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ABSTRACT

Quantum dots come in many shapes and sizes, with a huge variety of material and optical
properties. The subject of this thesis will be to examine the environment of self-assembled
InGaAs quantum dots for applications in quantum information processing. Quantum dots

are made up of many atoms, each of which has a spin and it is the dynamics of these nuclear spins
and their effect on an electron spin confined in the quantum dot that we will discuss. There are
numerous applications for quantum dots in the field of quantum information processing, many of
which exploit their atom-like optical properties using light-matter interactions. The application
that will be the focus of this thesis is the nuclear spin quantum memory - a device that is able to
store quantum states on long timescales.

We will show both theoretical and experimental results that indicate ways in which we can
gain control of the nuclear spin dynamics. We demonstrate this by designing an optical setup
capable of measuring the precession frequency of an electron spin and show how we can induce
changes in this precession frequency by controlling the configuration of the nuclear spin bath.
We also discuss how we can manipulate this system to create a nuclear spin quantum memory -
storing the initial state of the electron spin in a single nucleus. We also discuss how we can exploit
the nuclei within the quantum dot as qubits to expand this protocol into a full-scale quantum
computing model.
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INTRODUCTION

This thesis will examine the prospects of spin-based quantum information processing and

quantum computation in self-assembled InGaAs quantum dots (QDs), with a focus on

nuclear spin effects. We will explore several theoretical concepts in relation to control

and manipulation of the nuclear spin environment of the QD and exploitation of the naturally-

occurring spin effects. We combine these studies into a theoretical protocol for a nuclear spin

quantum memory using an In atom contained in a QD. In the experimental section of this thesis,

we discuss the implementation of aspects of the nuclear spin quantum memory protocol - more

specifically, controlling the behaviour of the full nuclear spin bath to enhance spin qubit coherence

times. We present results showing that the precession of an electron spin within a QD can be

controlled to some extent through application of carefully chosen laser pulses and magnetic fields

acting to "calm" the evolving state of the nuclear spins within the QD environment. A detailed

thesis structure is outlined below.

1.1 Thesis Overview

Chapter 1 is a background theory chapter, beginning with a brief introduction to the key concepts

used in the following chapters. We will introduce the concept of an open quantum system, which

can be used as a theoretical description of a semiconductor QD. We will then discuss the finer

details of the fabrication of the self-assembled QDs studied in this thesis and their optical

properties. Next,we outline the motivation for studying these QD systems, including applications

in quantum information processing, quantum computation and quantum key distribution.

Chapter 2 will discuss the environment of a semiconductor QD, focusing specifically on the

dynamics of the nuclear spins and how they affect the coherence of an electron spin qubit within

the QD. This is a theoretical chapter and incorporates background information on an existing
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model for a nuclear spin bath with a novel extension of this model, making it applicable to

an experimental setting. We give details of a theoretical protocol known as nuclear frequency

focusing (NFF), which outlines a method for suppressing these nuclear spin effects, leaving the

electron spin free to precess coherently. We adjust and expand on ideas in the original model to

create an experimentally applicable proposal for this process. The original model was developed

by Sophia Economou, but rewritten independently and adapter by the author.

Chapter 3 will focus on single nuclear spin isolation and manipulation in the QD environment,

assuming that the techniques outlined in Chapter 2 can be successfully implemented. This is a

theoretical chapter, comprising predominantly novel material. The models used in this section

were developed by the author. For this, we analyse the strain profile of a typical InGaAs QD and

show that it is possible to find a nuclear spin that is isolated in frequency from the rest of the

nuclear spin bath such that it can be addressed individually by a radiofrequency (RF) pulse. We

discuss the effect of this RF pulse on the remainder of the nuclear spin bath, showing that the

system should retain coherence on sufficiently long time scales. We give details of how we can

use the manipulation of single nuclear spins to create a two-qubit system of the electron and a

target nuclear spin that will periodically evolve into a maximally entangled state.

Chapter 4 will consider how we can transform the two-qubit system described in Chapter 3

into a nuclear spin quantum memory protocol. This is the final theoretical chapter and is made

up entirely of novel material. The models described in this section were developed by the author.

We outline a method for reading out the stored nuclear spin state via entanglement and readout

of an ancilla photon. We then look into the effect of additional nuclei in the spin bath on the

entanglement of the electron and nucleus, showing that under certain conditions this effect will

be sufficiently small for the protocol to be successful. Finally, we discuss the prospect of using the

system as a platform for a full quantum computation scheme and give preliminary simulation

data motivating this area of research.

Chapter 5 will focus on the characterisation of QD samples. This is the first of two experimen-

tal chapters and is predominantly an experimental methods and characterisation chapter. The

novelty in the chapter is the design of the interferometer used to measure the precession of an

electron spin in a QD. The author was involved to a large extent in the design and building of the

experimental setups described. We will give details of the sample that we analyse and describe

the optical setup used for photoluminescence (PL) and resonant scattering measurements on QD

samples. We will then show how this setup can be used to characterise the behaviour of single

QDs, including the dependence of the wavelength of the QD on its temperature, and the intensity

of the emission from the QD on the linewidth and laser power. We will show how these techniques

can be used to infer properties of particular QDs, and show how we can use them to differentiate

between excitons and biexcitons.

Chapter 6 will show the experimental outcomes of our implementation of the NFF protocol.

This is an experimental results chapter, showing novel results using the interferometer described
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in the previous chapter. The results in this chapter were taken by the author. We design a setup

that allows to measure the precession of an electron spin in a negatively-charged QD using

interferometry. We attempt an implementation of the NFF protocol described in Chapter 2, and

measure the change in electron spin precession due to different pulse sequences and as a function

of external field. We relate this to our theoretical predictions and comment on the outcomes.

Chapter 7 gives a short conclusion and summary of all of the results discussed. We outline

ideas for further research in the field and how this would complement the results already found.

1.2 Quantum Systems

This section will discuss both open and closed quantum systems and the types of platform that

each of these systems represents.

1.2.1 Closed quantum systems

A closed quantum system is defined as a system that is isolated from its environment [1]. This

means that there will be no mixing of the states of the system with the unknown state of the

system’s environment. As a result of this, we are able to describe the time evolution of the system

by a unitary operator. If we label the time-dependent state vector of our system as |ψ(t)〉 and

define some unitary operator U(t, t0), where t− t0 is the evolution time period we are considering,

we can describe the state after some time, t, as

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (1.1)

Substituting this into the Schrödinger equation and solving for a time-independent (closed)

system gives

U(t, t0) = e−iH(t−t0) (1.2)

for some Hamiltonian, H, describing the dynamics of the physical system such that U(t0, t0)= I.

This is sufficient to describe the dynamics of any closed system, however, such closed systems are

used to give idealised representations of systems and do not include the more complex processes

a particular platform might experience, as we are usually unable to keep our system sufficiently

isolated from its environment. In general, systems will be susceptible to some decoherence

processes from the surrounding environment. This leads to a non-unitary time evolution of the

system, meaning we cannot model the evolution according to U(t, t0). Such systems are known as

open quantum systems and will be introduced below.

1.2.2 Open quantum systems

Open quantum systems are much more complex and difficult to model than closed quantum

systems as in general we do not know the full state of the environment acting on the system
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[1, 2]. The interaction between our system and our environment introduces some uncertainty

in the dynamics of the system. In this case, we represent the system by a density operator, ρ(t)

rather than a state vector, |ψ〉 which represents an ensemble of i possible states, each of which

has some probability, pi and is defined as

ρ(t) = ∑
i

pi |ψi(t)〉〈ψi(t)| . (1.3)

Then if we know our state with certainty, we have i = 1 and pi = 1 and we call this a pure state.

For any state with pi 6= 1 for any i, we have more than one possible state and therefore we call

this a mixed state. As pi are a set of probabilities we have the condition

Tr(ρ(t)) = 1 (1.4)

and we can therefore determine whether a state is pure or mixed using the conditions

Tr(ρ2)= 1 (1.5)

for a pure state and

Tr(ρ2)< 1 (1.6)

for a mixed state. The evolution of these states is given by

ρ(t) = ∑
i

piU(t, t0) |ψi(t0)〉〈ψi(t0)|U†(t, t0). (1.7)

In general, we will approximate a system interacting with its environment as some density

operator

ρ = ρs ⊗ρe (1.8)

where ρs represents the density operator of the system and ρe represents the density operator of

the environment, which will usually contain some approximations and assumptions about how

the system behaves. We can then construct an equation of motion for this by taking the time

derivative,
dρ(t)

dt
= −i[H(t),ρ(t)]. (1.9)

This open quantum system representation can accurately represent the behaviour of a range of

platforms, and in particular is the representation we will use in this thesis to accurately model

the range of effects present in a semiconductor QD.

1.3 Motivation and applications

This section will motivate the research discussed in this thesis, and give examples of the potential

applications of the systems. We will first introduce the concept of quantum computation, defining

the important theoretical aspects. We will then move on to consider quantum key distribution,

which is currently one of the most advanced applications in the field of quantum information

processing and discuss how our research is applicable to this field.
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1.3.1 Quantum Computation

1.3.1.1 Theoretical Description

Quantum computation (QC) is an incredibly powerful process that takes a new approach to

processing information, based on the laws of quantum mechanics [3, 4]. Whereas a classical

computer will encode its information in bits, a quantum computer will use qubits, which operate

according to two key principles of quantum physics: superposition and entanglement. A qubit is a

quantum mechanical system that has two possible states. A classical bit exists in one of two states,

0 or 1, however a qubit can exist in a superposition of these states, i.e. it has some probability

of being in either one of the two states, essentially allowing a large degree of parallelisation

in computing processes. For example, a classical bit may be in the state 0, or it may be in the

state 1. The bit can be represented as some column vector where a 0 bit is defined as

(
1

0

)
and

a 1 bit is defined as

(
0

1

)
. Then the equivalent qubit may be defined as the vector

(
α

β

)
, subject to

the normalisation condition |α|2 +|β|2 = 1. A qubit is said to be in a superposition if both α and β

are non-zero, however, this can only be the case before any measurements are performed on the

system. Any measurement of a qubit in the computational basis {

(
1

0

)
,

(
0

1

)
} will project the system

into the state

(
1

0

)
with probability |α|2 or

(
0

1

)
with probability |β|2, i.e. although the qubit state

can be any combination of the computational basis states, measurement projects the system into

one of two possible states [5].

Quantum information processing will usually consist of some form of quantum gate or

measurement being performed on a qubit or qubits. A quantum gate is a linear transformation

of a qubit into some new state that preserves the condition |α|2 +|β|2 = 1 and can be described

by a unitary matrix [5]. Then, if we consider the scenario where we have two classical bits, we

can have one of the four states {00,01,10,11} at any one time, meaning that a classical computer

must analyse each state one by one to get a result. In a quantum computer, we have the same

four possible states, however, any operation performed on a qubit can provide results for the

0 and 1 simultaneously. Then we can see that as we add more qubits, the power the quantum

computer possesses increases exponentially, i.e., we can analyse 2n states with n qubits at any

one time, whereas in classical computing we can analyse only n states with n qubits at one time.

Excluding entanglement, it is possible to simulate the action of a qubit on a classical computer,

and if n is the number of qubits we want to simulate, we require only 2n bits to do this. When

we include entanglement, we allow the effect of a quantum operation on a particle to be mapped

onto any particle(s) it may be entangled to. Then, where we stated above that superposition

means that the state of a particle is not in a single state, but a set of states each with some

probability of occurring and that this means we can perform computations in parallel, we find
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that entanglement is the implementation of this parallelisation between multiple qubits. Creating

large entangled states is one of the big challenges in QC currently, as loss of one qubit in a large

group of entangled qubits can destroy any chances of completing an operation on any of the qubits

in the entangled state if the entangled state is not chosen and prepared in the correct way [6, 7].

To successfully use qubits for quantum computation, there are five important conditions that

must be satisfied, known as the DiVincenzo criteria [4]. These criteria are as follows:

Criterion 1: Well-defined qubits A qubit can be described as a two-level system with an

energy gap between the two states. We require that the system remains (within some small

error) in the subspace of these two energy levels to be well-defined. Creating one such

qubit is quickly becoming standard practice in the quantum computing world, however the

difficulty comes in extending this to larger and larger numbers of well-defined qubits all

confined within the same system. For many platforms, the problem facing scientists is the

scaling of the experimental setups required to accommodate large numbers of qubits.

Criterion 2: Qubit initialisation Any quantum computing model is based on performing op-

erations on a qubit state. To read out the result of these operations, a measurement must

be performed. To determine whether the operation has been successful, the measured state

must be compared to the initial state of the qubit and so the initial state must be known.

One particularly common way to initialise a state is simply to wait until it has relaxed into

its ground state, providing the timescale of this process is known. Another way to initialise

a state is through some form of optical pumping of the state, and this can give shorter

initialisation times and higher fidelity states.

Criterion 3: Universal set of quantum gates In order to implement a particular quantum

algorithm, we need a particular set of quantum gates. Different models of QC require

different gate sets to create a universal quantum computer, i.e. a computer that can

perform any operation.

Criterion 4: Qubit specific measurements Measurement of the system we have prepared is

essential in determining the outcome of the computation. If a particular measurement

technique is not 100% efficient, it is often possible to correct for this by repeating the

computation several times, however this can quickly become time-expensive. Detection

often involves single photon counting and many detectors have now reached the required

level of reliability needed to count the number of photons passing through with the desired

level of accuracy.

Criterion 5: Long coherence times Decoherence of a quantum system is often the result

of an interaction between the quantum system and its environment, which causes loss

of quantum behaviour. Superposition and entanglement are destroyed when a system

decoheres, meaning that the required quantum operations are no longer possible. This
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means that we must construct systems with decoherence times much longer than the

average gate implementation time. Then the small amount of decoherence the system will

still experience can be overcome with error correction protocols. However, a system that

utilises strong interactions and therefore has short gate implementation times will usually

experience decoherence on a shorter timescale due to these strong interactions and vice

versa with a system with weaker interactions. This criterion is of particular relevance in

this thesis, as the QD experiences particularly strong environmental effects which limit the

coherence time and this is an issue that will be addressed directly in subsequent chapters.

Satisfying one or even several of these criteria is well within the capability of many physical

platforms, however, finding a platform that has the ability to satisfy all five has proven to be

a huge challenge [3]. In QDs, the biggest sticking point is Criterion 5 - the coherence time of

the qubit [8, 9]. The QD has a very well-defined qubit, and it has been possible to construct

theoretical protocols for initialisation, manipulation and measurement of qubit operations [10].

However, despite significant progress being made [11], the coherence time of the qubits confined

within QDs is still a difficult issue facing the community. This thesis focuses on how we can

address this problem, by suggesting a protocol to effectively decouple the electron spin from its

environment, thus lengthening its coherence time.

We should note here that these criteria were established when the field of QC was in its

infancy and as such, it may be necessary to make some adjustments to the criteria for newer

applications. For example, in Chapter 3, we discuss a method of QC known as ancilla-driven

quantum computation. For this, we can, to some extent, relax criterion 4. In this case, we do

not require the register qubit storing the information to be measured to retrieve its state - we

instead measure an ancilla qubit that is entangled to this register qubit. This does not completely

remove the need to make measurements on qubits, but does mean we reduce the number of

measurements, and instead perform them on an ancilla qubit, adding a extra degree of protection

for the register qubit. Similarly, several photonic QC schemes do not require criterion 1 to be

satisfied to the extent that was originally anticipated and in some cases error correcting schemes

can be applied to overcome the photon error and loss [12, 13].

1.3.1.2 Experimental implementations and limitations of QC

Experimentally, the field of QC is huge. There are many platforms other than QDs with which

scientists propose and attempt to implement QC, including solid state systems (for example,

nitrogen vacancy centres in diamond, p-doped silicon and a wide range of 2-D materials [14–17]),

trapped ions [18, 19], superconducting circuits [20] and linear optics [21]. One of the major

difficulties with QC is that some of the basic criteria we require have conflicting needs. An

example of this is the need to interact with our chosen system to perform processes such as

measurement or error correction, but a need to protect the system from any external processes to

preserve the coherence of the quantum states.
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Currently, the more successful implementations of QC are those that use platforms that

are more easily assembled, for example, linear optical quantum computing, which requires

use of only standard linear optical devices, but that may suffer from other difficulties, such as

scalability, as they use probabilistic computation schemes [22]. One of the more scalable platforms

is superconducting circuits. This seems to be the platform of choice for creating machines with

competitively large numbers of qubits, with Intel, IBM and Google creating 49, 50 and 72 qubit

devices respectively, although these are much bulkier systems and require mK temperatures

[23–26]. While most of these systems are fabricated using a "bottom-up" approach, i.e., beginning

with a single qubit and scaling up, we should also draw attention to D-Wave Systems, who

have fabricated a device that is claimed to contain 2000 qubits, using the "top-down" approach

of including a huge number of potential qubits in the system, and constructing a graph state

structure that allows for some specific processes to be implemented even with loss of some of

these potential qubits. However, this is not a universal quantum computer and there has been

significant controversy on its legitimacy as a quantum processor [27].

Although QDs are not currently competing with these sophisticated schemes, it is important

to realise that the main difficulties facing QDs as an experimental platform are found in the

understanding and control of the structure itself. Designing a system containing qubits with a

long enough coherence time to perform significant computations, although challenging, is showing

significant progress [28]. QDs, unlike many other systems, provide a deterministic platform for

QC, which will be useful in avoiding some of the scaling difficulties found in other platforms.

We should note here, however, that QDs currently have their own difficulties in scaling due to

the random growth process (discussed in Section 1.4.1). We can also consider other quantum

information processing applications for QDs, rather than full universal QC. For example, there is

a lot of promise for QDs as a source of single photons [29], quantum memories [30] or as a photon

switching device [31], due to their deterministic nature and potential to be integrated on chip.

These devices also have the potential to be combined with other architectures, forming some kind

of hybrid quantum computation platform [32–35].

We should note here that a quantum computer will not always provide an exponential speedup

over its classical counterpart, despite being inherently faster at searching through data sets,

due to the superposition property described above. Many quantum algorithms require additional

processing power not needed in the classical equivalent, for example, storage of quantum states

is computationally expensive, meaning that the speedup provided by the qubits themselves is

negated in many cases [36]. Despite this, there are some applications in which QC is particularly

effective. One of these is its ability to study interactions between atoms and molecules with

much greater precision than classical computers will ever be capable of on reasonable timescales.

This will have extensive applications in drug discovery and potentially creating new materials

such as room temperature superconducters [37, 38]. Other potential applications which QC is

particularly suited to include quantum machine learning, optimisation problems and financial
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modeling [39–42].

1.3.2 Quantum Key Distribution

This section will introduce the key concepts of quantum key distribution (QKD) and the current

state of research in the field. The motivation for this section is the need for a long-lived quantum

memory, an essential component of any long distance quantum communications protocol.

1.3.2.1 Theoretical description

QKD is one of the most advanced fields of quantum information processing in terms of applications.

It is a method of transferring information securely between two parties, the quantum mechanical

equivalent of public key cryptography [43–46]. In 1994, the world of cyber security faced a new

type of threat - a quantum computing algorithm that allowed the reversal of the one-way functions

that form the basis of public key cryptography [47, 48]. Although this algorithm came with the

caveat that it required a quantum computer, it still had a huge impact on the field of classical

cryptography, as its application would render many of the current classical protocols insecure.

This led to research in the area of quantum cryptography and QKD quickly became established.

QKD has the intrinsic advantage that its security relies not on the limits of today’s computing

power, but on the fundamental laws of physics. There are many different QKD protocols, and

importantly, they all involve detection of any third party, or eavesdropper, who may be trying

to intercept a message whilst it is being transferred between parties [49–56]. The fundamental

concept used in all QKD protocols is that once a quantum state has been observed, it is irreparably

changed. Then, if an eavesdropper were to intercept a message, translate it and then send it on to

the receiver, hoping to remain undetected, it should in fact be possible to infer that the message

has been read. This can be verified if we consider the errors induced in the message due to the

eavesdropper.

The first QKD protocol to be developed, BB84 [49], uses the classical concept of encoding a

signal in a light pulse, but with the significant difference that this light pulse contains only a

single photon. This means that it is not possible for an eavesdropper to measure the information

encoded in just part of each pulse and must instead observe the photon, destroying its state. It is

possible for the eavesdropper to simply create a new qubit that is identical to the state they have

observed, and send this state on to the receiver, however, the BB84 protocol details a method

of encoding such that this is still detectable to the sender and receiver. This encoding method

involves polarisation of single photon states that will then be transferred between the sender

and receiver. Similarly to the classical case, the protocol will encode a 0 qubit and a 1 qubit.

The condition that a 0 qubit must be encoded as either a horizontal state or a −45° diagonal

state, whereas a 1 qubit must be either a vertical state or a +45° state is introduced. The sender

will prepare these states randomly and the receiver will then choose at random to measure in

either the horizontal-vertical basis or the diagonal (±45°) basis. Each qubit state will then be
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detected either in the correct basis with 50% accuracy or in the incorrect basis with 50% accuracy

dependent on whether the receiver’s choice of basis matches the sender’s choice of basis. If the

receiver chooses correctly, the qubit state they measure will be correct 100% of the time (assuming

a perfect system). If the receiver chooses incorrectly, the qubit state they measure will be correct

50% of the time, i.e. the qubit state will be projected into either of the states in the chosen basis

with equal probability. This gives an overall success probability for the receiver of 75%, excluding

all errors. The receiver can then communicate with the sender over a classical channel, where

they reveal the basis they used to measure the photon, but not the actual state of the photon. The

sender will then tell the receiver which of their basis choices are correct and they both discard

any photons where the receiver has chosen incorrectly, leaving them with a secure key which

should be approximately half of the length of the original sequence.

Now, if we consider the introduction of an eavesdropper into this system, we find that this

eavesdropper can also recover 75% of the information correctly by performing these random

chosen basis measurements. However, they will not be able to compare measurement bases with

the sender, and the quantum state that they have intercepted will be destroyed. They will then

have to create a new quantum state, but will not be aware whether they have chosen the basis

correctly or not, meaning that they will also not know whether the quantum state they have

collected is correct. Then, if they want to send on a quantum key to the receiver, they will have to

guess which of their states are correct and which are incorrect. This induces an error rate into

the system. The sender and receiver can easily detect the presence of this error rate by simply

selecting a small sample of their results and comparing the qubit state the receiver has detected

(rather than just comparing the basis measured) with the state the sender encoded. Errors in

this comparison confirm the presence of an eavesdropper and hence this key can be destroyed

before it is used to transfer any quantum information.

1.3.2.2 Experimental implementations and limitations of QKD

Today, we have had many experimental implementations of QKD. The first of these was performed

on a prototype device in 1989 by Bennett and Brassard [57, 58]. Since then, there have been many

advancements, using various protocols and over various distances [59–62]. In addition to this

progress, several countries are now building quantum networks, such that quantum information

can be transferred over distances of a few hundred kilometres (the current record is 421km using

ultra low-loss fibre [63] and 144km in free space [64]). However, performing QKD protocols over

longer distances than this is difficult, due to the scaling of the error probability with the length

of the channel, such that the photon count rate at the detectors is not sufficient to be reliably

measured. To overcome this problem, the concept of a quantum repeater was introduced [65, 66].

A quantum repeater is a device that allows us to transfer a quantum state over longer distances

by renewing the quantum state. However, unlike in the classical case, the quantum states cannot

be detected or amplified without destroying the state. Instead, a quantum repeater is made up of
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two sources of entangled particles and a quantum measurement device. One of each of the two

entangled pairs is measured using the quantum measurement device, thus projecting the other

two particles into an entangled state. If the particles that are not measured have each moved

some equal distance, d, in opposite directions from the source, then the entanglement distance is

extended to a distance of 2d, increasing the distance we could achieve entanglement over from a

single source of entangled particles.

To extend this over even longer distances, multiple quantum repeaters can be used to reinforce

the entangled state [67–69]. Then it becomes possible to excite the repeaters using a strong laser

pulse to interfere photons from two neighbouring repeaters and entangle their excited states,

extending the entanglement distance further still. However, this process does not have a 100%

success rate and requires large cluster states. This suggests a need for a quantum state storage,

known as a quantum memory, which encodes the quantum information in an excited state of

matter [70, 71]. Proposals for such a quantum memory usually involve some solid state system,

for example, an atom such as sodium or rubidium that possesses very strong optical transitions

[72, 73], or rare-earth atoms that have transitions that are weak but much narrower [74]. These

atomic memories are desirable because they possess naturally long coherence times, allowing for

quantum states to be stored on long timescales. This application of quantum memories is the

motivation for the work outlined in this thesis. In later chapters, we will discuss how we can use

an Indium nuclear spin within a QD as a quantum memory, for applications in QKD and QC.

1.4 Semiconductor quantum dots

This section will discuss many of the properties of semiconductor quantum dots (QDs), motivating

research that utilises this system as a platform for quantum information processing and quantum

computation (QC), a concept first introduced in the late 1990s [10, 11, 75, 76]. We will study the

solid state environment of QDs, including their status as effective two-level systems, fabrication

of self-assembled QDs and their optical properties [77–80].

A QD is a semiconductor of typically 5−50nm in size and containing around 10000-100000

atoms; small enough to exhibit quantum properties [81]. The development of QDs arose from the

need for complete quantum confinement of light. The dimensionality of a semiconductor affects its

density of states, such that as the dimensions are restricted, discrete energy levels for motion in

the restricted plane are created. For example, the quantum well is a semiconductor that consists

of a high bandgap semiconductor (the substrate) with a layer of low bandgap semiconductor, just

a few nm thick, inside it. Then the carriers in this quantum well will have discrete energy levels

in the normal direction of the plane of the well. As the dimensionality is restricted further, the

discrete energies are found in all directions. A quantum well is 2-D, a quantum wire 1-D and the

QD is found when we reach zero dimensions (see Fig. 1.1). The confinement of an electron within

the QD is possible because the conduction band electrons in the low bandgap semiconductor have
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Figure 1.1: Visual representation of the effect of quantum confinement on the density of states of
the excitonic states in bulk (3-D), quantum wells (2-D), quantum wires (1-D) and quantum dots
(0-D).

a lower potential energy than those in the high bandgap material, which provides the confining

potential. Similarly, the valence band of the low bandgap material is higher than that of the high

bandgap material and so holes are also confined. Full quantisation of energy levels, as found in a

QD, is a feature of atomic orbitals. This is the reason why a QD is often referred to as an artificial

atom, and shares many of its behaviours.

1.4.1 Fabrication of self-assembled quantum dots

There are several conditions one wants to satisfy when fabricating a QD. Quantisation in all

spatial dimensions is required with a level spacing on the order of tens of meV. We also require

that one electron-hole pair remains bound, and these two conditions limit the size of the QD to a

few nm. The fabrication method of the QDs we consider in this thesis is the Stranski-Krastanow

growth technique [78, 82], a technique which uses molecular beam epitaxy (MBE). MBE allows for

the deposition of monolayers of semiconductor materials on top of each other, allowing, initially,

for the growth of quantum wells [83]. To extend this technique to QDs, we need to deposit two

materials with differing lattice constants on top of one another.

The materials used for the QDs in this thesis are GaAs (high bandgap) and InGaAs (low

bandgap). The QDs themselves will be formed from the InGaAs layer when it is deposited onto the

GaAs. When depositing the InGaAs onto the GaAs, there will be an initial uniform layer known

as the wetting layer. Then, as the thickness of the InGaAs layer increases, the strain induced by

the lattice mismatch causes a preference for the InGaAs to grow into 3 dimensions, such that

small islands are formed. These islands are the QDs, which are then capped with another layer
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of GaAs before they begin to break apart. A natural asymmetry will occur in the growth process,

with the QD being smaller in the z direction than the x and y directions respectively (i.e. it will

be wider than it is tall), leading to a greater confinement in the z direction. InGaAs QDs in a

GaAs substrate will typically emit light at wavelengths of 850-1000nm and the particular QD

samples we consider emit light at around 890nm, the near-infrared regime.

When using semiconductor QDs as a platform for quantum information processing, we would

usually consider an excess electron spin confined within the QD as a spin qubit. For this electron

spin to be present in the material, it is possible to dope InGaAs QDs with silicon such that they

become ionised [84]. This is possible because of the tetrahedral structure of GaAs. Two silicon

atoms each donate each of the four electrons in their outer shells to one of the four sp3 hybrid

bonds, allowing the material to form the diamond type lattice. Substitution of a silicon atom

into a group III or V element produces a mobile hole or electron and an immobile ion. In the

case of InGaAs, the group V element (As), must donate an electron to the group III element (Ga

or In) to allow the formation of the sp3 orbitals. This process can be controlled such that we

can grow charged QDs with just one excess charge. Here we use silicon to created a negatively

doped material, but we can choose to create an excess charge which is either positive or negative,

depending on the nature of the ionising atoms we inject. The attraction of charged QDs is that

the electron spins possess some very useful transition properties, which will be discussed below.

The samples used in this thesis are produced using this method by the University of Würzburg.

1.4.2 Optical properties of quantum dots

Treating the QD as an artificial atom has many implications. We can assume that, as in an atom,

excitons will recombine to produce photons, and furthermore, the energies of these photons will

be well-defined. We find that the smaller the QD, the better the confinement, i.e., the larger the

spacing of the energies between the levels. This large spacing leads to a high degree of isolation

from the environment. However, the QD is, predominantly, a semiconductor, meaning that it has

both advantageous and disadvantageous properties an atom does not. Optically, semiconductors

are hugely flexible, as their size and shape are tunable [85]. QDs are also a useful tool in quantum

optics as they are able to both absorb and emit photons. The absorption of a photon at the correct

wavelength leads to a single electron residing in the valence band (VB) of the QD to gain sufficient

energy to move to the conduction band (CB). This leaves a hole in the VB which will then be

paired with the electron, forming an exciton, due to the Coulomb force between the two [86]. Due

to the lower bandgap of the QD layer, the energy of the photon needed to excite an electron in this

layer is lower than in the GaAs substrate. Because of this, the substrate is effectively transparent

to the photons we use, and we are able to successfully excite an electron in the InGaAs QD layer

only [87]. Recombination of the electron and hole will occur, provided that the total angular

momentum of the electron and hole is equal to the possible values for the angular momentum of

a photon (0 or ±1). Similarly, optical excitation of a singly negatively charged QD leads to the
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Figure 1.2: Bandstructure of a bulk direct bandgap semiconductor showing the allowed energy
bands as a function of crystal momentum k. Eg is the bandgap energy and ∆0 is the energy
difference between the heavy and light hole bands and the split-off band. The conduction and
split-off bands have total angular momentum j = 1

2 and jz =±1
2 whereas the heavy and light hole

bands have j = 3
2 with the heavy hole having jz =±3

2 and the light hole jz =±1
2

.

creation of a negatively charged exciton (trion) - a combination of two electrons and a single hole

[88].

The bandstructure of a solid state system arises from both the intrinsic spin of the electrons

within it and the atomic orbitals of the material itself (in this case InGaAs). GaAs and InAs are

bulk direct bandgap semiconductors and have a band structure as shown in Fig. 1.2. In general,

the CB will be filled with electrons and the VB filled with holes. The VB of the GaAs substrate is

actually made up of three bands, each of which comes from the same p-shell, with orbital angular

momentum l = 1. The CB comes from the s-shell and therefore has a single band which has a spin

degeneracy of 2 and an orbital angular momentum of 0. As the electrons in the CB have a spin of
1
2 , the total angular momentum of the CB is j = 1

2 . In the VB, as l = 1 we have j = 3
2 . Then the

CB has just one possible eigenvalue, corresponding to the single line we see in Fig. 1.2 [89, 90].

The VB has two possible eigenvalues, j = 1
2 , 3

2 . j = 1
2 corresponds to the split-off band which has

a large energy separation from the j = 3
2 bands and can be neglected. The j = 3

2 state then has

jz = ±1
2 , ±3

2 . The ±3
2 band has a larger effective mass and so is called the heavy hole (HH) band

and the ±1
2 band is called the light hole (LH) band. The angular momentum of the HH is 1 and

14



1.4. SEMICONDUCTOR QUANTUM DOTS

Figure 1.3: Bandstructure of a semiconductor QD. EHM
g is the bandgap of the host material

(GaAs). EWL
g is the bandgap of the wetting layer - the interface between the GaAs and the QD.

EQD
g is the bandgap of the QD. Here there is a sub-band structure, containing, for the CB, the s-

and p-shell transitions and, for the VB, we have the HH and LH bands. In contrast to the bulk
semiconductor, these have an energy splitting.

the LH has an angular momentum of 0.

To extend this to QDs rather than bulk semiconductors we must consider the effects of

confinement and strain [85]. In a bulk semiconductor, we expect to see mixing of the HH and

LH. In the CB, we find that the electron can occupy one of two energy states, the lower energy

s-shell and the higher energy p-shell. In the VB of a QD, the confinement potential and in-plane

strain cause the degeneracy of the LH and HH bands to break and we find an energy separation

between the two (see Fig. 1.3). This energy separation is small and the energies of the HH and

LH still remain the closest of any of the dot states, meaning that there will still be some mixing

of the energy levels. This causes the polarisation selection rules to become slightly elliptical,

however, this isn’t a large effect and can usually be ignored. The HH band is shifted less than the

LH band and so is closer to the CB, which means that it is the more likely of the two to couple to

the transition. We will assume that this is the prominent band and neglect the presence of the

LH band. As HHs have angular momentum m =±1 and spin quantum number ±1
2 , their possible

states can be ±3
2 and ±1

2 . However, the ±1
2 states occur when the spin and angular momenta are

anti-aligned (rather than aligned as in the ±3
2 case) and this leads to these states being energy

shifted far from the transition energy, meaning that we can neglect them and consider the ±3
2

states only.

