|+ dK ≤ R

λ0dK
2

(
bd2
K

(
3π−4 arctan

[
d̄K

R2−(dK−r)2

])
−4bd̄K + π (2br2 − bR2 + 2)

−2b (d2
K+2r2−R2)

−4 arctan
[
d2K+r2−R2

d̄K

])
.

otherwise;

(5.6)

The above two equations provide all we need to write the nearest neighbour

distribution to the Kth neighbour given by eq.(5.3) which we will use later

in calculating K-Coverage in cooperative transmission schemes2.

2Remark: for the case when the ball intersects the boundary it is just as easy to work in
Cartesian coordinates, particularly when calculating the derivative as we can use Leibniz’s
technique. Furthermore, for a large domain we can largely neglect the effect the curvature
has on the disk, to simplify the above expressions; in fact, we can ignore boundaries
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5.3 Probability of connection to the Kth near-

est neighbour

We now introduce a slightly modified version of the interference-limited con-

nection function used in Chapter 4. For this model we need to condition on

the set of interferers being further away from the Kth nearest transmitter,

which means that we also need to condition on the PP having at least N > K

points, namely the BPP discussed in 2.1.2.

The signal in a CoMP system is modelled as the sum of the K nearest

signals, and the interference comes from all other nodes, which can be written

as,

H(r, d1,..., dK) = P[SINRK ≥ q|d1, ..., dK ,Φ(A) = N ]

= P

[ ∑K
i=1 |hi|2g(di)

σ2 + γ
∑N

j=K+1 |hj|2g(dj)
≥ q

∣∣∣∣d1, ...dK ,Φ(A) = N

]

(1) = EIK

[
P

[
K∑
i=1

|hi|2g(di) ≥ q(σ2+IK)

∣∣∣∣d1, ...dK ,Φ(A) = N, IK

]]

(2) = EIK

 K∑
m=1

K∏
l=1
l 6=m

(
g(dm)

g(dm)− g(dl)

)
exp

(
−q(σ

2 + IK)

g(dl)

)
=

K∑
m=1

K∏
l=1
l 6=m

(
g(dm)

g(dm)−g(dl)

)
exp

(
− qσ2

g(dm)

)

× E|hs|2,g(ds)

[
N̄∏

s=K+1

exp

(
−γq|hs|

2g(ds)

g(dm)

)]
(5.7)

altogether provided we are far enough away.
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H(r, d1,..., dK) =(3)

K∑
m=1

K∏
l=1
l 6=m

(
g(dm)

g(dm)− g(dl)

)
exp

(
− qσ2

g(dm)

)
Eg(ds)

[
1

1 + γqg(ds)
g(dm)

]

(4) =
K∑
m=1

K∏
l=1
l 6=m

(
g(dm)

g(dm)− g(dl)

)
exp

(
− qσ2

g(dm)

)

× exp

(
−2

∫ θ̂

0

∫ R̂

dK

λ(z)

1 + g(dm)
γqg(ds)

dsddsdθ

)
,

(5.8)

where (1) we make the substitution IK = γ
∑N̄

j=K+1 |hj|2g(dj) , in (2) we have

calculated the inner probability noticing
∑K

i=1 |hi|2g(di) can be treated as a

sum of K independent exponential random variables with different means
1

g(di)
[Bib13] and in (3) we take the expectation of |hs|2. In (4) we approx-

imate the BPP as PPP to use the PGFL to compute the final expectation

since we assume the network to be very dense. The integration region in

eq.(5.8) is over the whole volume excluding the ball Bx(dK), and the density

has been translated using the cosine rule, where z =
√
r2 + d2

s − 2rds cos θ,

R̂ = r cos θ +
√
R2 − r2 sin2 θ and θ̂ = min

[
arccos

[
r2+d2K−R

2

2rdK

]
, π
]
. We now

introduce the K-coverage probability metric.

5.4 Coverage probability

The most important metric in this chapter is the K-Coverage probability, that

is the probability a user located at r can successfully decode the sum of the

signals from its K closest APs. Namely, a user is in coverage if the SINR

measured at the receiver is greater than the threshold parameter q. As a

result, the coverage probability can be written as averaging over all possible

locations of the K intended transmitters, once again assuming the natural

ordering of points with d1 being the closest.
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CK(r, b, λ0πR
2) =

∫ dmax

0

...

∫ dmax

dK−1

H(r, d1, ..., dK)fKNND(r, d1, ..., dK)ddK ...dd1,

(5.9)

where dmax = r+R is the maximum separation between a MU and an AP, CK

is the coverage probability for the K nearest APs and H is given in eq.(5.8)

and fKNND in eq.(5.3). The K-Coverage probability is radially symmetric,

since the distribution of APs is also radially symmetric, and as a result is

governed by the radial position of the MU, the parameter b and average

number of nodes in the network (λ0πR
2). In general this can only be solved

numerically, even for the case when K = 1, with the exception when the

domain is R2 and η > 2, which we will see later in Sec.5.5. As a result let

us first consider the special case of K = 1, where a user connects only to

its closest AP, i.e. there is no cooperative transmission scheme and all other

APs (may) act as interferers.

5.4.1 Coverage in non-cooperative networks

We first begin with the nearest neighbour distribution. The nearest neigh-

bour distribution, fNND (where we drop K = 1 in the notation for simplicity),

is obtained through eq.(5.3), by substituting the in eq.(5.5) and eq.(5.6). As

an example we give the case when the distribution of users is uniform below.

fNND(r, d1, b = 0) =



2d1λ0πλ0 exp(−πλ0d
2
1) r + d1 ≤ R,

λ0d1

(
π − 2 arctan

[
d21+r2−R2

d̄1

])
× exp

(
λ0
8

(
d̄1 − π(d2

1 +R2)

+2d2
1 arctan

[
d21+r2−R2

d̄1

]
+2R2 arctan

[
−d21+r2+R2

d̄1

]))
otherwise.

(5.10)
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As before, the case when the ball does not intersect the boundary can

be given in a nice compact form, when boundaries need to be accounted the

expression becomes more complicated. We plot the pdf of nearest neighbour

distribution for different locations x = (r, 0) in the circular domain, for a

range of different parameters b in Fig.5.2.

For a node not at the centre, the pdf is a piecewise function since as

the ball of radius d1 grows, it will eventually intersect the boundary of the

domain. Furthermore, both the boundary effects and the underlying distri-

bution impact the average distance to the nearest neighbour. It is not hard

to see that for a uniform PPP the average distance from a user to the nearest

neighbour is much smaller compared with a user at the boundary. This be-

haviour indicates that you have to receive a message from an AP further away

on average near the boundary; an effect which is amplified in the concave

case, and mitigated somewhat in the convex case where the density of nodes

near the border increases. As such the NND depends on both the location

of the MU and the distribution of APs modelled by Φ, with boundary effects

acting to increase it.

The remaining piece of the jigsaw is the connection probability for K = 1.

Fortunately eq.(5.8) reduces to a much simpler form in this case,

H(r, d1) = exp

(
− qσ2

g(d1)

)
exp

(
−2

∫ θ̂

0

∫ R̂

d1

λ(z)

1 + g(d1)
γqg(ds)

dsddsdθ

)

= exp

(
− qσ2

g(d1)

)
exp

(
−λ0

∫ θ̂1

0

ζ(R̂)− ζ(d1)dθ

)
,

(5.11)

where R̂ = r cos θ +
√
R2 − r2 sin2 θ we define the function ζ(x) as,

ζ(x) =
x2

6

(
6(1− bR2

2
+ br2) 2F1

(
1,

2

η
;

2

η
+ 1;− xη

dη1qγ

)
+ 3x2b2F1

(
1,

4

η
; 1 +

4

η
;− xη

qγdη1

)
− 8brx cos θ2F1

(
1,

3

η
; 1+

3

η
;− xη

qγdη1

))
.

(5.12)
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Figure 5.3: The Laplace functional from eq.(5.11) plotted as a function of
radial position r for a range of fixed separation distances d1. From left to
right the value of b that determines the distribution of points in the disk are
2/R2, 0,−2/R2 with the profiles of the AP distribution plotted in the lower
right of each subplot. Parameters: η = 6, q = 1, γ = 1, λ0 = 1.

In general we are left with a semi-analytic form of eq.(5.11) except at the

centre where

H(r, d1) = exp

(
− qσ2

g(d1)

)
exp

(
2d2

1qγ(2 + bd2
1 − bR2)

4(1 + qγ)

− 4R2
2F1

(
1,

2

η
,+

2

η

Rη

qγ dη1

)
+ bR4

2F1

(
1,

4

η
, 1 +

4

η
,
Rη

qγ dη1

))
.

(5.13)

The first term in eq.(5.11) is the usual noise term for a Rayleigh channel

and does not depend to the location of the MU. The second term is the

Laplace transform of the random variable IK which depends on the location

of the MU, the network geometry and the underlying spatial distribution of

APs.

As in Sec 4 the connection probability increases when the MU is located

near the boundary due to a decrease in the interference field, regardless of

the underlying distribution of APs. For a nearest neighbour communication
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model the impact of boundaries can have a greater impact on the connection

probability since it is conditions on all other j interferers being further away

than d1(≤ dj). Conditioning on longer range communications (larger d1) re-

sults in a reduction in the connection probability even though the interfering

nodes are also further away. Intuitively this is a result of conditioning on the

closest AP being d1 away. Firstly, by conditioning on d1 being further away,

the set of interferes are a PPP restricted to the region Bx(d1)∩V . If, say, the

nearest interferer’s distance can be expressed as d2 = d1 + c for some c > 0

then the area of the annular region in which the nearest interferer can be is an

increasing function of d1. Therefore, the ratio d2/d1 is stochastically decreas-

ing with respect to d1 which results in the connection probability decaying to

zero. Finally, in densely populated regions the connection probability drops

due to interference, for example at the centre of the domain for the concave

case, while the converse is also true.

Having computed both the NND and the connection probability we are

in a position to calculate the coverage probability. We first re-write eq.(5.9)

as

C(r, b, λ0πR
2) =

∫ dmax

0

H(r, d1)fNND(r, d1)dd1, (5.14)

where we drop the K notation for simplicity. Although the distributions

and connection probability are much simpler a closed form expression still

remains out of reach, so we analyse it through Fig 5.4.1.

From Fig 5.4.1 we observe that the coverage probability drops at the

boundary, even though the interference field is reduced. Simply put, at the

border the nearest neighbour is further away on average (see Sec.2.1.1), and

the ratio of dk
d1

for d2, d3, ... is closer to one, so the intended and interfering

signals have a similar strength leading to outage. Near (but not at) the

boundary the AP distribution can either amplify the border effects creating a

sweet spot that maximises the coverage probability (convex) or mitigate them

(concave), again which is related to ratio of the expected distances between
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Figure 5.4: The coverage probability, eq. (5.14), as a function of radial
position r from the centre to the boundary, with σ2 = q = γ = 1, R = 5
and η = 2, 4 for the left and right panels respectively. The solid lines are for
λ0 = 1 and the dashed lines are for λ0 = 10.
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the transmitters and nearest interferes. This phenomenon also applies when

considering the distribution of points. For example, the convex case performs

extremely poorly at the centre, even though this is where the interference field

is minimised, whilst the concave cases outperforms the others near the centre,

even as the density increases. Therefore, even away from the boundaries

it is beneficial to be closer to your nearest AP, regardless of the increased

interference field in this model.

As expected from the previous chapter, for a larger path loss exponent the

coverage probability increases since the signal decays more quickly therefore

only nodes that are close to d1 contribute to any meaningful interference

effects. In addition, for a non-singular path loss function we should also

expect that as the density increases, users in regions where the density of

APs is high (e.g. centre of the concave case) will become unable to connect

( they are in outage).

5.5 Dense network limits

Since this model is based on very dense networks, it is interesting to un-

derstand what happens to the location dependent coverage probability as

N̄ = λ0πR
2 → ∞. First note that taking the mean number of points to be

infinite can be done by allowing λ0 → ∞ and fixing R, or R → ∞ and λ0

fixed. For simplicity we consider the case when R → ∞, which results in

λ(r) = λ0. Moreover, because we assume there will be a large proportion

of interfering nodes, we neglect any noise in the channel, setting σ2 = 0.

Let us denote C∗(r, b, λ0πR
2) = lim

N̄→∞C(r, b, λ0πR
2), or in words the coverage

probability as the mean number of APs goes to infinity. Recall that we use
∗ to denote some limit as the number of nodes goes to infinity.

To compute C∗(r, b, λ0πR
2) we need both the nearest neighbour distribu-

tion and connection probability in the dense network limit. Since we allow

R→∞, this means that b→ 0 which allows us to use the nearest neighbour
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distribution model for a uniform PPP in R2, given by,

f ∗NND(d1) = 2πλ0d1e
−λ0πd21 (5.15)

For the coverage probability we also need the nearest neighbour connection

probability, recalling that R̂ = r cos θ+
√
R2 − r2 sin2 θ, where we start from

eq.(5.11).

H∗(r, d1) = exp

(
− qσ2

g(d1)

)
exp

(
−
∫ θ̂

0

∫ R̂

d1

λ(z)

1 + g(d1)
γqg(ds)

dsddsdθ

)
−→
R→∞ exp

(
− qσ2

g(d1)

)
exp

(
−
∫ 2π

0

∫ ∞
d1

λ0

1 + g(d1)
γqg(ds)

dsddsdθ

)

= exp

(
− qσ2

g(d1)

)
exp

(
−πλ0d

2
s 2F1

(
1,

2

η
; 1 +

2

η
;− dηs

qγdη1

) ∣∣∣∣ds=∞
ds=d1

)

=


exp

(
− qσ2

g(d1)

)
exp

(
−2d21π

2λ0(qγ)
2
η csc( 2π

η )
η

−πλ0d
2
1 2F1

(
1, 2

η
; 2+η

η
;− 1

qγ

))
η > 2,

0 η ≤ 2.

(5.16)

Now all that remains is to combine f ∗NND and H∗(r, d1) into eq.(5.14) to

obtain C∗(r, b, λ0πR
2). Through direct application of eq.(5.14) we obtain,

C∗(r, b, λ0πR
2) =

∫ ∞
0

f ∗NND(d1, r)H∗(r, d1)dd1

=


0 for η ≤ 2,

1

1+
2qγ 2F1(1,1− 2

η ;2− 2
η ;−qγ)

η−2

for η > 2.
(5.17)

Some interesting particular cases include when q = γ = 1, η = 4, C∗(r, b, λ0πR
2) =
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4
4+π

and η = 6, C∗(r, b, λ0πR
2) = 9

9+
√

3π log[8]
. A similar result can be found

by taking λ0 → ∞ and taking R to be fixed. In this case, by using the av-

erage spacing between points scales like 1√
λ0

, and making the approximation

that boundary effects only matter at the boundary, one can show a similar

result. This approach takes far more steps, but does allow for the coverage

probability to be zero at points where the density is zero for η > dimension.

From the numerics shown in Fig 5.5 we see that for η = 2, C∗(r, b, λ0πR
2)→

0. This is again an example of when the path loss exponent is equal to or

less than the dimension the global behaviour dominates and the interference

field diverges. However, for η > 2, C∗(r, b, λ0πR
2) → constant since only

a smaller neighbourhood of nodes contribute to the interference and thus it

encapsulates the more local behaviour of the network. The bottom panel of

Fig 5.5 shows some variation in regions near where the distribution of APs

goes to zero; for the path loss exponent less than or equal to the dimension

the coverage goes to zero much faster. As more nodes get added to the net-

work, the additional interference counteracts the increased proximity of the

transmitting node. For non-singular path loss model we should expect the

coverage probability to tend to zero everywhere for λ0πR
2 →∞.

5.6 Optimal Coverage Probability

An interesting question that arises from this work, is what is the optimal

distribution of APs to meet network demands? Provided we have some prior

knowledge to the distribution of MUs at a particular instant, then we should

be able to optimise how we deploy the APs. For simplicity we model the

distribution of APs in a similar fashion to users so we can interpolate between

the two cases when APs are predominantly near the boundary (convex) or

centre (convex). Therefore, let the distribution of MUs be given by,

ρ(r) = ρ0(1 +
b̂R2

2
− b̂r2) (5.18)
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Figure 5.5: Surface plot of the coverage probability as function of radial posi-
tion r (vertical) and AP distribution b (horizontal) as expressed in eq.(5.17).
The system is assumed to be Noise free, or alternatively the interference from
neighbouring nodes dominates. The left and right panels show the coverage
probability for different path loss exponents η = 2, 4, whilst the top and bot-
tom panel have different densities λ0 = 1, 10000 respectively. The disk has
radius R = 5 and the constant in the bottom right panel (dark red region
away from regions where the density is zero) is 4

4+π
.
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Figure 5.6: The optimal distribution of AP given a deployment of MU for
different λ0 with R = 5, and η = 2, 4 for the left and right panel respectively.

where b̂ plays much the same role as b does in eq.(5.1), whilst ρ0 is the density

of APs. The average coverage, denoted as C̄, is obtained by averaging over

the distribution of MUs

C̄(b, b̂, λ0πR
2) =

2

R2

∫ R

0

ρ(r)C(r, b, λ0πR
2)rdr (5.19)

We can maximise eq. (5.19) to give the optimal value of b

b∗(η, b̂, λ0πR
2) = arg max

b
C̄(b, b̂, λ0πR

2), (5.20)

conditioned on η, b̂ and density of APs λ0 in V .

When the spatial distribution of MUs is convex (representing the de-

mand of data in the downlink), the network architecture (in terms of the

distribution APs) should also be convex (representing the supply of data in

the downlink). However, when the MUs are located near the boundaries of

the domain, then the AP distribution should be closer to uniform. This is
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again a consequence of the trade-off between interference and boundary ef-

fects. The role of η also plays an important role, the performance of a 5G

network with a uniform deployment of APs improves as η increases. One can

see this by considering the limiting case as η →∞, which is simply the disk

connection model, and provided the density of APs is dense enough, each

MU should easily be served. Finally, as the network becomes increasingly

dense, the optimal distribution of APs can be achieved through a uniform

deployment, as we would expect from eq.(5.17).

These results highlight how the spatial densification of networks can bring

about improved network performance, particularly with 5G in mind. For

instance, in a city such as New York where η ≈ 6 3then a uniform deployment

of APs would meet network demands well, although the density of APs would

need to be higher due to the increased network traffic. For areas where η

is typically smaller then a more intelligent network needs to be deployed, in

order to meet demand and not waste resources. For example, a real time

thinning of the APs could be used to optimise network resources as the

distribution of MUs goes from concave during work-hours to convex at night

time.

We now return to the CoMP network, and aim to compare its performance

with the non-cooperative case.

5.7 Cooperative Multi Point Network

In general when there are K cooperative APs, the coverage probability is

given by eq.(5.14). Even for the simplified case when K = 2 for the K-

coverage probability in R2, provided η > 2, then the connection function

3The large path loss is a result of the large number of high-rise buildings obstructing
signal propagation.
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remains a complicated expression.

H(r, d1, d2) =
2∑

m=1

2∏
l=1
l 6=m

(
g(dm)

g(dm)− g(dl)

)
exp

(
− qσ2

g(dm)

)

× exp

(
−
∫ θ̂

0

∫ R̂

d2

λ(z)

1 + g(dm)
γqg(ds)

dsddsdθ

)
=

(
dη2

dη2 − d
η
1

)
exp

(
− qσ2

g(d1)

)

× exp

(
−
λ0qγ2πd2−η

2 d2
1 2F1

(
1, η−2

η
; 2− 2

η
;−qγ

(
d1
d2

)η)
η − 2

)
+

(
dη1

dη1 − d
η
2

)
exp

(
− qσ2

g(d2)

)

× exp

(
−
λ0qγ2πd2

2 2F1

(
1, η−2

η
; 2− 2

η
;−qγ

)
η − 2

)

(5.21)

which when substituted in eq.(5.14) leads to an intractable solution. As a

result we rely on numerical integration and simulations to analyse the per-

formance of K cooperative networks. From Fig 5.7 we see that, as we might

expect, the coverage probability improves under a cooperative transmission

scheme, with some of the more significant improvements coming for convex

case.

Next let us discuss the case when the user connects to its nearest AP, and

the remaining K−1 APs turn off to reduce the impact of interference. In this

case, the connection probability is the same as that expressed in eq.(5.11)

except the radial integral is from dK to R̂ = r cos θ +
√
R2 − r2 sin2 θ.

Hg(r, d1, dK) = exp

(
− qσ2

g(d1)

)
exp

(
−2

∫ θ̂

0

∫ R̂

dK

λ(z)

1 + g(d1)
γqg(ds)

dsddsdθ

)
, (5.22)

where z =
√
d2
s + r2 − 2dsr cos θ. The coverage probability in this case is
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Figure 5.7: The coverage probability for a CoMP scheme, with parameters :
R = 5, λ0 = 1, η = 4 and γ = q = 1. The circle markers are the K-coverage
probability while the square markers are the nearest neighbour AP coverage
probability with the next K − 1 AP turned off.
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calculated by averaging over the possible locations of the Kth AP, and then

averaging over the locations of d1 as before. Here we use the the distribution

of the Kth AP conditioned on the location of d1 which is given by eq.(5.2).

This allows us to write the coverage probability as,

C(r, b, λ0πR
2)=

∫ Rmax

0

∫ Rmax

d1

fNND(d1, r)fKNND(dK , d1, r)Hg(r, d1, dK)ddKdd1.

(5.23)

As before we analyse the above equation numerically and plot the results

in Fig 5.7, where we focus on the case when a MU is located at the centre

of the circular domain. First, the coverage probability for the uniform case

(blue) improves for higher larger values of K, as the set of interferers are now

further away on average compared with our initial model (K = 1), a similar

result is observed for the concave case (purple). Interestingly the coverage

probability improves very little for large K in the convex case, largely due

to the main obstacle in connecting being the nearest AP being so far away

rather than the interference field.

5.8 Discussion

In order for the next generation of wireless networks to deliver the anticipated

improvements in network performance it is likely to be ultra dense and have

many network tiers. The network demand is likely to be non-uniform as is

the distribution of users. We explore how a simple adaptive transmission

scheme should be used to achieve the necessary network flexibility, by a sim-

ple thinning of APs to ensure optimal coverage. In highly populated regions,

such as city centres during work/shopping hours, there also needs to be a

large number of APs to serve users, with additional nodes being activated

to meet demand during peak times. Conversely, when the population tends

to disperse, for example in the evenings as people return home, a more uni-

form approach is sufficient, with only an increased number of APs needed
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in densely populated areas like tower blocks etc. This can be viewed as

having multiple smaller disks with a concave distribution of APs in a larger

area which outside these hotspots is uniform. Alternatively, APs near the

boundary, of in sparsely populated regions should increase their transmission

power, and thus their radius of coverage.

In addition we also discuss the limiting values of the coverage probabil-

ity in ultra dense networks in terms of the path loss exponent, observing a

transition when the path loss exponent η equals the dimension. We should

expect our analysis for the optimal distribution of APs to still hold for dif-

ferent path loss models, but the coverage probability may be much less. For

example, from the previous chapter we saw that for the non-singular path

loss then we should expect the coverage to decay to zero regardless of η, and

both [AlA17] and [Zha15] show under different path loss models (stretched

exponential and multi-slop path loss respectively) the coverage goes to zero

in the dense network limit.

Naturally, by using a collaborative transmission scheme the coverage

probability increases, whilst we should also expect improvements in network

performance with more sophisticated interference management techniques.
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Chapter 6

Low Power Wide Area

Networks

In this chapter we explore an open problem that has recently seen a rapid

growth in interest since Ref [Geo17] where they show that Long Range (LoRa)

networks, which is an example of the more general Low Power Wide Area

Network (LPWAN), do not scale with the number of devices. A LoRa net-

work consists of a NetServer, gateways and end devices forming a star of star

network with the leaves being the end devices [Geo17], an illustrative exam-

ple is given in Fig 6.1. Devices within these networks connect to a gateway if

they meet both a noise condition, and the signal is four times the maximum

interfering signal. This connection model differs from the ones previously

considered in two key ways: firstly it is in the uplink, so we know the loca-

tion of the receiver but not necessarily the transmitter, and secondly, instead

of a product of signals, we are only concerned with the maximum interfering

one.

In this chapter we first model a LoRa network with a single gateway, and

discuss how our calculations can be further generalised to multiple gateways.

For the single gateway model we consider a set of mobile wireless devices

(transmitters) trying to connect to a single gateway (receiver) located at

the centre of a circular domain and analyse the connection probability and
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SF Packet air-time ms Transmits per hour SNR qSF dBm

7 36.6 98 -6
8 64 56 -9
9 113 31 -12
10 204 17 -15
11 372 9 -17.5
12 682 5 -20

Table 6.1: A table taken from [Geo17] on some features on the spreading
factors in LoRa networks

coverage probability in the uplink case. One of the main reasons why LoRa

networks are so popular in the deployment of smart technologies is due to

them having variable data rates which help to improve network coverage

and/or energy consumption [Geo17]. That is to say, the further away you

are from the gateway the slower the data rate is which helps to improve

the probability of its success [Geo17]. The length of the transmission is

determined by the spreading factor (SF) and each increment in spreading

factor doubles the length of time needed to transmit the same amount of

data [Fia18]. To summarise, MUs that are far from the gateway in which

they wish to communicate have a high spreading factor resulting in the time

for data transmission being much longer, allowing communication over larger

distances. For the finer details on how end devices associate and transmit to

their nearest gateway in these networks the reader is referred to Ref [Raz17,

Van15,Aug16,Fia18],. We depict these variable data rates with the different

coloured annuli in Fig. 6.1, with the furthest annulus having the highest SF.

The following work was done during a three month placement at Toshiba

in collaboration with the authors of Ref [Geo17] to extend previous work to

networks with non-uniform deployments of end devices and multiple gate-

ways.
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6.1 Single Gateway System Model

Consider a PPP Φ with intensity λ(x) in a circular domain V with radius

R, with mean number of points N̄ = Λ(V), let the distance from the closest

node be denoted as d1, d2, .... Assume x = (x, 0) (in polar coordinates) is not

part of Φ, and is located in the annulus

A(x) = {lmin(x) ≤ x ≤ lmax(x), θ ∈ [0, 2π) : {x, θ}} (6.1)

which has mean number of points given by Λ(Ax(lmin, lmax)). For simplicity

we relax the notation for the annulus and write it as A(x) in the subsequent

analysis. Consider the gateway to be at the centre of the domain, with

m different regions each with an assigned different qSF , see Fig 6.1. To

make it easier analysing the qSF we use a modified version of the path loss

function gL(r) = (ψ/(4πr))η, where ψ is the carrier wavelength, and we

use the subscript L to differentiate it from the normalised model before.

Finally, let γ be a thinning on Φ, which is usually observed to be small

(γ ≈ 0.01) [Geo17].

6.2 Connection Probability for a single gate-

way

An end device can connect to a particular gateway if and only if the following

two criteria are satisfied [Geo17]:

1. The received SNR ≥ qSF at the gateway where qSF is a threshold

parameter that depends on the location of the end user.

2. The received signal is four times stronger than the maximum interfering

node with the same spreading factor (SF).

The first criterion describes the quality of the channel and is independent

of the underlying distribution of points and we denote this probability H0.
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Figure 6.1: Left: An example of a LoRa network with a single gateway, where
the different colour annuli represent different spreading factors qsf increasing
with r, the solid line the intended uplink of a device, and the dashed line the
maximum interfering signal. Right: An example of a situation of multiple
gateways, where again the colours represent different spreading factors.

The spreading factor is determined on the separation distance between the

end user and gateway. A higher qSF means a lower receiver sensitivity (a

gateway and end user can transmit over longer distances) but at the cost of

a longer packet air-time and the number of transmits per hour, see Table 6

taken from [Geo17]. Assuming a Rayleigh channel model then we obtain an

identical expression to that in Table 2.1.

H0(x) = P
[
SNR ≥ qSF

∣∣∣∣x] = exp

(
− qSFσ

2

P1gL(x)

)
. (6.2)

We note however, that qSF does depend on the location of the end-user in

relation to the gateway.

The second criterion, denoted H1 gives a far more involved expression,

and unlike previous models, the signal only needs to be four times that of

the maximum interfering signal.

H1(x) = P
[

|hx|2gL(x)

maxk∈Φ(A(x)) |hk|2gL(dk)
≥ 4

∣∣∣∣Φ(A(x)) 6= 0

]
+ 1 · P [Φ(A(x)) = 0]

(6.3)
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H1(x) = Ed∗k,|h∗k|2
[
exp

(
−4|h∗k|2g(d∗k)

gL(d1)

)]
· (1− e−γΛ(A(x))) + e−Λ(γA(x))

= EZ∗k

[
exp

(
− 4Z∗k
gL(d1)

)]
· (1− e−γΛ(A(x))) + e−γΛ(A(x)),

(6.4)

where k∗ denotes the node with the maximum signal, and Z∗k denotes the

maximum interfering signal and has distribution FZk(z). The second term is

the probability that the annulus which the end user is in is empty; in this case

it does not have to compete with any interfering signals and always connects.

To calculate FZk(z) we follow a similar approach to that in Ref [Geo17], and

outline it below for completeness. The pdf of the distance to a user located

at di within the same annulus as the end user can be written as

fdi(x) = 2πdiλdi(x), (6.5)

where λdi(x) is the original distribution of end users in the domain that is

normalised according to the annulus in which x lies, i.e λ0 = N̄
Λ(A(x))

where

lmin, lmax are the minimum and maximum of the radius of the annuli in which

x lies. Transforming this pdf in terms of the path loss function gL(.) gives

fgL(y) = 2πλ0

(
1− bR2

2
+ b

(
ψ

4π

)2

y−
2
η

)(
ψ

4π

)
y−

1
η
−1

η

(
ψ

4π

)
y−

1
η
−1

=
2πλ0

η

(
1− bR2

2
+ b

(
ψ

4π

)2

y−
2
η

)(
ψ

4π

)2

y−
2
η
−1.

(6.6)

Calculating the pdf of the product of fg(·) and the channel gain is done by
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using the standard expression for multiplying continuous random variables.

fZ(z) =

∫ ∞
−∞

fX(x)fY

(z
x

) 1

|x|
dx

=

∫ gL(lmax(x))

gL(lmin(x))

λgL(x, y)e−
z
y

1

|y|
dy

=
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ψ

4π

)2

y−
2+2η
η e−

z
ydy

=
2πλ0

η

(
ψ

4π

)2 [(
1− bR2

2

)
Γ

[
η + 2

η
,
z

y

]
z−

2
η
−1

+ b

(
ψ

4π

)2

Γ

[
η + 4

η
,
z

x

]
z−

4
η
−1

]y=gL(lmin(x))

y=gL(lmax(x))

.

(6.7)

Integrating with respect to z once more to obtain the CDF, we obtain

FZ(z) =
2πλ0

η

(
ψ

4π

)2 [(
1− bR2

2

)
η

2

(
y−

2
η (e−

z
y − 1)− Γ

[
η + 2

η
,
z

y

]
z−

2
η

)
+ b

(
ψ

4π

)2
η

4

(
y−

4
η (e−

z
y − 1)− Γ

[
η + 4

η
,
z

y

]
z−

4
η

)]y=gL(lmin(x))

y=gL(lmax(x))

= πλ0

(
ψ

4π

)2 [(
1− bR2

2

)
Q(y, 2) +

b

2

(
ψ

4π

)2

Q(y, 4)

]y=gL(lmin(x))

y=gL(lmax(x))

,

(6.8)

where we have defined Q(y, α) =
(
y−

α
η (e−

z
y − 1)− Γ

[
η+α
η
, z
y

]
z−

α
η

)
. The

number of points in a particular annulus is a Poisson random variable with

mean γΛ(A(x)) = γλ0|A(x)| (recall γ is a thinning of Φ). Furthermore,

the cumulative density function (CDF) of the maximum of n i.i.d. random
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variables is the product of n CDFs. That is,

FZ∗k (z) =
∞∑
k=1

[FZ(z)]k
(γΛ(A(z)))ke−γΛ(A(z))

k!

1

1− exp(−γΛ(A(z))))

=
1

1− exp(−γΛ(A(z))))
e−γΛ(A(z))

(
eγΛ(A(z))FZ(z) − 1

)
,

(6.9)

where FZ∗k (z) is the CDF of the maximum interfering signal. Substituting

this into eq.(6.4) gives,

H1(x) = EZ∗k

[
exp

(
− 4Z∗k
gL(x)

)]
+ e−γΛ(A(x))

= exp

(
− 4z

gL(d1)

)
FZ∗k (z)

∣∣∣∣∞
0

+
4

gL(x)

∫ ∞
0

exp

(
− 4z

gL(x)

)
FZ∗k (z)dz + e−γΛ(A(x))

=(1)

∫ ∞
0

exp (−ẑ)FZ∗k

(
gL(x)ẑ

4

)
dẑ + e−γΛ(A(x)).

(6.10)

In (1) we use the definition of the CDF and make the substitution ẑ = gL(x)
4
z,

which matches that in [Geo17] when the density is uniform. Clearly this

connection function is far more complicated than the one given previously

by averaging over the interference from all users, and as such any further

calculations like the mean degree or coverage would be intractable using

eq.(6.10). As such, we now focus on trying to approximate the connection

function with interference below.
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6.2.1 A Sparse approximation

For low densities, or else small γ as is often the case, we approximate node

closest to the gateway to have the strongest interfering signal.