It is also necessary to define the wavefunction of the electron (or similarly the hole). This is
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(a) Neutral QD (b) Negatively charged QD

Figure 1.4: Diagram showing the occupied bands for (a) a neutral QD in the ground and excited
state and (b) a charged QD in the ground and excited state. ~ν is the energy of the photon that
excites the system.

delocalised over the envelope wavefunction describing the carriers and the total wavefunction is

represented by the product of the Bloch wavefunction and the envelope wavefunction:

Ψ= ukφ(z). (1.10)

Here, uk represents the Bloch wavefunction part and φ(z) represents the envelope wavefunction

part. We can think of the envelope part of the wavefunction in terms of homogeneity of the

materials in the semiconductor. The confinement then follows from the difference in the CB and

VB energies of the InGaAs and GaAs parts. The lowest energy state of the envelope wavefunction

will have a Gaussian profile. When considering the Bloch part of the wavefunction, it is important

to note the difference between an electron (or hole) in free space and in a semiconductor. In free

space, the wavefunction of the electron will be given by a superposition of all possible locations of

the electron. However, in a semiconductor, we instead define the wavefunction as a superposition

of all atomic orbitals of each atom. Because, the crystalline structure of a QD is periodic, there is

a coherent superposition over all available Bloch wavefunctions found on each ionic centre in

the crystal. This means that the electron and hole wavefunction is delocalised, represented by

the envelope wavefunction, which defines the exciton. This then gives an excited state that is a

collective state and thus has a higher dipole strength than each individual part, giving a stronger

light matter interaction than most atomic systems [79].

Considering the HH band as the only component of the VB, we can construct a simple diagram

of the ground and excited states of the QD, as shown in Fig. 1.4. In Fig. 1.4(a) (the neutral QD),

we start with the VB containing all of the electrons, one of which is excited to the CB upon

introduction of a photon, leaving a HH behind in the VB. In Fig. 1.7(b) (the negatively charged

QD), there is an excess electron in the CB before the state is excited, such that after the excitation

there are two electrons in the CB and a hole in the VB. In the case of the neutral QD, the electron

in the CB is bound to the hole it has left behind in the VB due to the Coulomb interaction,

whereas in the charged QD, we have two electrons bound to one hole.

The energy level structure of a neutral QD is shown in Fig. 1.5. This takes into account the

fine structure splitting that a non-symmetric neutral QD will experience. The structure will

instead be as shown in Fig. 1.5 [91]. A neutral QD will have an empty ground state. There are
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Figure 1.5: Spin selection rules of a neutral QD including the effects of fine structure splitting.
The transitions are linear and there are four doublet states. δ is the energy splitting between the
doublet states.

four exciton states, which will be arranged in doublets, with the possible electron-hole pairs

being |↑⇑〉, |↓⇓〉, |↑⇓〉 and |↓⇑〉. The energy difference, δ, between the doublets is a result of the

electron-hole exchange interaction and is affected by the strain acting on the system and its

asymmetry. The higher energy doublets correspond to a bright transition and these have angular

momentum of m =±1. The lower energy doublets have angular momentum m =±2 and are dark

in general but may become bright when acted on by an external field with a component that is

perpendicular to the optical axis, leading to a mixing of the two exciton transitions. This mixing

leads to the transitions becoming linearly polarised with some energy splitting, which we call the

fine structure splitting. This varies considerably between QDs, and is dependent on the geometry

and crystalline structure of the QD.

We will now consider how the excess electron in a charged QD can be used as a spin qubit. If

we consider the two spin states of this exciton, we find that due to the Pauli exclusion principle,

which states that we cannot have two or more electrons or holes in the same state, the spin states

of the two electrons are restricted such that we have either |↑↓〉 or |↓↑〉 where the arrows refer to

the up and down spin states of each electron. In addition to this, formation of the charged exciton

induces a change in angular momentum that leads to the polarisation sensitive transitions shown

in Fig. 1.6. This means that for each electron spin state there is one possible trion state only,

and this is what allows us to consider the electron spin as a qubit. First, consider the case of a

charged QD in zero field, where the spin states of the system will be as shown in Fig. 1.7. We

will consider excitation of the system via σ+ (σ−) photons, as these add (subtract) an angular

momentum of 1 to the system.

We call the system a spin-up (-down) system if the electron in the CB is in the spin-up

(-down) state and denote this electron spin state as |↑〉 (|↓〉). This state corresponds to the +1
2 (−1

2 )
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Figure 1.6: Allowed transition states of a charged QD subject to σ+ and σ− circularly polarised
light.

(a) Charged QD σ+ excitation (b) Charged σ− excitation

Figure 1.7: Ground and excited spin states of a charged QD excited by (a) a σ+ pulse and (b) a σ−

pulse along the optical axis.

angular momentum state. The promotion of a VB electron to the CB leaves a HH in the VB with

angular momentum of +3
2 (−3

2 ) for the spin-up (-down) state. Thus, for angular momentum to be

conserved we cannot have a transition between the two ground states of the system, leading us

to consider the application of a magnetic field. The system we will consider in this thesis focuses

on a magnetic field in the plane of the QD, perpendicular to the optical axis (Voigt geometry). We

can define a Hamiltonian for the system of an electron-hole pair acted on by a Voigt field as [92]

HB = µBBext(geŜe + ghŜh) (1.11)

where ge (gh) is the g-factor of the electron (hole). We should note that the g-factor is different

along the x axis to the z axis - the values of these vary quite considerably but reasonable values

are around gex ≈ 0.5 and gez ≈ 0.25 [93, 94]. This difference in g factor is a result of the strain

the system experiences during growth and the more highly strained the system, the greater

the difference in these values. µB is the Bohr magneton and Ŝe (Ŝh) is the spin operator for the

electron (hole) where

Ŝe = ~
2

(σx +σy +σz) (1.12)
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and Ŝh is the corresponding term for a HH. σi are the Pauli matrices, which we will define as

σx =
(
1 0

0 −1

)
,

σy =
(
0 −i

i 0

)
,

σz =
(
0 1

1 0

)
. (1.13)

We should note here that the σx and σz expressions are swapped with respect to the standard

definition. This is due to the model we will introduce in Chapter 2 and will be explained in that

section. Here, we will outline the process for an external field in both the Faraday and Voigt

geometries.

For an external field in the Faraday geometry, we have

HBFar = (gex + ghx)
µBBx

2
σx. (1.14)

The Zeeman splitting of the spin states due to the external field is found by calculating the

eigenstates of the system. The eigenstates of the ground state are

|eg1〉 = |↑〉
|eg2〉 = |↓〉 (1.15)

with eigenvalues

λ
g
1,2 = gexµBBx

2
. (1.16)

The eigenstates of the trion states are given by

|e t1〉 = 1p
2

(|↑↓〉− |↓↑〉) |⇓〉

|e t2〉 = 1p
2

(|↑↓〉− |↓↑〉) |⇑〉 (1.17)

with eigenvalues

λt
1,2 = ~ν∓ ghxµBBx

2
. (1.18)

This leaves the eigenstates of the system being along the z axis, which is also the energy

eigenbasis.

For Bext in the Voigt geometry we have

HB = (gez + ghz)
µBBz

2
σz. (1.19)
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H

H

V V

Figure 1.8: Diagram showing the optical transitions of a negatively-charged QD linearly polarised
light in a Voigt field. The red lines are vertically polarised (y) transitions and the blue lines are
the horizontally polarised (z) transitions. ∆e (∆h) is the Zeeman energy splitting of the ground
(trion) states.

By calculating the eigenstates of this system, we can find the Zeeman splitting of the spin states

due to the magnetic field. We find that the eigenstates of the ground state are

|eg±〉 = 1p
2

(|↑〉± |↓〉) (1.20)

with eigenvalues

λ
g
0,1 = ± gezµBBz

2
(1.21)

which represent the energy of the |↑〉 (|↓〉) state. The eigenstates of the trion states are dependent

on the splitting of the LH and HH [95]. In practice, these are likely to be of the form

|e t±〉 = (a |⇑〉±b |⇓〉) |↑↓〉 (1.22)

where |⇑〉 (|⇓〉) is the spin-up (-down) state of the hole. Then the values of a and b are dependent

on the amount of splitting between the LHs and HHs and if the splitting is large, the state

approaches the case in which a = b = 1p
2

. This is because population can only move between

the two HH states if it moves through the intermediate LH spin states. These are energetically

separated by the LH/HH splitting. The exact eigenstate of the HH may actually involve all

four possible hole states, whose weighting are determined by the relative power of the applied

magnetic field, the g-factor and the HH/LH splitting. The eigenenergies that correspond to these

eigenvalues are

λt
0,1 = ~ν∓ ghzµBBz

2
. (1.23)

Thus, for Bext in the plane of the QD, the eigenstates of the system will be along the z axis

(although this is not the energy eigenbasis) and the size of Bext determines the size of the energy

splitting between the ground states of the electron. This leads to the optical transitions shown in
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Fig. 1.8 for a negatively charged QD exposed to linearly polarised light, assuming no mixing of

the trion states. The Zeeman splittings are given by

∆e = gezµBBz

∆h = ghzµBBz (1.24)

for the ground and trion states respectively.

We can use these optical properties to control and define spin-based qubits within QDs.

Protocols can be constructed that exploit these effects in a variety of ways for applications in

quantum information processing, QC and QKD. In this thesis, our focus will be on nuclear spin

quantum memories in QDs, and we will use the optical properties discussed above to lay out a

realistic protocol for implementing a quantum memory scheme.
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2
NUCLEAR FREQUENCY FOCUSING IN A CHARGED QUANTUM DOT

This chapter will discuss the environment of a QD system, in particular, the dynamics of

the nuclear spins in the host materials and how these nuclei affect the dynamics of the

electron spin. This is a purely experimental chapter and begins with a summary of an

existing model of the nuclear spin bath of a QD, leading on to a novel extension of the model,

where we find parameters applicable to an experimental setting. We find that the nuclei act

as a decoherence mechanism for the electron spin, such that its spin precession is perturbed

and its coherence time shortened. We will consider potential solutions to this problem which

involve creating a stable configuration for the nuclear spin using a train of laser pulses in

conjunction with an external magnetic field in the plane of the QD. We then give details of how

we will implement this experimentally and discuss parameters for the system that will allow this

implementation to be successful.

2.1 Nuclear spin environment

2.1.1 Decoherence processes in quantum dots

As discussed in Chapter 1, a QD is a semiconductor made up of a large number of atoms. The

QDs we consider are singly negatively charged InGaAs QDs in a GaAs substrate. Each of the

atoms in the QD has a spin, with quantum numbers of up to 3/2 for Ga and As and 9/2 for

In [96]. We will discuss how this nuclear spin bath affects the precession of a single electron

spin qubit. We define the spin up and spin down states to be along the optical axis. To perform

any quantum computation using this qubit, we need to fulfill the DiVicenzo criteria listed in

Chapter 1. However, Criterion 5 states that the qubit needs to have sufficient isolation from its

environment to limit the decoherence. The existence of the spin bath in a QD makes this qubit
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Figure 2.1: Here we see the decay of a spin particle in terms of the T1 (left) and T2 (right)
timescales. The T1 relaxation time is the time taken for the polarisation along the quantisation
axis to decay, whereas the T2 time is a transverse decay and as such, there is no polarisation
decay, simply a loss of the phase information of the spin. In both cases, the arrow on the surface
of the Bloch sphere shows the initial state, and this state becomes further from the original as
the timescale increases.

isolation very difficult to achieve and it has therefore become the subject of interesting research

in the field of QDs [97–99]. There are two possible ways in which a qubit state can experience

decoherence, one of which can be characterised by the spin relaxation timescale T1 and the other

by the decoherence timescale T2 (see Fig. 2.1) [100, 101]. The T1 time characterises the likelihood

of a spin-flip along the quantisation axis. The T2 time describes the timescale on which the

interactions between the spin and the environment change the phase of the spin precession about

the quantisation axis [102]. An ensemble setting can refer either to multiple QDs or to multiple

measurements on the same QD and describes the timescale over which the initial polarisation of

a system decays back to its equilibrium value. The T∗
2 time is the ensemble dephasing. When

considering the ensemble dephasing time, there are additional factors to take into consideration,

for example, variations in the local precession frequency of each spin can lead to a much faster

ensemble dephasing. In addition to this, each QD has its own unique environment and these

environmental configurations can vary dramatically between QDs, particularly in self-assembled

samples, which will also play a role when we are considering the ensemble to be many QDs. The

ensemble dephasing time in either form is labeled the T∗
2 time and will obey the relation T∗

2 ≤ T2

[103, 104].

In QDs, the decoherence and relaxation are mainly due to the hyperfine interaction and the

spin-orbit interaction respectively. In general, the most significant component of the T1 relaxation

occurs as a result of spin-orbit interactions, most of which are suppressed in QDs due to the strong

confinement of the wavefunction of the electron [105]. The electron-nuclear hyperfine flip-flop
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interaction can also play a role in the spin relaxation but this is suppressed in the presence of

large external fields, where phonon-assisted relaxation dominates, giving typical T1 times of the

order of 10−100µs without preparation of the electron spin [106], due to the size of the nuclear

Zeeman splitting being considerably smaller than that of the electron (this is approximately

three orders of magnitude smaller) [107]. However, preparation of the electron spin can lead to T1

times on the order of ms [108]. In the low field limit (B . 0.3T), the hyperfine-induced relaxation

will be the dominant term, and T1 times can be on the order of seconds [109]. In contrast, the

T2 decoherence time is in general limited by pure dephasing mechanisms [106, 110]. T2 can

additionally be limited by spin-flip processes and can be much smaller than T1, however it obeys

the relation T2 ≤ 2T1 [111], where T2 = 2T1 is the fundamental limit at which the spin relaxation

is the only dephasing process. The T2 time of electrons in InGaAs QDs has been shown to be of

the order of up to µs, an unusually long decoherence time for electron spin qubits [112–114]. The

T2 time in the systems we consider is predominantly dictated by the hyperfine interaction, which

we will describe in Section 3.1.1, and it is this that we will focus on controlling throughout this

chapter.

2.1.2 Hyperfine interaction

The main source of decoherence in a low temperature QD is the hyperfine interaction: a dephasing

of the electron spin induced by the presence of the nuclear spins. We will model the effect of this

interaction and show that it is possible to suppress the effect of the spin bath on the electron spin

using polarisation techniques discussed in detail below. First, we discuss the structure of the

QD and how the atoms within it create such a noisy system. The QD itself is made of InGaAs,

in a GaAs substrate. This tells us that we have many atoms of each of these materials within

our system. In such a strained semiconductor, each of these atoms possesses a fermionic spin, as

does the electron spin. This gives the electron and each of the nuclei a magnetic dipole moment,

defined as

µ = gq
2m

S (2.1)

where g is the g-factor of the particle, q is the charge, m is the mass and S is the spin angular

momentum (we will later define S to be the spin angular momentum of the electron and I to be

the spin angular momentum of a nucleus). This value S is defined along any direction as

Si = ~si, si ∈ {−s,−(s−1), · · · , s−1, s} (2.2)

where i = x, y, z, s is the spin quantum number and si are the eigenvalues of the system. Then

each of the sz, for example, has 2s+1 possible values (the number is also the dimension of the

Hilbert space of the system). For a spin-1
2 system this means that we have just two possible

values of sz, which are

sz = ±1
2

(2.3)
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such that the spins are pointing in the +z and −z directions respectively. These states are then

the spin up and spin down states along the z axis, a two-dimensional Hilbert space. These spin

states will form a qubit along the quantisation axis. As this quantum number increases, we get

more and more possible values of sz. This defines the spin species of the atom. In terms of our

QDs, Ga and As have nuclei of up to spin 3/2 and In has nuclei of up to spin 9/2. We can use

this to model how the spin precession is affected by the presence of some external field, Bext.

First, consider the precession of an electron spin in the absence of a nuclear spin bath. In the

absence of an external field, an electron spin will be randomly oriented with two degenerate

energy levels. Applying some external field vector, Bext causes these two energy levels to split

as the spin projection must be oriented in one of two states either parallel or anti-parallel to

Bext. This system comprising of a single electron spin in a field Bext will then be described by the

Hamiltonian

Helec = geµB

2
S⊗Bext (2.4)

where ge is the g-factor of the electron, µB is the Bohr magneton and S is the spin vector of

the electron. The energy of each of the two spin states can then be found by calculating the

eigenvalues of Helec as shown in Chapter 1.

This is the full Hamiltonian of an electron precessing according to an external field only,

however, this Hamiltonian is not a reasonable description of an InGaAs QD system as we must

also consider the nuclei found in the InGaAs material. This leads to two more terms in the system

- a term describing the effect of the external field on each of the nuclei in the spin bath, given by

Hnuc = µN

2

n∑
i=1

Ii ⊗Bext (2.5)

where µN is the magnetic moment of the nuclei, n is the total number of nuclei and I is the

nuclear spin operator, and a hyperfine coupling term between the electron spin and each of these

nuclei, defined as

Hint = ∑
i

A iS⊗Ii (2.6)

which will be derived below (A i represents the coupling between the electron and each nucleus).

It is this hyperfine coupling and its effect on the precession of the electron spin that will be the

focus of the chapter. There is currently no conclusively accurate theoretical description of the

electron and nuclear spin bath in a QD that sufficiently represents the complexity of the QD

environment. Because the wavefunction of the excess electron overlaps with that of each nucleus

within the QD, the magnetic moment of the electron will interact with the magnetic moment

of each of these nuclei. This causes a shift in the energy levels of the electron and defines its

hyperfine structure. This induces a coupling between the electron and nuclei, which is determined

by their relative positions within the QD. This manifests as a change in the effective magnetic
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field applied to the electron spin (the effective field is defined as the external field plus the nuclear

field), as the precession of each nucleus will cause perturbation of the effective field acting on the

electron by some amount dependent on the strength of the coupling between them. We also find

that as each nucleus has its own individual strain-dependent hyperfine splitting and therefore

precession frequency, there is not only an effective field induced by the nuclei, but this field also

varies on the timescale of the nuclear precession. This means that we are not able to calculate

the value of this effective field and adjust the external field accordingly to compensate for this.

Instead, we need to consider methods to suppress this unpredictable precession and this will be

discussed in detail below.

We can derive the Hamiltonian for the interaction between an electron with spin S and a

single nucleus with spin I by considering the Dirac equation of an electron in some potential V (r)

HDirac = M · c(p+ eA)+Pmc2 − eV (r) (2.7)

where A is the vector potential of the electromagnetic field, e is the electron charge, m is the

electron rest mass,

M =
(

0 σ

σ 0

)
(2.8)

where σ is the vector of Pauli matrices and P is the 4×4 identity matrix [115]. Taking a nucleus

with magnetic moment µN yields

A = ∇µN

r
(2.9)

where r is the distance of the nucleus from the electron. This translates to a Hamiltonian of the

form (derivation can be found in [115])

Hen = 16
3
πµbµNS⊗Iδ(r) (2.10)

assuming the non-contact term vanishes for an electron wavefunction with s symmetry. Then

Hen is equivalent to the Fermi contact hyperfine interaction, given by

HFermi = AS⊗I (2.11)

where A represents the position-dependent hyperfine coupling constant and is defined as

A = 16
3
πµBµN |ψ(0)|2 (2.12)

with ψ(0) describing the probability of finding the electron at the nucleus, i.e. the overlap. This

model describes the interaction between the electron and a single nucleus. To extend this to

the many spin case, we consider the electron wavefunction as a superposition of atomic orbitals
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which occur at every possible atomic site within the QD. We can write the Hamiltonian for the

interaction between the electron spin and some number i of nuclei for unspecified values of A i as

Hint = ∑
i

A iS⊗Ii. (2.13)

with

A i = 16
3
πµBµN |ψ(ri)|2 (2.14)

for each nucleus at site ψ(rk). For the purposes of this work, we can neglect dipole-dipole couplings

between nuclei as these will be suppressed for the fields we are considering [116]. This leaves us

with the full Hamiltonian for the system being given by

H = Helec +Hnuc +Hint. (2.15)

As a typical nuclear spin bath contains around 105 atoms, each of which has a unique position-

dependent coupling to the electron spin, we cannot model each of these nuclei individually and

so we cannot easily predict the exact behaviour of the system. We therefore look into ways of

controlling the dynamics of the bath, such that it will behave in a predictable way. This involves

a "calming" of the nuclear spins where we narrow the set of possible states of each nucleus by

adding some degree of polarisation along a particular axis due to application of an external field

and a train of laser pulses. By controlling this polarisation carefully, we can force the bath into a

state that is effectively decoupled from the electron spin precession. There are several proposals

that provide potential solutions to this problem by introducing some polarisation of the nuclear

spin bath along a magnetic field using a variety of pulse sequences and field strengths [117–122].

We focus on one particular solution proposed by Sophia Economou et al. [123] and discuss how

this model can be modified to be applicable in an experimental context. The model appears to

capture the main processes observed in results obtained by Greilich et al. [93, 124], where the

nuclei appear to "remember" the presence of a train of laser pulses applied to an ensemble of QDs

and exhibit signs of spin calming along a magnetic field axis. Our application differs from this

in that we require single QD nuclear calming and previous results have only been successful in

ensembles of QDs. Extending this model to single QDs rather than ensembles is a desired result

for the quantum computing world as this would allow for the production of quantum information

processing equipment, including single photon sources and quantum memories, both of which

require the long spin coherence times we aim to create. The basic premise of the model is detailed

below.

First we assume that we have a negatively charged QD which is acted upon by an external

field in the plane of the QD (Voigt geometry) and we call the axis of the field the z axis for ease in

calculations (see Fig. 2.2). We then apply a train of circularly polarised pulses along the optical

axis (we call this axis the x axis). The level diagrams for this system are shown in Fig. 2.3. The

first of these diagrams shows us the level structure in terms of the energy eigenstates. The
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Figure 2.2: Diagram defining the axes used and the direction of the external magnetic field
considered throughout this chapter. Note that the shape of the QD will in practice be flat-topped,
due to the capping layer added in the growth process.

external field causes a splitting of the electron spin states along the field axis and so when we

consider the states in the basis of the optical axis we find that we in fact excite a superposition of

the |↑〉x and |↓〉x states. As described in Section 1.4.2 in Chapter 1, a circular pulse will excite

only one of two degenerate electron spin states to the trion state. However, as our spin states are

non-degenerate in the energy eigenbasis, it is more intuitive to look at the system in terms of the

z basis states, where we can define |↑〉z and |↓〉z as basis states. We show the level diagram in

terms of both basis states in Fig. 2.3. Then we find that each one of these states will be excited

by one of the two circularly polarised pulses only. However, as these states are not eigenstates

of the system, there is a mixing between them due to the external field, such that there will be

some population transfer between the two ground states of the electron spin. This means that by

pumping a single transition with a train of circularly polarised pulses, we are able to transfer

some population of the spin state we excite to the opposite spin state. Driving the electron spin in

such a way means that the nuclei will see a coherent electron spin precession and will then align

into a preferred configuration that allows the electron spin to remain precessing coherently in

the absence of the magnetic field and pulse train. We describe this process in detail below.

x

z

Figure 2.3: The first diagram shows the allowed transitions between the eigenstates |eg±〉 to the
trion states |e t±〉. The second diagram is in terms of the optical states for circular pulses. |T〉 is
the trion state (assumed to be a mixture of the two trion states) and ωe is the total field acting on
the electron, causing a mixing of the ground states.
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2.1.3 An electron spin acted on by a circularly polarised pulse

The remainder of this section is based on ideas found in [123]. Results from the paper are derived

here and we then remodel the results in terms of our experimental parameters. To model this

system, we first define the Hamiltonian for an electron spin in a magnetic field in the Voigt

geometry acted on by a train of pulses. This is given by [123]

H = ωeSz +εT |T〉〈T|+∑
j

q(t− jTR) |↓〉z 〈T|+H.c. (2.16)

where ωe = gµBBext is the precession frequency of the electron due to the external field, Bext,

where g is the g-factor of the electron, and µB is the Bohr magneton. Note that the Sz term

refers to a field in the Voigt geometry, meaning that the ground states are |↑〉± |↓〉. The second

term gives the population of the trion state (|T〉 is the trion state with energy εT ). The third

term is the pulse term where we have some pulse train of j pulses, each being described by a

parameter q(t) which is periodic with period TR . This excitation acts on the state |↓〉z when we

choose q(t) to be a σ− pulse (or on |↑〉z for a σ+ pulse). The timescale of a single pulse is of the

order of one picosecond whereas the spontaneous emission from the trion state is of the order of

500ps - 1ns. We can therefore use the approximation that the pulses are instantaneous. We can

use this Hamiltonian to define Kraus operators representing this system, the full derivation of

which can be found in section A.1 of Appendix A.

There are three Kraus operators representing the dynamics of the system:

E1 =
(
1 0

0 q

)

E2 =
(
0 a1

0 −a2

)

E3 =
(
0 0

0 κ

)
(2.17)

where E1 is the Kraus operator describing the pulse and E2 and E3 describe the spontaneous

emission of the system and we define

a1 = ωe

√√√√ (1− q2
0)

2(4γ2 +ω2
e)

a2 = iγ
p

2

√√√√ (1− q2
0)

4γ2 +ω2
e

κ =
√

1− q2
0 −a2

1 −|a2|2 (2.18)

for some parameter q = q0eiφ describing the pulse where 0 ≤ q0 ≤ 1 and 0 ≤ φ ≤ 2π.
√

1− q2
0

is the population transfer from the ground to the trion state and φ is the rotation about the
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x axis induced by the pulse. q = 0 corresponds to a resonant π pulse and q = 1 corresponds to

no pulse. A value of q0 between 0 and 1 will represent some pulse with an area of <π, getting

weaker as π −→ 1. Note that the trion component of the final state has been omitted as this

has no population after spontaneous emission (i.e. it generates no spin population). Currently,

these Kraus operators provide us with a theoretical description of the system, but are difficult

to relate to physical parameters that we can vary. Therefore, we want to map these parameters

onto experimental values. We can relate these parameters to the power and detuning of the laser

pulse if we assume the pulse is a hyperbolic secant (as in [123]) [125]. Then we find

q = F(b,−b, c∗,1)

= Γ(c)2

Γ(c−b)Γ(c+b)
(2.19)

where F is Gauss’s hypergeometric function, Γ is the Γ function, b ≡Ω = Ω0
σ

, c = 1
2 (1+ i∆0

σ
) ≡

1
2 (1+ i∆) (∆ represents the detuning such that −1≤∆≤ 1 where ∆= 0 represents the resonance

condition, ∆=±0.5 is the point where the QD resonance is at the half maximum of the pulse and

∆=±1 is the point at which there is no overlap between the pulse and the resonance), Ω0 is the

Rabi frequency, ∆0 is the detuning and σ is the bandwidth of the pulse. Then we define

q0 = |F(Ω,−Ω,
1
2

(1+ i∆),1)|

φ = Arg(F(Ω,−Ω,
1
2

(1+ i∆),1)). (2.20)

We can then use this to determine the relationship between the theoretical parameters q0 and φ

and the experimental parameters ∆ and Ω. This relationship between q0 and ∆ and Ω is plotted

in Fig. 2.4(a) and similarly the relationship between φ and ∆ and Ω is shown in Fig. 2.1.3. We

can see that both q0 and φ are periodic with Rabi frequency, with the period of q0 being double

that of φ. Intuitively, it may be useful to think of q0 as representing the population of the ground

state (note that this is not completely accurate, as
√

1− q2
0 is the population from the ground to

the trion state). The value of φ represents the angle of the precession of the electron with respect

to the optical axis. Fig. 2.4(a) tells us that q0 = 0 (note that this includes the case of the resonant

π pulse, q0 = 0, φ= 0) corresponds to a detuning of 0 and that as the pulse becomes more and

more detuned, the population transfer to the excited state decreases. This is due to the pulse

moving far from the resonance such that the QD experiences only a small effect from the pulse

and therefore application of more pulses becomes necessary to successfully drive the electron spin.

In terms of φ, we find that varying the detuning has only a small effect, whereas the dependence

on the Rabi frequency is much more significant and we see switching between the minimum and

maximum values for the case of zero detuning as the Rabi frequency increases. Note that the

case where φ= π is qualitatively equivalent to the case φ=−π, with the only difference being

the direction of the rotation from the resonance. We will use these results to relate all further

calculations in this chapter to the detuning and Rabi frequency of the pulse, such that we can

find experimentally applicable parameters for the protocol.
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(a) Relationship between q0 and the Rabi frequency and detuning of
the laser pulse.

(b) Relationship between φ and the Rabi frequency and detuning of
the laser pulse.

Figure 2.4: Graphs relating the theoretical parameters q0 and φ to the experimental parameters
Ω and ∆.
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We will now discuss how the nuclear spin bath can be forced into some predictable and stable

configuration. We want to induce some nuclear spin "polarisation" along the axis of the external

magnetic field (the z axis as defined in Fig. 2.2, i.e. we want to drive the system in some way that

means the nuclei will align such that they have some known population along the z axis. This

will allow us to more accurately predict the precession frequency of the electron spin due to the

both the external field and the field induced by the nuclei. We consider the amount of polarisation

the electron will gain along the optical axis due to this protocol for different parameters. If we

define the initial density matrix of a single electron spin to be

ρ in =
(
ρxx ρxx̄

ρ x̄x ρ x̄x̄

)
(2.21)

then we can calculate the state of the system after a single application of the laser pulse by acting

the Kraus operators defined in Eq. A.14 on ρ in, i.e.

ρgen = ∑
i

E iρ inE†
i (2.22)

The general state of the system after a single pulse will then be given explicitly by

ρgen =
(
ρxx +|a1|2ρ x̄x̄ q∗ρxx̄ −a1a∗

2ρ x̄x̄

qρ x̄x −a∗
1a2ρ x̄x̄ (|q|2 +|a2|2 +|κ|2)ρ x̄x̄

)
. (2.23)

and taking Tr(ρgenσi) tells us the population of the electron spin state along each axis after each

pulse, which we define to be the amount of polarisation along that particular axis. The amount of

polarisation along the z axis (the axis of the external field) for the initial state (before application

of the pulse) is given by

Polz,in = Tr(ρ inσz)

= 2Re[ρxx̄]. (2.24)

and after application of a single pulse is

Polz,gen = Tr(ρgenσz)

= Re[q∗ρxx̄ + qρ x̄x − (a1a∗
2 +a∗

1a2)ρ x̄x̄]

= 2q0 cosφRe[ρxx̄]. (2.25)

In order to successfully induce polarisation along the z axis, we require the condition

Polz,gen > Polz,in (2.26)

such the action of the pulse increases the amount of population along this axis.

We can see that in the case where q = 0 (implying q0 = 0, the condition for a resonant π

pulse), Polz,gen term vanishes, meaning that there can be no polarisation gained along this axis
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by simply applying resonant π pulses along the x axis to a single electron spin. Then to gain

polarisation along this axis, we require the condition q > 0 (implying q0 > 0). This enforces the

condition ∆> 0 but does not yet put any restrictions on our choice of Ω. If we consider the case

where φ= 0, q0 6= 0, we find

Polz,gen = 2q0Re[ρxx̄]. (2.27)

As q0 < 1, this will always give the condition Polz,gen ≤ Polz,0. Therefore, a non-zero rotation of

the electron about the optical axis is required to create polarisation along the z axis. However,

we discuss later that this is only true for the single spin case, as one can imagine a scenario in

which we could have two polarised nuclei in opposing directions along the z axis and retain this

particular electron spin state. Thus, we conclude that to gain polarisation through application of

a pulse of this form, we require q0 6= 0, φ 6= 0, i.e., the pulse must not be a π pulse and must be

detuned and rotated from the QD resonance to allow the electron spin to gain polarisation along

this axis.