H1(x) ≈ Ed∗k

 1

1 +
4gL(d∗k)

gL(x)

 · (1− e−Λ(A(x))) + e−Λ(A(x)) (6.11)

H1(x) =

∫
A(x)

1

1 + 4gL(z)
gL(x)

fNND(z)dz · (1− e−γΛ(A(x))) + e−γΛ(A(x)), (6.12)

where fNND(x) denotes the nearest neighbour distribution in the correspond-

ing annulus and is calculated by differentiating the void probability and tak-

ing its absolute value. We observe fNND(x) is given by,

fNND(x) =
2πλ0γ

Λ(A(x))

((
1− bR

2

2

)
x− bx3

)
e
−πλ0γ

((
1− bR

2

2

)
(x2−l2min(x))+ b

2(x4−l4min(x))
)
.

(6.13)

The expression is a good approximation when the value of γ is small due to

the sparsity of interfering nodes. This yields an approximation for H1,which

can be written as,

H1(x) ≈ −
∫
V(x)

1

1 + 4g(z)
g(x)

d

dz
e−Λ(A(x,z))dz · (1− e−Λ(A(x))) + e−Λ(A(x)),

(6.14)

where V (lmin(x), z) is the reduced annulus with radial limits [lmin(x), x], and

Λ(·) represents the intensity measure for a general non-uniform PPP in V .

It turns out this approximation works well for small ℘, particularly when the

end user is close to the gateway.
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Figure 6.2: The connection probability H0(x),H1(x). The parameters are
chosen identical to those in Ref [Geo17]: gL(x) =

(
ψ

4πx

)η
; η = 2.7; b = 0; γ =

0.01;P1 = 19dBm;σ2 = −174 + 6 + log10[125000], R = 12km and ψ =(
3×105

868×106

)
km. Note that the wavelength ψ is expressed in the ratio of the

speed of light in km/s and the frequency of the carrier wave. The markers
are simulated points and the lines are approximations given in eq.(6.14).
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6.2.2 Coverage

As in Sec 5 we can define the coverage probability that an end device is in

coverage, which is now the uplink case,

C1(λ0πR
2, b) =

2λ0

R2

∫ R

0

H(x)

(
1− bR2

2
+ bx2

)
xdx. (6.15)

The number of end devices increases, the coverage probability decreases, as is

shown in Fig 6.3 . For a fixed annulus assignment where the spacing between

annuli is fixed, the coverage probability is better for those networks where

the density is highest near the boundaries.

6.3 Discussion

Ref [Geo17] gives a semi-analytic expression for the connection probability

and a crude approximation for the coverage using a first order expansion.

Looking at the problem in detail, it appears that when the thinning of

the point process is high, the network becomes very sparse and we can ap-

proximate the strongest interferer as the closest one within the corresponding

annulus. This method provides some initial insight into the problem with a

far more tractable solution.

For non-sparse networks, the connection probability can only be given in

semi-analytic form, as was shown in [Geo17]. Adding increased complexity in

terms of a non-uniform density of users comes at little cost, since everything

remains semi-analytic and the numerical computation is very similar.

We should expect by adding more gateways and increasing the network

diversity, the coverage probability should improve. For the case where the

gateways are identical then this problem follows the analysis done in this

section, however a more interesting problem would be where the gateways

are different and have different spreading factors at different distances. This

would mean an end user wouldn’t associate to its nearest gateway but one
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Figure 6.3: The coverage probability for a range of different densities for
different distributions of end users. The convex, concave and uniform refer
to the distribution used in the previous chapter, with b = 2/R2, 0,−2/R2

respectively. The markers are simulated data points after 10000 trials, and
the solid lines are approximations of the coverage probability using equations
eq. (6.15) and eq.(6.14) Parameters:gL(x) =

(
ψ

4πx

)η
; η = 2.7, γ = 0.01;P1 =

19dBm, σ2 = −174 + 6 + log10[125000], R = 12km,ψ =
(

3×105

868×106

)
km.
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which maximises the spreading factor whilst ensuring the interference is not

too high to cause outage.
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Chapter 7

Spatio-temporal Networks

As of this far we have only analysed a snapshot of the network at a particular

instance in time. However, even with a fixed topology, SRGGs experience

temporal fluctuations due to random link failures [Kar08], which are often

spatially correlated [Kar10]; or even as nodes turn off from the networks,

the local and global connectivity properties of the network can drastically

change. Mobility can help to mitigate the impact of random link failures in

these dynamic networks, as nodes continually cross paths [Gup00,Gro01]. As

a consequence, we extend our model to the connectivity in mesh networks and

analyse connectivity over multiple time slots, referred to as a spatio-temporal

network. This chapter is taken from the paper “Temporal connectivity in

finite networks with non-uniform measures”, see Ref [Pra18], of which I was

an author with Carl Dettmann and Woon Hau Chin.

To date there has been little focus on spatio-temporal networks where the

dynamics on the network are caused by the probabilistic nature of links, node

mobility or both. One approach is to assume the nodes have infinite mobil-

ity resulting in no spatial correlation between time slots, or alternatively fix

the underlying distribution of nodes and assume information diffuses quickly

through the network; either way this has largely been focused on the uni-

form case [Hae13, Det18a]. When the node locations are fixed, uniformly

distributed on the torus (mitigating edge effects by using periodic boundary
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conditions) and links are drawn during each time slot, connectivity is deter-

mined by those nodes which are “highly isolated” [Det18a]. When the nodes

are mobile, and follow a RW in Rd, Ref [Per13] obtained asymptotic results

for how long a node takes to connect to any other node in the graph when

the connection model is that of the RGG.

Previously we discussed how isolated nodes are the obstacle to full con-

nectivity in uniform SRGGs, Refs [Pen97,Mao13,Hsi05, Iye12]. In addition,

in finite uniform SRGGs boundaries play a key role in Pfc [Coo12a, Det16],

whilst the approximation of Pfc occurring when there are no isolated nodes

improves in networks with a fractal nature [Det18a]. Furthermore, we have

seen from the previous chapters that mobility can greatly impact network

performance, with sparse regions more likely to cause outage, particularly

when near boundaries. Motivated by this body of work, we ask the ques-

tion, how does all this change (if at all) when considering spatio-temporal

networks.

More specifically, we explore the probability that a spatio-temporal net-

work is fully connected through the isolation probability of a single node

located near a boundary. Since multiple transmissions occur on a much

smaller time scale when compared with human mobility, we can assume the

nodes/users have a fixed, non-uniform, distribution. Furthermore, compar-

ing these results with the case when users have infinite mobility, we are able

to give bounds on the impact mobility has on these finite spatio-temporal

networks.

7.1 Network Model

The aim is to understand how boundaries and non-uniformity impact on

the global connectivity properties of spatio-temporal networks. With this in

mind we use a non-uniform PPP in a triangular region to model the random

locations of users in the MANET. More formally, let Φ be a non-uniform
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PPP with density λ(r, θ) in a triangular region

A = {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤ x tanφ}. (7.1)

To clarify we assume that once we realise the PP, the points remain fixed

for all time slots as we assume the time to realise links is on a much smaller

time scale than for nodes to move. The density of points grows away from

the corner of interest, described by,

λ(r, θ) = N̄crαgφ(θ), α ≥ 0 (7.2)

where N̄ is the mean number of nodes in Φ, c is a normalisation constant

such that
∫
A
λ(r, θ)rdrdθ = N̄ and gφ(θ) models the angular variation in the

density. Often we will choose gφ(θ) such that it goes to zero when θ = 0, φ

or both. The motivation for this particular density is that we would expect

in a real world spatio-temporal network with mobile nodes the proportion of

nodes near a corner/boundary would be less compared with that in the bulk.

An example is for the RWP model where the density grows linearly away from

the corner and is zero along the boundaries, as discussed in Chapter 3. The

case we will mainly focus on however is when α = 2 and gφ(θ) = sin(θ) sin(φ−
θ) which can be thought of modelling a mobility model where MUs spend

a lot of time within the bulk of the domain, making the boundaries even

sparser in terms of node density.

In particular we focus on a point ξ located near the corner of the region

and study how long it remains isolated from the rest of the network1. In

the Cartesian coordinate system we denote ξ = (ξx, ξy), whilst in polar co-

ordinates and ξ = (r, θ). Moreover, we study these isolation probabilities

in terms of a wide range of connection functions, including: Rayleigh, Wax-

man, MIMO, SD, SA, QD and an SIR model, all of which are discussed in

1ξ is not in the point process since this would break some of our later assumptions. For
example, we will sometimes want to choose ξ such that it is on the boundary, but often
we will also choose the density such that it goes to zero at the boundary
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Sec 2.2, summarised in Table 2.1 (the SIR model is obtained from the SINR

model here by setting σ2 = 0) and illustrated in Fig 2.2. Furthermore, we

assume the node locations remain fixed throughout the process; this can be

interpreted as the system having two different time scales: that of human

mobility, and that of sending a wireless packet, with the latter being assumed

to be much smaller. The final assumption is that there is no temporal de-

pendence between time slots, that is to say the event that a node is isolated

at time T is independent from the past, given the point process.

With the model outlined we are well placed to analyse network connectiv-

ity, in terms of isolated nodes located near a vertex. Thus, the main object of

study will be the probability a node is isolated at time T , denoted as PTiso(ξ),

which is the complement of the connection probability PTiso(ξ) = 1− PCT (ξ).

We note that somewhat related work has been done in one dimension, and

it was shown that for α > 0 the expected number of isolated nodes is finite,

whilst this is not necessarily true for α ≤ 0 [Det18a]. In our model however,

we are concerned with the probability a node near the corner is isolated, and

how this determines the global properties of connectivity in spatio-temporal

networks.

7.2 Isolation Probabilities

We provide three methods for computing the probability a node ξ is isolated

for T consecutive time slots near a corner. First we write the probability that

a node, not in the point process, cannot connect to any point in Φ after T

time steps, using both the PGFL and that the sets of edges are independent

across time. We then diverge into three different methods for different con-

nection functions, with the general intuition being that pairs of nodes that are

closer are more likely to connect. The first method is applied to connection

functions with compact support, whilst the other two are used for connec-

tion functions with global support. The last two methods can also be applied

to those connection functions with compact support and the corresponding
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discontinuities can be handled separately although these contributions can

often be ignored in the small parameter expansions [Det18a]. We proceed by

giving the initial formulation of the analysis, and then consider each method

separately in the subsequent sections.

The probability that a user ξ is isolated from all other points in Φ, con-

ditioned on Φ, for T consecutive time steps is,

PTiso(ξ|Φ) =
∏
y∈Φ

(1−H (|ξ − y|))T

PTiso(ξ) = exp

(
−
∫
A

(
1− (1−H (|ξ − y|))T

)
Λ(dy)

) (7.3)

where we have computed the expectation with respect to Φ using the PGFL

for PPPs, the integral is over the triangular region, and Λ(·) is the intensity

measure of Φ. For a single time slot eq. (7.3) reduces to,

PT=1
iso (ξ) = exp

(
−
∫
A

H (|ξ − y|)λ(y)dy

)
= e−M(ξ), (7.4)

where M(ξ) is the usual connectivity mass [Coo12a,Det16].

Due to the nature of the PPP, this model never guarantees ξ is connected,

which can be seen through eq.(7.3). Consider the limit as T →∞ for H(r) =

1 with infinite support, in a finite domain A,

lim
T→∞

PTiso(ξ) = exp

(
−
∫
A

λ(y, θ)ydydθ

)
= e−Φ(A) = e−N̄ > 0 (7.5)

Therefore, since there is a positive probability that the point process Φ is

empty, the probability ξ(/∈ Φ) is isolated is also positive.

We proceed by using eq.(7.3) to calculate the isolation probabilities for

different connection functions expressed in Sec 2.2, starting with those with

compact support.
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7.3 Isolation probabilities for connection func-

tions with compact support

The method used for calculating the isolation probability (and thus connec-

tion probability) for ξ is very similar for all connection models with compact

support (with the exception of the QD model case which is discussed sepa-

rately in Sec 7.5) so we proceed by deriving it for the Soft Disk model, and

give the results for the SA model in Table 7.1.

Recall that for the SD model the connection probability isH(r) = ℘1r≤r0 .

From eq.(7.3) it is not possible to obtain an explicit expression for PTiso when ξ

is located at an arbitrary location in V . However, we focus our analysis on the

particular case when ξ = (r, ω) is isolated near the corner, and r0 ≥ r which

guarantees that the ball centred at ξ with radius r0, Bξ(r0), intersects both

boundaries and includes the vertex at the origin. From these assumptions,

and eq.(7.3) we have,

PTiso(r, ω) = exp

(
−
(
1−(1−℘)T

)∫ φ

0

∫ z

0

λ(y, θ)ydydθ

)
=

(
exp

(
−
∫ φ

0

∫ z

0

λ(y, θ)ydydθ

))(1−(1−℘)T)

= VBξ(r0)(1−(1−℘)T),

(7.6)

where z =
√
r2

0 + r2 − 2r0r cos(θ − ω), and VB(ξ, r0) is the void probability.

For the uniform case the inner integral in eq.(7.6) is proportional to the size

of the region. For the general case we expand the integrand of eq.(7.3) for

small r to provide a closed form approximation:

PTiso(ξ) = exp

(
−N̄c(1− (1− ℘)T )

∫ φ

0

∫ z

0

yα+1gφ(θ)dydθ

)
(7.7)
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PTiso(ξ) = exp

(
−N̄c(1− (1− ℘)T )

∫ φ

0

(
rα+2

0

α + 2

− cos(θ − ω)rα+1
0 r +

1 + α cos2(θ − ω)

2
rα0 r

2 + ...

)
gφ(θ)dθ

)
≈ exp

(
−N̄c(1− (1− ℘)T )

×
(
rα+2

0

α + 2
Gφ −Gc(ω)rα+1

0 r +G2(ω)rα0 r
2

))
,

(7.8)

where

Gφ =

∫ φ

0

gφ(θ)dθ,

Gc(ω) =

∫ φ

0

gφ(θ) cos(θ − ω)dθ,

G2(ω) =

∫ φ

0

1

2
gφ(1 + α cos2(θ − ω))dθ.

(7.9)

At the corner the above reduces to just taking the leading order term. See

Table 7.1 for a similar expression for the soft-annulus model.

In the limit as T →∞ we return to the original void probability, for the

SA model it converges to the probability the annulus VAξ(r−, r+) is empty.

We notice that this type of connection function with compact support results

in no guarantee that ξ connects, even if the PP is non-empty as the relevant

connection region might be; trivially this all or nothing type of connection

means we need at least the average number of nearest neighbours to be

greater than one [Gil61].

7.4 User Isolation - Method I

In this section we focus on connection functions with global support, and

provide a method based on translating the distance between points. Since
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local behaviour will dominate (very long connections are unlikely) we ap-

proximate the domain to be infinite for tractability. We first start by writing

eq.(7.3) in polar coordinates.

PTiso(ξ) =exp

(
−
∫ φ

0

∫ L
cos θ

0

(
1−(1−H (z))T

)
λ(y, θ)ydydθ

)
, (7.10)

where the node ξ is located (in polar coordinates) at (r, ω) and

z =
√
r2 + y2 − 2ry cos(θ − ω) is the corresponding transformation using

the cosine rule. We can expand the integrand using the binomial theorem,

expand for small radial component x and assume the contributions come

from near by so the domain is assumed to be infinite to give,

PTiso(ξ) = exp

(
−cN̄

T∑
k=1

(−1)k+1

(
T

k

)(
Hk,α+1Gφ −

k

r0

Gc(ω)H′k−1,α+1r +O(r2)

))
,

(7.11)

where Gφ, Gc(ω) are as before, H(n)
k,α =

∫∞
0
H(n)

(
y
r0

)
Hk
(
y
r0

)
yαdy and (n)

corresponds to nth derivative. As an illustrative example we calculate the

isolation probabilities for the Rayleigh and Interference connection functions

outlined in chapter 2.2 through direct application of eq.(7.11).

Example I: Rayleigh Connection Model

First we consider the Rayleigh connection function defined in Sec 2.2

where we need the following integrals,

Hk,α+1 =

∫ ∞
0

exp

(
−k
(
y

r0

)η )
yα+1dy =

r2+α
0

η
Γ

[
2 + α

η

]
k

2+α
η

H′k,α+1 =

∫ ∞
0

exp

(
−k
(
y

r0

)η )
yα+1 d

dy
exp

(
−
(
y

r0

)η )
dy

= −r1+α
0 Γ

[
1 + α + η

η

]
(1 + k)

η+α−1
η .

(7.12)
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Substituting the above into eq.(7.11), we get the following expression

PTiso(ξ) = exp

(
−cN̄ rα+2

0

η
Γ

[
2 + α

η

]
H

2+α
η

T,1 Gφ

− cN̄rα+1
0 Γ

[
1 + α

η
+1

]
H

1+α
η

T,1 rGc(ω) +O(r2)

)
,

(7.13)

where H
α+2
η

T,β =
∑T

k=1(−1)k+1
(
T
k

)
k−

α+2
η βk is the generalised Roman harmonic

number given in [Rom92, Det18a]. Note that we include the constant β for

the Waxman case, the result of which is given in Table 7.1, and for brevity

later on we will often use s = α+2
η

.

To find an asymptotic approximation for large values of T for eq.(7.13)

and begin by taking the natural logarithm of both sides.

− logPTiso(ξ) =

∫ φ

0

∫ ∞
0

(
1−

(
1− e−

(
y
r0

)η)T)
λ(y, θ)ydydθ

= cN̄Gφ

∫ ∞
0

(
1−

(
1− e−

(
y
r0

)η)T)
yα+1dy

=
z=
(
y
r0

)η cN̄Gφr
α+2
0

η

∫ ∞
0

(
1−

(
1− e−z

)T)
z
α+2
η
−1dz

=s=α+2
η

cN̄Gφr
α+2
0

η

(∫ log βT

0

(
1−

(
1− e−z

)T)
zs−1dz

+

∫ ∞
log βT

(
1−

(
1− e−z

)T)
zs−1dz

)
=
cN̄Gφr

α+2
0

η
(I1 + I2)

(7.14)

where we have split up the integral at log βT and will analyse both separately,

starting with I1.

I1 =

∫ log βT

0

(
1−

(
1− βe−z

)T)
zs−1dz (7.15)
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I1 =
(log βT )s

s
−
∫ log βT

0

exp
(
T log

(
1− βe−z

))
zs−1dz

y=log βT−z =
(log βT )s

s
−
∫ log βT

0

exp

(
T log

(
1− βe−(log βT−y)

)
+ (s− 1) log[log[βT ]− y]

)
dy

=
(log βT )s

s
−
∫ log βT

0

exp

(
T log

(
1− β 1

βT
ey
)

+ (s− 1) log[log[βT ]− y]

)
dy

expand ey =
(log T )s

s
−
∫ log[βT ]

0

exp

(
−T log

[
1−

1 + y + y2

2
+ y3

6
+ ...

T

]

+(s−1)

(
log[log[βT ]]− y

log[βT ]
− y2

2(log[βT ])2
− y3

3(log[βT ])3
+ ...

))
dy

expand for large T =
(log βT )s

s
− (log[βT ])s−1

∫ log[βT ]

0

exp

(
−
(

1 + y +
y2

2
+
y3

6
+ ...

)
− 1

2T

(
1 + y +

y2

2
+
y3

6
+ ...

)2

− 1

6T 2

(
1 + y +

y2

2
+
y3

6
+ ...

)3

+O(T−3)

)
e−

(s−1)
log[βT ]

y+O(log[βT ]−2)dy

≈ (log βT )s

s
− (log[βT ])s−1

∫ log[βT ]

0

exp

(
−ey +O(T−1)

)
× e−

(s−1)
log[βT ]

y+O(log[βT ]−2)dy

=
(log βT )s

s
− (log[βT ])s−1

∫ log[βT ]

0

exp

(
−ey

)
e−

(s−1)
log[βT ]

ydy

=u=ey (log[βT ])s

s
− (log[βT ])s−1

∫ βT

1

e−uu−
s−1

log[βT ]
−1du

=
(log[βT ])s

s
− (log[βT ])s−1

(
Γ

[
−(s− 1)

log T
, 1

]
− Γ

[
− (s− 1)

log[βT ]
, βT

])
(7.16)
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Leaving I1 in this form for now and turning our attention to I2 yields the

following.

I2 =

∫ ∞
log[βT ]

(
1−

(
1− βe−z

)T)
zs−1dz

=(1)

∫ ∞
0

(
1−

(
1− βe−(y+log[βT ])

)T)
(y + log[βT ])s−1dy

=(2)

∫ ∞
0

exp

(
log

[
1−

T∑
k=0

(−1)k
(
T

k

)
βke−k(y+log[βT ])

]

+ (s− 1)

(
log[log[βT ]] +

y

log[βT ]
− y2

2(log[βT ])2
+ ...

)
dy

= (log[βT ])s−1

∫ ∞
0

exp

(
log

[
T∑
k=1

(−1)k+1

(
T

k

)
T−ke−ky

])
× exp

(
(s− 1)

log[βT ]
y

)
dy

= (log[βT ])s−1

∫ ∞
0

exp

(
1−

(
1− e−y

T

)T )
exp

(
(s− 1)

log[βT ]
y

)
dy

=(3) (log[βT ])s−1

∫ ∞
1

exp

(
log

[
T∑
k=1

(−1)k+1

(
T

k

)
x−kT−k

])
x

(s−1)
log[βT ]

−1dx

= (log[βT ])s−1

∫ ∞
1

(
1−

(
1− 1

Tx

)T)
x

(s−1)
log[βT ]

−1dx

=
(log[βT ])s

(s− 1)

(
2F1

(
− (s− 1)

log[βT ]
,−βT ; 1− (s− 1)

log[βT ]
;

1

βT

)
− 1

)
(7.17)

where in (1): Substitute in y = z− log[βT ] (2): Using the binomial theorem,

and expanding the second term for small y. (3): Using another substitution

of y = log x and the last integral is only true provided s−1
log[βT ]

< 1.

The integral I2 is now left in terms of a Gauss Hypergeometric function

which is quick and easy to implement numerically in standard libraries, as

opposed to the Roman Harmonic sum which needs to be done more carefully

for large T due to the alternating signs. The above approximation holds for
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s−1
log[βT ]

< 1, and holds in all the reasonable cases for α, η we study later. For

s ≤ 1, I2 can be approximated further ; starting from point (3) in the above,

I2 = (log[βT ])s−1

∫ ∞
0

exp

(
log

[
T∑
k=1

(−1)k+1

(
T

k

)
T−ke−ky

])
exp

(
(s− 1)

log[βT ]
y

)
dy

= (log[βT ])s−1

∫ ∞
0

exp

(
log

[
e−y − T − 1

2T
e−2y +

(T − 1)(T − 2)

6T 2
e−3y + ...

])
× exp

(
(s− 1)

log[βT ]
y

)
dy

=(4) (log[βT ])s−1

∫ ∞
0

exp

(
log

[
1− e−e−y +O

(
1

T

)]
e

(s−1)
log[βT ]

ydy

=u=e−y (log[βT ])s−1

∫ 1

0

(
1− e−u

)
u−

(s−1)
log[βT ]

−1du

= (log[βT ])s−1

(
− log[βT ]

(s− 1)
− Γ

[
− (s− 1)

log[βT ]
, 0, 1

])
(7.18)

(4): We use the definition of the exponential function and neglect terms of

O(T−1). Notice now that both I1, and I2 are given as incomplete Gamma

functions, when they are combined the expression can be simplified and fur-

ther approximated by large T .

I1 + I2 =
(log[βT ])s

s
− (log[βT ])s−1

(
Γ

[
(1− s)
log[βT ]

, 1

]
− Γ

[
(1− s)
log[βT ]

, βT

])
+ (log[βT ])s−1

(
− log[βT ]

(s− 1)
− Γ

[
− (s− 1)

log[βT ]
, 0, 1

])
=Γ[s,βT ]≈Γ[s] (log[βT ])s

s

− (log[βT ])s−1

(
Γ

[
− (s− 1)

log[βT ]
, 1

]
+

log[βT ]

(s− 1)
+ Γ

[
− (s− 1)

log[βT ]
, 0, 1

])
(7.19)
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I1 + I2 =
(log[βT ])s

s
− (log[βT ])s−1

(
Γ

[
− (s− 1)

log[βT ]

]
+

log[βT ]

(s− 1)

)
=(1) (log[βT ])s

s

− (log[βT ])s−1

(
− log[βT ]

(s− 1)
− γc −

1

12
(π2 + 6γ2

c )
(s− 1)

log[βT ]

+
(s− 1)2

6(log[βT ])2

(
γ3
c +

γcπ
2

2
−ψ(2)(1)

)
+O

(
(log[βT ])−3

)
+

log[βT ]

(s− 1)

)
=

(log[βT ])s

s
+ γc(log[βT ])s−1 +

(s− 1)

12
(π2 + 6γ2

c )(log[βT ])s−2

+
(s− 1)2

6

(
γ3
c +

γcπ
2

2
− ψ(2)(1)

)
(log[βT ])s−3 +O

(
(log[βT ])s−4

)
(7.20)

where (1) we expand the Gamma function for large T , ψ(n)(1) is the nth

derivative of the digamma function2 and γc = 0.557215... is the Euler-

Mascheroni constant. This result is consistent with that in Ref [Det18a],

with the added generality of also being applicable to the Waxman case by

including the constant β. Furthermore, the above analysis highlights which

regime the approximation is valid, and gives an alternative approximation in

terms of hypergeometric functions when η is small, or α is large resulting in
α+2
η
> 1.

As a result, we can approximate the isolation probabilities for large T by

Hs
T ≈

(log[βT ])s

s
+γc(log[βT ])s−1+

(6γ2
c +π2)(s−1)

12
(log[βT ])s−2 +O

(
(log[βT ])s−3

)
(7.21)

2Digamma function is defined as: ψ(n)(x) = d
dx log [Γ[x]]
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A special case of the above is when s = α+2
η

= 1.

∫ ∞
0

(1− (1− e−x)T )dx =

∫ 1

0

1− uT

1− u
du =

∫ 1

0

T∑
k=1

uk−1du

=
T∑
k=1

∫ 1

0

uk−1du = HT

(7.22)

In the first equality we use the substitution u = 1− e−x, and the second we

use the definition of the geometric series. Namely, for s = 1, the expression

in eq.(7.10) is the integral representation of the classical Harmonic number

HT with corresponding asymptotic representation Ref [Gra89].

HT = log T + γc +
1

2T
− 1

12T 2
+O(T−4) (7.23)

Conversely, for the case when α is large then we can approximate the

integral in terms of a gamma function,∫ ∞
0

(1−(1−e−z)T )z
α+2
η
−1dz ∼

∫ ∞
0

Te−zz
α+2
η
−1dz = TΓ

[
α + 2

η

]
(7.24)

This is a useful approximation for a very inhomogeneous network (or a highly

reflective environment) and suggests the isolation of nodes after time T slots

behaves like exp(−constantT ). For the Waxman model the above provides a

good approximation, particularly for the RWP distribution, see Fig 7.2.

Interference

In Sec.2.2 we introduce the interference-limited connection function for

a node with a general location in A. A tractable form of H (not expressed

in terms of hyper geometric functions) is only possible for the specific case

when ξ is located at the corner and the domain is assumed to be infinite.
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H(r) = exp

(
−
∫ φ

0

∫ L
cos θ

0

(
1− 1

1 + qγrη

zη

)
λ(z, θ)zdzdθ

)

=(∗) cN̄s
2+α
η π

η
csc

(
(2 + α)π

η

)
Gφ

= cN̄GφcIr
2+α,

(7.25)

where ∗ denotes we have assumed an infinite wedge, cI = (qγ)
2+α
η π
η

csc
(

(2+α)π
η

)
and we require α + 2 < η to hold. The condition that α + 2 < η ensures

that there is indeed positive probability of connection; recall that there ex-

ists a phase transition when η equals the dimension such that when η is less

than or equal to the dimension the global behaviour begins to dominate and

the aggregate interference causes disconnection. Since we assume an infinite

domain, which has an infinite number of nodes, we need to ensure the local

behaviour dominates, hence α + 2 < η. Consequently, for the RWP case we

need η > 3; a reasonable assumption in any large town or city where there

are multiple obstructions. Alternatively we can make the approximation that

all non-negligible interference comes from all those devices within a distance

rI which allows for the relaxation of the α + 2 < η restriction; but yields a

connection function in terms of hypergeometric functions which leads to an

intractable calculation later; see [DR16] amongst others on approximating

interference.

When the node is located near the corner we can compute the approxi-

mation through method I or II (outlined in the next subsection). For method

I we approximate the connection probability at x to be the same as at the

vertex at the origin such that we can apply eq.(7.11), noting r0 = 1, to get

− logPTiso(ξ) =
HT

(2 + α)cI

+
(cN̄)

1
2+α

(cIGφ)
1+α
2+α

Γ

[
3 + 2α

2 + α

]
H

1+α
2+α

T rGc(ω) +O(r2).

(7.26)
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Figure 7.1: (Left): Schematic of the wedge and the regions MA,MB and
MC . The x̂, ŷ correspond to the translated and rotated coordinate system
discussed in Sec 7.5.2. (Right) By combining two wedges together, along
the boundary where the density is non-zero, we can calculate the probability
that a single user is isolated from the network near the corner.

The leading order term in eq.(7.26) is independent of the density of users

and the angle of the wedge. This is consistent with the results in [And11]

which highlights how any increase in signal power due to proximity is coun-

terbalanced by an increase in the interference field.

However, the second term (first order correction term) scales like N̄
1

2+α

and does in fact depend on both the geometry of the wedge and the density

of users, ultimately leading to limN̄→∞ PTiso(ξ) → PTiso(0). Intuitively this is

because in the high density limit3, the local picture for each node looks the

same due to the scaling of power and interference which means connections

are dominated by the local neighbourhood.

7.5 User Isolation - Method II

In this section our aim is to give an alternative approach to Method I which

provides greater tractability and is more suited to more complicated connec-

tion functions such as MIMO or those outlined in [Det16] where closed form

expressions cannot be obtained via method I. For a non-increasing connec-

tion function H(r) with global support the approximation can be expressed

3This is only true for the singular path loss model, as discussed in Sec 4.5

134



as a combination of one-dimensional integrals which are quick to compute

numerically. In this analysis we require the density to go to zero along the

top border, which is akin to the RWP case or other mobility models where

boundaries are left largely unexplored.

In this section we will consider the user located on the bottom boundary,

ξ = (ξx, 0), and divide the domain into three regions MA,MB and MC , see

Fig7.1. This allows us to consider the probability the node at ξ is isolated

as the exponential of the sum of the contributions from each region, and is

written as,

PTiso(ξ = (ξx, 0)) = exp (−(MA +MB +MC)) .

To obtain an expression for a user located near the corner, but not on either

boundary, we can combine two triangular domains together along the non-

zero boundaries. In general the two triangular regions need not be identical,

but we assume so merely for brevity. We now proceed to calculate each of

the contributions from these sub-regions using eq.(7.3), starting with MA .

7.5.1 Conectivity in the region MA

The region MA, as shown by the purple region in Fig 7.1, has a transformed

polar coordinate system centred at (ξx, 0). For this case we use the cosine

rule to make the necessary transformation of the density.

MA =

∫ φ

0

∫ (L−ξx)
cos θ

0

(
1− (1−H (y))T

)
λ(z, ω̂)ydydθ̂

=

∫ ∞
0

(
1− (1−H (y))T

) (
yα+1Gφ + (α + 1) yαGc(0)ξx + ...

)
dy

= GφI(α + 1) + (α + 1)Gc(0)I(α)ξx +O(ξ2
x),

(7.27)

where z =

√
y2 + ξ2

x − 2yξx cos(π − θ̂), ω̂ = arcsin

[
y sin θ̂√

y2+ξ2x+2yξx cos θ

]
and

I(s) =
∫∞

0
(1− (1−H(y))T )ysdy.
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In the above, we have expanded for small ξx and assumed the domain

to be large allowing us to take the upper limit of the radial integral to be

infinite. The remaining expression is now given as a sum of the integrals I(s),

reducing the number computations needed. In fact,we will subsequently see

that the main contribution arises from the region MA since the contributions

from other regions are of order ξ2
x.

7.5.2 Conectivity in the region MB

The region MB, see Fig 7.1, has a translated and rotated coordinate system

(x̂, ŷ). Since the function gφ(θ) goes to zero near the top boundary, we

can approximate ŷ to be small. Following this, the connection function can

therefore be approximated as,

H
(√
x̂2 + ŷ2

)k
≈ Hk (̂x)+

k

x̂
H (̂x)k−1H′ (̂x) ŷ2+... (7.28)

We also need to translate the function gφ(θ) in terms of x̂, ŷ . By applying

the cosine rule we can write gφ(θ̂) = gφ

(
arccos

[
−x̂2−ŷ2+ξ2x+d2

2dξx

])
where θ̂ is

the angular component in the transformed coordinate system and then we

can approximate it for small ξx, ŷ.

gφ(θ̂) = gφ(θ̂)
∣∣
ξx=ŷ=0

+g′φ(θ̂)

(
ξx

d

dξx
θ̂ + ŷ

d

dy
θ̂

) ∣∣
ξx=ŷ=0

+

(
g′′φ(θ̂)

(
d

dξx
θ̂

)2

+ g′φ(θ̂)
d2

dξ2
x

θ̂

)∣∣
ξx=ŷ=0

ξ2
x

+

(
g′′φ(θ̂)

(
d

dŷ
θ̂

)(
d

dξx
θ̂

)
+ g′φ(θ̂)

d2

dξxŷ
θ̂

) ∣∣
ξx=ŷ=0

ξxŷ

+

(
g′′φ(θ̂)

(
d

dξx
θ̂

)(
d

dŷ
θ̂

)
+ g′φ(θ̂)

d2

dŷξx
θ̂

) ∣∣
ξx=ŷ=0

ξxŷ

+

(
g′′φ(θ̂)

(
d

dŷ
θ̂

)2

+ g′φ(θ̂)
d2

dŷ2
θ̂

)∣∣
ξx=ŷ=0

ŷ2 + ...