Here, we should also mention what happens when we include the external magnetic field in

this model. In the presence of an external magnetic field, Bext, along the z axis (Voigt geometry),

when the system is between pulses it will evolve according to Larmor precession

UB = e−ωeTR Ŝz (2.28)

where TR is the repetition rate of the pulse and Si is the electron spin operator along the i axis

with Si = 1
2σi. Then the evolution of some density matrix ρB,0 due to UB can be calculated using

ρB, f = UBρB,0U†
B. (2.29)

To combine this evolution with our pulse evolution, we define a new Kraus operator

E i = E iUB (2.30)

such that for some initial state ρ0, the state after application of a single pulse with Bext 6= 0 is

given by

ρ f = ∑
i

E iρ0E
†
i . (2.31)

We can use this to find the steady state of the electron spin will be driven to after n periods

(where one period is one application of ρ f ). The derivation for this is given in Appendix A.2. This

delivers an electron steady state that is of the form (1,Sx,Sy,Sz) (where Sx, Sy and Sz are also

given explicity in Appendix A.2). This tells us that in general there will be some population of the

electron spin state along each axis, and the direction of the spin is dictated by the values of ∆, Ω

and Bext.
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2.1.4 The single nuclear spin model

To extend this model to include the nuclear spin bath we first consider the simplest case of a

single nuclear spin. Then we replace UB with

Uhf = e−iHhf t (2.32)

where Hhf is the Hamiltonian for the hyperfine interaction between an electron and a single

nuclear spin and is given by

Hhf = ωeSz ⊗ In +ωnIe ⊗ Iz + A
∑

j=x,y,z
S j ⊗ I j. (2.33)

Assuming that the pulse is applied to the electron spin only and the nucleus is unaffected, we

can redefine the Kraus operators for this system to be

Fi = Uhf (E i ⊗ I). (2.34)

The initial density operator for the system will now be the tensor product of the initial state of

the electron with the initial state of the nuclear spin, given by

ρen,0 = ρe,0 ⊗ρn,0 (2.35)

where we have renamed the initial density operator of the electron spin state to be ρe,0 and ρn,0

is the initial density operator the nucleus. We can then apply the method used above to define

an equivalent expression to that given in Appendix A.2 which can be solved as an eigenvalue

problem for the two-spin system as for the electron only case. However, we can instead use an

approximation to say that on short timescales (i.e. less than the interaction time) this state is in

fact separable, i.e. ρen = ρe ⊗ρn, which leads to the spin operators also being separable:

Se,n = S⊗ I. (2.36)

For this approximation, we assume that the flip-flop term (the term that induces nuclear spin

flips), which is defined as A(S+I−+S−I+) (S± = Sx ± iSy and similarly for I±) is taken to second

order. This is equivalent to saying that we assume the electron reaches its steady state much

quicker than the nuclear spin and that the nuclear spin evolution is much slower than the

pulse repetition rate, TR . I will refer to this approximation as the Markovian approximation

for consistency with [123], however, there are some differences between the standard Markov

approximation and the approximation we use here. The standard definition of the Markov

approximation assumes that the bath correlation quickly goes to zero on the timescale of the

change in the evolution of the density operator [126]. There are also similarities between our

approximation and the Born approximation, which allows one to take an incident field in place of

the total field as the driving field at each point, valid if the scattered field is small compared to

the incident field. This means any correlations between the system and bath can be ignored and
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the density operator of the nuclear spin bath can be assumed to be time-independent. We should

note here that making this approximation means that we must also put a restriction on our value

of q0. If we take a value of q0 that is close to 1, this is equivalent to a weak pulse. This means

that it takes many cycles of the pulse to pump the electron into its steady state, lengthening its

initialisation time and so we introduce the condition q0 ≤ 0.5, chosen using Fig. 2 in [123], which

shows the timescale on which the electron spin will reach its steady state for varying values of q0.

Now, it is possible to extract the components of I from Se,n, using the equation (see Appendix A.2)

(Yn)αβ = d
dIβ

[Ye\(S⊗ I)]α (2.37)

and the steady state of the nuclear spin will be given by the eigenstate of I−Yn with zero

eigenvalue. This turns out to be of the form (see Appendix A.3)

I = (1,0,0, Iz) (2.38)

such that all polarisation is gained along the axis of the external field. This is due to the strong

driving of the electron spin along the optical axis, such that a nucleus will take on the most stable

configuration in terms of the electron spin state and the external field. Iz is given explicity in

Appendix A.3. The smallest non-zero eigenvalue, λ1 gives the rate at which the nuclear spin

reaches its steady state, which we define as γn =λ1/TR . The time taken for the steady state to

be reached must be sufficiently short to satisfy the Markovian approximation and will affect

the T2 time of the system. Calculations for the steady state and the relaxation rate are given in

Appendix A.4.

2.1.5 Including the full nuclear spin bath

To include the full nuclear spin bath in the model, we need to define the nuclear spin flip rate. To

do this, we need to consider the nuclear spin state at some time, t, given by

Iz(t) = ∑
j

v j e−iλ j t

≈ I(0)
z e−γn t + Iz(1− e−γn t) (2.39)

where I(0)
z is the zeroth order of the perturbative expansion of I and Iz is the nuclear steady state.

We can define the probability for the nucleus to be aligned parallel or anti-parallel to the axis of

the magnetic field as

P↑ = 1
2

(1+ Iz(t))

P↓ = 1
2

(1− Iz(t)). (2.40)

This gives

Iz(t) = P↑−P↓. (2.41)
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Combining Eqs. 2.40 and 2.41 and differentiating with respect to t gives

d(P↑−P↓)
dt

= −γnI(0)
z e−γn t +γnIze−γn t

= −γn(Iz(t)− Iz) (2.42)

which rearranges as

dP↑
dt

= −γn

2
((P↑−P↓)− Iz(P↑+P↓). (2.43)

By defining

l± = γn

2
(1± Iz) (2.44)

where l+ (l−) is the rate for the spin to flip from down (up) to up (down), we find the rate equation

dP↑
dt

= −l−P↑+ l+P↓. (2.45)

This tells us that the nuclear spin flip rate is dependent on the initial nuclear spin state, or more

specifically its initial projection on the z axis. If its total initial polarisation along z is zero then

the flip rate in each direction will be equal, but the greater the polarisation, the greater the bias

to flip in one direction. This is due to the nuclei responding to the angle of the electron spin with

respect to the optical axis (given by the value of φ), i.e. if the electron is driven to a state with a

larger angle of rotation about the optical axis, then the asymmetry in the nuclear spin flip rate

will increase, i.e. there will be a larger number of spins in one direction than the other along the

external field axis.

To extend this model to the full nuclear spin bath, we introduce a parameter, m = N↑−N↓,
where N↑ (N↓) is the number of spins (anti-)aligned along the axis of the magnetic field. We then

assume the initial state of the nuclear spin bath is given by some state |m〉 and define a new set

of nuclear spin flip rates that are dependent on m, by replacing the value of ωe that appears in

the explicit definition of γn with ωe +mA where A is the average value of the hyperfine coupling

constant between the electron spin and a single nucleus. We define these new flip rates as l±(m).

Then if the system undergoes a spin flip, we see a change of ±2 in the value of m, leaving the

bath in some state |m±2〉 and the new rate for a spin to flip will be given by l±(m±2) (see Fig.

2.5). We can then use this to define the probability that m is a particular value, and we call this

probability P(m) (see Appendix A.5 for the explicit expression). In general, the value of m for

any particular parameter set will not be unique. This means that there will be many possible

configurations of the nuclei for an arbitrary choice of ∆, Ω and Bext, such that the precession

of the electron spin due to the Overhauser field, which is defined as mA
2 will have a number of

possible values. The desired outcome of the NFF protocol is to force the system into a single state

where we know the size of the Overhauser field, and so having a range of values of m does not

satisfy this. However, as we will see below, there are particular parameter sets that will give

approximately a single value of m with P(m)≈ 1 and it is these parameters that we will focus on

in the experimental discussion.
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Figure 2.5: Diagram showing how each nuclear spin flip affects the state of the spin bath. We
give the flip rates to and from the state |m〉 and the total number of N↑ and N↓ spins in each of
these states.

2.2 Experimental parameters

2.2.1 Restriction of the experimental parameters due to the Markovian
approximation

We will now consider how we can experimentally implement this protocol. We need to carefully

choose our parameters to control the amount of nuclear polarisation we have, whilst also min-

imising the number of nuclear spin bath configurations. As discussed above, the length of time

taken to reach the electron steady state should be minimised and this leads us to consider the

range of values of q0 to be q0 ≤ 0.5. We also know that for q0 = 0, a single nucleus (and therefore

the full nuclear spin bath) will not gain any polarisation along the z axis. We therefore choose to

consider the range 0.1≤ q0 ≤ 0.5. We can then restrict the range of values shown in Fig. 2.4(a) to

show the values of Rabi frequency and detuning that both create polarisation along the z axis

and are within the valid range of q0. This is shown in Fig. 2.6. This restricts the values of ∆ we

consider to be −0.38 ≤∆≤−0.1 and 0.1 ≤∆≤ 0.38. A detuning of ±0.25 corresponds to the QD

resonance being found at the half maximum of the pulse. In terms of the Rabi frequency, a value

of 0.7 corresponds to the approximate saturation power, i.e., the power required to perform a full

π pulse on the electron spin. In the range 0≤Ω≤ 1, the values of the Rabi frequency that fit the

restrictions are 0.25≤Ω≤ 0.5 and 0.55≤Ω< 0.7.

It is also useful to note that this restriction on the power of the laser pulse also implies a

restriction on the detuning of the pulse, as a far detuned pulse applies little power to the electron

spin. We can therefore restrict the values of φ to those shown in Fig. 2.7 using the same conditions

as for q0. We should note that the direction of the rotation of the electron spin about the x axis

affects the sign of the detuning, i.e. whether the QD resonance is blue or red detuned from the
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Figure 2.6: Restricted values of q0 satisfying 0.1 ≤ q0 ≤ 0.5 in terms of detuning and Rabi
frequency.

(a) (b)

Figure 2.7: Restricted values of φ giving us the allowed values of the Rabi frequency and detuning.

pulse resonance. This means that if we choose a negative detuning, we require a different laser

power to if we choose a positive detuning. This also shows us that larger amounts of detuning

are preferable as these give a larger range of values of the laser power, meaning that we require

less precision in our choice of power. We can then combine the results of both of these graphs to

choose appropriate values of the Rabi frequency and detuning that satisfy these restrictions and

are experimentally achievable.
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2.2.2 The configuration of the nuclear spin bath

We will now discuss how the full nuclear spin bath will behave in the presence of different Voigt

fields and trains of optical pulses. For the single nuclear spin case, we are able to calculate the

parameter Iz, which is the population of the nuclear spin that is confined to the z axis and we

can model this state. However, we cannot do this for each individual nucleus in the spin bath,

due to the size of the Hilbert space the system occupies being too large to model. This leads us

to consider the parameter m introduced above. m can be used to calculate the total Overhauser

field and is determined by the parameters ∆, Ω and Bext. We make the approximation that each

nucleus in the bath has equal coupling and we take this value to be A = 15MHz, approximately

the average value. In the presence of a Voigt field, we assume that each nucleus within the bath

will either align or anti-align with the field direction. Then m = N↑−N↓, where we choose N↑ to

be aligned with Bext and N↓ to be anti-aligned with Bext, can be thought of as the total overall

direction of this field and A is used to determine the magnitude of the field. The electron will

experience a change in its precession due to the Overhauser field, which is given by

ωOH = mA
2

. (2.46)

However, as discussed above, the value of ωOH is not unique, leading us to consider the probability

distribution P(m) which tells us the likelihood of m being a particular configuration. We should

first mention the case where m = 0. This corresponds to the point where there are an equal

number of spins aligned in each direction. This is a unique configuration with P(m)= 1 and gives

a total Overhauser shift of 0. This should leave the electron spin precessing with a frequency that

is due to the external field only. We should note here that this particular arrangement of nuclei is

achieved using a resonant π pulse (∆= 0), which, when discussed for the single spin case, gave a

total overall polarisation of 0. This is simply because if we have a single spin, there is no possible

arrangement that is equivalent to two spins in opposing directions and therefore this particular

configuration is impossible in the single spin case. In the multiple spin case, this condition occurs

when a resonant π pulse is applied in conjunction with an external field Bext that leads to the

precession frequency of the electron, ωe, being synchronised with the repetition rate of the laser

pulses, TR [127], i.e.

ωe = 2nπ
TR

. (2.47)

This is a special case where the system will evolve such that the electron spin is unaffected

by the Overhauser shift, however this is difficult to detect experimentally as it will not give a

change in the precession frequency of the electron spin and therefore does not allow us to control

the size of ωe f f . We will therefore consider the general case where Bext, ∆ and Ω can all be varied

and model the effect on the value of m. We know that for any unique set of parameters, there will

in fact be a corresponding set of values of m, each occurring with some probability distribution,

P(m). The effect of the system occupying one of these values of m is an Overhauser shift on the
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precession frequency of the electron with the total effective precession frequency of the electron

defined as

ωe f f = ωe + mA
2

. (2.48)

Uncertainty in which value of m the system occupies results in ωe f f having a range of possible

values. This does not solve our initial problem of the value of the effective field acting on the

electron not being constant and therefore experimental results would be difficult to quantify and

map to a particular configuration. To overcome this, we will search for configurations such that

there is a single value of m occurring with high probability (P(m)−→ 1). We therefore need to look

into the relationship between the number of possible values of this probability distribution and

Ω, ∆ and Bext. We are not only interested in the number of possible configurations of m but also

the range of values these configurations span, i.e. the difference in the maximum and minimum

value of m. We make the assumption that only the values P(m)> 0.01 are possible nuclear spin

configurations and any configurations with a lower probability of occuring are assumed to be be

negligible. We therefore define a parameter R(m) to be the range of m, such that

R(m) = mmax −mmin (2.49)

where mmax (mmin) is the maximum (minimum) value of m for a particular parameter set. This

will allow us to quantify variation in the value of ωe f f . We also define the number of non-zero

values of m for any particular configuration as N(m). Ideally, we want to find parameters such

that we have a single value of m occurring with high probability that will give a large value of
mA

2 so that the change in ωe f f is large and thus easier to detect.

The range of Bext we consider is 80≤ Bext ≤ 130mT due to restrictions in our experimental

setup. We believe this to be around the optimum value of the external field, as if we were to move

to higher fields, the amount of polarisation gained by the nuclei using this protocol would be

insufficient to create an Overhauser field as high as the external field. We initially fix the values

of ∆ and Ω to be ∆= 0.2 and Ω= 0.6 as these are well within the allowed ranges discussed in

Section 2.2.1. We find that the variance in R(m) and N(m) as a function of Bext is extremely large

(see Figs. 2.8(e) and 2.8(f)). Fig. 2.8 shows how the parameters R(m) and N(m) vary in relation to

each of the experimental parameters. We see that when we vary ∆ and Ω there are some stable

regions where N(m)= 1 and R(m)= 0. However, in terms of Bext, these regions, although they do

exist, cover a very small range. This tells us that the most difficult parameter to stabilise will be

Bext.

The system seems to experience some kind of approximate periodicity, although the pattern

is noisy. We see values of R(m) up to 350. If we consider the difference this would make to the

value of ωe, we see that a difference of 350 in the value of m corresponds to a difference in the

precession frequency caused by the Overhauser shift of ωOH = 2.625GHz. To put this into context,

an external field of Bext = 100mT (in the range we are considering) would give a precession

41



CHAPTER 2. NUCLEAR FREQUENCY FOCUSING IN A CHARGED QUANTUM DOT

frequency of 350MHz if we assume our QD has a g-factor of 0.25 [93, 94]. This means that

we will require Bext to be stable on the order of 100µT for R(m) to be stable. N(m) also has a

roughly periodic pattern and the sections with a high N(m) correspond to the sections with a

high R(m). This is not necessarily obvious but not unexpected as the larger the range of values,

the more likely it is that they will span a larger range of values. Selecting the correct value of

Bext such that we minimise N(m) and R(m) is achievable, but we should first consider what level

of accuracy we require in terms of the Rabi frequency and detuning. The regions of interest in

each of the graphs in Fig. 2.8 is the minimum point, i.e. the point where there is only a single

possible mode (N(m)= 1), which also leads to a span of 0, (R(m)= 0). This is needed so that there

is a single unique value of ωe f f , such that the precession frequency is known.

Using Fig. 2.8, we can choose, for example, Bext = 102.5mT as this has N(m) = 1, R(m) = 0

with P(m)= 0.9997, and show that N(m) and R(m) are invariant for ∆' 0.05. Importantly, the

positive range of values of ∆ given in Section 2.2.1 is within the stable range shown in Figs.2.8(c)

and 2.8(d). This means that as long as we correctly choose the sign of ∆, the only restrictions we

need to apply are those which satisfy the Markov approximation, i.e. we cannot detune the pulse

far enough that it becomes too weak to drive the electron into its steady state sufficiently quickly.

This model is valid for a σ− pulse and we find that switching to a σ+ pulse simply reverses the

sign of the detuning. Choosing the sign of the detuning incorrectly would mean that we could

find a span of values of m of up to 1000, corresponding to a difference in precession frequency

between different configurations of ≈ 15GHz, signifying the need to carefully select the direction

of the detuning. We should note that a detuning that causes m to be aligned with Bext (in this

case a negative detuning) rather than against it will in general have more than one possible

configuration of m whereas when the majority of the spins are anti-aligned with the field, there

will in general be a single configuration. There is also a difference in the maximum absolute value

of m between the two scenarios. We find that those configurations with the majority of nuclei

aligned along the axis will generally have a larger value of |m| than those with the majority of

nuclei anti-aligned with the axis. This difference in absolute value is again due to the asymmetry

of the system, as the individual nuclei will have a preference to align along the axis of Bext rather

than in the opposing direction, meaning that they will find a larger number of configurations

that match this scenario.

In terms of Ω, we see that there are some regions where there is a single value of m and some

regions with a bigger spread of values (see Fig. 2.8(b)). This happens periodically and shows that

there is a switching of the overall direction of m between positive and negative as the laser power

is increased. This appears to be due to the precession frequency of the electron spin periodically

synchronising with TR , with the maximal and minima corresponding to even and odd multiples

of the repetition rate respectively.

We next consider the values of the parameter m as a function of Bext, ∆ and Ω. Ideally, we

want |m| to be large, as this will give a more significant difference between ωe and ωe f f , thus
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(a) Plot showing how the number of modes, N(m),
varies as a function of Ω for Bext = 102.5mT and
∆= 0.2.

(b) Plot showing how the frequency range of the modes,
R(m) varies as a function of Ω for Bext = 102.5mT and
∆= 0.2.

(c) Plot showing how the number of modes, N(m) varies
as a function of ∆ for Bext = 102.5mT and Ω= 0.6.

(d) Plot showing how the frequency range of the modes,
R(m) varies as a function of ∆ for Bext = 102.5mT and
Ω= 0.6.

(e) Plot showing how the number of modes, N(m) varies
as a function of Bext for Ω= 0.6 and ∆= 0.2.

(f) Plot showing how the frequency range of the modes,
R(m) varies as a function of Bext for Ω= 0.6 and ∆= 0.2.

Figure 2.8: Here we show how the number of possible values of m and the range of values these
span can vary as a function of Bext, ∆ and Ω. The red lines show the span of the values and the
blue lines show the number of possible values. We see that there are sections that have single
values of m occuring with probability P(m)= 1. The optimal regions are the minimal values in
each section.
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(a) Values of m and P(m) as a function of the Rabi fre-
quency with ∆= 0.2 and Bext = 102.5mT.

(b) Values of m and P(m) as a function of the de-
tuning with Ω= 0.6 and Bext = 102.5mT.

(c) Values of m and P(m) as a function of Bext with
∆= 0.2 and Ω= 0.6.

Figure 2.9: Here we show the stability of m and P(m) as functions of Ω, ∆ and Bext respectively.
There are clear points where these are invariant with respect to Ω and ∆, but the dependence on
Bext is much more sensitive. We choose the g-factor of the QD to be 0.25 and A = 15MHz.

changing the precession frequency of the electron spin more significantly and making it easier

to detect, although this advantage is negated if P(m) is not close to 1. We plot the values of

m and P(m) as functions of Ω, ∆ and Bext respectively, as shown in Fig. 2.9. In Fig. 2.9(a), we

see the same switching from positive to negative m that was apparent in Fig. 2.8(b), with a

negligible variance in the value of P(m) far from these switching points for negative values of

m. These stable regions are useful as they do not require a high level of accuracy in our choice

of laser power and it is possible to choose values of Ω that are both stable and correspond to

regions satisfying the Markovian approximation. Similarly, in Fig. 2.9(b), we see that for positive

detuning, the value of m is negative and P(m)≈ 1. Ideally, we want a high value of |m|, however,
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we find that |m| is much greater when m is positive (when there is a higher number of nuclei

aligned in the same direction as Bext) but that the number of possible values of m is also greater.

The condition P(m) −→ 1 holds more importance than maximising the value of |m| and so we

choose parameters such that m is negative. This will make the total precession frequency of

the electron slower. For example, if m = −50, the Overhauser shift will cause a change in the

precession frequency of the electron of 375MHz. The precession frequency of an electron spin

with a g-factor of 0.25 due to a field of 102.5mT is ≈ 357Mhz. Then the precession frequency

of the electron will be ≈ 18MHz (in the opposite direction) only if we force the nuclei into this

particular configuration. This should be easily detectable in measurements of the electron spin.

To implement this protocol we will fix the values of ∆ and Ω and perform a scan varying the

value of Bext, as this is the parameter that requires the most fine tuning. In practice, the QD will

experience spectral jitter, where the resonant frequency of the QD is unstable and will vary on

short timescales [128]. This means that the value of ∆ will be affected by this moving resonance,

however, this is our most stable parameter, giving quite a large range of possible values of ∆ over

which the protocol will remain stable and this should therefore not play a large role if we choose

a value of ∆ in the centre of this range. To successfully scan over a region with P(m)−→ 1, we

will need to perform a very fine scan, with an increase in Bext of ≈ 50µT per measurement of

precession. We must perform a scan over a large enough range of values to be certain of passing

through a section where P(m)≥ 0.8, and this scan range is ≈ 1.5mT. We will choose the values of

∆ and Ω to be ∆≈ 0.2 and Ω≈ 0.6 to satisfy the Markovian approximation. ∆= 0.25 corresponds

to a pulse that is detuned such that the QD resonance is at the half maximum of the pulse and

so we will be slightly closer to the resonance than this. A Rabi frequency of 0.7 corresponds to

saturation of the QD, and so we want to be at a power just below the saturation power.

This would require a finer scan of Bext, and would make the change in ωe f f more difficult to

detect and so we choose to focus on the section 80≤ Bext ≤ 130mT and consider P(m)≥ 0.8. As m

is insensitive to reasonably large changes in ∆ and Ω, we don’t require too much stability in these

parameters, although we must remain in the region in which the Markov approximation is valid.

Then we can imagine performing an experiment in which we consider two neighbouring regions

where P(m)≥ 0.8 and take a very fine scan over Bext between these two regions. We expect to see

that there are points where the evolution of the electron spin is unpredictable, corresponding

to regions where there is a large distribution of values of m, but that as we approach the point

where P(m) = 1, we will start to find that the state will converge to a particular configuration.

This should show an electron spin precession frequency far from that found before application of

the laser pulse sequence, such that ωe f f will be dictated by the value of m.
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2.3 Summary

In this chapter, we discuss the dephasing of the electron spin due to the nuclei in the host

material. We describe the NFF protocol in detail and show how it is used to force the nuclei in the

spin bath of a QD to align along the axis of an external field in the Voigt geometry, allowing the

electron spin confined within the QD to precess in a constant effective field. We adjust the model

described in [123] to create a model with variable experimental parameters. We also expand the

model further to consider how the parameter m can be controlled and manipulated to allow us to

drive our system into a particular configuration. We create a model to show the effect of varying

the detuning and Rabi frequency of the laser pulses used to create this configuration and how we

can adjust the pulses and external field to control the total effective field on the electron spin,

thus controlling its precession frequency. We tailor our model to an experimental setting, defining

our parameters to be applicable to our setup. An experimental implementation will be attempted

in Chapter 6.
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ENTANGLEMENT OF AN ELECTRON AND NUCLEUS

This chapter will discuss isolation and manipulation of single nuclear spins in QDs and how

we can transfer the state of an electron spin to these nuclei. This is a theoretical chapter,

predominantly consisting of novel research. The chapter begins with a discussion of the strain

profile of a QD with reference to the existing strain profile modeling and then moves into novel

research, justifying the consideration of single nuclei as qubits by modeling RF pulses. There is

also novelty in the study of the interaction between an electron and single nucleus, where we

specify suitable parameters for the model to achieve maximal entanglement and refer back to the

experimental model of Chapter 2. This will have applications for nuclear spin quantum memories,

particularly for use in QKD, as discussed in Chapter 1. We will also consider how these nuclei can

be used as spin qubits for quantum information processing [10, 11, 99, 129, 130]. The motivation

for using nuclei for quantum information processing is the inherently long coherence times they

possess [131–133]. This is an attractive attribute, particularly in QDs, due to the difficulty in

satisfying Criterion 5 of DiVincenzo’s criteria in this particular platform. However, due to the

large number of nuclei (≈ 105) present in a typical QD environment, manipulation of single

nuclei is an extremely complex problem. However, we show that one may use the quadrupolar

interaction, induced by strain, to lift the degeneracy of the nuclei. We analyse the strain profile of

a QD and how the presence of strain can allow us to find nuclei that are isolated in frequency and

therefore address a single nucleus within the QD using radiofrequency (RF) pulses. By modeling

the transition energy of different spin species of the QD nuclei as a function of external magnetic

field we find parameters that give a high probability of addressing a single nucleus with a RF

pulse if we choose the pulse duration and resonant frequency correctly. We then show that if the

nuclear spin bath is successfully prepared using the NFF protocol described in Chapter 2, it is

possible to apply a RF pulse to a single nucleus such that it is projected into the plane of the
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electron spin, leaving the remainder of the spin bath aligned along the axis of the external field.

Due to the large number of nuclei in the spin bath, it seems unlikely that it would be possible

to address a single nucleus. However, we show that it is not only theoretically possible, but that

it can be done with an RF pulse that is broad enough such that the implementation time of the

pulse is sufficiently short (≈ 200ns). The reason we choose to focus on addressing single nuclei

rather than the full nuclear spin bath is that we would like to produce a method for transferring

the electron spin state to a nuclear spin state, thus lengthening the coherence time of the state.

This requires entanglement between the electron and any configuration of nuclei we choose. Due

to monogamy of entanglement, it is not possible to maximally entangle an electron to more than

one distinguishable nucleus. If two or more nuclei are in a maximally entangled state, then it

is possible to maximally entangle the electron spin to this entangled state, but in this case the

set of indistinguishable nuclei must act as a single particle, and cannot contain more than one

quantum state. Hence we must focus on manipulation of single spins. Then the electron and

target nucleus will interact and evolve according to the hyperfine interaction independently of

the remainder of the spin bath.

We also take into account the effect of the RF pulse on the nuclear spin bath and how this

affects our two-spin subsystem of an electron and target nucleus. Next, we show how a two-spin

subsystem of an electron and a single nucleus will evolve according to the hyperfine interaction in

the presence of magnetic fields in both the Faraday and Voigt geometries. We also discuss how this

evolution can be used as a source of entanglement between the electron and nucleus and model

the parameters needed and the timescales on which this process happens. This is equivalent

to performing a
p

SWAP gate on the two-spin subsystem. This is a maximally entangling gate,

given by the matrix

p
SWAP =


1 0 0 0

0 1
2 (1± i) 1

2 (1∓ i) 0

0 1
2 (1∓ i) 1

2 (1± i) 0

0 0 0 1

 (3.1)

and the fact that it can be achieved through simple evolution of the system rather than direct

external manipulation of the qubits is advantageous as we don’t induce any losses other than

those inherent in the system (such as decoherence of the spin states) during the application of

the gate. Fig. 3.1 summarises the main outcomes of the chapter.

3.1 Strain Distribution in a quantum dot

The growth process used for the InGaAs QDs we consider in this thesis is Stranski-Krastanov

growth. As discussed in Chapter 1, by depositing a monolayer of InGaAs onto a substrate of GaAs,

one forces a preferential 3-D growth of the InGaAs layer, due to a lattice mismatch between the

two materials, creating a large amount of strain in the system. A typical InGaAs QD in a GaAs
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Optical pulse

e-
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e- t

(d)

Figure 3.1: (a) The structure of a charged QD before any system preparation. The blue circle
represents the electron which will be in some unknown spin state shown by the black arrow. The
red circles represent the nuclei in the QD, each of which has a different precession frequency,
governed by its Zeeman splitting. (b) The protocol we use to perform nuclear frequency focusing. A
train of optical pulses addresses the electron spin along the optical axis and an external magnetic
field is applied in the Voigt geometry. The nuclei will align along the external field axis whilst the
electron is driven by the optical pulse train. The final state of the system is determined by the
detuning and Rabi frequency of these pulses and the external field strength. (c) Initialisation of a
single nucleus into the plane of the electron spin. A radiofrequency pulse is applied to a target
nucleus that is isolated in frequency, rotating it into the plane of the electron spin, such that
the two will evolve according to the hyperfine interaction. (d) Evolution of the electron-nuclear
subsystem as a function of time due to the hyperfine interaction, assuming no decoherence. The
purple line shows the evolution of the two-spin subsystem about the Bloch sphere and the dotted
lines tell us the spin state of the system at relevant points in the evolution.
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substrate will have a lattice mismatch of 7.8% at 300K, with GaAs having a lattice constant

of 5.6533nm and InGaAs 6.0584nm [134]. This strain is unavoidable, as the lattice mismatch

is both the reason for QD growth and the reason that there is strain in the system. Strain is

often considered to be purely a dephasing mechanism, and there is research into how the strain

induced in the fabrication process can be compensated for [135–137], however, we will show in

this section that it can in fact be exploited as a means of addressing single nuclei.

QD strain is position-dependent, meaning that each nucleus will experience a different strain

profile, although the strain in the plane of the QD is the same in each direction, differing only

with the strain along the axis normal to the growth direction [138]. For the QDs we consider, the

more highly strained areas will be in the lower half of the QD and close to the centre. The strain

causes splitting in the energy levels of the nuclei, and this splitting, together with the position

of the nucleus, determines the coupling strength between the electron and each nucleus [139].

In addition to this, the nuclei will experience the quadrupolar interaction, which causes a shift

in their magnetic energy (this will be discussed in detail below). For InGaAs QDs, the atomistic

strain will typically be around 7-10% [96] and the hyperfine coupling constants are as defined in

Eq. 2.12.

3.1.1 Quadrupolar Interaction

Nuclear spins will be also subject to the quadrupolar interaction, an effect which causes a shift

in the magnetic energy of each nucleus [115, 140]. In addition to this, there are a range of spin

species within the atoms, and a spin species higher than 1
2 will experience a shift in transition

energy due to the quadrupolar interaction. Different atoms have different total spin quantum

numbers and we find that in a QD, the Ga/As atoms have a total spin quantum number of 3
2 and

In has a total spin quantum number of 9
2 (see Fig. 3.2) [96]. The Hamiltonian of the quadrupolar

interaction is [96]

HQ = AQ(3I2
x − I2 +η I2+− I2−

2
)−ωnIz (3.2)

where ωn is the precession frequency of the nucleus due to some external field, Bext in the Voigt

geometry, and I j are the nuclear spin operators for a half-integer spin particle along the j axis

and I = Ix + I y + Iz (note that x is again the optical axis). AQ is the quadrupolar coupling term

and is given by

AQ = e2qQ
4I(2I +1)

. (3.3)

Here, Q is the electric quadrupole moment, e is the electronic charge, I is the spin number of the

nucleus (I = 9
2 for In and I = 3

2 for Ga and As). q is the field gradient parameter, and is defined as

q = VX X

e
(3.4)
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Figure 3.2: Level structure of a spin 1
2 particle (e.g. an electron), a spin 3

2 particle (e.g. a Ga atom)
and a spin 9

2 particle (e.g. an In atom) in terms of the total spin quantum number.

where

Vi j ≡ ∂2V
∂xi∂x j

=
3∑

k,l=1
Si jklεkl (3.5)

describes the electric field gradient. S is the fourth-rank gradient elastic tensor [141] and εi j is

the local strain tensor. η is the dimensional biaxiality, or asymmetry parameter, given by

η = VX X −VY Y

VZZ
. (3.6)

In [96], the strain and quadrupolar statistics of InGaAs QDs are given and the distribution of the

different strain components is modeled in terms of position within the QD. Values are given for

the mean and standard deviation of the different strain components of the QDs. We are interested

in the shear strain component, εS ≡ |εxy|+ |εyz|+ |εzx|, as this induces the largest range of values

of AQ and is due to As atoms on the QD interface forming heterobonds with In and Ga. We will

show that if the particular QD we consider has a particularly high value of εS (we consider up to

4 standard deviations from the mean value quoted) that the distribution of AQ will become much

wider, which is beneficial when attempting to find a single nucleus that is isolated in frequency.

Different spin species will have different energy values due to the transition shift caused by the

quadrupolar interaction. We can calculate these energies shifts by plotting the eigenvalues of Eq.

3.2 as a function of external field strength. We consider both the 3
2 (As) and 9

2 (In) spin species.

Plotting this using the mean value of the shear strain (εS = 0.005 for As and εS = 0.004 for In

[96, 134]), we see the results in Fig. 3.3.

In Fig. 3.3(a), there is a no initial splitting between the ±3
2 states and and the ±1

2 spin levels.

This is induced as the value of Bext increases, and at these low fields, we see an asymmetry in
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(a) As nucleus with spin 3
2 . (b) In nucleus with spin 9

2 .

Figure 3.3: Zeeman splitting of the level transitions of (a) a spin 3
2 nucleus and (b) a spin 9

2
nucleus with an average strain profile. At Bext = 0, there is no splitting between each + and −
spin state pair. In (a), the higher energy line at zero field is the 3

2 spin transition and the lower
energy line is the 1

2 spin transition. These then split for non-zero external fields and we see also
the −n

2 spin states. Similarly, for (b) the spin transition with the highest energy at zero field is
the 9

2 transition and in order from highest to lowest energy, we have the spin transitions 9
2 , 7

2 , 5
2 ,

3
2 and 1

2 , similarly to those in (a).

the level splittings due to the biaxiality, η, being a dominant part of the system. Fig. 3.3(b) is

qualitatively similar, but as there are more energy levels, these energy levels necessarily cover a

larger frequency range. The transition energies between the different spin levels are not equal

(i.e. the energy of the transition between the 9
2 spin level and the 7

2 level is not equal to the

energy of the transition between the 7
2 and 5

2 transition). This is due to the biaxiality parameter,

η, defined above, which is a dimensionless parameter and has a value of η= 0.117 for As and

η= 0.042 for In [96]. We will now discuss how the values of εS and η affect the distribution of the

energies of the spin transitions and how this can be used to isolate single nuclei by addressing

the system with RF pulses.

3.1.2 Isolation of a single nucleus

We can use the fact that the spin transitions are split in energy to our advantage in isolating

a single nuclear spin. The greater spread of energy found in the In nuclear spin transitions

leads us to focus on these spins over the As spins. We need to design a RF pulse that is able

to address a nucleus that is isolated in frequency from the rest of the bath and so we want the

energies between the spin transitions to be as large as possible. We have so far only considered

how the mean strain profile will behave, and so we instead consider how variation in the value

of εS affects the spread of the energies in this magnetic field range. The mean value of εS for

In is 0.004 and standard deviation is also 0.004. η is also given with both a mean value (0.042)
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(a) 1 standard deviation (b) 2 standard deviations

(c) 3 standard deviations (d) 4 standard deviations

Figure 3.4: Variation of the Zeeman splitting of a 9
2 spin state as a function of magnetic field,

taking the first to the fourth standard deviations of εs and η.

and a standard deviation (0.041) in [96]. Increasing εS increases the total spread in frequency

of the different spin transitions and increasing η means that the difference in the transition

energies between the different spin levels is increased. We model the energy splittings up to the

4th standard deviation (see Fig. 3.4). This shows an increase in the widths of the transitions, and

a larger asymmetry between the different transitions. The width of the transition we address

needs to be sufficiently different to the width of the other transitions, such that we can neglect

these transitions. For each of the graphs plotted, the transition between the 9
2 and 7

2 spin levels

has the largest width. The nuclei within each transition will have a spread of frequencies that

obey a Gaussian distribution, therefore, considering the 9
2 to 7

2 transition will give the largest

spread of values of the nuclear spin frequency, increasing the chance of finding a sufficiently

isolated nucleus. The width of each of the transitions is greatest for the 4th standard deviation,

with the 9
2 to 7

2 increasing from a width of ≈ 16MHz for the mean strain profile to ≈ 80MHz for

the 4th standard deviation. In addition to increasing the nuclear spin frequency range, this also

allows us to make the assumption that we can address a single transition, without the other spin
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Figure 3.5: Distribution of the resonant frequencies of the In nuclei found in the 9
2 and 7

2 transition
centred at 80MHz for 16000 spins.

levels experiencing any effects. The width of the 7
2 to 5

2 transition is ≈ 55MHz and we claim that

this is sufficiently far from the 9
2 to 7

2 width that only the wider transition will be addressed. The

widths of each transition are shown for each strain profile in the table below.

Transition width Average strain 1 sd 2 sd 3 sd 4 sd
9
2 to 7

2 16MHz 31.9MHz 47.8MHz 63.4MHz 78.9MHz
7
2 to 5

2 12MHz 23.9MHz 35.6MHz 47.0MHz 58.0MHz
5
2 to 3

2 8MHz 15.5MHz 22.7MHz 29.8MHz 37.0MHz
3
2 to 1

2 4MHz 9.77MHz 17.3MHz 27.0MHz 39.0MHz

We will assume from this point that we are able to find a QD with a strain profile matching the

numbers quoted for the fourth standard deviation.

We now need to consider the distribution of the nuclei within the 9
2 to 7

2 transition. The energy

of this transition has a width of 80MHz. The temperature of our system will be a few Kelvin,

which is in the high temperature limit for this type of system. This means that we expect each

spin state to be occupied by an approximately equal number of spins, giving 20% of the total

number of spins in each of the 9
2 and 7

2 transitions. Only the In spins in the QD have spin species

> 3
2 and these make up approximately 40% of the total number of spins in the system. Then if we

take the total number of spins in the QD to be 100000, the number of In spins in the 9
2 and 7

2

transitions will be ≈ 16000. Then we can model the distribution of values of AQ of the spins in

these transitions according to a Gaussian distribution centred at 80MHz, noting that the natural

linewidth of the In transition is ≈ 10kHz [142] (see Fig. 3.5).

We need to design a RF pulse that is able to address a single nucleus. This nucleus then needs

to have a value of the quadrupolar coupling, AQ , that is sufficiently isolated from the values of

AQ of the remainder of the nuclear spin bath. We want to find a section of this distribution with a

high probability of containing a single nucleus. The width of the section we choose corresponds to

the linewidth of the RF pulse we will use to address the nucleus. A broader frequency range will
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Figure 3.6: A 5MHz section of the Gaussian distribution of AQ containing a single nucleus
isolated in frequency.

correspond to a shorter implementation time for the pulse and so we want to find a reasonably

broad section that is likely to contain a single nucleus as this will give a shorter initialisation time

for the nucleus. This leads us to consider the frequencies far from the centre of the distribution.

We choose to consider the higher energy end of the distribution as spins found in this sections

will be far in frequency from any other spin transitions and species.

We must carefully choose the frequency and linewidth of our RF pulse to maximise the chance

of addressing a single nucleus. RF pulses act on nuclei by causing a rotation in the angle of

the nuclear magnetic moment, corresponding to a rotation of the direction of the spin of the

nucleus. Each nucleus will experience some rotation due to the RF pulse which is dependent on

its resonant frequency. This leads to the stable configuration of nuclei we have prepared being

scrambled, and the precession of the electron spin will revert to its incoherent state. However, if

we are able to successfully choose the frequency of our RF pulse such that it will overlap with a

single nucleus only, we can use it to rotate this nucleus, whilst leaving the rest of the nuclear

spin bath unperturbed.

To find the number of nuclei within a given frequency range of the distribution, we can

integrate the area under the curve in Fig. 3.5 for the frequency range we want to consider. The

section in Fig. 3.6 shows a 5MHz section (corresponding to a pulse duration of 200ns) which will

contain a single nucleus. We choose the linewidth of 5MHz as it is broad enough such that the

implementation time (200ns) is shorter than the coherence time of the system but the transition

is narrow enough that we are able to select a section of the distribution that will contain a single

nucleus that we are able to address resonantly. Then we can imagine applying a RF pulse that is

resonant at the centrepoint of this region (123MHz) to address a single nucleus that is resonant

at this frequency. We will call this nucleus the target nucleus. We previously gave details of a

system that is prepared such that we have an electron spin in the plane perpendicular to the

nuclear spin bath. Our eventual application is to interact this electron spin with a target nucleus
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and therefore we want to rotate this nucleus such that it is in the same plane as the electron spin

using the RF pulse we have just described. This will correspond to applying a pulse of area π
2

about the y axis, given by the rotation matrix

Ry(θ) =
(
cos θ

2 −sin θ
2

sin θ
2 cos θ

2

)
(3.7)

with θ = π
2 . However, we will now consider the effect of the RF pulse on nuclei detuned from the

pulse resonance but still close enough in frequency that they will experience some small rotation

into the plane of the electron and target nucleus.

3.1.3 Effect of the RF pulse on the nuclear spin bath

It is important to note that some of the other nuclei in the spin bath may be affected by this RF

pulse. Nuclei that are detuned from the pulse resonance but still sufficiently close in frequency

will experience some rotation due to the pulse. This will be a smaller effect than that felt by

the resonant target nucleus, but could still produce a significant rotation on a nucleus that may

then affect the precession of the two-spin subsystem. To model this, we need to calculate the

overlap between the RF pulse and each of the nuclei in the nuclear spin bath. We approximate

the lineshape of the RF pulse as a hyperbolic secant pulse, (as in Chapter 2) and represent each

nucleus as a rectangular function with linewidth 10kHz at some detuning, δ from the resonance of

the RF pulse. This is a valid approximation as the linewidth of the nuclear is orders of magnitude

smaller than the linewidth of the pulse. Then the RF pulse, P(ω), can be represented by the

equation

P(ω) = 1
4

sech
(ω−ωP

2

)
(3.8)

where ωP is the central frequency of the pulse and each nucleus by the equation

R(ω,δ) =
R0 if ωR − δ

2 <ω<ωR + δ
2

0 otherwise
(3.9)

where R0 is the amplitude, ωR is the central frequency of the nucleus and δ is the linewidth of

the nucleus. We can then calculate the overlap between the pulse and each nuclear spin using

the equation

Overlap =
16000∑
N=1

∫ AN
Q + δ

2

AN
Q − δ

2

∣∣∣R0

4
sech

(ω−ωP

2

)∣∣∣2dω (3.10)

where each individual nucleus has some resonant frequency AN
Q , with a detuning from the pulse

resonance of ωP − AN
Q . We take the linewidth of an Indium nucleus to be δ= 10kHz, as above.

Evaluating this integral for each term in the sum gives us the overlap between each of the nuclei

and the pulse. Then, a nucleus centred at 123MHz will have maximum overlap with the pulse
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Figure 3.7: Graph showing the angle of rotation of a nucleus as a function of its detuning. The
dotted line is at the point that corresponds to AQ = 120.5MHz for reference.

and undergo a rotation of π
2 . As the detuning between the pulse and a nucleus increases, so does

the angle of rotation, and we plot this angle as a function of the detuning of the nucleus from

the pulse resonance in Fig. 3.7. As the 5MHz region that encompasses the width of the pulse is

assumed to contain only a single nucleus, we can neglect the section with a detuning of < 2.5MHz,

and consider only those rotations that affect nuclei with AQ < 120.5MHz (the black line in Fig.

3.7 is plotted at the point corresponding to AQ = 120.5MHz for reference). Then we see that the

maximum rotation we expect from any nucleus other than the target nucleus is ≈ π
8 . We can

also calculate the net rotation on the full nuclear spin bath by integrating the area under the

curve in Fig. 3.7. This gives a value of 0.15πrad. In Chapter 4, we will examine the effect of the

rotation of the nuclei in the remainder of the bath on the system we want to prepare between the

electron and nucleus. We will take into account the probability of finding a nucleus at a particular

detuning from the pulse resonance and show that there are nuclear spin bath configurations

that allow the two-spin subsystem we will discuss to operate with high fidelity, despite these

unwanted rotations. We will show both the effect of a single nucleus with the smallest value of

detuning we consider and the net effect of the rotation of the full nuclear spin bath.

3.2 Electron-nuclear spin interactions in a quantum dot

3.2.1 Evolution of an electron and single nucleus

Once the nuclear spin has been initialised into the plane of the electron spin, the two spins will

begin to evolve according to the hyperfine interaction and external field [143, 144]. The basis

states for the nuclear spin are defined as {|⇑〉 , |⇓〉} along the optical axis. The Hamiltonian for

this system is taken from the full Hamiltonian of the system of an electron spin and a nuclear

spin bath defined in Chapter 2, Eq. 2.15. However, in this case, we modify the nuclear term to

contain a single nucleus only, ignoring the remainder of the spin bath. We will consider external
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fields in the Voigt geometry (the in-plane axis). The Hamiltonian of this two-spin subsystem is

then defined as

Hen =ωeSz ⊗ In +ωnIe ⊗ Iz + AtS⊗I (3.11)

where ωe = geµBBext (ωn = µIµnBext) is the precession frequency of the electron (nucleus), ge

(µI ) is the g-factor of the electron (nucleus), µB is the Bohr magneton, µn is the nuclear dipole

moment, S is the spin operator of the electron (nucleus), Sz (Iz) is the component of the spin

operator of the electron (nucleus) in the external magnetic field direction, and At is the hyperfine

coupling strength between the electron and the nucleus. We can neglect the second term in Hen

as the magnetic moment, µIµN , of a nucleus is 3 orders of magnitude smaller than that of an

electron and therefore has a negligible effect on the system. The temporal evolution of this system

is given by a unitary,

Uen(t) = e−iHen t. (3.12)

We can act this operator on the density matrix of the initial state of the electron and nucleus,

which we choose to be

ρ i = |↑ 〉〈 ↑| . (3.13)

in the optical axis basis. We should note here that it is also valid to choose the initial state to be

ρ i = |↓ 〉〈 ↓|. However, we cannot have an initial state where the two spins are in the same state,

i.e. ρ i = |↑ 〉〈 ↑| or ρ i = |↓ 〉〈 ↓|, as there will be no interaction between them and each will

decay due to its decoherence time only without experiencing any evolution due to their hyperfine

coupling.

We can then model how the system evolves, such that the state after some evolution time, t,

the new state is given by

ρ f (t) = Uen(t)ρ iU†
en(t). (3.14)

We use the partial trace to calculate the reduced density operator of the electron spin state. This

is defined as a mapping from a joint density matrix, ρAB, of two quantum systems, A and B, on

some composite space of Hilbert spaces, HA ⊗HB, onto some reduced density matrix, ρA, on the

Hilbert space, HA. Then if we define a basis {|ai〉} ({|b j〉}) of the Hilbert space HA (HB), we can

say that any density matrix ρAB on HA ⊗HB can be described by the decomposition

ρAB = ∑
i, j,k,l

ci jkl |ai〉〈a j|⊗ |bk〉〈bl | , (3.15)

with coefficients ci jkl . Then the reduced density operator of subsystem A is the partial trace over

the subsystem B, given by

ρA ≡TrBρAB = ∑
i, j,k,l

ci jkl |ai〉〈a j| 〈bl |bk〉 . (3.16)
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Figure 3.8: Evolution of the spin state of the electron due to the hyperfine interaction between
the electron and target nucleus for varying At with Bext = 0. The initial state is |ψ0〉 = |↑ 〉 in
the optical axis basis. The y axis shows the state of the reduced density operator of the electron
spin. In (b), we include the inherent exponential decoherence of the electron spin due to e−t/τ for
τ= 1µs and show how the evolution changes.

Using this, the initial reduced density operator of the electron is

ρ i,e = |↑〉〈↑| (3.17)

and the initial reduced density operator of the nucleus is

ρ i,n = | 〉〈 | (3.18)

as expected. We can then calculate the electron spin reduced density operator as a function of

time by considering our system to be of the form ρen ≡ ρAB for the electron density operator ρe

and the nuclear spin density operator ρn. Then ρe =Trnρen will be of the form

ρe = 1
2

(I+ ∑
i=x,y,z

ciσi). (3.19)

Plotting cz(t) (we ignore cy(t) and cx(t) as they are zero throughout) as a function of time

tells us how the electron evolves around the Bloch sphere in the {|↑〉 , |↓〉} (optical axis) basis. We

can use this to show the dependence of the electron spin evolution on the value of the hyperfine

coupling constant of the target nucleus, At. Typical values of the hyperfine coupling for In spins

will be around 10-30 MHz [116, 145]. We show how varying At affects the precession of the

electron spin in Fig. 3.8, taking Bext = 0 so that we see the evolution due to At only. The first of

the two plots in Fig. 3.8 does not take into account the decoherence of the electron spin. This
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allows us to identify which processes are controlled by the value of At without considering any

forms of decoherence. We can clearly see that an increase in At corresponds purely to an increase

in the frequency of the rotation of the electron spin. From this graph alone, one would deduce a

large At is preferable, as any quantum operations we may want to perform will be accessible on a

shorter timescale. We can then incorporate decoherence into the model, taking a realistic value

for the electron decoherence time to be τ= 1µs [124], by simply adding an exponential decay of

e−t/τ. Then the evolution of the electron spin will be as shown in the second graph of Fig. 3.8 such

that the dashed black line shows the exponential decoherence envelope. We can see that in this

case, as the electron spin experiences decoherence, the electron’s movement around the Bloch

sphere becomes restricted. This makes a larger At even more imperative to allow us to access a

larger section of the Bloch sphere, and therefore increase the amount of quantum operations that

can be performed in the time frame. We therefore choose At = 30MHz. We should note here that

we have already conditioned the nuclear spin in terms of AQ . Choosing AQ to be high means that

the nucleus is in a highly strained section of the QD. These highly strained sections generally

occur in the middle of the QD, where the overlap between the electron spin and each nucleus is

large [134]. This corresponds to a large coupling between the electron and nucleus, and therefore

we conclude that a large value of At is likely for a nucleus with a large value of AQ .

The next step is to consider how different external fields affect the electron spin precession.

As we are assuming that there is no nuclear spin bath in this model, ωe ≡ωe f f (and Bext ≡ Be f f ).

The Larmor precession frequency, ωe = geµBBext, and we expect the value of the g-factor to be

ge ≈ 0.25 when we apply a magnetic field in the Voigt geometry [93, 94]. The Bohr magneton,

µB ≈ 14GHz/T. Then, for an electron spin precessing in a field in the Voigt geometry, we will

consider values Bext = 0, ≈ 4.29 and ≈ 8.57 and ≈ 17.1mT, corresponding to ωe = 0, 15, 30 and

60MHz respectively. We choose these values because we want to make a direct comparison

between the value of At and ωe and so we plot ωe rather than Bext in this case. We should note

that the values of Bext are small. This is because for values of ωe > 30MHz, the precession of the

electron spin due to the external field will dominate the system. This will cause some suppression

of the effect of the coupling term between the electron and nucleus. We will show later in the

chapter, when we reintroduce the nuclear spin bath, that it is possible to control the total size of

ωe f f by controlling the size and direction of the Overhauser field.

In Fig. 3.9 (a), we plot the electron spin evolution for different values of ωe in the Voigt

geometry in the absence of electron spin decoherence. Here we see that when ωe = 0MHz (the zero

field case), the spins periodically evolve over the full Bloch sphere in the absence of decoherence.

As the value of ωe is increased, we find that the precession frequency increases, but the precession

path becomes less coherent, i.e., the oscillations appear to still cover the full Bloch sphere, but

there is not a single coherent frequency. The action of ωe becomes the dominant term in the

system, which causes the frequency of the electron spin to increase, such that the driving of the

system due to the external field overpowers the interaction term. Both the interaction term and
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Figure 3.9: Evolution of the electron spin state as a function of time for increasing external field
along the Voigt axis including the inherent exponential decoherence of the electron spin due to
e−t/τ for τ= 1µs in (b). The initial state is |ψ0〉 = |↑ 〉 in the optical axis basis.

the external field term individually induce a coherent precession of the electron spin, but the

combination of the two terms acting on the system gives the evolution we see, where the Bloch

sphere rotations do not appear to obey a particular pattern. This is due to the external field term

acting only on the Sz spin component of the electron spin, whereas the interaction term acts on

each of Si, leading to the two terms becoming out of phase with each other.

Introduction of the electron decoherence term in the second graph in Fig. 3.9 further restricts

the evolution of the electron spin about the Bloch sphere, such that its state approaches the the

maximally mixed state. This maximally mixed state corresponds to the point at which all of the

information contained in the state of the electron spin is lost. We want to maximise the amount

of coherent quantum operations that we can perform before the coherence of the electron spin is

lost. Full access to the Bloch sphere is only available in the case where ωe = 0MHz, although the

precession frequency is slower. However, we have not yet looked at the points of entanglement in

the dynamics between the electron and nucleus.

We now want to know under what conditions the electron and nucleus will become entangled.

As the electron and nucleus evolve periodically from the state |ψ(0)〉 = |↑ 〉 to the state |ψ(π)〉 =
|↓ 〉, assuming that the full Bloch sphere is available to the system (i.e. in the absence of

decoherence), at some point in this evolution, the state will reach the configuration |ψ(t)〉 =
|↑ 〉+ |↓ 〉 and similarly from |ψ(t)〉 = |↓ 〉 to |ψ(t)〉 = |↑ 〉 we will find the maximally entangled
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state |ψ(t)〉 = |↑ 〉− |↓ 〉. We should note that this is not true in general if Bext is non-zero due to

restricted precession of the qubits about the Bloch sphere. A robust method for quantifying the

amount of entanglement shared between two particles is to calculate the negativity [146]. This is

defined as

Nρ = |λi|−λi

2
. (3.20)

Here λi are the eigenvalues of the partial transpose of ρen with respect to the nuclear spin

subsystem. Using ρen as defined in Eq. 3.15, this is given by

ρTn = ∑
i, j,k,l

ci jkl |ai〉〈a j|⊗ (|bk〉〈bl |)T . (3.21)

Then the negativity is given by the absolute value of the sum of the negative eigenvalues. This

will vary between 0 and 1
2 with 0 corresponding to no entanglement and 1

2 corresponding to a

maximally entangled state (a Bell state). By plotting the negativity of our two-spin subsystem

we can determine the amount of entanglement between the two particles as a function of time.

We show how this value varies as a function of ωe, both with and without the decoherence of the

electron spin. This is shown in Fig. 3.10.

Here, we find that in the absence of decoherence, the maximally entangled state is still

achievable, however, we see the non-periodic evolution about the Bloch sphere affecting the

timescale of these points of maximal entanglement. The increase in precession frequency as the

external field increases leads to the maximally entangled state occuring more frequently, but due

to the Bloch sphere restrictions, this is no longer periodic. However, when we consider the effect

of the electron spin decoherence, we actually find that the decoherence term acts such that in the

presence of any non-zero Bext, the maximally entangled state conditions can never be perfectly

met. This is due both to the restriction of the available Bloch space due to the decoherence term

and the non-periodic evolution due to the phase mismatch between the external field term and

the hyperfine coupling term. We therefore conclude that it is necessary to minimise the size of

the total field acting on the system. Then, if the total effective field acting on the electron spin,

given by

Be f f = Bext +BOH , (3.22)

where BOH is the size of the field induced by the nuclear spin bath, is equal to 0 and At = 30MHz,

we find that the first point of maximum entanglement will occur after 52.6ns. At this point the

state of the electron spin will be mapped onto the state of the nuclear spin. This maximally

entangled state between the electron and nucleus is equivalent to acting the quantum gatep
SWAP (defined in Eq. 3.1). The advantage of performing the gate in this way is that the system

simply evolves over time to take on this particular state, and no external operations are needed

at this stage of the process, decreasing the possibility of losses being introduced to the system

from the environment.
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Figure 3.10: Negativity of the two-spin subsystem as a function of time for increasing external
field in the Voigt geometry including the inherent exponential decoherence of the electron spin
due to e−t/τ for τ = 1µs in (b). The initial state is |ψ0〉 = |↑ 〉. The dotted lines are references
for the points at which the maximally entangled state occurs. We see that as the external field
increases in the absence of decoherence, the maximally entangled state can still be achieved for
any value of ωe. In the presence of decoherence, we see the maximum entanglement decreases as
the external field increases.

We know that the nuclei, if unpolarised, will induce a fluctuating magnetic field that we

need to control and we need an external field applied to the system to achieve this control. This

means that we cannot simply apply no external field to achieve the condition ωe f f = 0. Hence,

we propose to force the system into a configuration such that the field induced by the nuclei is

equal in magnitude but in the opposing direction, i.e., Bext =−BOH . We will now reintroduce the

nuclear spin bath and show that it is possible to achieve this condition.

3.2.2 Creating the ideal nuclear spin environment

We have now shown for an electron and nuclear spin precessing according to an external field

in the Voigt geometry and a hyperfine coupling between them that to achieve the maximally

entangled state between the two, we require the condition Bext ≈ 0. We now want to show that

it is possible to achieve this condition in the presence of the nuclear spin bath, in the QD, by

controlling the size and direction of the Overhauser field. In Chapter 2, we describe the NFF

protocol. We now want to use this model to determine the parameters needed to achieve the

condition Be f f = 0. This can be calculated using the total effective precession frequency of the
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electron spin due to both Bext and the polarised nuclear field, BOH , given by

ωe f f = ωe + mA
2

, (3.23)

assuming the box model, where ωe is the precession frequency of the electron spin due to Bext

only, m = N↑−N↓ is the number of nuclei (anti-)aligned to the external field, hence determining

the overall direction of the state of the nuclear spin bath and A is the average value of the

hyperfine coupling constants which we choose to be A = 15MHz. However, this condition alone

is not sufficient - as discussed in Chapter 2, we also require P(m)−→ 1, such that the solution

giving ωe f f = 0 is approximately the only possible nuclear spin configuration for the particular

parameter set.

To find such a parameter set, we need to simultaneously satisfy the equations

ωe = −mA
2

(3.24)

and

P(m) ≥ 0.8. (3.25)

The parameters are plotted in a similar graph to that shown in Fig. 2.9(c), however, we replace Bext

with ωe, the precession frequency of the electron due to Bext only and m with mA
2 , the Overhauser

shift. This allows us to determine at which points the conditions given in Eqs. 3.24 and 3.25

above are satisfied. In Fig. 3.11 we plot this relationship between ωe and ωOH . Additionally, we

plot a black dashed line that indicates all of the points at which the first condition, ωe =−ωOH is

satisfied. Then, any point on this line will force the system into a configuration where ωe f f = 0,

as required. However, many of these points have a very low probability of occurring. We must

therefore consider our second condition, P(m)≥ 0.8. We need to find the points at which the high

values of P(m) overlap with the dotted line, such that we have a configuration that will satisfy

Eq. 3.24 and also have a high probability of occurring. In the range of ωe that we are considering,

we find that there is a single point where this is satisfied. This point is located at ωe ≈ 0.325GHz

(corresponding to an external field of Bext ≈ 92.9mT) with P(m)≈ 0.91 (see Fig. 3.12).

Although we find only a single point that satisfies both of our conditions, increasing the

range of Bext we consider should result in more of these points being accessible. The value of

the g-factor will also affect these results, and so it may be necessary to measure the g-factor of

a particular QD and then adjust the parameters accordingly to find the value of Bext required

to correctly drive the system into this state. The values of ∆ and Ω should not affect the result,

unless they deviate far from the values we choose. We have now shown that the system will reach

a maximally entangled state, or
p

SWAP gate configuration most stably when ωe f f = 0 and that

this condition is achievable for a particular parameter set we choose. In addition to this, we have

shown that single spin manipulation in a QD is possible, provided the nucleus is chosen carefully

such that it will be isolated in terms of its quadrupolar coupling, AQ from the other nuclei in the
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Figure 3.11: Graph showing the relationship between the precession frequency of the electron
spin (ωe), the Overhauser shift (ωOH = mA

2 ) and the value of P(m). We use ∆ = 0.2, Ω = 0.6,
g = 0.25 and A = 15MHz as in Chapter 2. The dotted line shows the points at which the total
effective field on the electron, ωe f f =ωe − mA

2 = 0.

Figure 3.12: This figure shows the location of the point in Fig. 3.11 that satisfies the two conditions
we require. The parameters are ∆= 0.2, Ω= 0.6, g = 0.25 and A = 15MHz as given above.
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spin bath. The following chapter will now show that combining these two processes allows us to

construct a protocol for a nuclear spin quantum memory.

3.3 Summary

To summarise, we have analysed the strain profile of InGaAs QDs with a view to identifying a

nuclear spin within the QD that is isolated in frequency from the rest of the nuclear spin bath. We

conclude that the chances of finding an isolated nucleus are high if we choose the frequency range

carefully. We have shown that it is possible to design a RF pulse that will rotate this nucleus

into the plane of the excess electron spin found within the QD and shown how this RF pulse will

affect the remainder of the nuclei in the spin bath. We then analysed the evolution of the electron

spin and target nucleus in the absence of a nuclear spin bath due to the hyperfine interaction

and precess frequency of the electron spin in an external magnetic field, and showed that if we

choose the parameters Bext = 0 and At = 30MHz, it is possible to create a maximally entangled

state between the electron spin and the nucleus. Finally, we reintroduced the nuclear spin bath

and showed that it is possible to drive the full system into a configuration such that ωe =−ωOH ,

i.e. the Overhauser field induced by the nuclear spins cancels out the external field acting on the

electron, leaving ωe f f = 0, as we require to achieve the maximally entangled state between the

electron and nucleus. The following chapter will show how this information transfer can be used

to construct a quantum memory protocol for quantum communications applications.
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A NUCLEAR SPIN QUANTUM MEMORY PROTOCOL

In this chapter, we exploit the entangling evolution described in Chapter 3 to construct a protocol

for a nuclear spin quantum memory using the two-spin system, such that an initial electron

spin state can be mapped onto a nucleus and retained on long timescales. This is a theoretical

chapter and all material discussed in the chapter is novel. We show that through use of an ancilla

photon, we can read out this nuclear spin state, meaning that it can be used as a robust store for

a quantum state [147]. Next, we discuss how unwanted coupling between the electron-nuclear

subsystem and outlying nuclei in the spin bath that may be close in frequency to the isolated spin

affects the precession of the two-spin subsystem. Finally, we discuss the possibility of extending

this system to implement the ancilla-driven quantum computation (ADQC) protocol proposed by

Janet Anders et al. in 2010 [148, 149] and show promising preliminary data for such a model.

4.1 A quantum memory protocol

A quantum memory is an interface between light and matter that allows a quantum state

of light to be mapped onto one or an ensemble of particles that is able to retain this state

such that it can be retrieved in its original form via some measurement process [70, 71]. By

definition, a quantum memory will store a given quantum state for a particular time interval,

such that the state is retrievable. Quantum memories are an important component of quantum

information processing and can be used for such things as synchronisation of quantum computing

processes, converting heralded photons to on-demand photons and implementing long-distance

communication protocols [63, 64]. A spin in a QD is a promising example of a store for quantum

information, however, the relatively short relaxation time (T1 ≈ms) [30] and coherence time

(T2 ≈µs) [124] of the electron spin leads us to consider nuclear spins as alternatives. Indeed, the

motivation for using the nuclear spin as the memory over the electron spin itself (as proposed in
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[30]) is that the coherence time of a nuclear spin is much longer than that of an electron spin and

has the potential to last for times on the order of hours if prepared correctly [131–133, 147]. We

should note here that none of the previous references refer to a QD platform and discuss the more

general cases of nuclear spins, and there are currently no publications of successful measurements

of T2 times for single nuclear spins in QDs. However, there are several demonstrations of long

T∗
2 times for the nuclei in QDs, with the state of the art being on the order of one hour [150, 151].

The nuclear spin quantum memory protocol can be achieved if we imagine using the
p

SWAP

gate (defined in Eq. 3.1 in Chapter 3) as a transfer of the electron spin state to the nuclear spin

state.

However, there are several considerations we must take into account. First, we must think

about how we can stop the evolution of the system at the point of maximal entanglement, as

currently, the electron and nucleus will continue to precess until the decoherence of the electron

dominates the system. We must also consider how we can read out the state of the nucleus

after it is decoupled from the electron spin without destroying its state. To address the first of

these points, we can perform a disentangling operation on the electron at the point of maximal

entanglement. This can be done by applying a π
2 pulse to the electron spin at this point, which

performs a 90° rotation about the Bloch sphere to project the electron onto the axis perpendicular

to the nucleus using the rotation matrix given in Eq. 3.7. Then the nucleus will retain the state it

had acquired at the point of entanglement for as long as its coherence time allows.

Readout of the nuclear spin state is more complex. To achieve this, we propose a quantum non-

demolition measurement similar to those described in [152, 153]. This is a measurement designed

to preserve the state of the physical system upon detection. This involves use of an ancilla, which,

in this case, will be a photon. This photon, if polarised correctly, can be entangled to the electron-

nuclear subsystem; this will be derived in Section 4.1.1. The photon will then experience an

optical Faraday rotation, with each of its circularly polarised components experiencing a different

phase shift, dependent on the spin state of the electron. This is possible due to the spin selection

rules of a QD as described in Chapter 1. It has been shown that an electron spin in a cavity

will induce different phase shifts for the different circular polarisations of light, i.e. the phase

shift induced onto a photon interacting with an electron spin in a QD by left circularly polarised

light will be different to the phase shift induced onto the same electron spin by right circularly

polarised light due to the Pauli exclusion principle (the available transitions in a QD are as

shown in Fig. 4.1) [31, 152]. Then, if the initial polarisation of the photon is linear, say |H〉, the

state of this photon (|ψ〉) can be represented as a combination of two circular components:

|ψ〉 = 1p
2

(|R〉+ |L〉). (4.1)

Then, for an electron in the state |↑〉, the photon reflected from the cavity will be in the state

|ψ〉 = eiφ0 |R〉+ eiφ1 |L〉 , (4.2)

68



4.1. A QUANTUM MEMORY PROTOCOL

Electron

Trion

Photon

Figure 4.1: Available transitions for an excess electron in a QD that is exposed to circularly
polarised light. The Pauli exclusion principle tells us that each circular polarisation will excite
only one of the electron spin states.

where φ0 is the phase shift of the component of the photon that has not interacted with the cavity

and φ1 is the phase shift of the component of the photon that has interacted with the cavity. The

total Faraday rotation angle, θF of the photon is then given by

θF = φ0 −φ1

2
. (4.3)

This corresponds, in a perfect system, to a switch of the photon polarisation from |H〉 to |V 〉,
which we can then, in theory, measure using single photon detectors.