(7.29)
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gφ(θ̂) =
g′φ(φ)

x̂
(ξx sinφ− ŷ)

+
1

x̂2

((
ξ2
x sin2 φ+ ŷ2 + 2ξxŷ sinφ

)
g′′φ(φ)

+
(
ξ2
x sin(2φ)− 2ξxŷ cosφ

)
g′φ(φ)

)
+...

(7.30)

where gφ(φ) = 0 by construction. By applying the aforementioned approx-

imations, and rewriting the integrand as a sum, the contribution from the

region MB is given by,

MB =

∫
MB

(
1− (1−H (|ξ − y|))T

)
λ(y, θ)ydydθ

=
T∑
k=1

(−1)k+1

(
T

k

)∫ ξx sinφ

0

∫ ∞
0

Hk
(√

x̂2 + ŷ2
)
λ(x̂, ŷ)dx̂dŷ

=(1) N̄c
T∑
k=1

(−1)k+1

(
T

k

)∫ ξx sinφ

0

∫ ∞
0

(
Hk (̂x)+

k

x̂
H (̂x)k−1H′ (̂x) ŷ2

)
× (xα + αξx(cos(φ)x̂α−1 − ŷ sin(φ)))

(
g′φ(φ)

x̂
sinφ (ξx sinφ− ŷ)

)
dx̂dŷ

=
N̄cg′φ(φ)

2

T∑
k=1

(
T

k

)
(−1)k+1

(
ξ2
x sin3 φHk,α−1 + o(ξ2

x)
)

(7.31)

Notice that we have expressed the sum in terms of the previously defined

integrals Hk,α. We notice immediately that the leading order term is of

order ξ2
x which we can later neglect from our final approximation.

7.5.3 Conectivity in the region MC

For the MC region, neighbouring nodes are close by so we approximate

H(r) ≈ 1, and we observe that the contribution is proportional to the size of
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the region,

MC =

∫ φ

0

∫ ξx cosφ
cos(φ+θ)

0

(
1− (1−H (r))T

)
λ(r, θ)rdrdθ

≈
∫ φ

0

∫ ξx cosφ
cos(φ+θ)

0

λ(r, θ)rdrdθ = N̄c
ξ2+α
x

2 + α

∫ φ

0

gφ(θ)(cosφ sec(θ − φ))2+αdθ

(7.32)

In fact the best case scenario (in this particular model) is for the uniform

distribution,where α = 0, and gφ(θ) = 1 leaving,

MC = N̄c
sin(2φ)

4
ξ2
x.

By combining the contributions from each region and taking terms up to

order ξx the probability a point located along the border is isolated can be

written in terms of the following simplified 1-dimensional integral,

− logPTiso[(ξx, 0)]

cN̄
≈
∫ ∞

0

H̄T
(
rα+1Gφ +(α+ 1)Gcr

αξx+...
)
dr

− logPTiso[(ξx, 0)]

cN̄
≈ I(α + 1)Gφ + (α + 1)Gc(0)I(α)ξx + ...

(7.33)

where I(s) =
∫∞

0

(
1− (1−H (r))T

)
rsdr. For the asymptotic approxima-

tions we need only expand once for large T now and we are done. This

method provides a greater tractability since it involves computing only one

integral (albeit with different parameters s), and for large times often an

asymptotic approximation can be found.

We now proceed by computing the isolation probabilities for the MIMO

and Quasi-disk connection functions.

Example: MIMO
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For the MIMO connection function we apply eq. (7.33) directly.

− logPTiso(ξ)

N̄c
=
rα+2

0 Gφ

η

∫ ∞
0

H̄T (r)rα+1dr +
(α + 1)rα+1

0 Gcξx
η

∫ ∞
0

H̄T (r)rαdr

=
rα+2

0 Gφ

η
IMIMO

(
α + 2

η

)
+

(α + 1)rα+1
0 Gcξx
η

IMIMO

(
α + 1

η

)
,

(7.34)

where IMIMO(s) =
∫∞

0
(1− (1− e−x(2 + x2 − e−x)T )xs−1dx. We now provide

approximations for the integral IMIMO(s) for large s or large T and s ≤ 1.

When s is large, this implies that the connection function is “very soft” (a

small value of η) and/or the majority of nodes are found away from the corner

(large α). When α is large, it is preferable that the signal decays relatively

quickly else sophisticated network protocols would need to be utilised to

avoid outage, hence it is reasonable to assume s ≤ 1.

First we consider the case when s is large, such that the xs−1 term in the

integrand dominates, to obtain a simple asymptotic form of the integral in

terms of gamma functions.

IMIMO(s) =

∫ ∞
0

(
1−

(
1− e−x(2 + x2 − e−x)

)T)
xs−1dx

∼
∫ ∞

0

Te−x(2 + x2 − e−x)xs−1dx

= 2TΓ [s] + TΓ [s+ 2]− T2−sΓ [s] .

(7.35)

For “small” s and large T we can do a similar asymptotic expansion to that

of the Roman Harmonic number by splitting the integral up at c log T , with

c ≥ 1.

IMIMO(s) =
c logs T

s
+ (log[T 1−c(c log[T ])2] + γ)(c log[T ])s−1

+

(
6γ2 + π2 + 12γ log[T 1−c(c log[T ])2]

+ 6(log[T 1−c(c log[T ])2])2

)
(s− 1)

12
(c log[T ])s−2 + ...

(7.36)
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There is an additional constant c in this approximation, since the point in

which the integral is split up is sensitive to the choice of α and η. To approx-

imate the integral we first split it up at c log[T ], where c depends on s and T ,

and IL(s), IR(s) being the integral IMIMO with the limits [0, c log[T ]], [c log[T ],∞]

respectively. Starting with IL(s).

IL(s) =

∫ c log[T ]

0

(
1−

(
1− e−x(2 + x2 − e−x)

)T)
xs−1dx

=
(c log[T ])s

s
−
∫ c log[T ]

0

((
1− ey−c log[T ](2 + (c log[T ]− y)2 − ey−c log[T ])

)T
exp ((s− 1) log[c log[T ]− y])

)
dy

=
(c log[T ])s

s
− (c log[T ])s−1

×
∫ c log[T ]

0

(
1− eyT−c(2 + (c log[T ]−y)2 − eyT−c)

)T
exp

(
(1− s)
c log[T ]

y

)
dy

1 ≈ (c log[T ])s

s
− (c log[T ])s−1

×
∫ c log[T ]

0

(
1− eyT−c(c log[T ])2

)T
exp

(
− (s− 1)

c log[T ]
y

)
dy

=
(c log[T ])s

s
− (c log[T ])s−1

×
∫ c log[T ]

0

T∑
k=0

(−1)k
(
T

k

)
ekyT−kc(c log[T ])2k exp

(
− (s− 1)

c log[T ]
y

)
dy,

(7.37)

where in (1) we have taken the leading order behaviour for large T . Now as

c ≥ 1,

S1 =
T∑
k=0

(−1)k
(
T

k

)
ekyT−kc(c log[T ])2k

= 1− eyT (1−c)(c log[T ])2 +
T (T − 1)

2
T−2ce2y(c log[T ])4 + ...

(7.38)
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S1 = 1− eyT (1−c)(c log[T ])2 +
1

2
T 2(1−c)e2y(c log[T ])4 + ...

exp
(
− exp(y)T 1−c(c log[T ])2 +O

(
T 1−2c(c log[T ])4

))
.

(7.39)

This allows us to write IL(s) as,

IL(s) =
(c log[T ])s

s

− (c log[T ])s−1

∫ c log[T ]

0

exp
(
− exp(y)T 1−c(c log[T ])2

)
exp

(
(1− s)
c log[T ]

y

)
dy

ey=u =
(c log[T ])s

s
− (c log[T ])s−1

∫ T c

0

exp
(
−uT 1−c(c log[T ])2

)
u−

(s−1)
c log[T ]

y−1du

=
(c log[T ])s

s
− (c log[T ])s−1EI

[
1 +

s− 1

c log[T ]
, T 1−c(c log[T ])2

]
.

(7.40)

Here, EI[n, z] is the exponential integral defined as, EI[n, z] =
∫∞

1
e−ztt−ndt.

Let’s leave this for now and turn our attention to the right hand side integral.

For the RHS we have,

IR(s) =

∫ ∞
c log[T ]

(
1−

(
1− e−x(2 + x2 − e−x)

)T)
xs−1dx

(1) =

∫ ∞
0

∑
k=1

(−1)k+1

(
T

k

)
exp(−y)T−c(c log[T ])2

× exp ((s− 1) log[c log[T ] + y]) dy

(2) = (c log[T ])s−1

∫ ∞
0

exp

(
(s− 1)

c log[T ]
y

)
dy

− (c log[T ])s−1

∫ ∞
0

exp
(
− exp(−y)T 1−c(c log[T ])2

)
exp

(
(s− 1)

c log[T ]
y

)
dy

(7.41)
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IR(s = (c log[T ])s−1

(
EI

[
1 +

s− 1

c log[T ]
, T 1−c(c log[T ])2

]
− c log[T ]

s− 1

− Γ

[
− s− 1

c log[T ]

]
(T 1−c(c log[T ])2)

s−1
c log[T ]

)
,

(7.42)

where in (1) we have made the change of variables x = y − c log[T ], written

the xs−1 term as an exponential, approximated e−yT−c(2 + (y + c log[T ])2 −
e−yT−c) ∼ e−yT−c(c log[T ])2 and used the binomial theorem; (2) using the

approximation of S1, and expanding the logarithm in terms of small y .

Therefore, we can use the above to approximate the MIMO connection

function when T becomes large.

IMIMO(s) ≈ (c log[T ])s

s
− (c log[T ])s−1

(
c log[T ]

s− 1

+ Γ

[
− s− 1

c log[T ]

]
(T 1−c(c log[T ])2)

s−1
c log[T ]

)
=
c logs T

s
+ (log[T 1−c(c log[T ])2] + γ)(c log[T ])s−1

+

(
6γ2 + π2 + 12γ log[T 1−c(c log[T ])2] + 6(log[T 1−c(c log[T ])2])2

)
× (s− 1)

12
(log[T ])s−2 + ....

(7.43)

The accuracy of this approximation depends on the choice of c which itself

depends on the parameters α and η, however in typical urban environments

choosing c ≈ 2 works well, see Fig 7.2 for a demonstration of this. Alterna-

tively, c can easily be found on a case by case basis if α and η are known

through inspection of the integrand, which is far more convenient than nu-

merically computing the original integral for all values of T 4.

4 The main point of this approach is to highlight that the problem can be decom-
posed into solving one integral, which often itself can be given in a more convenient form
saving lengthy computations. For example, having a good approximation of the isolated
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Example II: Quasi Disk Model

The quasi-disk model is a piecewise connection function which can model

a change in channel conditions; for example transitioning from a clutter free

environment to a cluttered one. In general, assuming a SD model transition-

ing to one which decays with distance at r−, through application of eq.(7.3)

we obtain,

− logPTiso(ξ)

N̄c
= (1− (1− ℘)T )

∫
V∩Bξ(r−)

yα+1gφ(θ)dydθ

+

∫
V∩Aξ(r−,r+)

[(
1−
(

1−℘+℘

(
y−r−
r+−r−

)µ)T)]
yα+1dygφ(θ)dθ.

(7.44)

We can use the previous result for the soft-disk model (see Table 7.1)

for the first term on the right hand side in eq(7.44). The second term, (de-

noting the inner radial integral as IQuasi) can only be given in semi-analytic

form using the previously outlined methods when ξ 6= 0. That is to say we

are left with an integral of the form
∫ φ

0
gφ(θ)(...2F1 (a, b; c; ξ cos θ))dθ, where

2F1 (a, b; c; z) is the Gauss hypergeometric function, which cannot be com-

puted. From method II we need to compute the radial integral where we let

r+ = κr−.

IQuasi(α + 1) =

∫ κr−

r−

[(
1−
(

1−℘+℘

(
y−r−
r+−r−

)µ)T)]
yα+1dy (7.45)

For general values of µ we can only approximate the integrand, but for µ = 1

we can express the integral in terms of the Gauss hypergeometric function,

IQuasi(α + 1) =
r2+α
−

2 + α

[
κ2+α − 1 +

(
1

∆(1− κ)

)T (
2F1 (−T, α + 2, α + 2℘∆)

− κ2+α
2F1 (−T, α + 2, α + 2κ℘∆)

)]
,

(7.46)

probability would greatly speed up computations of the mean number of isolated clusters.
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where ∆ = 1
1−κ(1−℘)

and κ 6= 1
1−℘ so ∆ 6= 0.

For the case when κ = 1
1−℘ we use the following limit,

lim
c→0

cT (−1)T2F1

(
−T, a, b, 1

c

)
=

Γ[b]Γ[a+ T ]

Γ[a]Γ[b+ T ]
(7.47)

We now directly use the above result to give Iradial when κ = 1
1−℘ ,

IQuasi(α+1)= r2+α
−

(
κ2+α−1

2 + α
+

℘T (1− κ2+α+T )

(2 + T + α)(κ− 1)T

)
Gφ (7.48)

Finally from method II we have a general approximation in terms of IQuasi(α+

1)

− logPTiso(ξx, ξy)

cN̄
=(1−(1− ℘)T)

(
rα+2

0

α + 2
Gφ +Gc

(
arctan

[
ξy
ξx

])
rα+1

0

√
ξ2
x + ξ2

y

)
+ IQuasi(α + 1)Gφ+ (α + 1)IQuasi(α)Gc(0)ξx

(7.49)

In the limit as T → ∞ the probability of connection converges to the

void probability for the ball of radius κr−.

lim
T→∞

PTiso(ξ)→ VB(ξ, κr−) (7.50)

The QD model can be defined such that it has an exponential decay

function and the analysis is very similar to that above, the major difference

being that the integral IQD(α) is expressed in terms of Roman harmonic

numbers rather than hypergeometric functions.
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Table 7.1:
Model Approximations for the probability a node ξ is isolated at time T

SD exp

(
−N̄c(1− (1− ℘)T )

(
rα+2
0

α+2
Gφ +Gc(ω)rα+1

0 r + rα0G2(ω)r2

))
SA exp

(
−N̄c(1−(1−℘)T )

(
(rα+2

+ −rα+2
− )

α+2
Gφ+Gc(ω)(rα+1

+ −rα+1
− )r+G2(ω)(rα+−rα−)r2

))
QD exp

(
−N̄c

(
(1−(1− ℘)T)

(
rα+2
0

α+2
Gφ + Gc

(
arctan

[
ξy
ξx

])
rα+1

0

√
ξ2
x + ξ2

y

)
+Ir(α + 1)Gφ+

(α + 1)Ir(α)Gc(0)ξx

))
Rayleigh exp

(
−N̄c

(
rα+2
0

η
Γ
[

2+α
η

]
H

2+α
η

T,1 Gφ + rα+1
0 Γ

[
1+α
η

+ 1
]
H

1+α
η

T,1 rGc(ω) + ...

))
Waxman exp

(
−N̄c

(
r2+α

0 Γ[2 + α]H̄2+α
T,β Gφ + rα0 Γ [α + 1] H̄1+α

T,β Gc(ω)r + ...

))
Interference exp

(
−N̄c

(
HT

(2+α)cI
+ (cN̄)

1
2+α

(cIGφ)
1+α
2+α

Γ
[
3+2α
2+α

]
H

1+α
2+α

T rGc(ω) +O(r2)

))
MIMO exp

(
−N̄c

(
rα+2
0 Gφ
η

I1

(
α+2
η

)
+

(α+1)rα+1
0 Gc(0)

η
I1

(
α+1
η

)
ξx

))
Table of approximations for a range of different connection functions H calculated from eq.(7.3), see Table
2.1 and Sec 2.2 for definition of connection functions and symbols. Recall that ξ = (ξx, ξy) is in Cartesian

coordinates while ξ = (r, ω) is in polar coordinates.
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Figure 7.2: The probability that a node located near the corner at ξ = (0.2, φ/2) is connected for different
connection functions. The top panel and bottom panels have parameter α = 0, 2 respectively, comparing the
impact the spatial distribution of nodes in the network has on connectivity. The dashed lines represent the
void probabilities, the solid thin lines are the approximations (given in Table 7.1) and the circle markers are
simulated points. For the SD and SA models the approximations are found from translating the densities
(Sec 7.3); the Rayleigh, Waxman and Interference case use Method I (Sec 7.4) and the relevant asymptotic
approximations, whilst the MIMO case uses method II (Sec 7.5). Parameters ℘ = 0.1, φ = π

4
, η = 6, β =

0.5, r0 = 1.0; r− = 1.0, r+ = 2.5, L = 10.
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Figure 7.3: The approximate form of the probability that a node located near the corner is connected at time
T (solid line) compared with a simulation of the probability every node in the network is connected at time T
(circle markers). The figure, certainly for large T and/or large α, the simulated points and expressions match
well, suggests that the probability every node is connected at time T is determined by if the one near the
corner is connected or not. Parameters used: L = 10, φ = π/4, η = 2, β = 0.5, ξ = (0.2, φ/2) and r0 = 1.
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7.6 Discussion

Firstly, the approximations provided in the previous chapters, included in

Table 7.1, are a good fit for the simulated data points, see Fig 7.2. One gen-

eral observation (all connection functions except for the interference case)

is that the probability of connection tends to its maximum much faster for

larger N̄ (similarly for larger r0 or smaller α) as the local neighbourhood

becomes increasingly dense. For the interference model the change in con-

nection probability as the density changes is much smaller since only the

second term depends on N̄ , a result of the trade-off between connectivity

and interference, and as nodes are added to the network the probability of

connections are counter balanced by the increase in interference field.

7.6.1 Connection functions with compact support

For connection functions with compact support the probability ξ has con-

nected by time T as T →∞ tends to the complement of the void probability

and is represented by the dashed lines in Fig 7.2. That is to say, the limiting

behaviour is restricted to there existing a node within the connection range,

i.e the void probability which is characterised by the PPP Φ and r0, r−, r+.

Such connection functions are employed in the modelling of wireless sensor

networks, and an easy way to ensure connectivity is to enforce an underlying

structure to the network (lattice) so that the maximum distance between any

two sensors is at most r0. However, in dense networks (or equivalently when

the typical connection range is large) where devices are located predomi-

nately within the bulk, it is likely that a lattice structure is not needed and

will only waste resources. Our results highlight how the boundaries, along

with inhomogeneities, significantly decrease the connection probability. For

example, if r0 = 1;L = 10;φ = π/2 then the mean degree when α = 0 is

≈ 0.407 compared with ≈ 0.003 when α = 2. As a result, in networks that

exhibit such behaviour it is likely nodes need only need be added near the

boundary to ensure connectivity.
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7.6.2 Connection functions with global support

For connection functions with infinite support we see that the probability

approaches the complement of the probability the PPP is non-empty and

does so faster for a larger r0, N̄ and smaller α. This behaviour is a finite

domain effect, and if we condition on there being at least one point in the

PPP (or else use a Binomial Point Process), then P[CT ]→T→∞ 1 . For both

the Rayleigh and MIMO cases the asymptotic expansions work well for large

T , and improve when the path loss exponent η increases (the signal decays

faster), or the distribution of points becomes more uniform. For the MIMO

case a better approximation can be provided for specific α, η but it is unclear

how to improve it for the general case. However, as the probability for long

links increases, such as in the Waxman case, the usefulness of the large T

approximation is limited to the uniform case, but for the non-uniform case

the approximation for very inhomogeneous networks works well.

The connectivity of infinite networks are obstructed by corner nodes,

provided some assumptions on the density that it grows away from the corner,

α > 0. If however, the PP is uniform, or even if α < 0 then the network may

never connect and you may have infinitely many isolated nodes [Det18a].

7.6.3 Infinite Mobility Model

In a network where nodes have mobility we should expect an improvement

in terms of how long individual nodes remain isolated for due to the self

configuring nature of MANETs [Gro01]. This behaviour is highlighted by

the extremal case where each node in Φ has infinite mobility which removes

the spatial correlation of nodes from one time step to another. In this case,

the probability a node is isolated for T consecutive time steps is simply

PTiso(ξ) = e−TM(ξ), (7.51)
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Figure 7.4: The distribution of isolated nodes in a spatio-temporal ran-
dom graph at time T = 1, 100, 10000, for the RWP model. The connec-

tion function is the stretched exponential H(r) = e
−
(
r
r0

)η
. Parameters:

L = 10, λ0 = 5, φ = π/3, r0 = 0.1 and η = 2.

since a new realisation of Φ happens at each time slot. Hence, the probability

ξ is connected at time T is the CDF of a geometric random variable with

mean M(ξ), therefore ξ can always transmit in finite time provided M(ξ) >

0. In this model the number of points varies during each time slot as a new

PPP is realised, which can be thought of as modelling devices turning on

and off, or alternatively you could condition on the number of points in Φ

(BPP).

7.6.4 Full connectivity

In static networks with no temporal component Pfc is defined as there exist-

ing a multi-hop path between any two nodes in the network. In a temporal

network this is more complicated since there exists a network with directional

(causal) paths between nodes. We introduce a weaker sense of full connec-

tivity, that is the probability that every node in the network has made at

least one link to some other at, or prior to, time slot T ; we will denote this

as P T
fc. Analogous to other work, we want to make use of there being no

isolated nodes to approximate that of P T
fc

5. Indeed, focusing on the idea

that boundary nodes are likely to be “more isolated” we see that nodes near

5Remark: this notion only makes sense for connection functions with long links.
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the corner are the last to connect when links are independent,see Fig 7.3, as

we saw in previous chapters. In addition to this we plot the distribution of

isolated nodes at different times in Fig 7.4, for a SRGG in a triangle with

the distribution given by eq.(3.23) and H(r) = e−r
2
. Initially the isolated

nodes are focused more toward the bulk, as that is where the higher propor-

tion of nodes are. As time elapses the isolated nodes in the bulk form links

as there neighbours are on average closer resulting in the remaining isolated

nodes being located near the boundaries. Clearly, the distribution of iso-

lated nodes can no longer be modelled by a limiting Poisson distribution as

in the uniform case. From this we should expect that the nodes that take the

longest to connect are located near the boundary. Naturally, when consid-

ering interference this behaviour is not necessarily true since nodes near the

bulk may be in outage if the interference field is to high; in fact the boundary

may help connectivity due to a decreased interference field. Essentially, we

have shown in Fig 7.3 that the time for every node in the network to form a

link is determined by how long the highly isolated nodes take to form a link,

which are those nodes near the corners. Furthermore, provided the network

is dense enough and α ' 1 then it is likely the first causal path occurs from

any node in the network to a boundary node when the boundary node makes

a single connection.

For infinite networks with non-uniform measure isolated nodes are likely

be play a more significant role for Pfc [Det18a]. For example, if α ≤ 0 then

the number of isolated nodes is infinite, and thus Pfc can never be achieved,

whereas when α > 0 the behaviour is likely to be determined by highly

isolated nodes [Det18a].

7.6.5 Routing

This work also highlights the need for flexible routing algorithms in mesh

networks. Most routing algorithms in mesh networks fall between two ex-

tremal cases: proactive and reactive routing. The former is the case when
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a node periodically exchanges information with its neighbours giving it an

awareness of paths to other nodes in the network, but as a result has more

drain on resources such as power, and can influence the connectivity of other

nodes in its neighbourhood when interference is considered. Reactive routing

on the other hand only looks for a path between nodes in a network when it

is required, which helps to conserve resources but delays the time of informa-

tion transfer as it needs to find a route. Naturally, most algorithms proposed

fall somewhere in between these two extremes. One example is PathDetect,

an example of a decentralised algorithm, discussed in Ref [Iye13]. In this

model, local messages are exchanged between neighbouring nodes to achieve

global knowledge of the network, ultimately allowing it to track temporal

fluctuations in connectivity. The main problem is how to minimise the over-

heads in obtaining this global picture, which can be achieved through an

understanding of the network topology, for example employing an adaptive

power scheme based on the location of the user. Alternatively, one could em-

ploy multipath routing with network coding. In multipath routing, multiple

paths are chosen between the source and destination nodes, meaning it is less

probable that all the chosen paths will have broken links. In network coding,

random linear combinations of original packets are transmitted, so even if

one or two paths have broken links, the destination can still recover the orig-

inal packets. With this assumption, it can be predicated that nodes near the

boundary/sparse regions being in proactive routing mode and nodes in the

bulk being in reactive routing mode will likely minimize the delay between

the source and destination [Zha09].
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Chapter 8

Isolated Clusters

So far we have explored the role isolated nodes have on connectivity in spatio-

temporal networks, but what can we say about the structure of the graph

beyond just isolated nodes? The aim is to go further than the previous chap-

ter and analyse the clusters of size greater than one. For classical (uniform)

RGGs isolated nodes are the obstacle to Pfc and these follow a limiting PPP

if the distribution is uniform. This is a consequence of not being able to have

two isolated nodes close together, as these themselves will connect. Namely,

the probability a point being isolated, given that it lies in a cluster of finite

size, goes to one in the dense network limit [Pen91]. This work has more

recently been extended by Ref [Las18] to study the first and second order

properties of SRGGs for a uniform PPP. In the non-uniform SRGG it is fea-

sible that isolated subgraphs (cliques of size two or more) play an important

role in Pfc; here we aim to explore this through the average number of clus-

ters of size K. This work is an extension of the previous chapter and has not

been published.
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8.1 System Model

We adopt a similar to the model as in the previous chapter and aim to keep

the analysis as general as possible. Let Φ denote a PPP in the triangular

domain defined by

A = {(x, y)|0 ≤ x ≤ L, 0 ≤ y ≤ min[x tanφ,−(x− L) tanφ]} (8.1)

with the distribution of points being modelled by λ(r, θ). Once again letH(r)

denote a connection function with infinite support with no directionality (i.e

P[x → y] = P[y → x]). Furthermore, let the probability be independent

of time and the rest of the points in Φ, therefore ignoring any interference.

Finally, we once again assume that the time for a link to be realised is much

smaller than the time for a node to move, hence, we can assume the nodes in Φ

are not mobile between time slots. The difference from the previous chapter is

that here we need to consider the connected subgraphs that are disconnected

from the rest of the network. Let GK denote a connected subgraph of K

nodes, not necessarily in Φ. The question we aim to address is, How long is

a connected component GK of size K isolated from any node in Φ?

8.2 Probability a subgraph is isolated and its

expectation

We proceed by providing a general analysis for T time slots, and a graph with

K components in it that are all connected. We first write the probability

of there being a subgraph GK isolated from Φ conditioned on the locations

of all the other nodes in Φ, then average over all possible realisations of the

point process Φ. In this case we do not need to assume that the locations

of the nodes in GK have the same distribution as those in Φ, in fact they

can be separate from Φ altogether. However, as later on in this section we

use the fact that GK ∈ Φ and we will assume that this is the case here also,
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and denote Φ̂ = Φ\Gk as the set of points excluding the subgraph and apply

Slivnyak’s theorem (see Sec 2.1.1).

PTiso(Gk) = EΦ

[(
P[GK is connected,y 6→ Φ̂∀y ∈ GK |Φ,GK ]

)T]

= EΦ

[
P[GK is connected|GK ]TP[y 6→ Φ̂∀y ∈ GK |Φ,GK ]

)T]

= EΦ

P[GKconnected]T
∏
x∈Φ̂

∏
y∈GK

(1−H(|x− y|))T


= P[Gkconnected]T exp

(
−
∫
A

(
1−

∏
y∈Gk

(1−H(|x− y|))T
)
λ(x, θ)dx

)
,

(8.2)

where in the last inequality we have used the PGFL in eq.(2.6) for a PPP.

The integral in the exponential is the modified connectivity mass, which we

denote MT
GK (y1, ...,yK), where for T = 1 and Gk = y1 we retrieve the usual

connectivity mass [Coo12a]. The structure of GK has numerous possibilities.

For small K the sequence of how many ways to construct a connected graph

of size 1, 2, 3, 4, 5, ... goes like 1, 1, 4, 38, 278, ..., [Wil05]. The two extremal

cases for how the subgraph can be connected are the complete graph KK

and one which has exactly one Hamiltonian path LK . The probability of

being connected in both these cases are,

P[Gkconnected] =

 1
k!

∏k−1
i=1

∏k
j=i+1H(|yi − yj|), for KK ,

1
k!

∏k−1
i=1 H(|yi − yi+1|), for LK .

(8.3)

The expected number of isolated subgraphs is found by averaging eq.(8.2)

over all possible permutations of the graph GK , and is consistent with results
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in [Las18].

CTGk = EGk

[(
P[Gkconnected]T exp

(
−MT

GK (y1, ...,yK)

)]
=(2)

∫
A

...

∫
A

P[Gkis connected]T e
−MT

Gk
(y1,...,yK)

λ(y1)...λ(yK)dyK ...dy1.

(8.4)

This computation becomes very expensive very quickly. For example, even for

a subgraph of size two it involves computing four integrals with the integrand

itself having a double integral in an exponential. We remark however the

condition for GK to be connected is very restrictive in this case. For example,

in reality it is likely we refer to GK as connected if there is a multihop path

between every node in GK from the first time slot to some time T . In this

case there may be multiple time slots in between where the edge set is empty,

but the subgraph is still “connected” as all information is able to be relayed

between all pairs of nodes by time T .

8.3 Discussion

In Fig 8.1 we show how the number of clusters of size K decays as a function

of time. Clearly for isolated nodes this is non-increasing, but for clusters of

size ≥ 2 this is not the case as smaller clusters combine to form bigger ones.

Noticeably the number of isolated nodes decays quickly and then slows down

as those remaining disconnected nodes are “more isolated”, and it is those

that obstruct full connectivity. Once again isolated the main obstruction to

full connectivity, but those smaller clusters offer a correction term to that

approximation.

Naturally, this model assumes a static distribution of points between

time slots, but for mobile networks we should expect the number of isolated

clusters to go to zero faster1. This work further highlights the need for

1Again we do not concern ourselves with the causal paths in the network and nodes
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Figure 8.1: The expected number of isolated subgraphs in a spatio-temporal
random graph as a function of time, where the spatial distribution of nodes is
modelled by the RWP model in the triangle (see eq (3.23) in Sec 3). The con-

nection function is the stretched exponential H(r) = e
−
(
r
r0

)η
. Parameters:

L = 10, λ0 = 1, φ = π/3, r0 = 0.25 and η = 2.
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support nodes near boundaries and less populated areas.

becoming connected and then disconnected between time slots.
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Chapter 9

Conclusion

Mobility is playing an increasingly important role in wireless networks. As

the number of hand-held smart devices continues to grow the networks are be-

coming increasingly dynamic. Mobility itself is a wide field of research with

a wealth of literature dedicated to it, from the usual Random Walk mod-

els, to more simulation-based models such as the Self-similar Least Action

Walk [Lee12]. Thus, characterising the impact of human mobility remains an

important question [Sch17]. In this thesis we approach the problem by using

a general non-uniform distribution to model the location of mobile devices,

with a particular case being the stationary distribution of the Random Way-

point Model. In doing so, we are able to analyse how regions of low/high

density and boundaries affect local and global connectivity, both as a single

snapshot of the network and over multiple time slots.

9.1 Mobility

Analysing network performance under general human mobility models is

notoriously difficult and results are normally given for very specific exam-

ples [Bro06, Ben07, Lee12] or in terms of thresholds of network performance

[Tse05]. As such, we aim to focus on analysing networks with non-uniform
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densities that are a consequence of mobility. Two models that are widely

used throughout the wireless literature are the Random Walk (RW) and

the Random Waypoint (RWP) models, with each converging to a station-

ary distribution of users for long times. The RW has a uniform stationary

distribution of users (in 2 dimensions or less), whilst the RWP has a con-

cave distribution of users where the density is higher in the bulk than at

the boundaries. The latter provides an intuitive model for human mobility,

whilst remaining tractable. We would expect, from simple observations, that

in cities the density of users is higher in the centre than near the outskirts,

particular at busy shopping time or working hours; this is exactly what the

RWP models.

As a starting point our first result was to calculate the exact stationary

distribution in rectangular and triangular regions and compare this with

approximations. We observed that the stationary distributions of the exact

and approximate forms both captured the key characteristics of the model,

with the density being highest in the bulk and going to zero at the boundaries

(when pause times are neglected) with the main discrepancy between the

approximate and exact coming near the corners. Although the distributions

do differ quantitatively, the increased tractability of the approximate form,

and it capturing the key features of the RWP, led to us using this model in the

subsequent discussions to study mean degree and coverage in 5G networks.

9.2 Mean Degree

Having now a method to analyse the impact of mobility, we began by analysing

the mean degree (Chapter 4). The mean degree (the average number of links

a node can make) is a standard metric for networks as it gives an indication

to the global connectivity; a network is likely to be disconnected if the mean

degree is small, and certainly will be if it is less than one. We studied three

different types of SRGGs in this case, the disk model (RGGs), the Rayleigh

model and the interference-limited case. For the first two cases the mean de-
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gree scales with the number of nodes, regardless of the connection function

being deterministic or probabilistic, with the mean degree being highest in

more densely populated regions away from the boundaries.

For the interference model, the probability a pair of nodes form a link

also depends on the other points in the network which often leads to some

interesting behaviour. In particular for a singular and non-singular path loss

model the results are very different. For a singular path loss model the mean

degree increases with the number of nodes, then plateaus; whilst for the non-

singular case it initially increases until some maximum then decays to zero.

The latter seems to provide a more intuitive model: initially the benefit of

having more nodes to connect to outweighs an increase in the interference

field until some threshold density where the interference effects dominate and

the mean degree decreases to zero. Moreover, this result can be related to

one regarding percolation. The authors of [Dou06] showed that for a non-

singular model percolation in SIR graphs occurs for an interval of densities.