If we extend this to spin-photon interactions (e.g. a photon interacting with the electron

spin), we find that there will be a phase shift applied to the photon dependent on the state of the

electron it interacts with. For example, if the state of the photon is originally |H〉 and it interacts

with an electron in the spin state |↑〉+ |↓〉, there will be an induced phase shift. If the rotation

angle θF = π
2 , this induced phase shift will give the transformation

|H〉 (|↑〉+ |↓〉) =⇒ |D ↑〉+ |A ↓〉 , (4.4)

where |D〉 = 1p
2

(|H〉+ |V 〉) and |A〉 = 1p
2

(|H〉− |V 〉), i.e. each of the spin states of the electron will

induce a different phase shift on each of the circular components of the photon. This process is

called photon-spin entanglement.

We should note that this assumes that our QD is symmetrical both in shape and strain

distribution, such that there will be no splitting or mixing between the states at zero field [154].

Here, we extend this model to show that we can use a similar protocol to perform a non-demolition

measurement on a nuclear spin that is entangled to the electron spin. The process we use to model

this is to take the electron-nuclear state at the point of maximal entanglement and introduce

a polarised photon into the system. We then disentangle the electron from this system using a

projective measurement in the orthogonal basis. When the electron is decoupled from the system,

we will maintain the photon-nuclear entanglement and by measuring the photon in the correct

basis, we can determine the state of the nuclear spin.
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4.1.1 Photon entanglement

The first step is to entangle the photon to the subsystem. At the point of maximal entanglement

between the electron and nucleus, the state of the two-spin subsystem will be

|ψen〉 = 1p
2

(|↑ 〉+ |↓ 〉). (4.5)

We choose the photon to be in the state

|ψph〉 = α |H〉+β |V 〉 , (4.6)

where α and β represent an arbitrary quantum state we encode in the electron spin, |H〉 and |V 〉
are the horizontal and vertical components of the photon polarisation and |α|2 and |β|2 are the

probabilities of the photon being in the |H〉 and |V 〉 states respectively with |α|2 +|β|2 = 1. We

then send the photon into the cavity where it interacts with the electron spin. Due to the spin

selection rules described in Chapter 1, the state of the three-spin subsystem will become

|ψ〉 = |ψph〉⊗ |ψen〉 ⇒ 1p
2

(α(|D〉 |↑ 〉+ |A〉 |↓ 〉)+β(|D〉 |↓ 〉− |A〉 |↑ 〉))
(4.7)

(if θF = π
2 ). This is an entangled state between the three particles. To verify that the photon has

become entangled with the nucleus, we need to show that the photon state has been encoded on

the nuclear spin. In order for the nucleus to retain this state, we must suppress the evolution

between the electron and nucleus. This can be done using an optical pulse of area π
2 about the

y axis (defined in Eq. 3.7) to rotate the electron into the plane perpendicular to the nucleus, a

process which will disentangle the two spins. We can represent the effect of the disentangling

pulse as

|ψ〉 ⇒ 1
2

(α(|D〉 (|↑〉+ |↓〉) | 〉+ |A〉 (|↑〉− |↓〉) | 〉)+β(|D〉 (|↑〉− |↓〉) | 〉− |A〉 (|↑〉+ |↓〉) | 〉)). (4.8)

Then we can measure the state of the electron spin along |↑〉 (or similarly |↓〉) to retrieve the state

of the photon-nuclear subsystem. This gives

|ψphn〉 = 〈↑ |ψ〉√〈ψ| ↑〉〈↑ |ψ〉
= 1

2
(α(|D 〉+ |A 〉)+β(|D 〉− |A 〉)). (4.9)

To verify that there is entanglement between the photon and nucleus at this point, we perform

a projective measurement on the photon in the {|D〉 , |A〉} basis. If the photon is detected in the

|D〉 state, then the state of the nuclear spin is

|ψn〉 = 〈D|ψphn〉√〈D|ψphn〉〈ψphn|D〉
= 1p

2
(α | 〉+β | 〉) (4.10)
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and if we measure the photon in |A〉, the state of the nuclear spin is

|ψn〉 = 〈A|ψphn〉√〈A|ψphn〉〈ψphn|A〉
= 1p

2
(α | 〉−β | 〉). (4.11)

Comparing this to the initial photon state in Eq. 4.7, we can see that the state of the photon

has been mapped onto the nuclear spin and measuring the photon in this basis confirms that

the nucleus has retained the spin information of the photon (although detecting the photon in

|A〉 gives a π phase shift of the | 〉 component), thus confirming the entanglement between the

two. We can conclude using this method that the photon and nucleus have undergone maximal

entanglement and that we can recover the original photon state from the nuclear spin state.

4.1.2 Readout of the nuclear spin state

The fact that we are able to successfully entangle a photon spin to this system means that we can

use this photon to give us information about the nuclear spin state. To show that the nucleus

retains the information transferred by the electron spin, we need to re-entangle the electron to

the nucleus, using, as before, a rotation pulse (this time with angle −π
2 to rotate in the opposite

direction) to rotate the electron back into the plane of the QD. We then redefine the initial state

of the electron-nuclear subsystem to be

|ψen〉 = a |↑ 〉+b |↓ 〉 (4.12)

such that we can show that the values a and b can be encoded in the nuclear spin. We again

require the photon to have linear polarisation, however, in this case we choose the photon state

to be simply

|ψph〉 = |H〉 . (4.13)

Entangling this photon with the electron-nuclear state will give us

|ψ〉 = |H〉⊗ |ψen〉
=⇒ a |D ↑ 〉+b |A ↓ 〉 . (4.14)

As before, it is necessary at this point to disentangle the electron spin from the system to create a

two-spin subsystem between the photon and the nucleus. Again, a π
2 will rotate the electron spin

onto the axis orthogonal to the nuclear spin state. After this electron spin rotation, we have the

state

|ψ〉 =⇒ 1p
2

(a |D〉 (|↑〉+ |↓〉) | 〉+b |A〉 (|↑〉− |↓〉) | 〉). (4.15)
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We then need to perform a projective measurement on the electron spin. We measure along |↑〉,
which gives the photon-nuclear subsystem:

|ψphn〉 = 〈↑ |ψphn〉
〈ψphn| ↑〉〈↑ |ψphn〉

= 1p
2

(a |D 〉+b |A 〉). (4.16)

To read out the state of the nuclear spin non-destructively we now need to disentangle the

nucleus from the photon. This can be done by applying the RF pulse described above when

we first projected the nucleus into the plane of the electron (with opposite sign to reverse the

direction). This will give the state

|ψph〉 = 1
2

(a |D〉 (| 〉− | 〉)+b |A〉 (| 〉+ | 〉)) (4.17)

and by projecting the nucleus along | 〉 using

|ψph〉 = 〈 |ψphn〉√〈ψphn| 〉〈 |ψphn〉
(4.18)

we can retrieve the photon state, given by

|ψph〉 = 1p
2

(a |D〉+b |A〉), (4.19)

which now contains the information originally stored in the nuclear spin state. Then we have a

protocol that allows us to retain the state of the electron spin in the nuclear spin, thus allowing for

a quantum memory on a longer timescale. Next, we will discuss how the nuclei within the nuclear

spin bath can affect the ability of the system to achieve maximal entanglement and investigate

how the RF pulse we apply instigates some rotation of additional spins within the bath into the

plane of the electron and nucleus due to the off-resonant Rabi oscillations introduced above.

4.2 Effect of the rotation of additional bath nuclei into the
plane of the two-spin subsystem

In Chapter 3, we discuss the effect of a RF pulse on nuclei that are detuned from the pulse

resonance. We find that the RF pulse will induce some rotation of the nuclei that are close in

frequency to the target nucleus (see Fig. 3.7). We now want to quantify the effect these small

rotations have on the electron-nuclear spin subsystem we have modeled. The initial state of a

nucleus in the prepared spin bath will be

|ψn±〉 = 1p
2

(|↑〉± |↓〉) (4.20)

in the optical axis basis where |ψn+〉 (|ψn−〉) represents a nucleus that is (anti-)aligned with Bext.

Then, acting the rotation matrix given in Eq. 3.7 in Chapter 3 on this nuclear spin state, we can
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calculate the component of |ψn±〉 that is in the same plane as the electron-nuclear subsystem.

Then, we can model a subsystem that includes nearby additional nuclei, and show how these

nuclei affect the precession of the electron-nuclear subsystem. We will consider how these

rotations affect the evolution of the two-spin subsystem and whether maximal entanglement

between the electron and target nucleus is still achievable in the presence of these effects. We

have shown that the effect of the pulse on spins far detuned from the pulse resonance is negligible

and only consider those nuclei that are close in frequency to the target nucleus. It is also true

that the nuclei far detuned from the pulse are likely to have a small value of A i, as the most

highly strained region of the QD is the middle, and will therefore have a much smaller coupling

to the electron, meaning that they are unlikely to have a significant effect on the entangled state

in the time frame we are considering. We will therefore consider the effect of a nucleus close

to the frequency of the target nucleus. The values of AQ will follow a Gaussian distribution, as

shown in Fig. 3.5 in Chapter 3. Using the distribution of values of AQ , we now consider the range

of frequencies 118≤ωn ≤ 120.5 as this section has high probability of containing a single nucleus

only and covers the most significant portion of the action of the pulse outside of the pulse width.

We will now combine this additional nucleus into the model of the electron-nuclear subsystem

to see how the evolution of the two-spin subsystem is affected by this additional parameter.

Because a nucleus with a value of AQ that is close to the target nucleus’s value of AQ will

experience some rotation due to the RF pulse (as discussed in Chapter 3), it will then have some

population in the plane of the electron and target nucleus, meaning we can no longer assume

it is decoupled from the electron. This requires us to include any rotated nuclei in our two-spin

model. To do this, we must make an assumption about the value of the hyperfine coupling of the

additional nucleus. We expect, as previously discussed, that the value of the hyperfine coupling,

A i will be large for a nucleus with a high value of AQ , and so we first take the case where the

value of A i is the same for the target nucleus as an additional nucleus, i.e. A i = At = 30MHz

[116, 145]. As the target nucleus has a higher value of AQ , it is unlikely that the value of A i

of the additional nucleus will be greater than At. We then model the evolution of this three-

spin subsystem. From this, we can model the negativity of the subsystem of the electron and

target nucleus, retrieving this two-spin subsystem using the partial trace, as given in Eq. 3.16

(similarly to the negativity measurements in Chapter 3). We plot this in Fig. 4.2 for an additional

nucleus with AQ = 120.5MHz (this will experience a rotation of π
8 ) and a hyperfine coupling of

A i = At = 30MHz. The state of the additional nucleus is calculated by assuming an initial nuclear

state of 1p
2

(|↑〉+ |↓〉) and applying the rotation operator defined in Eq. 3.7 with θ = π
8 . Here the

total entanglement between the electron and nucleus is reduced due to the additional nucleus.

We describe the total entanglement, F by the ratio of the negativity over the maximum possible

value of the negativity, i.e.

F = Nρ

Nmax
(4.21)

where Nmax is the highest possible value of the negativity, corresponding to a maximally entan-

73



CHAPTER 4. A NUCLEAR SPIN QUANTUM MEMORY PROTOCOL

Figure 4.2: Values of the negativity for the two-spin subsystem of electron and nucleus with the
addition of a second nucleus that has been partially rotated into the same plane.

Figure 4.3: Graph showing the relationship between the detuning of an additional nucleus with
A i = At = 30MHz coupling to the system and the total entanglement between the electron and
target nucleus. The range of detuning used is 118-120.5MHz as this section will, by probability,
contain one single nuclear spin.

gled state (0.5) and Nρ is defined in Eq. 3.20. The total entanglement with an additional nucleus

centred at 120.5MHz is ≈ 0.82. This degree of entanglement is not sufficient to successfully

transfer the full state of the electron spin to the nucleus. However, we will now consider how the

total entanglement varies as a function of the detuning of the additional nucleus.

We will first show the total entanglement between the electron and nucleus when A i = 30MHz

and AQ is in the range 118 ≤ AQ ≤ 120.5. This gives the plot in Fig. 4.3. We find that as the

detuning of the additional nucleus increases, the total entanglement between the electron and

target nucleus increases, as expected. In this case, the maximum value of the total entanglement

is ≈ 0.978, assuming that the additional nucleus has a frequency AQ = 118MHz. This can be

improved upon if the value of A i of the additional nucleus is lower than At (in the above graph
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Figure 4.4: Graph showing the relationship between the detuning of an additional nucleus with
A i = 28MHz coupling to the system and the total entanglement between the electron and target
nucleus. The range of detuning used is 118-120.5MHz as this section will, by probability contain
one single nuclear spin.

we assumed A i = At). We find that decreasing the value of A i improves the total entanglement

very quickly, for example, when we decrease the value of A i to A i = 28MHz, we get a maximum

total entanglement of F = 0.999 (see Fig. 4.4). It is also possible to calculate the net rotation

caused to the nuclear spin bath by the pulse by integrating the area under the curve in Fig. 3.7.

We find that this overall rotation of the spin bath is 0.15πrad, up to a detuning of 85MHz (this

covers all of the frequencies in the nuclear spin bath). Because there are approximately an even

number of nuclei pointing in each direction along the external field axis, we assume that the

total value of A will be approximately the average value. If we then take the average value of

A i to be A = 15MHz (as used previously) we can represent the spin bath as a single spin that

has been rotated by 0.15πrad with a hyperfine coupling of 15MHz. We then calculate the total

entanglement of the electron and target nucleus to be F ≈ 0.99.

This shows that although we cannot assume the entangled state of the electron and target

nucleus will not be affected by an additional nucleus being rotated by the RF pulse, there

are possible nuclear spin configurations that will allow the maximally entangled state to be

achievable. We should note that the effect of additional nuclei that are not within this range

of detuning induces a maximum loss in total entanglement of 0.1% if A i ≤ 28MHz and so we

neglect the effect of any of these nuclei. Satisfying this condition is dependent on finding a QD

with a nuclear spin distribution that follows these particular parameters, which is currently

difficult and would have to be done by trying many QDs. If we were to think of scaling up a

protocol such as this, it would be impractical to test multiple QDs to find one that satisfied these

conditions. However, control of the strain profile of a QD is currently being researched, with

the aim of producing site-controlled QDs with identical strain profiles [155, 156]. Then we can

imagine designing a QD that will give the distribution of AQ we require such that its production
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is repeatable.

We have now shown that it is possible to construct a protocol for a nuclear spin quantum

memory within a QD and given details of how the environment of the QD could be controlled

to allow this protocol to be successfully implemented. This will have extensive applications in

the field of quantum computing and in particular quantum communications. Another possible

application for these electron-nuclear interactions is quantum repeaters for long-distance commu-

nications [65, 66]. A particularly applicable approach is that proposed by Vinay and Kok using NV

centres in diamond [157]. This combines existing successful processes for creation of long-range

Bell pairs, connection of such pairs via repeater stations and distillation of states in a single

system of NV centres with nuclear spin and electron spin qubits connected via double-heralded

entanglement in a graph state structure. One could also imagine the protocol being extended to a

full QC model, which we will now discuss in more detail.

4.3 Ancilla-driven quantum computation

We will now consider how this quantum memory could be extended to a full QC protocol and

show some preliminary data giving a proof of concept and incentive for further research into

this area. Rather than considering one of the standard QC models, i.e. gate-based (GBQC) or

measurement-based quantum computation (MBQC) [6, 7, 158], we will instead study ancilla-

driven quantum computation (ADQC), a quantum computing model proposed by Janet Anders in

2010 [148, 149]. This model lends itself to our application much more readily than the others.

The basic premise of the model is to create a quantum register of qubits that can be manipulated

indirectly via a single ancilla. An obvious advantage to this model over GBQC is that it is not

necessary to directly address the register qubits and these will therefore be granted an additional

layer of protection from the environment. The ancilla will be entangled to one or more register

qubits sequentially, such that direct manipulation of the ancilla leads to indirect manipulation of

the register qubits. For example, if we have an ancilla entangled to a single register qubit via

some fixed entangling operation, we can imagine measuring the ancilla in some basis that will

cause the state of the register qubit to be decided. Both single- and two-qubit operations can be

implemented via this method and this is proven to be sufficient to create a universal gate set,

giving an advantage over MBQC, for which there is currently no quantification of the classes of

entangled state needed to achieve universal QC. We propose that this system would map to our

scheme if we consider the electron spin as the ancilla and the target nucleus as the register qubit.

Finer details of the model given in [148] show that arbitrary single-qubit operations on

register qubits are not required. The only requirements for the protocol to perform universal QC

are that it is possible to measure the ancilla qubit in a suitable basis and that we can construct

a suitable entangling gate. This alone is sufficient to create a universal set of quantum gates

assuming that they satisfy specific conditions outlined (two entangling gates are shown to fit
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these criteria). One universal interaction that acts to entangle an ancilla to a register qubit is the

controlled-Z (CZ) operation

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (4.22)

accompanied by local Hadamard gates

H = 1p
2

(
1 1

1 −1

)
(4.23)

such that the full entangling operation is defined as

EAR = HAHRCZAR (4.24)

where A and R refer to the ancilla and register respectively. The second universal entangling

interaction is the CZ+SW AP gate,

CZ+SW AP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

 (4.25)

and the entangling operation in this case does not require any additional local operations and is

simply given by

EAR = (CZ+SW AP)AR . (4.26)

Both of these are maximally entangling Clifford operations [159–161]. The ADQC protocol allows

for direct manipulation of the register qubits in the entangling process, however, we propose

that our model may allow entanglement preparation to be achieved in the absence of any direct

manipulation through evolution due to the hyperfine interaction as described for the nuclear

spin quantum memory protocol outlined above. We therefore need to find a point in the evolution

of the electron and nucleus that matches the configuration of either the CZ or the CZ+SW AP

gate. To calculate this, we take a measurement of the overlap between the gate we require and

the configuration of the two spin subsystem as it evolves. The overlap we calculate is defined as

OL = Tr(CZ†.Uen(Bext, t)) (4.27)

for the CZ operation and

OL = (CZ+SW AP)†.Uen(Bext, t) (4.28)
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(a) CZ gate (b) CZ+SW AP gate

Figure 4.5: Here we see the overlap between the output matrix of the electron-nuclear evolution
as a function of time and external field and the (a) CZ and (b) CZ+SW AP gate. In (a), we find
that the total overlap will never exceed 0.5 and so the configuration required for this gate to
be implemented cannot be found due to simple time evolution. In (b), we see that a maximum
overlap of 1 can be reached.

for the CZ+SW AP operation where we vary both the size of Bext and the evolution time. The

results for the CZ and CZ+SW AP gates are shown in Fig. 4.5.

The evolution shows a similar pattern for each of the gates, with the main differences being in

the size of the overlap. We see some oscillating behaviour as the system evolves, and the system

appears to become more unstable over time, with the high overlap regions becoming smaller

and more frequent. We find that our system will never undergo the correct evolution to form

the configuration of the CZ gate. This is due to all of the matrix components of the CZ gate

being on the diagonals, and the Hamiltonian is such that the output matrix will never evolve

to include non-zero entries on the second and third diagonals. This means that if we were to

implement this gate we would need to consider additional quantum operations that could be

applied to the electron spin to force the system to obey this configuration. However, when we

consider the CZ+SW AP gate, we find that there are parameters where the system will evolve

to the point where there is maximum overlap with the output matrix of the evolution of the

electron-nuclear subsystem, i.e. there are points where the electron-nuclear subsystem evolves

to be in this particular configuration independently, allowing for simpler and therefore less

lossy implementation of the protocol. In contrast to the
p

SWAP gate, this particular operation

would require non-zero values of the external field, and as such would require different pulse

parameters in the NFF protocol that would need to be calculated similarly to the calculations

given in Section 3.2.2.

Another requirement for the ADQC model is to be able to address multiple register qubits.
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This would require more extensive research into the initialisation of nuclei using RF pulses

such that we could have multiple register qubits. Consideration of how a single ancilla could

address multiple nuclei independently is also necessary, including how the interactions between

electron and nucleus can be turned on and off. Eventually, scaling up this model would probably

require use of multiple QDs such that each will have an electron to be used as an ancilla. This

would lead to research into how these electron spins would interact with each other and also

how the individual register qubits could be made to interact with register qubits in other QDs.

Then interactions between the QDs would also need to be addressed. Despite the topic requiring

extensive additional research, we have shown that the ADQC model appears to be mappable to

our protocol, and there is potential to successfully construct a full model for this system.

4.4 Summary

In this chapter we constructed a nuclear spin quantum memory protocol using the evolution of the

electron and target nucleus due to the hyperfine interaction and showed that we can read out the

state of this nucleus using an ancilla photon to perform a quantum non-demolition measurement.

We calculated the total entanglement of this model in the presence of an additional nucleus that

has been perturbed into the plane of the electron and nucleus and showed that it is still possible

to achieve the maximally entangled state, depending on the Rabi frequency of the additional

nucleus. Finally, we considered how this could be extended into a full model of QC and showed

preliminary data suggesting that it may be possible to implement the ADQC protocol.
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5
SAMPLE CHARACTERISATION AND EXPERIMENTAL SETUP DETAILS

This chapter will discuss the experimental setups used in this thesis. We detail the process

for the characterisation of QD samples and show results using these processes. This is an

experimental methods chapter, with the novelty being the setup rather than the results.

In the description of the experimental setups, we outline the design of an interferometer. This is

a novel design that is used to measure the precession of a single electron spin in a QD. After a

discussion of each of the experimental setups used in the two experimental chapters, we give the

structure of the samples used and how the QDs are confined within them. We then give details

of how these structures can be fabricated to maximise the efficiency of the emitted light. The

optical setups used for the characterisation processes use photoluminescence spectroscopy and

resonant scattering to study QD samples. We show these characterisation processes, focusing on

some particular QDs with interesting properties.

5.1 Experimental setups

In this section, we describe the setups used for each of the different techniques discussed in the

next two chapters.

5.1.1 Photoluminescence setup

The first setup, shown in Fig. 5.1 is the setup we use to carry out photoluminescence (PL)

measurements (explained in detail in Section 5.3). We begin with a Ti:S tunable laser, resonant

at 780nm. This is transferred to our optical setup via a single mode polarisation-maintaining

fibre to filter out any unwanted modes and a collimating lens. There is a linear polariser that

transmits vertically polarised light and helps to improve the extinction (signal to background)
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Figure 5.1: Optical setup used to perform the photoluminescence measurements discussed in this
chapter. The Tsunami Spectra-Physics Ti:S excitation laser is used to send light to the sample.
It is first sent through a polarisation-maintaining fibre, lens and linear polariser (colorPol
VISIR10mm×10mm). The light then travels through the microscope objective and is focused onto
the sample, which is contained in a Janis ST-500 flow cryostat. After interacting with the sample,
the light will be reflected and sent to the TriVista Princeton Instruments spectrometer via a
polarising beamsplitter and linear polariser.

ratio of the setup. The sample is mounted in a Janis ST-500 flow cryostat cooled to ≈ 12K and

accessed through a window using a microscope objective. We use an 11mm focal length objective

to focus the light onto the sample, chosen to optimise the amount of emission collected from

the micropillar. The emitted light is directed through the spectrometer grating via a polarising

beamsplitter and linear polariser, which allow us to be able to perform polarisation selective PL,

although in this case, the laser light is filtered spectrally. The emitted light will have experienced

some polarisation rotation due to its interaction with the QD, and we can perform polarisation

filtering to detect only the light that has interacted with the QD. Careful alignment of the fast

and slow axes of the half waveplate (HWP), quarter waveplate (QWP) and other optics also helps

with increasing the extinction ratio. We have a white light source that can be sent into the setup

via a flip beamsplitter, so that the sample can be viewed on a camera to aid alignment.
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Figure 5.2: Optical setup used to perform the resonant scattering measurements discussed
in this chapter. The Tsunami Spectra-Physics Ti:S excitation laser is used to send light to the
sample. It is first sent through a polarisation-maintaining fibre, lens and linear polariser (colorPol
VISIR10mm×10mm). The polarisation of this light can be controlled using the half and quarter
waveplate. The light then travels through the microscope objective and is focused onto the sample,
which is contained in a Janis ST-500 flow cryostat. After interacting with the sample, the light
will be reflected and sent to the avalanche photodiode via a polarising beamsplitter and linear
polariser.

5.1.2 Resonant scattering measurement setup

When measuring the resonant scattering profile and lifetime of the QDs, we modify the setup

such that instead of the emitted light being directed into the spectrometer, it is instead sent to

an avalanche photodiode (APD), as shown in Fig. 5.2. For both of these techniques, we require

resonant excitation of the QD resonance and so we must carefully tune the laser resonance such

that it is at the same wavelength as the QD emission. The tuning process can be difficult due to

the spectral jitter of the QD resonance; this is an effect where the QD resonance is not stable,

but instead fluctuates over a range of wavelengths. This is thought to be due to trapped charges

in the QD environment. However, in general, the accuracy we are able to achieve is sufficient

to provide a reasonable estimate for the techniques we use [162]. Resonant scattering involves

exciting the QD with a resonant laser, driving it into a higher energy state. This higher energy
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Figure 5.3: Optical setup used for the NFF results obtained in this chapter. The input is a
Ti:S pulsed laser or a CW MSquared SolsTiS single frequency laser (these will not be used
simultaneously). The laser is directed through a polarisation-maintaining fibre, collimating lens,
linear polariser, HWP, QWP and microscope objective to the sample. The light reflected from
the sample is directed to the interferometer setup via a beamsplitter. The sample is cooled in a
vacuum chamber inside an Attocube dewar.

state then decays, emitting a photon, which we detect. In practice for this system, the QD may

not be transferred to the excited state, but virtual excitation causes some interaction between

the ground state of the QD and the photons and this is why we use the term resonant scattering

[163].

5.1.3 Study of nuclear effects setup

For the setup we use to study the effects of nuclear spins in QDs, we require an altered version

of the setup given in Fig. 5.2. We have an additional laser input such that we can address the

sample with either pulsed or continuous wave (CW) light. This setup uses an Attocube dewar

with a microscope objective that is inside a vacuum tube in the dewar along with the sample.

This requires a different microscope objective to that used in the previous measurements, in

this case we choose an objective with a focal length of 2.75mm and a numerical aperture (NA)

of 0.64. The lens tube has been redesigned to be made from an alloy of Titanium, Aluminium

and Vanadium (Ti90/Al6/V4). This is because we found that the original lens tube was slightly

ferromagnetic at low temperatures and so we were experiencing some drift in the position of

the lens tube. There are two lasers used in this setup - the Ti:S pulsed laser, which is used to

drive the electron spin into the state we require and the CW single frequency laser, which is

used as a probe laser to measure the state of the system through the interferometer. These are
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(a) Interferometer with beamsplitter (b) Interferometer with fibre beamsplitter and fibre delay

Figure 5.4: Novel optical setup used to detect the electron spin precession. Both setups show
a Mach-Zender interferometer with a piezo actuator (Noliac, NAC2125-A01, piezo multilayer
ring actuator, maximum displacement 3.3µm, dl/dV ≈ 17 nm/V ) and translation stage (Owis,
LIMES 170−600-HSM, 600mm travel, resolution 0.8µm) used to vary the time delay between the
interfering photons. The section labeled ’stage’ refers to the translation stage and the retroreflector
(Edmund optics, 63.5 mm Clear Aperture, 1 Arcsec, Gold Retroreflector) sits on this. The black
arrows show the direction of the light beam (this is the light emitted from the CW probe laser).

introduced into the setup via a single mode polarisation-maintaining fibre (SMF, 780HP) with a

collimating lens. The light then passes through a linear polariser, which filters out light which is

not vertically polarised. The HWP and QWP can be used to rotate the polarisation of the light to

any polarisation state (|H〉, |V 〉, |D〉, |A〉, |L〉 or |R〉). The Ti:S will be circularly polarised and the

CW probe laser will be linearly polarised. The microscope objective focuses the beam onto the

sample. The sample itself is contained within a vacuum chamber inside a liquid helium dewar

cooled to ≈ 4K. We are able to apply a magnetic field in the Voigt geometry onto the QDs in the

sample using a superconducting coil. The beam interacts with the QD and is reflected back along

the same path. The light will then be sent to the interferometer setup via a beamsplitter. The

white light source is used for alignment such that the sample can be illuminated on a camera.

In this case, the light that is reflected from the sample is directed to one of the two interfer-

ometer setups shown in Fig. 5.4. This is used to measure the interference fringes of the emitted

photons over a range of time delays. This interferometer design is unique to this experiment and

allows us to achieve the results given in chapter 6. Fig. 5.4(a) uses a standard 50 : 50 beamsplitter

to split the incoming beam between the two arms of the interferometer. The difference in Fig.

5.4(b) is that we instead use a fibre beamsplitter to split the incoming beam. Then one output of

the beamsplitter is directed into a variable fibre delay (we use 1m, 2m and 5m fibres, and any
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combination of these, corresponding to 4.6ns, 9.7ns, 14.8ns and 25ns time delay respectively) for

one arm and the other output is unchanged from the path it takes in Fig. 5.4(a). This second

version of the interferometer is used when we require the length of the delay between the two

arms to be extended to show longer time delays.

5.2 Sample details

The two samples used in this thesis contain InGaAs QDs in a GaAs substrate and were fabricated

through MBE growth as described in Chapter 1. Evenly spaced over the sample are micropillars

[164]. To create these micropillars, alternating layers of AlAs and GaAs are grown which each

have a thickness of λ/4 [165]. The pillars are then etched into this planar structure using electron

beam lithography. These alternating layers form a distributed Bragg reflector (DBR). Within

these alternating layers, there will be a single layer of thickness λ, and this layer forms a cavity

between the two sets of DBRs. It is in this layer that the QDs are contained. Fig. 5.5(a) gives an

example of how the structure of a micropillar will look, with the vertical dots showing that the

number of mirror pairs can be chosen to fit the particular application. The bottom DBR stack will

always contain an odd number of layers, to ensure that the layers adjacent to both the substrate

and the cavity are AlAs.

If we want to control the direction of the light emission from the cavity, we can vary the

amount of DBR pairs above and below the cavity. The asymmetry in the number of pairs of layers

in the DBRs of the micropillar is significant as this enforces the single-sided nature of the cavity,

i.e. the direction of light emission will preferentially be reflected out of the top of the micropillar

due to the lower reflectivity of the smaller DBR stack [166]. It is within the cavity layer itself that

the QD layer is grown - these are modulation doped low density (1.8×109cm−2) QDs (samples

grown at the University of Würzburg). Below this QD layer is a layer of Si, used as an electron

donor, giving an average of one excess electron per QD. An image of a micropillar sample (note

that this is not an image of the sample studied in this thesis) is shown in Fig. 5.5(b). This shows

the section where we find the cavity containing the QDs, and a zoomed in image of a QD that

is found in that particular cavity. This particular micropillar has a diameter of 1.5µm and has

the same number of DBRs above and below the cavity mode. The fabrication process for these

micropillars consists of depositing the layers of AlAs and GaAs across the sample using electron

beam lithography and etching the micropillars afterwards using focused ion beam etching.

The height of the micropillar will be dependent on the number of pairs of AlAs and GaAs

layers that have been fabricated and will be on the order of a few microns. Each sample contains

various diameters of micropillar, ranging from 1µm to 5µm in steps of 0.5µm. The structure of

the particular sample we use can be seen in Fig. 5.6. We can see that the layout of this sample

is such that the micropillars are evenly distributed across the sample. However, the QDs are

self-assembled (as outlined in Chapter 1) and are therefore randomly distributed across the

86



5.2. SAMPLE DETAILS

(a) (b)

Figure 5.5: (a) Image showing the structure of a micropillar. There are two sets of DBR stacks
of alternating layers of AlAs and GaAs λ/4 separated by a larger section of GaAs of thickness λ
that forms a cavity. The GaAs substrate extends across the sample. The vertical dots represent
extra DBR layers. The bottom stack has an odd number of layers, and the layer adjacent to the
substrate is an AlAs layer. (b) Image of a micropillar sample. The zoomed in section is showing a
QD contained within the cavity. Image courtesy of University of Würzburg.

Figure 5.6: Sample map showing the layout of the micropillars. In the zoomed in section, each
circle represents a single micropillar. The crosses and dashes are used as markers to allow us to
reference particular micropillars. There are 9 columns of micropillars, each of a different diameter
and each column contains 128 sections identical to that shown in the zoomed in section, giving a
total of 28800 micropillars contained in the sample.
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sample. The result of this is that the micropillars do not target specific QDs, i.e. the position of

the micropillar is independent of the position of the QDs. This means that we cannot assume that

there will be an isolated QD in the centre of any particular micropillar at the same wavelength

as the cavity mode. This can result in a large part of the QD emission not being directed into

the cavity mode. This is due to difficulties in the fabrication process. It is possible to do some

site-controlling of QDs, however, this is an area of research in itself [167–169]. Here, we choose to

use a sample that is more easily fabricated, but has the disadvantage that we may have to search

many micropillars to find a QD that is correctly positioned and with the correct wavelength,

such that there is a large amount of emission from the QD into the cavity mode. However, this

introduces difficulties in terms of scaling up our systems to use multiple QDs, as the size of

the sample is extremely large compared to the number of usable micropillars. This particular

sample contains 9 columns of micropillars, each with a different diameter. Each of these columns

contains a total of 3200 micropillars, arranged in the boxes shown in Fig. 5.6. We expect that in

such a big sample size we will be able to find several QDs with the correct properties to achieve a

relatively high percentage of emission into the desired mode.