For the singular model, we should expect to see a more classical picture of

percolation, namely the probability of percolation is non-decreasing.

Importantly we highlight how mobility impacts the connectivity of SRGGs,

and extend our analysis to SRGGs with interference. In the typical model

with uniform measure the interference field is independent of location (except

near a boundary if there is one). We show that in a MANET it is benefi-

cial to be in regions where the density is highest, even with the increased

interference field. The only exception happens for the peculiar case when the

density is highest at the boundary where it is better to be situated near the

border instead.

9.3 Ultra-dense and Low Power networks

The variations in connectivity due to mobility raises the question how future

networks should be deployed to cope with increasingly dynamic networks.

5G networks are expected to be extremely dense and comprised of a range
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of different APs, each with different transmit powers. We addressed how

APs should be deployed to meet the dynamic demand of mobile users in

chapter 5. In this model a user connects only to its nearest AP and the

user benefits from being in regions of high AP density. Through brute force

optimisation techniques we show that APs should match the user profile when

the profile of users is convex, but uniform for uniform or concave distribution

of MUs. Therefore, through a simple ALOHA protocol network performance

can easily be met by switching APs on or off to meet traffic demand; a result

that can be used to influence how 5G networks should be deployed. We

then extended this to cooperative networks, where the signal was the sum

of a MU’s K nearest neighbours, where we showed the increased diversity

improved network coverage.

We also discuss the somewhat related problem of connectivity in Low

Power wide area networks, and provide some initial approximations for typ-

ical network scenarios. Our approximations use the fact that the network is

very sparse and thus the maximum interfering signal can be approximated

as the closest one. In dense regimes closed form calculations are difficult

since order statistics need to be used for the different connection criterion.

However, the method we use is highly generalisable and can easily be ex-

tended to network optimisation and multiple gateways, which is discussed

below regarding interesting open problems.

9.4 Spatio-temporal networks

Much of this work, and that in the literature, is for single snap shot analysis.

In Chapter 7 we extend our approach to non-uniform SRGGs and analyse

how long a node near a corner is isolated for over multiple time slots. For

low power networks where the links are better modelled by SRGGs with

compact support, the isolation depends greatly on the “local neighbourhood”

of the node. Namely, there has to be a node within the support of the

connection function for it to connect, meaning to mitigate node isolation
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a more regular structure of support nodes is suitable. However, for longer

range connection functions, it is those highly isolated nodes that are likely

to be the bottleneck to Pfc. In particular, in mobile networks it is those few

nodes that find themselves near a boundary (particularly corners) which are

likely to be isolated, highlighting that support nodes need to be located near

boundaries and areas where the density is low. In this case, to have efficient

network routing boundary nodes should be proactive (periodically update

its knowledge of neighbours), whilst nodes near the bulk should be reactive

(only find a path when it is needed). To address full connectivity in these

temporal networks is difficult, but by showing that it is those nodes near the

boundaries which are last to connect we can see that it is once again those

highly isolated nodes are the obstruction.

As a comparison we also looked at networks where nodes had infinite

mobility, or alternatively where the assumed time scales had swapped, the

typical time between transmissions was much larger than the time it took

for nodes to move around the domain. In this case we showed that high

mobility networks help to resolve these highly isolated nodes. As such the

performance of realistic MANETs will fall somewhere in between the two

scenarios, with more mobile networks being more connected.

Although posed in terms of MANETs, this has interesting connotations

for HetNets, where the nodes in the domain are APs (assumed fixed) and the

user is mobile. In this case, APs may be deployed near the centre to meet

high traffic demand in working hours as in the coverage problem, but to

maximise user experience, border nodes should be deployed to help support

those highly isolated nodes. For example, in order to meet demand in 5G

networks the distribution of APs should roughly mirror that of the spatial

distribution of users, whilst also keeping residual border nodes to ensure users

near the boundary don’t become isolated.

Throughout this body of work we have shown the important role that mo-

bility has on the performance of a wide range of communication networks,

both current and future. Many of our results can be used to better under-
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stand how future 5G and mobile ad hoc networks should be deployed to

maximise experience, along with how information should be routed within

dynamic networks. We now discuss some open problems that extend this

work to different scenarios.

9.5 Outlook

We begin this discussion on some interesting open problems that arose whilst

on my industrial placement regarding LoRa networks.

Referring back to the model outlined in Chapter 6, one important question

still to ask is: given a distribution of end users, how should I draw my

annuli to maximise the coverage in the network? This problem can easily

be achieved through a brute force optimisation technique, but it would be

interesting if a more elegant solution could be found.

Another related problem is how the network performs with multiple gate-

ways. Typically, by adding network diversity (increasing the number of gate-

ways) network performance should increase. In this model, an end user

should aim to maximise both qSF and its coverage probability (minimise

the impact of interfering signals). Quantifying the impact this diversity has

would be very interesting to study, particular when the gateways themselves

are different; they have different spreading factors (qSF ) associated to dif-

ferent annuli which themselves may have different widths. One approach is

to relax the constraint that a device would maximise the qSF but instead

transmit to its nearest gateway assuming they are identical. In particular,

this model would be a suitable for a small γ, which is expected. In this case,

all of the previous analysis can be used. Alternatively, the more complex

scenario could easily be analysed through extensive simulations, but a more

mathematical analysis may provide deeper insights into performance.

Another interesting problem is one of isolated clusters and their role in

Pfc. We gave some brief discussions on how long a node is isolated for, and

the expected number of isolated nodes at time T , but this is certainly not
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the whole picture. For example, if an effective way to approximate isolated

clusters in a network is achieved, then this may act as correction term for

isolated nodes approximation. However, as we discussed previously, the ap-

proximations we used for the isolated nodes were no longer valid for the larger

subgraphs. Furthermore, our notion of full connectivity is a weak one. It is

feasible that the network may have nodes that are connected over a range of

time slots, but disconnected from the rest of the network. For example, two

(likely highly isolated) nodes could continually be connecting to one another,

but no other nodes. Ideally we want to look at the time when every node has

a causal path to every other, and what obstructs this. From this work we

might expect that it is those highly isolated nodes that are the obstruction,

but it would be nice to verify this.

Finally, an important question for the study of SRGGs is to look beyond

the usual Poisson Point Process to capture an even more diverse network

structure, including the attraction and repulsion of points through different

point processes such as the determinantal, Cox and Gibbs processes.

9.6 Concluding Remarks

Soft Random Geometric Graphs have a wide range of applications, partic-

ularly to current and future communication networks. Of particular inter-

est is how these networks are becoming increasingly dynamic as technology

evolves and smart devices become more mobile. Through tools from stochas-

tic geometry, we have explored how human mobility can impact upon the

connectivity properties of a wide range of these communication networks.

The non-uniform nature of mobile networks means the performance is highly

location dependent. Particularly, the non-constant interference field whole

regions can become disconnected from either having too few (the number

of close neighbours is low) or too many devices (the interference field is too

strong). Our results can be applied to a wide range of topics including:

understanding percolation in interference-limited networks; the optimal de-
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ployment of Access points in 5G networks and efficient routing algorithms in

spatio-temporal networks, all with a focus on how the non-uniform distribu-

tion of devices induced by mobility causes the global connectivity picture to

change.
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Appendix A

Publication List

During my thesis I have been listed as a co-author in the following publica-

tions:

1. Pratt, Pete, Carl P. Dettmann, and Orestis Georgiou. “How does mo-

bility affect the connectivity of interference-limited ad hoc networks?.”

Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks

(WiOpt), 2016 14th International Symposium on. IEEE, 2016.

2. Pratt, Pete, Carl P. Dettmann, and Orestis Georgiou. “Optimal Non-

Uniform Deployments in Ultra-Dense Finite-Area Cellular Networks.”

IEEE Communications Letters 21.5 (2017): 1139-1142.

3. Pratt, Pete, Carl P. Dettmann, and Woon Hau Chin. “Temporal con-

nectivity in finite networks with nonuniform measures.” Physical Re-

view E 98.5 (2018): 052310.

4. Dettmann, Carl P., Orestis Georgiou, and Pete Pratt. “Spatial net-

works with wireless applications.” Comptes Rendus Physique 19.4 (2018):

187-204.

The above work was done in close collaboration with my supervisors

who were also named as authors. Any simulations were done in Python3
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along with the numerical integration using the Scipy package. Mathematica

was also used for dealing with the special cases of the Gauss hypergeometric

function. To clarify my contributions for each paper I give a summary below.

Paper 1 Calculating the exact spatial distribution for the Random Waypoint

model; calculating the solvable cases of the interference-limited con-

nection probability and mean degree for interference free networks, and

the remaining numerical computations. The numerical integration was

also carried out simultaneously by Dr Orestis Georgiou. I also helped

to write this paper.

Paper 2 Calculating the nearest neighbour distribution and coverage probability

for non-uniform networks, both analytically and numerically; numer-

ically calculating the optimal distribution of points and writing the

paper (and revisions) with guidance from my supervisors.

Paper 3 Choosing the initial problem; all the analytical and numerical calcu-

lations, including simulations, along with writing the paper and doing

any revisions. It was pointed out to me that an alternate approach

could be done by Professor Carl Dettmann hence why there are two

methods to calculating the isolation probabilities, along with a more

general choice of density to the one I had originally decided upon.

Paper 4 I helped to draft the review; complete suggested edits from the reviewer

and wrote the sections on point processes (Sec 2 of Ref [Det18b]); perco-

lation (Sec4.2 of Ref [Det18b]); temporal networks (Sec 7 of Ref [Det18b]

and mobility (Sec 8 of Ref [Det18b]).
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Appendix B

Python Code for a non-uniform

PPP

Some example code to create a non-uniform PPP in a circular domain, writ-

ten in python3. A more general approach can be used by passing the distri-

bution function to the PPP function itself, but this becomes less readable.

1 from future import division

2 import numpy as np

3 from scipy.stats import poisson

4

5 def dist example(r, R, b = 0):

6 ’’’

7 Example of distribution of function that could be passed

8 to PoissonPointProcess function.

9 Default b value is zero

10 if not specified when calling function

11 ’’’

12 return (1 − (b∗R∗∗2)/2 + b ∗ r∗∗2)
13

14 def PoissonPointProcess(rt, R, dist, dist kwargs):
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15 ’’’

16 Function that generates a PPP in a circle with

17 distribution given by the function passed as dist.

18 R: Radius of circle

19 rt: rate of PPP desired.

20 dist: distribution of function for PPP

21 dist kwarg: keyword arguments passed to distribution function

22 ’’’

23 k = 2.3# Parameter ensuring mean a > mean b

24 mean a = rt ∗ 4 ∗ R∗∗2 # Mean number of points in PPP A
25 #Instance for how many point in original PPP

26 N = poisson.rvs(k ∗ mean a)
27 #Generate N points uniform − x direction
28 x = np.random.uniform(−R, R, N)
29 #Generate N points uniform − y direction
30 y = np.random.uniform(−R, R, N)
31

32 new pts = [(i, j) for i, j in zip(x,y) if j∗∗2 + i∗∗2 <= R∗∗2
33 and dist(np.sqrt(j∗∗2 + i∗∗2), R, ∗∗dist kwargs)/k
34 >= np.random.uniform(0, 1) ]

35

36 return new pts
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Appendix C

Random Waypoint Model

In this appendix we give a more detailed method for calculating the exact

spatial distribution of the RWP in the rectangle and triangle, beginning with

the former.

C.1 RWP Rectangle

We begin by reminding the reader that the aim is to solve the following

integral, ∫ π

0

a1(x, y)a2(x, y)(a1(x, y) + a2(x, y))dθ (C.1)

where

a1(x, y) =


a−x
cos θ

0 ≤ θ < arctan
[
b−y
a−x

]
b−y

sin(θ)
arctan

[
b−y
a−x

]
≤ θ < π − arctan

[
b−y
a+x

]
− (a+x)

cos(θ)
π − arctan

[
b−y
a+x

]
≤ θ < π

a2(x, y) =


a+x
cos θ

0 ≤ θ < arctan
[
b+y
a+x

]
b+y
sin θ

arctan
[
b+y
a+x

]
≤ θ < π − arctan

[
b+y
a−x

]
x−a

cos(θ)
π − arctan

[
b+y
a−x

]
≤ θ < π

(C.2)
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To solve eq.(3.4) we split the integral into the five piecewise components

and solve separately.

∫ π

0

a1a2(a1 + a2)dθ =

∫ arctan[ b+ya+x ]

0

a1a2(a1 + a2)dθ

+

∫ arctan[ b−ya−x ]

arctan[ b+ya+x ]
a1a2(a1 + a2)dθ

+

∫ π−arctan[ b+ya−x ]

arctan[ b−ya−x ]
a1a2(a1 + a2)dθ

+

∫ π−arctan[ b−ya+x ]

π−arctan[ b+ya−x ]
a1a2(a1 + a2)dθ

+

∫ π

π−arctan[ b−ya+x ]
a1a2(a1 + a2)dθ

= I�1 + I�2 + I�3 + I�4 + I�5

(C.3)

Note that we have dropped the notation of writing a1(x, y), a2(x, y) but in-

stead use a1, a2 for brevity.

We now proceed by explicitly calculating the integrals starting with I1.

I�1 =

∫ arctan[ b+ya+x ]

0

a1a2(a1 + a2)dθ = 2a(a− x)(a+ x)

∫ arctan[ b+ya+x ]

0

sec3 θdθ

= a(a− x)(a+ x)

(
(b+ y)

√
(a+ x)2 + (b+ y)2

(a+ x)2

+ log

[
1

a+ x

(√
(a+ x)2 + (b+ y)2 − (b+ y)

)])
=
a(a− x)(b+ y)

√
(a+ x)2 + (b+ y)2

(a+ x)

+ a(a− x)(a+ x) log

[
1

a+ x

(√
(a+ x)2 + (b+ y)2 − (b+ y)

)])
=
a(a− x)(b+ y)c1

(a+ x)
+ a(a− x)(a+ x) log

[
c1 − b− y
a+ x

])
(C.4)
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where we have defined c1 =
√

(a+ x)2 + (b+ y)2.

To facilitate the calculation of I2 we further split into a further two inte-

grals.

I�2 =

∫ arctan[ b−ya−x ]

arctan[ b+ya+x ]
a1a2(a1 + a2)dθ

= (a− x)(b+ y)

∫
(a− x) cos θ + (b+ y) sin θ

sin2 θ cos2 θ
dθ = I�2a + I�2b

(C.5)

I�2a =

∫ arctan[ b−ya−x ]

arctan[ b+ya+x ]

(b+ y)2(a− x)

sin2 θ cos θ
dθ

= −
(a− x)(b+ y)2

√
(a− x)2 + (b− y)2

b− y

+
(a− x)(b+ y)2

√
(a+ x)2 + (b+ y)2

b+ y

+ (a− x)(b+ y)2 log

[√
(a− x)2 + (b− y)2 + b− y

a− x

]

− (a− x)(b+ y)2 log

[√
(a+ x)2 + (b+ y)2 + b+ y

a+ x

]

= −(a− x)(b+ y)2c2

b− y
+

(a− x)(b+ y)2c1

b+ y

+ (a− x)(b+ y)2 log

[
c2 + b− y
a− x

]
− (a− x)(b+ y)2 log

[
c1 + b+ y

a+ x

]
(C.6)

c2 =
√

(a− x)2 + (b− y)2

I�2b =

∫ arctan[ b−ya−x ]

arctan[ b+ya+x ]

(b+ y)2(a− x)

sin2 θ cos θ
dθ (C.7)
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I�2b = −
(a− x)2(b+ y)

√
(a+ x)2 + (b+ y)2

a+ x

+
(a− x)2(b+ y)

√
(a− x)2 + (b− y)2

a− x

+ (a− x)2(−(b+ y)) log

(√
(a− x)2 + (b− y)2 + a− x

b− y

)

+ (a− x)2(b+ y) log

(√
(a+ x)2 + (b+ y)2 + a+ x

b+ y

)

= −(a− x)2(b+ y)c1

a+ x
+

(a− x)2(b+ y)c2

a− x

− (a− x)2(b+ y) log

(
c2 + a− x
b− y

)
+ (a− x)2(b+ y) log

(
c1 + a+ x

b+ y

)
(C.8)

I�3 =

∫ π−arctan[ b+ya−x ]

arctan[ b−ya−x ]
a1a2(a1 + a2)dθ

=
b(a− x)(b+ y)

√
(a− x)2 + (b− y)2

b− y

+
b(a− x)(b− y)

√
(a− x)2 + (b+ y)2

b+ y

+ b(b+ y)(b− y) log

[√
(a− x)2 + (b− y)2 + a− x

b− y

]

− b(b− y)(b+ y) log

[√
(a− x)2 + (b+ y)2 − a+ x

b+ y

]

=
b(a− x)(b+ y)c2

b− y
+
b(a− x)(b− y)c3

b+ y

+ b(b+ y)(b− y) log

[
c2 + a− x
b− y

]
− b(b− y)(b+ y) log

[
c3 − a+ x

b+ y

]
(C.9)

c3 =
√

(a− x)2 + (b+ y)2.
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To facilitate the calculation of I4 we further split into a further two inte-

grals.

I�4a =

∫ π−arctan[ b−ya+x ]

π−arctan[ b+ya−x ]
a2

1a2dθ

− (b− y)2(a− x)

∫ π−arctan[ b−ya+x ]

π−arctan[ b+ya−x ]

1

sin2 θ cos θ
dθ

= −
(a− x)(b− y)2

√
(a− x)2 + (b+ y)2

b+ y
+ (a− x)(b− y)

√
(a+ x)2 + (b− y)2

− (a− x)(b− y)2 log

[
−
√

(a+ x)2 + (b− y)2 − b+ y

a+ x

]

+ (a− x)(b− y)2 log

[
−
√

(a− x)2 + (b+ y)2 − b− y
a− x

]

= −(a− x)(b− y)2c3

b+ y
+

(a− x)(b− y)2

b− y
c4

− (a− x)(b− y)2 log

[∣∣∣∣−c4 − b+ y

a+ x

∣∣∣∣]+ (a− x)(b− y)2 log

[∣∣∣∣−c3 − b− y
a− x

∣∣∣∣]
= −(a− x)(b− y)2c3

b+ y
+

(a− x)(b− y)2

b− y
c4

− (a− x)(b− y)2 log

[
c4 + b− y
a+ x

]
+ (a− x)(b− y)2 log

[
c3 + b+ y

a− x

]
(C.10)

with c4 =
√

(a+ x)2 + (b− y)2. Since both terms in the logarithms are

negative we use the identity that log[−z] = log[z] + iπ, where z > 0 and

z ∈ R, where, as we should expect, all imaginary parts cancel.

I�4b =

∫ π−arctan[ b−ya+x ]

π−arctan[ b+ya−x ]
a1a

2
2dθ

= −(a− x)2(b− y)

∫ π−arctan[ b−ya+x ]

π−arctan[ b+ya−x ]

1

sin θ cos2 θ
dθ

(C.11)
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I�4b = −
(a− x)2(b− y)

√
(a+ x)2 + (b− y)2

a+ x

+ (a− x)(b− y)
√

(a− x)2 + (b+ y)2

− (a− x)2(b− y) log

[√
(a+ x)2 + (b− y)2 − a− x

b− y

]

+ (a− x)2(b− y) log

[√
(a− x)2 + (b+ y)2 − a+ x

b+ y

]

= −(a− x)2(b− y)c4

a+ x
+

(a− x)(b− y)2

b− y
c3

− (a− x)2(b− y) log

[
c4 − a− x
b− y

]
+ (a− x)2(b− y) log

[
c3 − a+ x

b+ y

]
(C.12)

I�5 = −2a(a− x)(a+ x)

∫ π

π−arctan[ b−ya+x ]
sec3 dθ

= −a(a− x)(a+ x)πi+
a(a− x)(b− y)

√
(a+ x)2 + (b− y)2

a+ x

− a(a− x)(a+ x) log

[
b− y −

√
(a+ x)2 + (b− y)2

a+ x

]

=
a(a− x)(b− y)c4

a+ x
− a(a− x)(a+ x) log

[
c4 − (b− y)

a+ x

]
(C.13)

Similar to before the imaginary parts cancel.

A summary of the constants introduced to reduce the formula are,

c1:
√

(a+ x)2 + (b+ y)2

c2:
√

(a− x)2 + (b− y)2

c3:
√

(a− x)2 + (b+ y)2

c4:
√

(a+ x)2 + (b− y)2

(C.14)
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Combining all the above integral gives,

fA1
X,m(x, y) =

(2x+ a)(b+ y)(a− x)

a+ x
c1 +

(a− x)(b+ y)(b− 2y)

b− y
c2

(b− y)(a− x)(b+ 2y)

b+ y
c3 +

(a+ 2x)(b− y)(a− x)

a+ x
c4

+ (b− y)(a− x)2 log

[
(c3 + x− a)(b− y)

(c4 − a− x)(b+ y)

]
+ (b+ y)(a− x)2 log

[
(a+ x+ c1)(b− y)

(b+ y)(a− x+ c2)

]
+ (b+ y)2(a− x) log

[
(b− y + c2)(a+ x)

(a− x)(b+ y + c1)

]
− a(a+ x)(a− x) log

[
−b+ y + c4

c1 − y − b

]
+ (b− y)2(a− x) log

[
(b+ y + c3)(a+ x)

(a− x)(b− y + c4)

]
+ b(b− y)(b+ y) log

[
(a− x+ c2) (b+ y)

(b− y) (−a+ x+ c3)

]

(C.15)

C.2 Triangle

C.2.1 Mean leg length triangle

To calculate the mean leg length in the triangle we use eq.(3.6). Namely we

need to compute the following,

l̄4 =
1

|A|2

∫ 2π

0

∫ rmax

0

r2|A ∩ Ar|drdθ (C.16)

where Ar denotes the domain shifted by a parameter r, namely the original

domain A is moved a distance rmax at an angle θ away. In fact the main part

of this problem is finding |A ∩Ar|, the rest follows from normal integration.

Lets first define Â = |A ∩ A|r.
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â =



(2ab−ar sin θ−br cos θ)2

4ab
0 ≤ θ < arctan

[
b
a

]
a(b−r sin θ)2

b
arctan

[
b
a

]
≤ θ < π − arctan

[
b
a

]
(2ab−ar sin θ+br cos θ)2

4ab
π − arctan

[
b
a

]
≤ θ < π

(2ab+ar sin θ−br cos θ)2

4ab
π ≤ θ < π + arctan

[
b
a

]
a(b+r sin θ)2

b
π + arctan

[
b
a

]
≤ θ < 2π − arctan

[
b
a

]
(2ab+ar sin θ−br cos θ)2

4ab
2π − arctan

[
b
a

]
≤ θ < 2π

(C.17)

Immediately we notice from symmetry we will only need to solve two

distinct integrals.

l̄4 =
1

|A|2

∫ 2π

0

∫ rmax

0

r2|A ∩ Ar|drdθ

=
4

|A|2

∫ arctan[ ba ]

0

∫ 2ab
cos θ(b+a tan θ)

0

(2ab− ar sin θ − br cos θ)2

4ab
r2drdθ

+
2

|A|2

∫ π−arctan[ ba ]

arctan[ ba ]

∫ b
sin θ

0

a(b− r sin θ)2

b
r2drdθ

= 4l̄14 + 2l̄24

(C.18)

Consider first l̄14.

l̄14 =
1

(1
2
(2ab))2

∫ arctan[ ba ]

0

∫ 2ab
cos θ(b+a tan θ)

0

(2ab− ar sin θ − br cos θ)2

4ab
r2drdθ

=
1

a2b2

∫ arctan[ ba ]

0

4a4b4

15(b cos θ + a sin θ)3
dθ

=
1

30(a2 + b2)3/2

(
4a2b2 log

[
a

a+
√
a2 + b2

]
+ b4 − a4 + 4a3

√
a2 + b2

)
(C.19)

180



where we use tanx = sinx
1+cosx

, arctanh z = 1
2

log
[

1+z
1−z

]
, to help the simplifica-

tion.

The calculation of l24 is much more straightforward.

l̄24 =
2

(ab)2

∫ π
2

arctan[ ba ]

∫ b
sin θ

0

a(b− r sin θ)2

b
r2drdθ =

∫ π
2

arctan[ ba ]

b2 csc3 θ

15a
dθ

=
a
√
a2 + b2 + b2 log

[
a+
√
a2+b2

b

]
30a

(C.20)

As a verification we see that for a triangle where a =
√

3 and b = 3, l̄ = 1.263

as in Ref [Hyy06].

C.2.2 Spatial distribution of the RWP in a triangle

Consider the RWP in a triangular region T = {(x, y)| − a ≤ x ≤ a, 0 ≤ y ≤
min[(x+ a) tanφ,−(x− a) tanφ} where a, b are parameters of the base and

height of the triangle respectively, and φ = arctan
[
b
a

]
. As in the rectangle,

we can use symmetry to reduce the amount of calculations needed, and focus

only on the case when 0 ≤ x ≤ a.

f4X,m(x, y, a, b) =

f
4,+
X,m(x, y, a, b) x ≥ 0

f4,−X,m(−x, y, a, b) x ≤ 0
(C.21)

We begin by defining a1 and a2.

a1(x, y) =


ab−ay−bx

cos θ(b+a tan θ)
0 ≤ θ < π

2
+ arctan

[
x
b−y

]
ab+bx−ay

cos θ(a tan θ−b)
π
2

+ arctan
[

x
b−y

]
≤ θ < π

a2(x, y) =


ya−ba−ax

cos θ(a tan θ−b) 0 ≤ θ < arctan
[

y
x+a

]
y

sin θ
arctan

[
y

x+a

]
≤ θ < π

2
+ arctan

[
a−x
y

]
ay+bx−ab

cos θ(a tan θ+b)
π
2

+ arctan
[
a−x
y

]
≤ θ < π

(C.22)
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Again, we need to compute eq.(3.4), and proceed by breaking the inte-

gral of
∫ π

0
a1(x, y, θ)a2(x, y, θ)(a1(x, y, θ)+a2(x, y, θ))dtheta into the different

integration limits, resulting in four different integrals. The first integral we

need to compute is is over the interval θ ∈
[
0, arctan

[
y

x+a

])
and is denoted

as I+
1,4. To simplify the expressions we use the constants c0 =

√
a2 + b2, c1 =√

(a+ x)2 + y2, c2 =
√
x2 + (b− y)2 and c3 =

√
(a− x)2 + y2.
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I+
1,4 =

∫ arctan[ y
x+a ]

0

(
ab− ay − bx

cos θ(b+ a tan θ)

)(
ya− ba− ax

cos θ(a tan θ − b)

)(
ab− ay − bx

cos θ(b+ a tan θ)
+

ya− ba− ax
cos θ(a tan θ − b)

)
dθ

=
b+ x− y

2b2c2
0

(
a(b+ x− y)(a(y − b) + bx)c0 + c2

0(a(y − b) + bx)2

+
1

2
b2c0((a(y − b) + bx)2 − (b+ x− y)(a(b− y)− bx)) log

[
(b2y2 − (a+ c0)2(a+ c1 + x)2)

((a− c0)(a+ c1 + x) + by)2

]
+

1

2
a2c0((b+ x− y)(a(b− y)− bx)− (a(y − b) + bx)2) log

[
((a+ c0)(a+ c1 + x) + by)

((a+ c0)(a+ c1 + x)− by)

]
+
abc2

0c1(b+ x− y)(a(b− y)− bx)

ay − b(a+ x)
− (a(y − b) + bx)2bc2

0c1

(a(b+ y) + bx)

+ c0b
2 log

[
c0 − a
a+ c0

](
1

a
(a(y − b) + bx)2 + (b+ x− y)(a(y − b) + bx)

))
(C.23)

I+
2,4 =

∫ π
2

+arctan[ x
b−y ]

arctan[ y
x+a ]

(
ab− ay − bx

cos θ(b+ a tan θ)

)( y

sin θ

)( ab− ay − bx
cos θ(b+ a tan θ)

+
y

sin θ

)
dθ

=
y(a(y − b) + bx)

b2

(
yc0 log

[
((c0 − a)(a+ c1 + x) + by)(−(a+ c0)(c2 − x) + b2 − by)

((c0 + a)(a+ c1 + x)− by)((a− c0)(c2 − x)− b2 + by)

]
+

b2c2

b− y
− 2bc1 + b(x+ a) log

[
y(b− y)

(a+ c1 + x)(c2 − x)

]
+
a(a(y − b) + bx)

c0

log

[
(c0 + a)(a+ c2 + x)− by)

(a− c0)(a+ c2 + x)− by)

])
(C.24)
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I+
3,4 =

∫ π
2

+arctan[a−xy ]

π
2

+arctan[ x
b−y ]

(
ab+ bx− ay

cos θ(a tan θ − b)

)( y

sin θ

)( ab+ bx− ay
cos θ(a tan θ − b)

+
y

sin θ

)
dθ

=
1

b2
y

(
−y(a(b− y) + bx)

(
c0 log

[
(ab− ay − bc0 + bc2 + c0y)(−a2 + a(−c0 + c3 + x) + by + c0(c3 + x))

(a(y − b)− b(c0 + c2) + c0y)(a2 − a(c0 + c3 + x)− by + c0(c3 + x))

]
+ a log

[
y(b− y)

(c2 + x)(−a+ c3 + x)

]
− bc2

b− y
+
bc3

y

)
+ (b(a+ x)− ay)2

(
a

c0

log

[
((a− c0)(c2 − x) + b2 − by)(c0(−a+ c3 + x) + a(−a+ c3 + x) + by)

((a+ c0)(c2 − x) + b2 − by)(−a2 + a(c0 + c3 + x) + by − c0(c3 + x))

]
+ log

[
y(b− y)

(c2 − x)(−a+ c3 + x)

]
+

bc3

bx− a(b+ y)
+

bc2

ab− ay + bx

))
(C.25)

I+
4,4 =

∫ π

π
2

+arctan[a−xy ]

(
ab+ bx− ay

cos θ(a tan θ − b)

)(
ay + bx− ab

cos θ(a tan θ + b)

)(
ab+ bx− ay

cos θ(a tan θ − b)
+

ay + bx− ab
cos θ(a tan θ + b)

)
dθ

=
axy2

b
+ abx− 2axy − bx3

a
− c3(ay − bx)(a(y − b) + bx)

ab
− a(b− y)(b2x2 − a2(b− y)2)

2c0b2
log

[
bc3 + c0y

bc3 − c0y

]
− xb(b2x2 − a2(b− y)2)

2c0a2
log

[
((a(c0 + c3 + x)− c0(c3 + x)− a2)2 − b2y2)

((c0(−a+ c3 + x) + a(−a+ c3 + x))2 − b2y2)

]
(C.26)
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Therefore we can write the spatial distribution of the mobile part of the

RWP model as the sum of the four previous integrals.

f4,+X (x, y, a, b) = I+
1,4 + I+

2,4 + I+
3,4 + I+

4,4 (C.27)

In this case we leave it in this form, as combining them creates a very lengthy

expression, with few terms cancelling.
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Appendix D

Gauss Hypergeometric

Function

To provide some mathematical insight into why we get this transitional be-

haviour when η = dimension, we consider the series expansion of the hyper-

geometric function as dR →∞. To achieve the large parameter expansion it

is convenient to use the integral representation of the hypergeometric func-

tion [Gog13],

2F1 (a, b; c;−z) =
Γ[c]

Γ[b]Γ[c− b]

∫ 1

0

tb−1(1− t)c−b−1

(1 + tz)a
dt c > b > 0 (D.1)

The second step is to use the analytic continuation formula for the hy-

pergeometric function which allows for |z| > 1, obtained through analysis of

Barnes’ integral [Gog13].

2F1 (a, b; c; z) =
Γ[c]Γ[b− a]

Γ[b]Γ[c− a]
(−z)−a 2F1

(
a, a+ 1− c; a+ 1− b; 1

z

)
+

Γ[c]Γ[a− b]
Γ[a]Γ[c− b]

(−z)−b 2F1

(
b, b+ 1− c; b+ 1− a;

1

z

) (D.2)

The particular case we are interested allows for a significant simplification

through the substitution of c = b+1, a = 1, the integral representation given
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in eq.(D.1) and noticing that 2F1(a, 0; c; z) = 1.

2F1 (1, b; b+ 1;−z) =
Γ[b+ 1]Γ[b− 1]

Γ[b]Γ[b]
(z)−1

(
Γ[2− b]

Γ[1− b]Γ[2− b− (1− b)]

∫ 1

0

t−b(
1 + t1

z

)dt

)

+
Γ[b+ 1]Γ[1− b]

Γ[1]Γ[1]
(z)−b

=(1) b

b− 1
(z)−1

(
(1− b)

∫ 1

0

t−b
(

1− t

z
+
t2−b

z2
− t3−b

z3
+O(z4)

)
dt

)
+ bπ csc(πb)z−b

= − b
z

(
1

(1− b)
− 1

(2− b)z
+

1

(3− b)z2
+ ...

)
+ bπ csc(πb)z−b

(D.3)

In (1) we have expanded the integrand in terms of large z, and used the

definition of the Gamma function to provide further simplifications.

Therefore, multiplying the gauss hypergeometric function by z−b,

zb 2F1 (1, b; b+ 1;−z) = −zb−1b

(
1

(1− b)
− 1

(2− b)z
+

1

(3− b)z2
+ ...

)
+ bπ csc(πb)

=
lim
z→∞

bπ csc(πb) 0 < b < 1

∞ b ≥ 1

(D.4)

which is equivalent to that in eq.(4.14) once b = 2
η

is substituted back in and

the factor πλ0(qγdηR)
2
η is accounted for.
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