5.2.1 Quality factor and β factor

An important aspect of the QD micropillar is its quality factor (Q factor). This is a dimensionless

parameter that is used to characterise a resonator’s bandwidth with respect to its central

frequency and is defined as [164]

Q = fc

∆ f
(5.1)

where fc is the central frequency of the resonator and ∆ f is its bandwidth. We can think of this

as the rate at which the energy dissipates from the cavity, with a quicker dissipation representing

a low Q factor and a slower dissipation representing a high Q factor. In terms of a micropillar, the

Q factor is controlled by altering the number of pairs of mirrors in each DBR stack to optimise

the reflectivity of the DBR stacks [170]. By designing a micropillar with a smaller number of

DBR pairs above the cavity than below it, one can ensure that the majority of the light emitted

will be through the top of the micropillar, as this DBR will have a lower reflectivity. It is usually

assumed that a high Q factor will correspond to a highly efficient cavity, however in a micropillar

this is not the case, as a higher Q factor will also contribute to a higher percentage of light

dissipated through the side walls of the micropillar [171]. This is due to the photons from the

laser being confined within the cavity mode for a longer period of time, and thus the probability

of any particular photon being lost through the side walls of the micropillar is increased. Then, a

more meaningful parameter that we can consider is the β factor. This is the ratio of the rate of

decay into the mode we require and the sum of all possible modes, given by

β = Γ

Γ+γ , (5.2)
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where Γ is the cavity mode rate and γ is the total emission into any other mode, such that Γ+γ is

the total emission into any possible mode and the β factor is a quantity between 0 and 1. Then a

high β factor corresponds to the majority of the emitted light being found in the desired mode.

For the QDs we consider, the micropillars are designed such that there are fewer DBR layers on

the top than on the bottom, meaning that the light will predominantly be emitted through the

top of the micropillar.

The micropillars characterised in this thesis come from two different samples. One will be

in the medium Q factor regime, with the Q factors of the cavity modes being in the region of

1000-10000 and the other in the low Q factor regime, in the region of a few hundred. The data

taken from the medium Q factor sample is primarily characterisation data and is contained in

this chapter. The experimental data taken in Chapter 6 will use the low Q factor sample as it

is easier to find QDs that are bright and centred in a micropillar for low Q factor samples. The

full characterisation is not shown below for the low Q factor micropillars as this was completed

before the work shown this thesis, however, we will show some previous characterisation results

for the particular QDs used to obtain the data found in Chapter 6.

5.2.2 Phase shift of a photon due to a quantum dot

Another attribute of the QDs that we exploit in this chapter is their ability to induce phase shifts

in the photons that interact with them. This is due to the spin selection rules discussed in Section

1.4.2, where we state that when a circularly polarised photon interacts with an electron in a

QD, it will interact with only one of the spin states of the electron, dependent on the direction

of circular polarisation. From this, we can calculate the phase shift a photon will pick up on

interaction with the electron in the QD. The light reflected from the cavity will experience some

phase shift that is a function of frequency detuning. If we assume this detuning is 0, the phase

shift can reach a maximum of ±π. If a horizontally polarised photon enters the cavity in which the

electron spin is confined, we need to consider the interaction in terms of its circular components

(|H〉 = 1p
2

(|R〉+ |L〉)). Then, depending on the state of the electron spin, one of the components

will interact with the electron spin state and the other will not. We can say that if the component

interacts with the electron spin it will induce a phase shift of φ1 on the photon and if it does not

interact, the phase shift will be defined as φ0 [152]. The light reflected from the cavity, |ψre f 〉,
can then be defined by

|ψre f 〉 = eiφ0 |R〉+ eiφ1 |L〉 . (5.3)

Then, for a perfect system, where φ0 = 0 and φ1 =±π, we get the output state

|ψre f 〉 = |R〉− |L〉 , (5.4)

(ignoring normalisation) which is equivalent to a photon in the |V 〉 state. This allows us to switch

the polarisation of photons in a cavity [31]. This technique also has many uses in photon-cavity
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interactions, as it allows us to measure phase shifts between photons interacting with QDs in the

cavity, as will be demonstrated in Chapter 6.

5.3 Photoluminescence spectroscopy

In order to perform characterisation of the QD samples, it is necessary to use photoluminescence

spectroscopy (PL) of single QDs within micropillars. This involves pumping the QD sample

(cooled to ≈ 12K) with a titanium sapphire (Ti:S) laser resonant at a wavelength above the

bandgap of the GaAs wetting layer. For the results shown in this chapter, we set the wavelength

of this laser to be 780nm. The light from this laser will be absorbed into the GaAs and forms

electron-hole pairs (excitons). These excitons will relax into the QDs and subsequently recombine.

This recombination will result in the emission of a photon. If the QD has an emission energy that

is close to the energy of the cavity mode, the emitted photons can be coupled into this mode, such

that detection is possible using a high resolution triple spectrometer cooled to ≈ 153K (−120°C).

We find that pumping the sample with a laser power on the order of µW allows us to detect

the cavity mode of the micropillar. At these powers, the QDs cannot usually be seen individually

and instead contribute to the signal we see from the cavity mode, which will be the dominant

feature. As we lower the laser power, we begin to see the features of individual QDs appearing,

whereas the cavity mode itself is suppressed. This characterisation will focus on micropillars with

a diameter of 2µm, as these have, in general, given the best emission into the cavity mode. We do

not consider smaller diameters than 2µm as coupling into these micropillars becomes increasingly

difficult due to mechanical instabilities. An additional problem is that for a micropillar with a

small diameter, the chance of the photon being lost through the side wall of the cavity becomes

increasingly likely. This contributes to a loss in efficiency and a loss in β factor. The QDs that

are most useful for quantum information processing applications will have a narrow linewidth

and be isolated in wavelength from nearby QDs, in order to make them easy to optically address

without introducing emission from other QDs. We also require the QD to be situated close to the

centre of the micropillar to increase both the brightness and signal to background ratio of the

emission. We have identified some QDs that will potentially be suitable candidates for quantum

information processing applications below and will show the spectra of the QDs chosen from each

sample in this section. The experimental setup we use for these measurements is shown in Fig.

5.1.

5.3.1 Medium Q factor sample PL

For the medium Q factor sample, we show results from two micropillars that contain QDs that

exhibit interesting properties. The spectrum in Fig. 5.7 is taken from a 2µm micropillar with a

continuous wave (CW) excitation power of 8µW. This power is high enough that we see the cavity

mode but not the spectra of the individual QDs. This PL spectrum is measured through the triple
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Figure 5.7: An example of the PL spectrum of a micropillar cavity mode in a 2µm micropillar at
11K, excited by an 8µW continuous wave laser with a spectrometer integration time of 0.25s.

Figure 5.8: An example of the PL spectrum of the previous micropillar excited by a 100nW CW
laser with a spectrometer integration time of 1s.

spectrometer with an integration time of 0.25s at 11K. The resonance of this particular QD is

≈ 896.2nm, which is typical of InGaAs QDs fabricated in this way.

When we reduce the laser power, we start to see the individual QD features inside the

micropillar. Fig. 5.8 shows the same micropillar as Fig. 5.7, this time subject to a CW laser with

100nW power and 1s integration. Here we can clearly see the separation of the QDs and the

cavity mode. The cavity mode is the broader feature appearing at around 896nm. The measured

Q factor for this cavity mode is ≈ 5641±5, using a Lorentz fit as shown in Fig. 5.9. The large spike

in intensity shown at ≈ 895.8nm is a single QD. This is close to the cavity mode, contributing to

it being brighter in comparison to the smaller QD spikes shown in the spectrum. To successfully

couple the light emitted from the QD into the cavity mode with high efficiency, the QD ideally
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Figure 5.9: Theoretical fit using a Lorentz equation of the cavity mode found in a 2µm micropillar
at 11K, excited by an 8µW continuous wave laser with a spectrometer integration time of 0.25s.
The measured Q factor is = 5641±5.

Figure 5.10: Spectrum taken from a micropillar with two emission peaks that each have a very
different power dependence. The laser power in this case is 2µW and this is chosen arbitrarily as
this spectrum shows both peaks clearly.

needs to be overlapping with this mode. We will look into ways to achieve this later in the chapter.

We also show spectra from one other 2µm micropillar in the medium Q factor sample. The

emission peaks found in this micropillar are shown in Fig. 5.10. This spectrum is taken at 2µW

with the CW Ti:S laser and we see individual QD features at this power. This time we see 2 peaks

that are either side of the cavity mode of the QD. The spectrum shown is arbitrarily chosen to

use a laser power of 2µW because at this power both emission peaks are clearly visible at this

power. Later in the chapter, we will show characterisation results using QDs in this micropillar.

5.3.2 Low Q factor sample PL

The sample we use for the measurement results below is a sample of low Q factor micropillars (Q

factor ≈ 300) with 5 top mirror pairs and 18.5 bottom mirror pairs. The layout of the sample is

the same as that shown in Fig. 5.6 and we again choose to use 2µm micropillars. These results

are focused on five QDs, one of which is neutral and four of which are negatively charged (note
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Figure 5.11: PL spectrum taken from a 2µW micropillar with the CW Ti:S laser at a power of
≈ 2µW. The identified QD is shown by the large spike in intensity at ≈ 892.6nm.

that the charge of the QDs is not identifiable from the PL measurements and will be justified

later). First, we show the PL spectrum of the QD that we believe to be neutral in Fig. 5.11. The

QD identified in this spectrum is the spike with the highest counts, at ≈ 892.6nm.

The QDs we measure that exhibit properties of a negatively charged QD are shown using

PL in Fig. 5.12. In Fig. 5.12, we use a variety of different laser powers to excite the QDs. We

will show later in the chapter that different QDs have different power dependences and so for

each we use a power that clearly shows the particular QD we are interested in (in each case

the highest peak in the spectrum is the QD we are considering). We find that there are some

differences in the spectra, for example, some micropillars have QDs that are more isolated than

others, some have a higher density of QDs and the QDs themselves have a variety of intensities

and linewidths. To determine whether these QDs have the charge that we claim in this section,

we use resonant scattering techniques.

5.4 Resonant scattering

Resonant scattering is the process of scattering light from the QD at its resonant frequency - i.e.

the wavelength of the input photons is equal to the wavelength of the QD. The QD will then emit

a photon at the frequency of the photon that was absorbed. Then, despite its frequency being the

same as the input excitation light, this photon can be distinguished by polarisation filtering, as

the scattered light will have experienced a phase shift due to the selection rules described in

Section 1.4.2. Using the setup shown in Fig. 5.2 with the resonant laser power set to be ≈ 0.5nW

at a temperature of ≈ 4.3K we can measure the spectrum of the QD (we do not yet introduce

external fields). We show the initial measurement of the resonant scattering spectrum of the

neutral QD in Fig. 5.13. This is a higher resolution resonant measurement of the peak that we

identified in Fig. 5.11 and we no longer see the QD as a single spike. The curve is broadened

and the resonance appears unstable, as we expect to be able to see some kind of single or double
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(a) Charged QD 1 excited with a laser power of 750nW. (b) Charged QD 2 excited with a laser power of 1µW

(c) Charged QD 3 excited with a laser power of 1.7µW (d) Charged QD 4 excited with a laser power of 500nW.

Figure 5.12: PL spectrum of the four charged QDs at ≈ 4.3K.

Figure 5.13: Resonant scattering spectrum of a QD in the sample with a resonant excitation laser
at ≈ 0.5nW power at ≈ 4.3K.
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Figure 5.14: Resonant scattering spectrum of the same QD as that shown in Fig. 5.13 but using
an additional laser at higher energy to suppress charge noise.

peak in counts as the laser scans over the resonance. This is a result of charge noise in the

QD. To compensate for this, we introduce another laser into the setup at 820nm at very low

power (≈ 2nW). This laser appears to control the effect of this charge noise, and repeating the

measurement with the only change being the addition of this laser, we find the spectrum shown in

Fig. 5.14. We can now clearly see that there are two peaks in the spectrum of the QD, which were

not visible without the addition of the "calming" laser. These two peaks show the characteristic

fine structure splitting we expect from a neutral QD due to the symmetric electron-hole exchange

interaction [172]. This spectrum alone is not sufficient to conclude that this is a neutral QD,

as there could be other things that would give this spectrum, for example, two charged QDs

situated very close to each other, but it is a strong indication. We will later confirm that the QD is

neutral using data obtained from measurements through the interferometer. For the following

measurements, for each of the QDs shown, we include only the measurements with the "calming"

laser turned on.

In Fig. 5.15, we show the resonant scattering spectra for each of the charged QDs shown in

the PL measurements in Fig. 5.12. Importantly, in these results, we see the characteristic single

peak of a charged QD in the spectra. Again, we see variations in the intensity and linewidth and

in this case, we also see the lineshape varying between QDs. We should note that the laser is

realigned for each QD as it must excite the QD on resonance and so some of the variation in

intensity between the QDs could be due to alignment.

Charged QD 3 looks as though it might have a small second peak, but has a very high number

of counts. This second peak could be due to poor alignment leading to a lower extinction ratio, or

to other effects such as charge noise or spectral jitter and does not look separated from the other

peak enough to be showing the fine structure splitting that we expect from a neutral QD. However,

it is also possible that the small second peak is actually a second QD that has an overlapping

spectrum with the first. To determine whether or not this is the case, we can perform a second
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(a) Charged QD 1 (b) Charged QD 2

(c) Charged QD 3 (d) Charged QD 4

Figure 5.15: Resonant scattering spectrum of the four charged QDs with a resonant excitation
laser at ≈ 0.5nW (for QD 4 the laser power was ≈ 0.8nW) at ≈ 4.3K.

order temporal correlation (g(2)(τ)) measurement. Physically, this describes the probability of a

photon being detected at a time t+τ given that a photon has already been detected at time t and

determines whether the emitted photons are bunched or anti-bunched. Using a CW excitation

laser, we expect to see a dip in the value of g(2)(τ) at τ= 0, signifying the fact that a single QD is

able to emit only a single photon at any one time (g(2)(0) tells us how often we can detect two

photons simultaneously). If g(2)(0)< 0.5, the emitted photons are antibunched, i.e. there is only

one photon emitted at one time [173]. If multiple QDs were being excited, we would expect to

see bunching in the photon emission and this dip would either be significantly reduced or lost

altogether. In Fig. 5.16 we see that this is not the case, and there is a large dip, meaning that the

emission peak we are considering is very likely to be a single QD. It is noteworthy here, that this

a very respectable g(2)(τ) for a QD system. However, in terms of applications in QC, this dip is

not close to 0 and this suggests that the anti-bunching of the emitted photons is a long way from

the requirements needed, for example, for a source of single photons [174].

Each of the QDs measured in this section will be analysed in relation to implementation of

the NFF protocol. We will compare how each responds to different pulse trains and external

fields. This will allow us to see how much variation there is between the behaviours of different
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Figure 5.16: g(2)(τ) correlation function for charged QD 3, showing a dip in the number of
coincidences close to g(2)(0).

QDs under the same conditions. The next section will return to the QDs identified in the medium

Q factor sample, and we will show some characterisation measurements we have performed on

these QDs.

5.5 Additional characterisation measurements

All of the following measurements are characterisation measurements and will be taken using

the QDs identified in the medium Q factor sample in Section 5.3.1.

5.5.1 Micropillar 1

This section gives some useful properties of the QD found in micropillar 1 in the medium Q factor

sample using PL spectroscopy. First, we will show how the temperature of the system can affect

the wavelength of the QD resonance. A potential alternative to searching multiple micropillars for

a QD which is overlapping with this mode is temperature tuning. The cavity mode is made from

GaAs, whereas the QD is made from InGaAs, and these two materials have different temperature

dependences due to their differing bandgaps. This means that if we vary the temperature, it is

possible to tune the resonance of the QD such that it moves to be overlapping with the cavity

mode. This effect is small, but can be effective when the QD is close to the wavelength of the

cavity mode.

Fig. 5.17 shows how the spectrum of the QD changes with temperature. We can clearly

see that as the temperature is increased, both the cavity mode and the QD that we see in the

spectrum shift to higher wavelengths. However, the shift of the QD is larger than the shift of

the cavity mode. This means that when the temperature reaches 26.5K, the QD and the cavity

mode are overlapping and the emission from the QD into this mode is maximised. Beyond this

point, the intensity decreases and as the temperature is increased further we will see the QD
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Figure 5.17: Spectrum of a 2µm micropillar excited by a 100nW CW Ti:S laser at various
temperatures. The QD and cavity mode are labelled in the 11.5K spectrum and can be seen to
shift in wavelength as the temperature increases.
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Figure 5.18: Dependence of the peak wavelength of the QD emission on the temperature.

emerging on the higher wavelength side of the cavity mode. Note that the increments in the

temperature increase are not equal, due to the difficulty in stabilising the temperature of the

setup. This method can be used to tune the emission of the QD into the cavity mode, such that

we see a higher efficiency from the system. We should note that as the temperature of the system

increases, we start to see additional dephasing effects, including phonon dephasing and so at

higher temperatures, the intensity will drop considerably due to thermal activation of carriers in

the material. It is therefore necessary to take care when using this technique not to increase the

temperature beyond the limit where the phonon dephasing becomes significant [175–177].

We can also analyse the dependence of the position of the peak wavelength and the linewidth

of the QD on the temperature. These are shown in Figs. 5.18 and 5.19 respectively. It may be

beneficial to minimise the linewidth of the QD for applications such as single photon sources

that require indistinguishable photons. A typical QD will have a bandwidth in the MHz region

whereas the narrowest linewidths are of the order of 100s of kHz using spontaneous parametric

down conversion sources [178]. This gives motivation for tuning the QD linewidth to be minimal

such that the QD platform can be more competitive with other single photon sources. Another

reason why narrow linewidth QDs are desirable is for QD lasers [179, 180]. Quantum well

lasers allowed for exciting developments in terms of laser performance many years ago and it

is believed that there is potential for QD lasers to bring further improvements due to the 3-D

confinement that QDs provide. In Fig. 5.17, we saw that the emission peaks shifted as a function

of temperature. Fig. 5.18 shows that increasing the temperature causes a linear red-shift in the

peak wavelength. This is not unexpected - similar results to these have been observed before in

the literature (see for example [181]) and are due to the bandgap of the material shrinking with

increasing temperature. The linewidth of the QD is also strongly influenced by the temperature,

as we see in Fig. 5.19. This can be attributed to phonon scattering which becomes more significant

at higher temperatures and obeys the equation given in [182].
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Figure 5.19: Dependence of the linewidth of the QD emission on the temperature.

Figure 5.20: Dependence of the linewidth of the emission peaks on the laser power.

5.5.2 Micropillar 2

This section will show a range of other characterisation measurements we are able to perform on

QDs, which will be taken on two emission peaks found in a second micropillar in the medium Q

factor sample. For these emission peaks, we consider how the laser power affects some of the QD

properties. First, in Fig. 5.20 we consider the dependence of the linewidth of the QD on the laser

power, and compare how the two emission peaks differ. In this case the linewidth dependence

on the power for the two peaks is qualitatively similar and also shows a similar trend to the

dependence of the linewidth on the temperature. We would expect the linewidth to increase with

power in general due to extra carriers being introduced into the environment of the QD and so

this result is intuitive and reaffirms the need to use lower powers [183].

Another thing we consider is the dependence of the position of the peak wavelength on the

laser power. This will experience some shift in position as the power is increased due to the

extra charge carriers that are introduced at higher powers. This is most commonly found to be a
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(a) Dependence of the wavelength of peak A on the excitation power.

(b) Dependence of the wavelength of peak B on the excitation power.

Figure 5.21: This figure shows how the two peaks shown in Fig. 5.10 each vary in wavelength as
the excitation power is increased. We see that peak A experiences a red shift whereas peak B
experiences a blue shift.

red-shift, however, although we see a shift in the peak wavelength for each emission peak, peak

A is blue-shifted, whereas peak B is red-shifted from their respective resonances (see Fig. 5.21).

The fact that one of these peaks experiences a blue-shift while the other experiences a red-shift

may be due to the distribution of charges in the material. The environment of a QD is complex

and it is often difficult to determine the origin of such effects, however, charge noise within the

structure is certainly a possible cause. In general, analysis of many QDs in this sample showed

an overall likelihood of an emission peak being red-shifted as the excitation power is increased

and it is not obvious why this particular peak would experience a blue-shift. This method can be

used to some extent to tune the wavelength of the QD resonance, however, the variation is small

and the temperature dependence is in general more effective. Then, the motivation for tuning the

resonance using the laser is the fact that some QDs will experience a blue-shift in wavelength,

whereas the temperature tuning will always introduce a red-shift, meaning that a QD found at
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Figure 5.22: Power dependence of the two peaks shown in Fig. 5.10. We see both of the emission
peaks saturate as the power increases. The fit used ignores the points where we assume saturation
has occured and concentrates on a fit that is linear with respect to the log scale.

a lower wavelength than the cavity mode cannot be temperature tuned to be on resonance, but

may be tuned using the laser power in some cases.

Single QD PL also allows us to study the properties of both excitons and biexcitons in neutral

and negatively charged QDs. An exciton is defined as a bound electron and hole and in a QD

these are formed between a confined electron that has been promoted to the CB and the hole it

leaves behind [184]. The Coulomb force between the electron and hole binds them to each other

and upon recombination a photon will be emitted. A biexciton is two excitons bound together and

will decay into a single exciton and a photon. We can study the difference between the excitation

properties of an exciton and a biexciton using PL spectroscopy by considering the dependence of

the intensity of the emission peak resonance on the laser power; an exciton will have a linear

power dependence, whereas for a biexciton the dependence will be quadratic [185]. For this

particular measurement, we will characterise the emission peaks of the spectrum shown in Fig.

5.10.

Studying these two emission peaks in terms of power dependence, we see that one of the

peaks behaves as we would expect from a biexciton and the other as we would expect from an

exciton [186]. This is shown in Fig. 5.22 where we see that the power dependence of peak A shown

has a slope of ≈ 1 which corresponds to a linear dependence on the laser power, whereas peak B

has a slope of ≈ 2 which corresponds to a quadratic power dependence. It is likely that these two

peaks correspond to an exciton and biexciton emission in a single QD, due to their close proximity

in wavelength.

When fitting these points, we should note that there is a point at which the emission peak

of the QD will no longer increase - the saturation point. We therefore neglect the points where

we believe this saturation point has occurred when fitting the data (in both cases the three
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Figure 5.23: Lifetime data taken using the Picoharp for Peak A in micropillar 2 excited by a
resonant laser at a power of 2µW. The measured lifetime is T1 = 1.29±0.03ns.

data points that correspond to the highest powers have been neglected). This power dependence

measurement is therefore also useful in finding the point at which the QD is saturated; equivalent

to the point at which a π pulse is applied to the QD when using pulsed light. At this point, we will

no longer see an increase in the intensity as the power is increased. It is necessary to determine

the position of this point when considering the NFF protocol, as we require the Rabi frequency

to be such that the QD is subject to a laser pulse that is close to the saturation power. We will

use this technique in Chapter 6 to determine the pulse power that should be used for the NFF

protocol to work successfully.

Using the resonant scattering setup described in Section 5.4, we can measure the lifetime

of the QDs. Each of the lifetime measurements was taken at 11.5K at a laser power of 2µW.

The counts from the APD are recorded using a Picoharp. We can use this to perform a lifetime

measurement on each of the QD emission peaks discussed above. We calculate the lifetime from

this by fitting the exponential decay. The lifetime measurements for peak A and peak B are shown

in Figs. 5.23 and 5.24 respectively. The dotted red line shows the exponential fit. From this we

find that peak A has a lifetime of T1 = 1.29±0.03ns and peak B has a lifetime of T1 = 1.24±0.02ns

These lifetimes are on the order of what would be expected in an InGaAs QD. In general, for

applications where we will use pulsed light, it is preferable to have a shorter QD lifetime so that

there is no overlap between each pulse and the previous initialisation of the QD lifetime.

5.6 Summary

Finding a QD that has the ideal spectrum is difficult, but searching through different QDs and

different samples can allow us to find one that is sufficient for the application we are considering.

We showed that we can use PL spectroscopy to identify single QD emission peaks and showed

how these are dependent on temperature and excitation power. The techniques outlined can be

used to tune the linewidth, peak wavelength and emission intensity of the QD wavelength to a

certain extent. We also showed how it is possible to use the excitation power dependence on the
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Figure 5.24: Lifetime data taken using the Picoharp for Peak B in micropillar 2 excited by a
resonant laser at a power of 2µW. The measured lifetime is T1 = 1.24±0.02ns.

emission intensity to identify whether an emission peak comes from an exciton or a biexciton.

Our characterisation shows several promising emission peaks for QC applications. The results

shown in Chapter 6 will be measured using the QDs identified on the low Q factor QD sample.

This is because it is much easier to identify QDs with the required properties on the low Q factor

sample, due to the cavity mode being broader, making the chances of finding a QD overlapping

with the mode much higher. Previously characterised QDs identified in low Q samples are better

suited to the applications we require.
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6
AN EXPERIMENTAL STUDY OF NUCLEAR EFFECTS IN INGAAS

QUANTUM DOTS

In this chapter we attempt an experimental implementation of the NFF protocol discussed

in Chapter 2. This is an experimental chapter - the results shown are novel and the

interferometer setup used to measure these results is also novel, as discussed in Chapter 5.

We will show exploratory data using a complex optical setup designed to control and manipulate

the electron and surrounding nuclear spin bath of a negatively charged InGaAs QD. We will first

describe how the experimental setup can be used to measure the visibility of the photons emitted

from the QD. We show how this allows us to identify whether a QD is neutral or charged. We

then show that altering the pulses we apply to the system can allow us to control and manipulate

an electron spin in the QD and measure the resulting spin state. We analyse the results of

these measurements, including identifying differences in the electron spin precession before and

after implementation of the NFF protocol. We will discuss these results and how they could be

improved to give a more predictable change in the electron spin precession.

6.1 Experimental Setup

The experimental setups used for the measurements in this chapter are shown in Figs. 5.3 and 5.4.

The first part of the setup (Fig. 5.3) shows how each laser inputs light onto the sample. The pulsed

laser is used to drive the electron in an attempt to align the nuclear spin bath along an external

field and the single frequency laser is used to measure the electron spin, with the reflected light

being sent to the interferometer setup shown in Fig. 5.4. The external field is applied using a

superconducting coil, where we apply a current in the range of 20−30A, corresponding to an

external field range of ≈ 80−130mT. This interferometer setup is used to measure the interference
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Figure 6.1: Diagram showing the geometry of the setup, with the direction of the pulse sequence
in relation to the external field direction.

fringes of the emitted photons. Importantly, when we apply an external field, the probe laser

is in the orthogonal plane to the direction of the external field (see Fig. 6.1). This is significant

when measuring the output of the probe laser through the interferometer. Assuming the QD we

measure is charged, the electron spin will be precessing about the axis of the external field. This

means that when the probe laser interacts with the electron, it will see a different electron spin

state at different times, as the electron will be effectively switching between the |↑〉 and |↓〉 state

in the optical axis plane. This means that each photon that interacts with the electron spin will

experience a different phase shift corresponding to the phase of the electron spin at that point.

We can use this to measure the precession of the electron spin using a time delay interferometer.

In Fig. 6.2, we see the interaction of a linearly polarised photon with the precessing electron

spin. Each photon entering the cavity and interacting with the electron spin will be linearly

polarised (assuming perfect optics). The electron begins in the state |↑〉 and will precess about

the z (in-plane) axis according to the external field and laser pulse sequence. Then, in the optical

axis plane the electron is rotating between the state |↑〉 and the state |↓〉. Each interacting photon

will therefore see a time-dependent electron spin state. This means that these photons will pick

up a phase after the interaction, as described in Chapter 5. This allows us to determine the spin

state of the electron at any point in time by interacting each photon with a time delayed version

of itself. The detection of these photons is done using the interferometer, and the process will be

explained below.

The photons entering the interferometer will be split along its two arms. One of these arms
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Figure 6.2: Diagram to illustrate the effect of a linearly polarised photon that is input along the
optical axis interacting with an electron spin precessing due to a field in the Voigt geometry. As
the time increases, we see how the electron rotates in the optical axis plane and its influence on
the phase of the interacting photon.

has a retroreflector and a piezo stage which has tens of nm position precision and can be used to

perform a scan over the position of the incoming photons. The second arm of the interferometer

has a retroreflector positioned on a translation stage. This stage will move in larger increments

(≈ 10µm). To measure interference fringes, we move the translation stage one step, let the piezo

stage do a full scan, then move the translation stage another step and let the piezo stage scan

again and so on. This will give interference fringes between each photon and its delayed self at

a range of different time delays, determined by the length of the stage. The photons are then

recombined at the second beamsplitter and sent to the two APDs. We can measure the output

counts in each detector to give us the g(1) (first-order correlation) function, which quantifies the

fluctuation of the electric field in time and therefore determines the visibility of the interference

fringes. The visibility, V , can then be calculated according to the relation

V = Imax − Imin

Imax + Imin
(6.1)

where Imax (Imin) is the maximum (minimum) value of the intensity over one stage step and V is

the absolute value of the g(1) function.

The output data we receive from the interferometer scan is in the form of two channels of

counts, one from each APD. We can convert these counts to a relative intensity, RI, calculated at
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Figure 6.3: An example of a sinusoidal fit for one translation stage step.

each data point using the relation

RI = C1(t)−C2(t)
C1(t)+C2(t)

(6.2)

where C1(t) (C2(t)) is the number of counts at a particular point, t, in the interferometer scan on

the first (second) detector. The output data will have a form similar to that shown in Fig. 6.4(a)

(this shows a charged QD in an external field of Bext ≈ 84.9mT). Note that we will not discuss

this result in this section, and will just give details of the data analysis procedure. The data

itself will be analysed below. From this relative intensity, we can find the visibility of the output.

For each stage step of the course translation stage, there are 11 piezo steps, increasing from

0 to 10V. These 11 data steps will give a sinusoidal data set, with a frequency corresponding

to the wavelength of the measured photons. The period of each sinusoid will be on the order of

3fs. However, we find that each time the translation stage moves, there is a jump in the data of

≈ 80ps. We therefore cannot fit the data as a full set, and must fit each translation stage step to a

sinusoid independently, as shown in Fig. 6.3. We extract the amplitude from each of these small

fits and use this to create an envelope for the data. This envelope represents the visibility and is

shown in Fig. 6.4(b).

To perform the NFF protocol, we first use the Ti:S pulsed laser to drive the electron spin and

apply a magnetic field in the Voigt geometry. We set this external field and also the detuning

and Rabi frequency of the pulsed laser according to the parameters discussed in Chapter 2

and introduce the Ti:S laser without the CW single frequency laser. We orient the HWP and

QWP such that the polarisation of the pulsed light will be circular, to allow us to address only

one of the electron spin states, thus driving it using the method described in Chapter 2. We

leave this pulsing for ≈ 2 minutes. We expect that the electron and nuclei will reach their stable

configuration in a few ns, [123], however, we leave the pulses on for much longer timescales to

ensure the driving is successful. We do not perform detection at this point and so we do not

send the emitted light to the interferometer setup. The pulsed laser is then turned off for the

detection part of the experiment (the external field is still turned on). Here, we introduce the CW

single frequency laser as a probe laser. For this measurement, we require the probe to be linearly
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(a) Raw data (b) Fitted visibility

Figure 6.4: (a) Relative intensity plot for a charged QD in an external field of Bext ≈ 84.9mT. (b)
Fitted visibility from the relative intensity plot.

polarised (we choose the input polarisation to be |V 〉) to perform the measurement described

above. The CW light is sent to the interferometer setup and we calculate the visibility from the

output data.

6.2 Preliminary interferometer measurements

This section will discuss results found using the interferometer setup described in Section 6.1.

We will first show how we can identify neutral and charged QDs using the setup. We will then

calculate the precession frequency and g-factor of the 4 charged QDs analysed in Section 5.3.2.

The length of the translation stage used is 60cm, giving a total scanning distance of ≈ 4ns. We

find that in some cases this is not sufficiently long enough to see all of the nuclear spin effects and

so we also show how the time delay can be lengthened using fibre delays to allow us to analyse

the systems over longer timescales. For all of these measurements, the CW probe laser power

was set to be ≈ 0.5nW with linear polarisation and the temperature of the setup was ≈ 4.3K.

6.2.1 Identifying neutral and charged QDs

In Section 5.4, we showed the resonant scattering scans of 4 QDs. We are able to give an

indication of whether the QD is charged or neutral by considering these spectra. However, using

the interferometer setup, we can introduce a more reliable method for quantifying whether a

QD is charged or not. We showed in Section 6.1 that the interferometer can be used to measure

the visibility of the interference fringes of the photons emitted from the QD. Then, assuming

no external field is applied to the system, the exponential decay of the envelope of the visibility

(calculated using Eq. 6.1) gives the coherence time of the electron. In the case where we apply

some external field to the system, we expect to see the visibility oscillating as the electron spin

109



CHAPTER 6. AN EXPERIMENTAL STUDY OF NUCLEAR EFFECTS IN INGAAS QUANTUM
DOTS

(a) (b)

Figure 6.5: Interferometer output for a neutral QD in zero field and ≈ 72.18mT external field.
The laser power is ≈ 0.5nW and the temperature is ≈ 4.3K.

precesses, and by fitting a sine wave to the envelope function, using the fitting procedure detailed

in Section 6.2.2 below, we can calculate the electron spin precession frequency. If there is no

excess electron in the system, we will see no change in the visibility and we can infer from this

that the QD we are measuring is neutral.

First, we consider the interferometer output of the QD we have assumed to be neutral. Here,

we expect that there will be no electron spin to detect and so we will not see any change in

visibility due to the precession of the electron. This is confirmed by Fig. 6.5. Here we see that

the envelope of the visibility fringes is constant (excluding slight changes due to noise), such

that there is no decay, both in zero external field and a field of Bext ≈ 72.18mT. This means that

we are not measuring an electron spin as we see no exponential decay and no change in the

visibility when we introduce an external field. These measurements were taken using the fibre

beamsplitter, which is why the visibility we see is quite low. This result fits with our assumption

that the QD is in fact neutral, however, we must first verify this by measuring the visibility of a

charged QD in both a zero and non-zero external field, thus confirming that the interferometer is

working correctly.

First, we will consider how each of the QDs we believe to be charged behaves when measured

through the interferometer setup at zero magnetic field. The visibility of charged QD 1 is shown

in Fig. 6.6(a). These results show very clear exponential decays in the visibility of the oscillations

for each of the charged QDs and are significantly different to the graphs shown in Fig. 6.5. From

this, we can state with confidence that we are now measuring an electron spin within a QD. For

QD 1 and QD 4, the interferometer setup has been realigned, and we estimate that there is an

offset of ≈ 0.4ns, such that the time delay of 0 will actually occur at ≈ 0.4ns rather than 0, due to

alignment of the interferometer stage. Taking this into account, by fitting the exponential decay

for the four charged QDs, we get the following coherence times:
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(a) Charged QD 1 (b) Charged QD 2

(c) Charged QD 3 (d) Charged QD 4

Figure 6.6: Visibility of the charged QD in zero external field with laser power of ≈ 0.5nW and a
temperature of ≈ 4.3K.

• Charged QD 1
T1 = 1.68±0.07ns

• Charged QD 2
T1 = 1.26±0.04ns

• Charged QD 3
T1 = 2.77±0.05ns

• Charged QD 4
T1 = 18.41±0.65ns.

These coherence times vary quite considerably between the four QDs. Charged QDs 1 to 3,

although different, all have values of T1 that are within the normal range. However, when we

consider charged QD 4, we see that there is only a very small amount of decay in the time frame

we consider and that its coherence time is much longer than the others. QDs with long coherence
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times can be extremely desirable for many quantum information processing applications as this

allows for more operations to be performed on the quantum state within its coherence time.

However, to be able to take more useful measurements with this QD, we need to be able to see the

visibility fringes of the electron spin on longer timescales. The obvious way to do this would be to

extend the length of the interferometer stage, however, the setup is limited by space. Because of

this, we choose to insert additional fibre delays into the setup. We have three possible fibres that

can be diverted through the setup in any combination - a 1m, a 2m and a 5m single mode fibre.

We can then take measurements for different time delays and stitch together the results, allowing

us to effectively lengthen the translation stage. Due to the length of the fibres, there are values of

the time delay that we cannot access, and so there are gaps in the data sets, however, these gaps

are small enough that the shape of the data in the gaps can be sufficiently well inferred. When

we use the fibre delay setup, we are using fibre beamsplitters rather than standard beamsplitters,

which are polarisation maintaining and this means that there will be some loss of visibility due

to the polarisation being less well preserved through the fibre beamsplitters in comparison to the

polarising beamsplitter. We will use these time delays for several of the measurements discussed

in the following sections.

6.2.2 Measuring the precession frequency of the electron spin in an external
magnetic field

In this section, we show how applying an external magnetic field in the Voigt geometry to

this system allows us to calculate the precession frequency of the electron spin. In Section 6.1,

we described how the interferometer can be used to measure the visibility of the interfering

photons as a function of the time delay. Here, we will measure the four charged QDs we have

selected and show the precession frequency of each of these due to a particular external magnetic

field value. The setup we are using is able to produce external fields in the Voigt geometry

of up to ≈ 200mT and so we are limited to these low fields. However, we show in Chapter 2

that it is possible to implement the NFF protocol in this field range. We will first show the

electron spin precession of each of the four charged QDs due to some external field, Bext without

applying the pulse sequences outlined in Chapter 2 and describe the fitting procedure we use to

determine the electron precession frequency. The precession of charged QDs 1, 2 and 4 according

to Bext ≈ 84.9mT and charged QD 3 according to Bext ≈ 106.2mT is shown in Fig. 6.7.

We see that all of the visibility measurements have changed from the zero field case, showing

that the application of Bext is effective. Each of the QDs shows a recurring peak in visibility, where

the visibility increases after reaching a minimum, showing that there is some precession of the

electron spin. The peaks in visibility correspond to times when the photons are in phase with each

other, i.e. where the electron has rotated by either π or 2π from the initial state |↑〉. The minima

occur when the electron has rotated by π
2 or 3π

2 from the initial state. As before, QDs 1 and 4 have a

timing offset of ≈ 0.4ns. Charged QD 1 has a very clean precession, showing an exponential decay
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in the maximum of each peak, corresponding approximately to the coherence time measured

above. Charged QD 3 has quite a clean precession, but in this case a large proportion of the

visibility has been lost between the first and second peaks. Charged QD 2 appears to have a small

second peak between the larger first and third peaks. This looks as though it could be another

effect that is oscillating at a different frequency to the electron spin, but it isn’t clear at this point

what this is caused by. Charged QD 4 looks qualitatively more similar to charged QD 1, but over

a much longer timescale. The gaps in the visibility measurements correspond to the mismatch

between the fibre length and the interferometer stage length as described above. The visibility

decreases but we very clearly see that oscillations occur up to at least 13ns, and the visibility has

only decreased by ≈ 25% by this point in some cases.

We fit a sine wave to the data points in each piezo stage step independently and plot the

amplitudes of each of these fits to create an accurate envelope for the data. These envelope fits

are shown in Fig. 6.7. We can then fit these data points to extract the precession frequency of the

electron spin. The fitting for charged QD 1 is shown in Fig. 6.8. In this case, the envelope of the

visibility fits well to the absolute sine function, |asin(bx+ c)|+d, with an exponential decay. The

exponential decay gives a new coherence time of 3.71±0.03. Taking the position of the minima

from this fit allows us to make an accurate estimate for the precession frequency of the electron

spin. We fit the data from each interferometer measurement in this way to model the change in

precession frequency of the electron spin as a function of Bext, however, this function is not always

accurate for the visibility of different QDs. For charged QDs 2 and 4, we fit each of the minima

individually using the parabolic function a(x+ b)2 + c. We should note here that the envelope

decay of each QD is altered by the external field. For some of the QDs, the decay becomes longer,

and for others it becomes shorter. The cause of this is likely to be the configuration of the nuclei,

such that the action of the external field will either make the nuclei gain or lose polarisation in a

particular direction.

The precession frequency of an electron spin measured in this way is given by

ωe f f = 1
tmin2 − tmin1

(6.3)

where tmin1 (tmin2) is the time delay at which the first (third) minimum occurs, i.e. a full 2π

rotation. The first minimum represents a rotation of π
2 , the first returning peak a rotation of π

etc., with the full Bloch sphere rotation occuring at the maximum of the second returning peak.

We calculate the precession frequency using the minima as this gives a higher accuracy (we see

this in the size of the error bars at the minima compared to the maxima). For some of these

measurements, we are not able to access the position of tmin2 as some data was taken without

the fibre delays and so the third minimum is obscured and for charged QD 4, we cannot see the

third minimum due to the fibre mismatch and so we estimate the precession frequency from the

first and second minima. In the case of charged QD 2, we ignore the first small peak and assume

this is not part of the electron spin’s coherent precession. We call the electron spin precession
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(a) Charged QD 1 (b) Charged QD 2

(c) Charged QD 3

(d) Charged QD 4

Figure 6.7: Electron spin precession from the 4 charged QDs we consider. Charged QD 4 includes
a range of fibre delays, up to a 3m delay. Charged QDs 1, 2 and 4 are measured at a value of
Bext ≈ 84.9mT and charged QD 3 was measured at a value of Bext ≈ 106.2mT. The CW laser was
at a power of ≈ 0.5nW and the temperature was ≈ 4.3K.
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Figure 6.8: Theoretical fit of the envelope of the data taken from charged QD 1 with Bext ≈ 84.9mT.
The fitting function used is |asin(bx+ c)|+d accompanied by an exponential decay.

ωe f f as this is the total precession frequency the electron experiences and we do not assume that

this is a result of Bext only.

The precession frequencies for each QD are calculated to be

• Charged QD 1
ωe f f = 0.519±0.009GHz (Bext ≈ 84.9mT)

• Charged QD 2
ωe f f = 0.268±0.006GHz (Bext ≈ 84.9mT)

• Charged QD 3
ωe f f = 0.576±0.007GHz (Bext ≈ 106.2mT)

• Charged QD 4
ωe f f = 0.0835±0.009GHz (Bext ≈ 84.9mT).

From this, we find that the precession frequency can vary considerably between QDs, even when

the value of Bext is the same. This is due to the variation in g-factors between QDs. We can

calculate what the g-factor will be for each of the QDs using the equation

g = ωe f f

µBBext
(6.4)

where ωe f f is the precession frequency, Bext ≈ 84.9mT, the Bohr magneton µB ≈ 14GHz and g is

the g-factor of the electron. Then we calculate the g-factors of each QD to be

• Charged QD 1
g = 0.437±0.009

• Charged QD 2
g = 0.225±0.006
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• Charged QD 3
g = 0.388±0.007

• Charged QD 4
g = 0.0702±0.009.

We find that charged QDs 2 is close to the g ≈ 0.25 that we expect [93, 94], whereas charged QDs

1 and 3 are higher than we expect and charged QD 4 is considerably lower. However, this number

is known to vary between QDs and it is not unusual to find a variety of different g-factors within

a sample of QDs [187].

We have now shown that we have a setup capable of detecting whether there is an electron

spin precessing in a particular QD and that we can calculate the precession frequency and g-

factor of this electron accurately. We have also discussed how we can use fibre delays to effectively

extend the length of the time delay in the interferometer so that QDs with longer coherence times

can also be studied. We will now attempt an implementation of the NFF protocol.

6.3 Implementation of the NFF protocol

This section will show the results of our experimental implementation of the NFF protocol

outlined in Chapter 2. We will show how each of the charged QDs responds to being acted on

by trains of circularly polarised pulses and how varying the value of Bext affects the system.

The pulse sequence is applied to the system using the Ti:S pulsed laser. During this pulsing

period, the light from the CW probe laser is blocked and the QWP is rotated such that the pulsed

light is rotated from linear to circular. It is important to correctly choose the direction of the

circularly polarised light in relation to the direction of the detuning of the QD resonance from

the laser pulses, as if we choose incorrectly, we will not be able to find a single stable nuclear

spin configuration for any given parameter set (see Chapter 2). A positive (negative) detuning

corresponds to the laser pulse being on the red (blue) side of the QD resonance. Then for a

positive (negative) detuning we need to apply σ− (σ+) polarised pulses to achieve the correct

nuclear spin bath configuration. Due to difficulties in stabilising the pulsed laser at the correct

wavelength, some of the QDs will have blue-detuned pulses and some will have red-detuned

pulses, so we choose the direction of the circular polarisation accordingly. We set the detuning and

Rabi frequency of the pulses to match the parameters in Chapter 2 (∆= 0.2,Ω= 0.6) as accurately

as we can. The detuning is set by taking PL spectra of the QD resonance and Ti:S pulse and

tuning the wavelength of the laser pulse by eye until the QD resonance is at the half maximum

of the pulse. This is inaccurate but sufficient for the low level of stability in detuning we show is

needed. For the Rabi frequency, we use PL measurements to determine the laser power needed to

saturate the QD (as shown in Chapter 5). We require the condition Ω≈ 0.6 and we know that the

saturation power corresponds to Ω≈ 0.7 and so we can adjust the power accordingly to achieve

this ratio. Again, this level of accuracy should be sufficient for the Rabi frequency to be within
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Figure 6.9: PL spectrum of charged QD 1 showing the detuning of the pulse acting on the QD.
The power of the Ti:S laser pulse is ≈ 250nW and the CW single frequency laser is at a power of
250nW. The red dotted line shows a hyperbolic secant fit to the pulse and the blue dotted line
shows a Lorentzian fit to the QD. We measure ∆= 0.203±0.004.

the stable range. The laser pulse sequence is applied to each of the charged QDs for ≈ 2 minutes.

After application of these pulses, the light from the Ti:S laser is blocked, the QWP is rotated such

that the input light will be linearly polarised and the CW probe laser is introduced. We then

measure the precession frequency of the electron spin using the method described above.

6.3.1 Charged QD 1

In this section, we will focus on results obtained from charged QD 1. We will show the dependence

of the QD precession frequency on Bext after application of pulses. Using PL spectroscopy, we

align the laser pulse such that the QD is positioned at approximately the half maximum of the

laser pulse on the blue side and apply σ− pulses (the aligned spectrum is shown in Fig. 6.9). The

QD is the large spike at ≈ 891.38nm and the wide feature is the Ti:S pulse. The pulse is fitted to a

hyperbolic secant and the QD to a Lorentzian, shown by the red and blue dotted lines in Fig. 6.9

respectively. From these, we can extract the value of the detuning - in this case ∆= 0.203±0.004.

We measure the pulse power required to saturate the QD to be ≈ 300nW and so we set the power

to be ≈ 250nW. We should note here that this power is ≈ 10× the real power applied to the QD, as

the beamsplitter is a 90 : 10 beamsplitter, with the power meter in the arm that contains 90%

of the light. This will be true of all of the Ti:S powers quoted. After applying these pulses for

≈ 2 minutes with Bext ≈ 84.9mT as before, we rotate the QWP back to linear and measure the

visibility using the CW probe laser. In Fig. 6.10 we show the visibility measurements for charged

QD 1 before (this is the result shown in Fig. 6.7 and is included again for easier comparison) and

after application of the pulses.

There is no obvious difference between the outputs of these two measurements despite the

application of circularly polarised pulses. However, we see in Fig. 2.9(c) that the value of Bext
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(a) Charged QD 1 before application of circularly po-
larised pulses

(b) Charged QD 1 after application of σ− circularly po-
larised pulses

Figure 6.10: Visibility from charged QD 1 before and after application of a train of circularly
polarised pulses.

Figure 6.11: Relationship between Bext and the precession frequency of the electron spin of
charged QD 1 (course scan). The purple circles show the experimental data and the black data
shows the theoretical precession frequency of an electron spin with a g-factor of 0.437 with
increasing Bext.

must be chosen very accurately to give a stable configuration for the nuclear spin bath, so it is

not necessarily surprising that we do not see an immediate change after applying pulses. We will

now take a set of measurements where we increase the value of Bext in increments of ≈ 4.25mT

up to ≈ 127.4mT (this is chosen because it corresponds to an increase in current in steps of 1A

through the superconducting coil). We reapply the same pulses after each change in Bext.

In Fig. 6.11, we plot both the measured precession frequency of the electron spin as a function

of Bext and also the theoretical model of an electron spin with a g-factor of 0.437 (as measured for

QD 1) to precess with increasing Bext. To calculate the precession frequency of the electron spin,

we use the fitting procedure described in Section 6.2.2 to create an envelope for the data and

then fit this envelope as described. This theoretical model matches the trend of the experimental
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Figure 6.12: Relationship between Bext and the precession frequency of the electron spin of
charged QD 1 (fine scan). The purple circles show the experimental data and the black data shows
the theoretical precession frequency of an electron spin with a g-factor of 0.437 with increasing
Bext.

data very well, despite the fact that we have attempted to change the precession frequency of the

electron spin using the laser pulse train. This suggest that the pulse train has been ineffective.

However, because the effect is so sensitive to changes in Bext, we try implementing a very fine

scan over a much smaller range of Bext.

In this fine scan, we increase the value of Bext from 84.9mT to 86.2mT in increments of

42.4µT, again applying σ− pulses after each iteration of Bext. This range is such that according

to the model given in Chapter 2, we should scan through at least one point where the nuclear

spin bath takes on a single configuration, meaning that we would hope to see some change in the

electron spin precession. The output of this measurement is shown in Fig. 6.12. However, we find

that, although the data is noisy, there don’t seem to be any obvious points at which the precession

frequency is changed by increasing Bext after pulsing the system with σ− pulses. Examining

the visibility graphs does not show any unusual behaviour and we conclude that for this QD,

we cannot see any nuclear spin polarisation effects. The precession frequency of charged QD 1

looks very clean and stable, and it is possible that once in a stable configuration, it is difficult

to perturb the system, due to the nuclei being in a preferred state. We also tried turning off the

external field and turning it back on to the same value, however, this still did not give any change

(see Fig. 6.13). If the stability were due to nuclear spin effects, we would expect that resetting

Bext would result in a changed precession of the electron spin, which we have not observed. We

will assume that the protocol was ineffective for this particular QD and move onto charged QD 2.

It is possible that the evolution of this electron spin is non-Markovian because the short envelope

coherence (T∗
2 ) leads to a short T2 time, meaning that the time it takes for the electron spin to

reach its stable state becomes longer. As we saw in Chapter 2, if the electron spin takes too long

to reach its steady state, the Markovian approximation is no longer valid, and in that case we

wouldn’t necessarily expect the protocol to be effective.
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Figure 6.13: Visibility of charged QD 2 after turning off the external field and then turning it on
again to the same value (Bext ≈ 84.9mT).

Figure 6.14: PL spectrum of charged QD 2 showing the detuning of the pulse acting on the QD.
The power of the Ti:S laser is ≈ 1µW and the CW single frequency laser is at a power of 250nW.
The red dotted line shows a hyperbolic secant fit to the pulse and the blue dotted line shows a
Lorentzian fit to the QD. We measure ∆= 0.113±0.007.

6.3.2 Charged QD 2

This section will focus on results obtained from charged QD 2. We focus on the result of a fine

scan over Bext (again from 84.9mT to 86.2mT in steps of 42.4µT). For this measurement, we have

detuned the pulse such that it is on the blue side of the QD, with the QD at approximately the

half maximum and we apply σ+ pulses at a power of 1.2µW (just below saturation power). The

PL spectrum of charged QD 2 acted on by these pulses is shown in Fig. 6.14. The QD can be seen

clearly as the sharp spike at ≈ 891.85nm. As before, we fit the pulse and QD with a hyperbolic

secant and Lorentzian respectively. We should note here that this pulse cannot be accurately

fitted due to the distortion of its shape where it overlaps with the QD, but the important measures

are the central position and width, which can still be extracted with reasonable accuracy from this
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(a) Charged QD 2 before application of circularly polarised
pulses with Bext ≈ 84.9mT at ≈ 4.3K.

(b) Charged QD 2 after application of σ+ circularly po-
larised pulses with Bext ≈ 84.9mT at ≈ 4.3K.

Figure 6.15: Visibility from charged QD 2 (a) before and (b) after application of a train of circularly
polarised pulses.

fit. Here, we calculate ∆= 0.113±0.007. We first show, as for charged QD 1, how the application of

σ+ pulses gives variation in the visibility output for a fixed value of Bext ≈ 84.9mT. This is shown

in Fig. 6.15. Here we do see some small differences between the two graphs. The most noticeable

is that the small peak between the two larger peaks is much more pronounced after the pulses

have been applied than before. We also measure a small change in the precession frequency, from

ωe f f = 0.268±0.006 before application of the pulses to ωe f f = 0.271±0.007 after application of

the pulses, but these are equal within the error of the measurements. These changes are not

significant enough on their own to draw any conclusions about the application of the pulses,

however, it is more promising than the results seen for charged QD 1. We will now show the

results we find when increasing the value of Bext in increments of 42.4µT. In this case, the data

does not fit to an absolute sine graph, and we instead fit each of the minima using the parabolic

function a(x+b)2 + c. The power of the Ti:S laser was set to be ≈ 1.2µW (just below saturation as

before) with the pulse detuned so that the QD resonance is approximately at the half maximum

of the pulse on the blue side.

These results show a definite deviation from the theoretical trend we expect to see. We find

that initially the trend of the experimental data matches the theoretical model quite closely,

however at Bext ≈ 85.4mT, there is a clear drop in the precession frequency away from this

theoretical model (see Fig. 6.16). Towards the end of the scan, the data begins to return to the

expected trend. We analyse the area in which the drop in precession frequency first begins. We

find that between Bext ≈ 85.39mT and Bext ≈ 85.44mT (neighbouring data points) there is a clear

difference in the visibility measurements. This is shown in Fig. 6.17. We can see that the small

second peak in Fig. 6.17(a) has been completely suppressed, the total visibility has increased

and the precession frequency has altered in Fig. 6.17(b). The origin of the small second peak is

unclear, however, it doesn’t seem to be part of the coherent precession we expect to see from the
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Figure 6.16: Relationship between Bext and the precession frequency of the electron spin of
charged QD 2 (fine scan). The purple circles show the experimental data and the black line shows
the theoretical precession frequency of an electron spin with a g-factor of 0.225 with increasing
Bext.

(a) Bext ≈ 85.39mT (b) Bext ≈ 85.44mT

Figure 6.17: Visibility measured from charged QD 2 at (a) Bext ≈ 85.39mT and (b) Bext ≈ 85.44mT
after application of σ+ pulses. The Ti:S power is ≈ 1.2µW, the CW single frequency laser power is
≈ 0.5nW and the temperature is ≈ 4.3K.
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Figure 6.18: Visibility measured from charged QD 2 at Bext ≈ 85.44mT before application of σ+

pulses. The CW single frequency laser power is ≈ 0.5nW and the temperature is ≈ 4.3K.

electron spin. Suppressing this peak gives a precession that is cleaner and looks more coherent.

It is important at this point to compare these results to results obtained when no pulses have

been applied to the system. Due to time constraints, we do not have a full data scan before

application of pulses, however, Fig. 6.18 shows the visibility measurement taken for charged

QD 2 before application of the σ+ pulses at a field of Bext ≈ 85.44mT (the field where we see a

change after application of the pulses). Here, we see that the second peak observed in the lower

field measurements is visible in this measurement and has not been suppressed, as we see after

application of the pulses. One possible reason that we see a small second peak in the data is

that there are two nuclear spin configurations that the system is oscillating between and this

manifests as a beating between two frequencies. In this case, the two frequencies would be the

two lines seen in Fig. 6.21, which will be discussed later.

Using techniques described in Chapter 2, we can model the possible values of m that these

parameters should induce into the system and this is plotted in Fig. 6.19. The value of Bext where

we observe a change in precession frequency is Bext ≈ 85.44mT and the minimum precession

frequency (0.226±0.01GHz) is measured at 85.68mT. At this point, in Fig. 6.19, we find 4 possible

nuclear spin bath configurations satisfying P(m)≥ 0.001. The values of m these correspond to

are 28, −4, −68 and −100 and these have values P(m)= 0.07, 0.29, 0.51 and 0.09 respectively. We

can then work out the precession frequency of the electron induced by the Overhauser field for

each of these values of m using the equation

ωOH = mA
2

(6.5)

where ωOH is the Overhauser precession frequency and we choose A = 15MHz as in Chapter 2.

We find that these values are ωOH = 0.21, −0.03, −0.51 and −0.75GHz respectively (note that the

negative sign corresponds to the direction of the field, such that the Overhauser field is in the
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Figure 6.19: Theoretical prediction of the nuclear spin bath configuration found for a QD acted on
by σ− pulses with g = 0.225 with ∆= 0.2, Ω= 0.6 and TR = 12.47ns.

opposite direction to the external field for a negative ωe f f ). We can then use the equation

ωe f f = ωe +ωOH (6.6)

to determine the altered precession frequency that each of these values of m would induce. These

values are ωe f f = 0.478, 0.238, −0.257 and −0.482GHz respectively. One might expect that the

altered precession frequency would correspond to a weighting of these precession frequencies.

This weighted precession, W , can be calculated using

W =
N(m)∑
i=1

P(mi)ωe f f ,i (6.7)

where N(m) is the number of modes as defined in Chapter 2 and P(mi) and ωe f f ,i are the

probabilities of particular modes occurring and the effective precession frequencies given by each

of these possible modes. Plotting this as a function of Bext gives the plot shown in Fig. 6.20. The

range of Bext between the black dotted lines is the range over which we take the data shown

in Fig. 6.16. This does not match the values that we measure, however, the trend of the curve

shown in Fig. 6.20 is similar to the trend of the curve we measure in Fig. 6.16. This could be

showing that the effect we want is working, but on a smaller scale than predicted by the theory.

However, we also consider the possibility that the nuclear spin bath could be shifting to the value

of a single one of the available values of m, rather than a weighted maximum of them.

When we consider each of the precession frequencies individually, we find that the second

of these, 0.238GHz, is equal, within error, to the minimum measured precession frequency

of 0.226± 0.01GHz. This means that it is possible that the system has entered this stable
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Figure 6.20: Variation in the theoretical weighted precession frequency as a function of Bext. The
black dashed lines show the range of Bext over which we perform the NFF protocol. Here, we
have g = 0.225, ∆= 0.113 and Ω= 0.6.

Figure 6.21: Relationship between Bext and the precession frequency of the electron spin of
charged QD 2 (fine scan). The purple circles show the experimental data, the blue line shows
the theoretical precession frequency of an electron spin with a g-factor of 0.225 and the red line
shows the theoretical precession frequency of an electron spin with a g-factor of 0.225 and an
Overhauser shift of −0.03MHz.

configuration. Despite this not being the highest probability state, it still has P(m)= 0.29 and

the fact that the system is closer to this state initially may play a role in this being the state that

the system is forced into. In Fig. 6.21, we show the precession frequency as a function of Bext

as before, but this time we include the theoretical precession frequency of the electron spin if it

were experiencing an Overhauser shift of ωOH =−0.03GHz (corresponding to m =−4), assuming

a hyperfine coupling of A = 15MHz. We find that the data points that deviate from the expected

theoretical precession frequency with no Overhauser shift appear to be shifted such that they

follow the theoretical precession frequency due to the Overhauser shift induced by a nuclear spin

configuration with m =−4.

We need to be able to show that this effect is repeatable, however, we find that when attempt-
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Figure 6.22: Visibility measured from charged QD 2 at Bext ≈ 84.9mT after we see a change and
attempt to repeat the measurement. The CW single frequency laser power is ≈ 0.5nW and the
temperature is ≈ 4.3K and we do not apply any σ+ pulses.

ing to repeat the measurements without application of the σ+ pulses, the precession does not

change back to the visibility measurements we saw before any pulses had been applied to the

system, i.e. the second peak remains suppressed. The second peak is now also suppressed at lower

fields, i.e. if we return to the first measurement, Bext ≈ 84.9mT, this also has a precession where

the small second peak is suppressed (see Fig. 6.22). This is possibly due to the system finding

a stable configuration and perturbation from this configuration becomes difficult. We therefore

need to find a way to "reset" the electron spin precession to its original state. We expect that

application of linear pulses to the system will destroy any polarisation effects we have created, as

this will drive both of the spin states of the electron simultaneously. However, we find that after

applying linear pulses, the system maintains the configuration shown in Fig. 6.17(b) with the

small peak still suppressed. We also try changing the value of Bext significantly - we increase the

value of the field up to Bext ≈ 127mT, turn the field to 0 and finally back to ≈ 84.92mT. However,

even after all of these processes, we do not manage to change the electron precession back to its

original state (see Fig. 6.23). Finally, we leave the CW single frequency laser on low power for

≈ 10 hours (overnight) and measure the precession frequency of the electron again. This time,

we see a significant difference, with the visibility shown in Fig. 6.24 for Bext ≈ 84.92mT before

application of any pulses.

This graph shows that the precession frequency is now much slower (we estimate the g-

factor to be g = 0.149±0.003, an ≈ 50% decrease) for the same value of Bext. There is no clear

explanation for why this is the case, as we have not tried to force the nuclei into any particular

configuration and the external field is the same as the previous measurements, so it seems

like this effect must be caused by the action of the CW laser. The other possibility is that the

instability of the magnetic field (this is stable on the order of µT) is allowing the system to choose

a different nuclear configuration when Bext changes slightly, but this seems unlikely, as we do

not see this changing dramatically when changing the field in small increments. It is possible
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Figure 6.23: Visibility measured from charged QD 2 at Bext ≈ 84.9mT after an attempt to reset
the nuclear spin configuration. The CW single frequency laser power is ≈ 0.5nW, the temperature
is ≈ 4.3K and we do not apply any σ+ pulses.

Figure 6.24: Visibility measured from charged QD 2 at Bext ≈ 84.9mT after leaving a CW probe
laser at ≈ 0.5nW for ≈ 10 hours. The temperature is ≈ 4.3K and we do not apply any σ+ pulses.

that the electron spin that we have measured previously has been in some configuration with

a non-zero value of BOH , and the application of linear CW light over such a long timescale has

disturbed the nuclear stability such that the precession we see is due to Bext only. The new

precession frequency of the electron spin is ωe f f = 0.229±0.007, which corresponds to a change in

the electron g-factor of ≈ 0.135, (close to half of the original g-factor). We are not sure of the origin

of this effect, however, it is unlikely that the g-factor of the QD could change by this amount

without some external factor, which we assume to be the action of the CW linearly polarised

single frequency laser that was exposed to the system for ≈ 10 hours. It is possible that the laser

destroyed some polarisation of the nuclei that was present in the initial state we measured for

this particular QD, meaning that the measurements shown in Fig. 6.24 give the g-factor of the

QD with an overall nuclear polarisation of 0. However, we address this new precession with σ+

pulses but now find no changes (see Fig. 6.25).
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Figure 6.25: Visibility measured from charged QD 2 at Bext ≈ 84.92mT after leaving a CW probe
laser at ≈ 0.5nW for ≈ 10 hours and then applying σ+ pulses for ≈ 2 minutes. The temperature is
≈ 4.3K and we do not apply any σ+ pulses.

We can conclude that for charged QD 2, by acting some external field Bext on the system,

we can produce a g-factor that differs from what we expect, and corresponds to the theoretical

predictions for the nuclear spin configurations in the NFF protocol. However, we cannot show that

this measurement is repeatable or return to the original conditions before the measurement was

performed. We believe that some nuclear spin effects are happening, but these are unpredictable

and hard to quantify in this particular QD.

6.3.3 Charged QD 3

For charged QD 3, we consider other ways to change the precession of the electron spin, rather

than changing the value of Bext. We show measurements where we apply both σ+ and σ− pulses

and vary the power of these pulses whilst keeping a fixed detuning. We would expect to see a

large variation in the outputs of the visibility measurements if we change from σ+ pulses to σ−

pulses, as one of these should give a single stable nuclear spin configuration, while the other

should give more than one stable configuration, depending on the direction of the detuning. We

also vary the direction of the detuning by realigning the pulse between measurements. A PL

spectrum is shown for the detuning of the pulse to both the blue and red side of the pulse in

Fig. 6.26. Here, we show the hyperbolic secant fit to the pulses with a red dashed line, however,

in this case, we are not able to fit the QD, due to the low intensity of the QD, and therefore

we plot a blue dashed line to indicate the position of the QD. We measure the detuning of the

pulses to be ∆= 0.22±0.009 and ∆= 0.27±0.008 for blue and red detuning respectively. This

particular QD requires a Ti:S power of ≈ 1.7µW to be just below the saturation power and all

of the measurements shown will be at Bext ≈ 106.2mT. The visibility measurement for charged

QD 3 before application of any pulses is shown in Fig. 6.7. We show this measurement again in

Fig. 6.27(a) and Fig. 6.27(b) shows the same measurement after application of σ+ pulses that are
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(a) PL spectrum of charged QD 3 with the pulse on the
blue side of the QD with Bext ≈ 106.2mT. The red dotted
line shows a hyperbolic secant fit to the pulse and the
blue dotted line shows the position of the QD. We measure
∆= 0.22±0.006.

(b) PL spectrum of charged QD 3 with the pulse on
the red side of the QD with Bext ≈ 106.2mT. The red
dotted line shows a hyperbolic secant fit to the pulse
and the blue dotted line shows the position of the QD.
We measure ∆= 0.27±0.008.

Figure 6.26: PL spectra of charged QD 3 with the pulse at approximately the half maximum on
(a) the blue side of the QD and (b) the red side of the QD. The power of the Ti:S laser is ≈ 1.7µW.
The temperature of the system is ≈ 4.3K. The black dashed line shows the position of the QD.

(a) Charged QD 3 before application of circularly polarised
pulses. The parameters used are Bext ≈ 106.2mT and the
power of the CW laser is 0.5nW.

(b) Charged QD 3 after application of σ+ circularly po-
larised pulses detuned to the blue side of the QD reso-
nance. The parameters used are Bext = 106.2mT and the
power of the CW laser, 0.5nW.

Figure 6.27: Visibility measurements (a) before and (b) after application of σ+ pulses with
Bext ≈ 106.2mT, Ti:S power of ≈ 1µW, CW probe laser power of ≈ 0.5nW and temperature of
≈ 4.3K.

detuned to the half maximum on the blue side of charged QD 3 for ≈ 2 minutes. In this case, we

again fit each of the minima using the parabolic function a(x+b)2 + c as described above.

We see a dramatic change in the precession frequency of the electron spin between these

two measurements. Before application of the pulses, we estimated the precession frequency

to be ωe f f = 0.576±0.007GHz, whereas after the application of σ+ pulses, the new precession
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Figure 6.28: Theoretical prediction of the nuclear spin bath configuration found for a QD acted on
by σ+ pulses with g = 0.338, ∆= 0.2, Ω= 0.6, A = 15MHz and TR = 12.47ns.

frequency is calculated to be ωe f f = 0.290±0.005GHz, close to half of the original precession

frequency. This is equivalent to a change in field of ≈ 60.8mT. This is the type of effect we hope to

see when attempting to polarise the nuclear spin bath, as we appear to have successfully slowed

down the precession of the electron spin. We also see a small peak between the first and second

peaks, showing that again we might have two beating modes for the nuclear configuration. We

now want to compare this to the theoretical prediction to see whether the result we find is the

expected nuclear spin configuration. The theoretical model is shown in Fig. 6.28. If we assume

the change in precession frequency between the results taken before and after the application of

the pulses is ωOH , we can calculate the value of m that would give this value of ωOH using the

equation

m = 2ωOH

A
. (6.8)

For ωOH = 0.286GHz (the difference between the two precession frequencies measured), we

calculate m =−38, using as always A = 15MHz. However, this does not correspond to any of the

regions where P(m) is high (see Fig. 6.30). It is, however, close to one of the low probability modes

we see, with m =−42. It may be the case that the value of A we have chosen is not correct, and

we find that if we instead choose A = 13.6MHz, we get the plot shown in Fig. 6.29. This has a

mode with the correct value of m, although this mode should happen with very low probability

(P ≈ 0.0022). We can’t therefore say for sure whether the protocol has worked effectively, but it

seems as though the spin bath may have taken on this configuration. We also plot the weighted

precession frequency in Fig. 6.30. We find again that this does not correspond to the precession

frequency we measure. There are many reasons that the measurements we see would not match

the theoretical predictions exactly, for example, we choose the total number of nuclei to be 100000
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Figure 6.29: Theoretical prediction of the nuclear spin bath configuration found for a QD acted on
by σ+ pulses with g = 0.338, ∆= 0.2, Ω= 0.6, A = 13.6MHz and TR = 12.47ns.

Figure 6.30: Change in weighted precession frequency of charged QD 3 as a function of Bext. Here,
g = 0.338, ∆= 0.274, Ω= 0.6 and A = 13.6MHz.

and A = 13.6 or 15MHz, meaning that if this particular QD has parameters that are not close to

these, it could show significantly different results. It is also possible that the original g-factor

measured is not the true g-factor if the precession frequency of the electron spin is altered by

the nuclei in the state we measure before application of the pulses. This could mean that the

change in precession frequency we measure is not entirely accurate, as we would be modeling the

incorrect g-factor.

However, if we are able to show repeatability in these measurements, it seems clear that

there is an effect induced by applying a certain type of pulse to the system. We therefore pulse the

system again, but this time with σ− pulses, which we expect to induce a significant change in the

precession. We also realign the pulses to be on the red side of charged QD 3 and pulse the system

with σ+ pulses (this should have the same effect as pulsing with σ− pulses with the pulse on the
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(a) Charged QD 3 after application of σ− circularly po-
larised pulses detuned to the blue side of the QD reso-
nance.

(b) Charged QD 3 after application of σ+ circularly po-
larised pulses detuned to the red side of the QD reso-
nance.

Figure 6.31: Visibility measurements (a) after application of blue-detuned σ− pulses and (b) after
application of red-detuned σ+ pulses with Bext ≈ 106.2mT, Ti:S power of ≈ 1µW, CW probe laser
power of ≈ 0.5nW and temperature of ≈ 4.3K

blue side). We hope to see further changes to the electron spin precession by performing these

measurements. The output of each of these measurements is shown in Fig. 6.31. The precession

frequency of the measurement shown in Fig. 6.31(a) is given by ωe f f = 0.293±0.007GHz and

that of the measurement shown in Fig. 6.31(b) is ωe f f = 0.332±0.007GHz. The first of these is

within the error of the precession frequency of the measurement shown in Fig. 6.27(b) and so we

conclude that there is no change, however, the second shows an increase in precession frequency

of ≈ 15%. However, we find that, as with the previous measurement, this does not correspond to

the theoretical model for this particular parameter set (see Fig. 6.32) and so we are unable to

conclude that the NFF protocol is being successfully implemented.

Next, we try again to reverse the effect of the pulses. This time, we apply red-detuned σ+

pulses but at a much higher power of ≈ 10µW and leave these pulses pumping the system for

≈ 15 minutes, compared to the usual ≈ 2 minutes. The result of this is shown in Fig. 6.33. We can

see that the precession frequency has again decreased and is now ωe f f = 0.280±0.07GHz. This

is now back to being (within error) the same precession frequency as the precession frequency

of the measurements given in Figs. 6.27(b) and 6.31(a). It is difficult to see why this is, but it

is possible that this is the precession frequency of the QD when there is no polarisation of the

nuclei, i.e. the total Overhauser field is 0. This would mean that there was an initial nuclear

polarisation before we applied any pulses to the system, increasing the precession frequency of

the electron spin. This is possible as we do not know the initial state of the nuclear spin bath

and are not able to measure this. However, we are still not able to reset the electron spin back to

the original state we find in Fig. 6.27(a). This means that we are not able to perform the same

measurements again to assess the repeatability of the process. We are not then able to confirm
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Figure 6.32: Theoretical prediction of the nuclear spin bath configuration found for a QD acted on
by σ+ pulses with g = 0.338, ∆=−0.2, Ω= 0.6 and TR = 12.47ns.

Figure 6.33: Charged QD 3 after application of σ+ circularly polarised pulses for ≈ 15 minutes
detuned to the red side of the QD resonance.
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Figure 6.34: PL spectrum of charged QD 4 showing the detuning of the pulse acting on the QD.
The power of the Ti:S laser is ≈ 170nW. The red dotted line shows the hyperbolic secant fit to the
pulse and the blue dotted line shows the Lorentzian fit of the QD. The detuning is measured to
be ∆= 0.225±0.005.

whether the change in precession frequency is moving the electron spin into a stable state or

not. It is also possible that application of several different pulses has reduced the amount of

polarisation of the nuclei, rather than increasing it, such that the precession has become less

coherent. However, we do show that this particular electron seems to have a preference for a

particular precession frequency of ≈ 0.290GHz, despite this not being the original state of the

system when it was measured before application of any laser pulses. This is possibly a stable

configuration of nuclei but we are not able to confirm this with the theoretical predictions.

6.3.4 Charged QD 4

The final QD we consider is charged QD 4. As discussed above, this QD has a much longer

coherence time than the other QDs we consider and we therefore use the fibre delays to show the

recurring visibility fringes. The PL spectrum of charged QD 4 acted on by a pulse is shown in

Fig. 6.34 and we can see the QD resonance at ≈ 891.2nm at approximately the half maximum

of the pulse. Fig. 6.34 shows the fitting of the pulse to a hyperbolic secant and the Lorentzian

fit of the QD. From this, the detuning, ∆, is measured to be ∆= 0.225±0.005. In Fig. 6.35, we

show the precession of charged QD 4 before and after application of laser pulses. In this case,

we use σ− pulses as these pulses are on the red side of charged QD 4 with a laser power of

≈ 170nW and apply them to the QD system for 2 minutes. In this case, the data is fitted using the

parabolic function a(x+b)2+ c, however, in this case, we use the maxima rather than the minima,

as the minima fall in the gaps caused by the fibre mismatch. We see that the most pronounced

difference between these two measurements is in the visibility, i.e. the minimum value of the

visibility is much lower and the oscillations are clearer. There also appears to be a small peak

between the first two large peaks that has appeared upon application of the laser pulses, possibly

again showing a beating between two nuclear spin configurations, although the fibre mismatch is
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(a) Charged QD 4 before application of laser pulses.

(b) Charged QD 4 after application of σ− laser pulses.

Figure 6.35: Visibility measurements (a) before and (b) after application of red-detuned σ− pulses
with Bext ≈ 84.9mT, Ti:S power of ≈ 1µW, CW probe laser power of ≈ 0.5nW and temperature of
≈ 4.3K

positioned such that this is ambiguous.

Most interestingly, when we calculate the distance between the first and third peak (i.e. the

time taken to perform a precession about the full Bloch sphere), we find that after application of

the laser this gives a stage position of 12.47±0.01ns compared to the 12.39±0.01ns we calculate

before application of the laser pulses. This is significant because 12.47ns is the repetition rate of

the laser pulses. This means that the precession frequency of the electron spin appears to have

synchronised with the repetition rate of the laser pulse, i.e. ωe f f = 2nπ
TR

. This is not a large change

in precession frequency, but it may be a result of the natural precession frequency of charged

QD 4 being close to the repetition rate of the laser that makes it possible to synchronise the

electron spin with this repetition rate, i.e., we do not have to change the precession frequency very

significantly and so this change is more easily implementable. We calculate in Chapter 2 that

synchronisation of the precession frequency with the laser repetition rate requires laser pulses

135



CHAPTER 6. AN EXPERIMENTAL STUDY OF NUCLEAR EFFECTS IN INGAAS QUANTUM
DOTS

Figure 6.36: Charged QD 4 after application of σ+ pulses and attempting to reverse the effect of
the pulses by applying different sizes of Bext.

that are on resonance with the QD, however, we show that the pulses we use are detuned to

approximately the half maximum. Once again, we find that attempting to change this precession

after the first implementation of pulses by applying linear pulses and changing the value of the

external field from Bext ≈ 84.9mT to Bext ≈ 42.5mT and back to Bext ≈ 84.9mT is not possible and

the precession remains the same to within error after implementation of the additional pulses

and changes in Bext (see Fig. 6.36). From this, we are unable to conclude what the effect of the

pulses is and whether the nuclear spin effects we believe could be occurring are repeatable.

6.4 Summary

In this chapter, we have discussed a range of results taken using a time delay interferometer for

different charged QDs. We have given a reliable method for confirming whether a particular QD

is neutral or charged and measured the coherence time of the excess electron contained within

four charged QDs. For each of these charged QDs, we have also shown implementations of the

NFF protocol that have worked with varying success. Charged QD 1 did not show any changes

that could be attributed to nuclear spin effects and was extremely stable. However, charged QD 2

showed some interesting changes in precession frequency after application of driving pulses with

some correspondence to the theoretical predictions. However, we were unable to reverse these

effects and therefore couldn’t repeat the measurement, as the electron spin precession seemed to

become "stuck" in the altered state. Similarly, charged QD 3 showed some changes in precession

due to changes in the detuning and power of the driving pulses applied to the system, but once

again this seemed to be an irreversible effect. Charged QD 4 showed that pulsing the system

with detuned pulses seemed to induce the synchronisation condition between the repetition rate

of the laser and the electron spin precession (ωe f f = 2nπ
TR

).

It is possible that the reason we do not see the nuclear spin effects reliably between QDs

is due to the instability of the nuclear spin configuration. In Chapter 2, we gave an expression
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Figure 6.37: Plot of the nuclear polarisation, Iz, as a function of Bext, with a g factor of g = 0.25,
detuning, ∆= 0.2 and Rabi frequency Ω= 0.6.

for the steady state of a single nuclear spin coupled to an electron spin after application of the

NFF protocol. This was of the form I = (1,0,0, Iz) and we gave the explicit expression for Iz in

the appendix. If we plot Iz as a function of Bext for the detuning and Rabi frequency that we

have used throughout the modeling in this thesis, we find the plot in Fig. 6.37. Here, we see that

there are sharp peaks in the values of Iz in relation to Bext. This shows that the nuclear spin

configuration is inherently unstable and to achieve a high amount of nuclear polarisation, we

require high accuracy in our value of Bext.

We conclude that charged QD 1 exhibits no nuclear spin polarisation effects, whereas charged

QDs 2-4 all show effects that could be a result of nuclear spin polarisation, although only charged

QD 2 exhibits results that correspond to the theoretical predictions. A common problem between

the results is that we are unable to reverse the effect of the pulses we apply. The electron spins

appear to be driven into a particular stable state which we are not able to reset. To reach any

meaningful conclusions, we would need to establish a method of resetting the electron precession

to its original state, however, it is not clear why application of linear pulses does not achieve this.

In addition to this, some of the results found show unexpected deviations from the theoretical

model, for example the synchronisation of the precession frequency of the excess electron in

charged QD 4 with the repetition rate of the laser pulses. It is also possible that, particularly for

charged QD 1, the effect might be working on shorter timescales than we expect, meaning that in

the time that we switch between the pulse setup and the probe setup, the change in precession

frequency is lost and the results we see are no longer the fully polarised states we expect. We are

not able to probe the system whilst pumping, due to the high power of the pulses compared to the

probe and the fact that we need to rotate the QWP between the pumping and the measurement.

Currently, it appears that the necessary next step is to solve the problem of resetting the electron

precession frequency back to its original state, such that we can test whether the results are
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repeatable.
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7
CONCLUSIONS AND FURTHER WORK

This chapter will summarise the results obtained from each of the previous chapters,

and discuss further research into the topics discussed. The focus of this work is on

control and manipulation of the complex environment of an InGaAs QD for quantum

information processing applications. We discuss the NFF protocol at length - this is a protocol

that forces nuclear spins in the environment of the QD into alignment along the axis of a

magnetic field, thus suppressing the hyperfine interaction and allowing the electron spin to

precess coherently. We transform this from a theoretical model into an experimental proposal

and outline the experimental parameters we need to control, showing that the requirements on

these parameters are within practical constraints. In addition to this, we discuss the isolation

and manipulation of single nuclei within the environment of an InGaAs QD. We show that the

quadrupolar Hamiltonian dictates the spread of values of the nuclear frequencies, and that by

considering various strain distributions in a QD, we can locate a nucleus that is sufficiently far

in frequency from its neighbours that we may address it independently with a RF pulse. We

design the RF pulse such that the target nucleus is rotated into the perpendicular plane to the

remainder of nuclear spin bath, into the same plane as the electron spin. The small rotations

that the neighbouring nuclei will experience due to the RF pulse are shown to be insignificant in

most cases and we show that the effect of those nuclei that experience a significant rotation on

the two-spin subsystem decreases with increasing detunings. We follow on from this by modeling

the behaviour of the two-spin subsystem of electron and target nucleus, first in the absence

of the prepared nuclear spin bath. We show that the hyperfine coupling between the electron

and nucleus induces an evolution that periodically creates maximal entanglement between the

electron and nucleus in the form of a
p

SWAP gate and show how the decoherence of the electron

spin affects the fidelity of this entanglement. We discuss the applications of this system, and
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in particular, we outline a protocol for a nuclear spin quantum memory. This protocol details

how one might encode the state of the electron in the state of the nucleus, which has a longer

coherence time, and outlines how a photon can be used as an ancilla to perform a measurement to

retrieve the state stored in the nucleus. The protocol requires an effective precession frequency of

0, which requires exploitation of the stable nuclear configuration we propose to create using NFF.

We establish control over the size and direction of the Overhauser field, such that we are able to

create a system in which the Overhauser field and external field effectively cancel each other out

and the system behaves as if in zero field but with the nuclear spin bath in a controlled state.

We also show that this model has the potential to be extended to a full quantum computation

platform and give preliminary data motivating research in this area.

The experimental section of this thesis focuses on an implementation of the NFF protocol. We

first show in Chapter 5 how we can use PL spectroscopy to perform a range of characterisation

measurements on QDs to determine properties such as Q factor and lifetime. We show how

adjusting the temperature of the QD can tune its resonant wavelength and give details of how

this can be used to create maximum overlap between the cavity mode and the QD emission peak,

thus improving the efficiency of the system. We also show how the power dependence of the

QD emission peak on the intensity of the emission allows us to identify whether an emission

peak represents an exciton or a biexciton. In Chapter 6, we design an interferometer that is able

to measure the visibility of photons that have interacted with an electron spin in a negatively-

charged QD. We use this to measure the precession frequency and g-factor of a range of QDs. We

use this setup to measure the change in precession frequency of the electron spin both before and

after attempting to implement the NFF protocol. We see a variety of different results for different

QDs, with some showing potential success in the implementation of the NFF protocol. A clear

problem with all of the data is the inability to reverse the effects of the protocol we implement,

thus eliminating the possibility of repeating the measurements. Any effects we do see consist of

small changes that are difficult to justify, however, charged QD 2 in particular shows a shift in

precession frequency consistent with the nuclei aligning into a configuration predicted by the

theoretical model. We conclude that there are nuclear spin effects present in the measurements

we perform, but that these effects are inconsistent and do not always match the predictions. This

could be due to the environment of different QDs varying significantly, such that our model is not

representative of some of the QDs we discuss, i.e. the total number of nuclei could be far from

the number we have chosen, or the average hyperfine coupling constant could be significantly

different for the QD we are measuring.

The subject of this thesis could lead to several areas of research. From a theoretical perspective,

we have given motivation for the model we use to be extended to a full QC model. There are many

things to consider in the context of this model, including how the electron spin could be entangled

to several nuclei in turn, how this electron-nuclear interaction could be turned on and off and

how we could apply external quantum operations to the electron spin to alter the precession
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of the electron-nuclear subsystem in order to perform different quantum operations indirectly

on the nuclear spins. Experimentally, the first hurdle is the difficulty in reversing the effects of

the NFF protocol, in order to confirm that the nuclear spin bath can be repeatedly configured

in the same way. It would also be beneficial to be able to force the nuclei into a configuration

that induces a more drastic change in the precession frequency, particularly for the end goal of

constructing a system where the Overhauser field is as strong as the external field. Currently, the

only successful implementation of NFF we have observed (the results taken on charged QD 2) has

been such that the stable configuration achieved only requires a very small change in precession

frequency. It seems clear that the system is more likely to take on the configuration that requires

the least change to its original behaviour, however, we need to find a way of achieving other

configurations that give a larger deviation from the expected value. It could be possible to achieve

this by pumping the QD with higher laser powers or for longer timescales. It is also worth

considering whether it is possible to modify the experimental setup such that we can measure the

precession frequency of the electron spin whilst simultaneously applying the driving laser pulses

to the system. We have shown that the effect has a strong dependence on the QD we choose

and its individual properties. This further motivates current research into designing QDs that

have identical environmental properties. In summary, this work has motivated several areas of

research expanding on the results already obtained. There is potential for QDs to be used as a full

platform for QC and we show progress in controlling the environment of InGaAs QDs - a major

difficulty that needs to be overcome if QDs are to become the platform of choice for quantum

information processing applications.
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APPENDIX A

The appendix will include all derivations required for the model used to described the NFF

protocol.

A.1 Derivation of the Kraus operators of the system

This section gives the derivation of the Kraus operators for a system acted on by a circularly

polarised laser pulse, including the effects of spontaneous emission. We take the most general

form of a spin density matrix in the basis |↑〉z, |↓〉z, |T〉:

ρ in =


ρ↑↑ ρ↑↓ 0

ρ↓↑ ρ↓↓ 0

0 0 0

 (A.1)

with ρ↑↑+ρ↓↓ = 1. We assume that the action of the σ− pulse does not affect the |↑〉 state and so

we can model the action of the pulse by some general evolution operator

Up =


1 0 0

0 u↓↓ u↓T

0 uT↓ uTT

 (A.2)

where the elements of the matrix will be dependent on the Rabi frequency, detuning, bandwidth

and shape of the pulse. We can use Eqs. A.1 and A.2 to construct a density matrix ρ =Upρ0U†
p to

represent the state of the system after application of a single pulse. This will be given by

ρ =


ρ↑↑ u∗

↓↓ρ↑↓ u∗
T↓ρ↑↓

u↓↓ρ↓↑ |u↓↓|2ρ↓↓ u↓↓u∗
T↓ρ↓↓

uT↓ρ↓↑ uT↓u∗
↓↓ρ↓↓ |uT↓|2ρ↓↓

 (A.3)
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assuming u↓T = uT↓. The system is now in an excited state and will experience spontaneous

emission. The Lindblad master equation, given by

dρs(t)
dt

= −i[H,ρs(t)]+
∑
k

(
Lkρs(t)L

†
k −

1
2

{L†
kLk,ρs(t)}+

)
(A.4)

where ρs(t) is the time-dependent density matrix of some system, s, H is the system Hamiltonian,

Lk are the Lindblad operators and {·}+ is and anti-commutator, describes the dynamics of a

system between its initial and final state (i.e. the microscopic dynamics that the Kraus operators

misses). Our system is experiencing spontaneous emission and a rotation between the two ground

states of the system. The Lindblad operator for spontaneous emission can be deduced as

L1 =
p
Γ |ρ x̄x̄〉〈ρTT | , (A.5)

where Γ is the spontaneous decay rate, assuming that we initially excited the system using a σ−

pulse. The second Lindblad operator we need is the operator describing the rotation between the

two ground states. The ground states each initially have some population, and the rotation takes

us between the two states, such that the population in each is equal. Then we find

L2 = ωe

2
(|ρxx〉〈ρ x̄x̄|+ |ρ x̄x̄〉〈ρxx|), (A.6)

where ωe is the frequency induced by the external field. These Lindblad operators describe the

dynamics on a shorter timescale between the start and end points of the interaction, whereas the

Kraus operators describe the transition between the initial and final state without considering

how the system gets to the end state. The Kraus operators come from solving the Liouville

equations, given by

dρ0

dt
= −i[H,ρ0] (A.7)

where in this case, ρ0 is the state before spontaneous emission, i.e. where the full population is in

the trion state. Then, the rate of change of the density operator for each component of the density

matrix from the point where the state is fully excited (the full population is in the trion state, call

this ρ0) is given by

ρ̇↑↑ = γ

2
ρTT

ρ̇↓↓ = γ

2
ρTT

ρ̇TT = −γρTT (A.8)

where γ is the relaxation rate and we consider the regime 1/TR ¿ γ¿ ωe. Note that these

equations do not include the optical coherences as these do not have any effect on the emission

dynamics. The fact that ρ̇↑↑ = ρ̇↓↓ tells us that the decay is incoherent and the ρ↑↓ and ρ↓↑ are
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coherent and unaffected by spontaneous emission. The solutions to Eqs. A.8 are

ρ↑↑ = ρ0,↑↑+
1
2

(1− e−γt)ρ0,TT

ρ↓↓ = ρ0,↓↓+
1
2

(1− e−γt)ρ0,TT

ρTT = ρ0,TT e−γt (A.9)

and in the limit t À 1
γ

we have

ρ↑↑ = ρ0,↑↑+
1
2
ρ0,TT

ρ↓↓ = ρ0,↓↓+
1
2
ρ0,TT

ρTT = 0. (A.10)

Combining the density operators of the pulse and the spontaneous emission, we get a set of

total expressions given by

ρtot,↑↑ = ρ↑↑+
1
2
|uT↓|2ρ↓↓

ρtot,↓↓ = |u↓↓|2ρ↓↓+
1
2
|uT↓|2ρ↓↓

ρtot,↑↓ = u∗
↓↓ρ↑↓. (A.11)

As Up is unitary, it must satisfy the condition UpU†
p = I. This implies that |uT↓|2 = 1− |u↓↓|2,

meaning that Eqs. A.11 transform to be

ρtot,↑↑ = ρ↑↑+
1
2

(1−|u↓↓|2)ρ↓↓

ρtot,↓↓ = 1
2

(1+|u↓↓|2)ρ↓↓

ρtot,↑↓ = u∗
↓↓ρ↑↓. (A.12)

Then ρtot is of the form

ρtot = ∑
i

E iρE†
i (A.13)

where E i are the Kraus operators describing the system, such that

E1 =
(
1 0

0 q

)

E2 =
(
0 a1

0 −a2

)

E3 =
(
0 0

0 κ

)
(A.14)
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where E1 is the Kraus operator describing the pulse and E2 and E3 describe the spontaneous

emission of the system and we define

a1 = ωe

√√√√ (1− q2
0)

2(4γ2 +ω2
e)

a2 = iγ
p

2

√√√√ (1− q2
0)

4γ2 +ω2
e

κ =
√

1− q2
0 −a2

1 −|a2|2 (A.15)

such that u↓↓ = q for some parameter q = q0eiφ describing the pulse where 0 ≤ q0 ≤ 1 and

0≤φ≤ 2π.

A.2 Derivation of the electron steady state in the absence of a
nuclear spin bath

We will derive the expression for the steady state of the electron spin in the presence of a Voigt

field after a train of pulses as defined in Section 3.1.1 in Chapter 2. Here we use the spin vector

representation of the state by defining

Sm = Tr(ρ0σm)

S′
m = Tr(ρσm) (A.16)

with general evolution of the form

S′
m = PSm +K . (A.17)

Then we can express ρ0 in the form

ρ0 = 1
2
+ 1

2

∑
m
σmSm. (A.18)

and define

S′
m = Tr

(∑
i
σ1E i

(1
2
+ 1

2

∑
m
σmSm

)
E

†
i

)
= 1

2
Tr

(∑
l

E iE
†
i

)
+ 1

2
Tr

(∑
i
σlE i

(∑
m
σmSm

)
E

†
i

)
(A.19)

which is of the form given in Eq. A.17. We can then extend this to define the state Sn which

occurs after n driving periods. If we start with an initially unpolarised spin, then we have S0 = 0

and

S1 = PS0 +K

= K

S2 = PS1 +K

= PK +K (A.20)
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which allows us to define the recursion relation

Sn = PSn−1 +K

Sn = (Pn−1 +Pn−2 +·· ·+P + I)K . (A.21)

Then the infinite term in this sequence is given by

S∞ = (I−P)−1K , (A.22)

which can be represented by the 4-D matrix

C =


1 0 0 0

Kx Pxx Pxy Pxz

K y Pyx Pyy Pyz

Kz Pzx Pzy Pzz

 . (A.23)

We can then define the eigenvalue equation

λS = C S (A.24)

and can extract the steady state from this by solving for λ = 0. This will be of the form

(1,S∞
x ,S∞

y ,S∞
z ) with

Sx = a1(a1q0(q0 −cosφ)cos(ωeTR)− ia2(q0 cosφ−1)sin(ωeTR)−a1q0 cosφ+a1)
ξ

Sy = a1(a1q0(cosφ− q0)sin(ωeTR)− ia2(q0 cosφ−1)(cos(ωeTR)−1))
ξ

Sz = a1q0 sinφ(a1 sin(ωeTR)− ia2(cos(ωeTR)−1))
ξ

(A.25)

where ξ= (a2
1+q2

0−1)cos(ωeTR)−a1q0 cosφ(ia2 sin(ωeTR)+a1 cos(ωeTR)+1)+ ia1a2 sin(ωeTR)+
(a2

1 −1)q2
0 +1.

A.3 Explicit expression for the z component of the nuclear spin
steady state

Iz = −2eiATR (Sz(−(S2 −1)cos(ATR)−4cos( ATR
2 )+S2 +3))

(eiATR /2 + e3iATR /2)(4+S2
z −S2)+2eiATR (−2S2

z +S2 −3)+ (e2iATR +1)(S2 −1)
(A.26)
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A.4 Derivation of the nuclear steady state and relaxation rate

To derive the nuclear relaxation rate, we need to consider the evolution of the 4D nuclear spin

vector

I(t+TR) = YnI(t). (A.27)

We know that the nuclear evolution is much slower than TR which means that we can transform

this into a differential equation for the nuclear spin vector in the following way:

I(t+TR) = YnI(t)

I(t+TR)− I(t) = (Yn − I)I(t)

∆I(t) = (Yn − I)I(t)
∆I(t)
TR

= 1
TR

(Yn − I)I(t)

d
dt

I(t) = 1
TR

(Yn − I)I(t). (A.28)

The solution to this will be

I(t) = e(Yn−I)t/TR I(0) (A.29)

This tells us that the nuclear spin steady state can be found by solving the eigenvalue equation

(I−Yn)I = λnI, (A.30)

with the case where λ0 = 0 referring to the steady state and the smallest non-zero eigenvalue

giving the nuclear relaxation rate γn =λ1/TR . We will take the flip-flop term to second order, so

we need the perturbative expansion

Yn = Y (0)
n +Y (1)

n +Y (2)
n (+·· · ) (A.31)

and similarly for the 4D spin vector of the nucleus

I = I(0) + I(1) + I(2)(+·· · ). (A.32)

We can use this to get the zeroth, first, and second order terms as such:
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(I− (Y0 +Y1 +Y2))(I(0) + I(1) + I(2)) = (λ0 +λ1 +λ2)(I(0) + I(1) + I(2)) (A.33)

and equating the terms of the same order we find three equations:

I(0) −Y (0)
n I(0) = λ0I(0)

I(1) −Y (0)
n I(1) −Y (1)

n I(0) = λ0I(1) +λ1I(0)

I(2) −Y (0)
n I(2) −Y (1)

n I(1) −Y (2)
n I(0) = λ0I(2) +λ1I(1) +λ2I(0) (A.34)

and setting λ0 = 0, these simplify to

(I−Y (0)
n )I(0) = 0,

(I−Y (0)
n )I(1) = (Y (1)

n +λ1)I(0),

(I−Y (0)
n )I(2) = (Y (2)

n +λ2)I(0) + (Y (1)
n +λ1)I(1). (A.35)

We know at this point that the zeroth order term will only evolve according to precession and

the Knight field, which means no polarisation will be generated. This means we know its form as

a 4D spin vector will be

Y (0)
n =


1 0 0 0

0 Y (0)
n,xx Y (0)

n,xy 0

0 Y (0)
n,yx Y (0)

n,yy 0

0 0 0 1

 . (A.36)

where the first column shows that there is no polarisation generated. Now the first step is to

solve the first equation of Eq. A.35 (the zeroth order), where we have λ0 = 0, i.e.

(I−Y (0)
n ))I(0) = 0. (A.37)

From looking at Eq. A.36 we can tell that there will be two zero eigenvalues. One of these will

be zero at all orders, and this is the one that corresponds to the steady state. The other will get

some non-zero components at higher orders, and this will be the smallest non-zero eigenvalue

of the system. The eigenvectors of I−Y (0)
n corresponding to the zero eigenvalues can be easily

calculated as v0 = (1,0,0,0) and v1 = (0,0,0,1) and these span the null space. This tells us that if

we were to take just the first order component of Yn to define the steady state, we would have

something of the form I(0)
ss = (1,0,0,ζ) where ζ is a constant. The fact that this is constant means

that the steady state is not unique and depends on the initial state when in the zeroth order. This

tells us that we need to go to higher orders to get a realistic value for the nuclear steady state.
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Looking at the first order equation with λ1 = 0

(I−Y (0)
n )I(1) = Y (1)

n I(0) (A.38)

we can act v0 and v1 on both sides of the equation. Looking at the LHS we see that I−Y (0)
n will

be of the form

I−Y (0)
n =


0 0 0 0

0 1−Y (0)
n,xx −Yn,xy 0

0 −Yn,yx 1−Y (0)
n,yy 0

0 0 0 0

 (A.39)

It is clear from looking at this form that if we act either of the eigenvectors v0 = (1,0,0,0), v1 =
(0,0,0,1) on Eq. A.39, we will be left with zero on the LHS. We also know that in the first order

expansion λ1 = 0, giving us an equation for each eigenvalue:

v0Y (1)
n v0 = 0

v1Y (1)
n v1 = 0. (A.40)

It is easy to see that this is correct by looking at the form of Y (1)
n . As we know the steady state

is of the form Iss = (1,0,0,ζ) and we know that the total form of Yn will be equivalent to that for

the electron spin given in Eq. A.23. This means that because the element Yn,00 = 1 and the same

element for the zeroth order Y (0)
n,00 = 1, the higher order components must all have this element

equal to zero. It is also the case that in first order perturbation theory that we have no change in

population which means that Y (1)
n,zz = 0. This leaves us with Y (1)

n of the form

Y (1)
n =


0 0 0 0

0 · · ·
0 · · ·
0 · · 0

 (A.41)

confirming that Eq. A.40 is correct. We can then solve the first order equation to find I(1) with

λ1 = 0 as follows

(I−Y (0)
n )I(1) = Y (1)

n I(0)

⇒ I(1) = (I−Y (0)
n )−1Y (1)

n I(0) +bv1

≡ p1 +bv1 (A.42)
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where b is an arbitrary constant. As λ1 = 0 we now need to go to second order to find the relaxation

rate. We multiply both sides of the second order equation by v1, giving

v1(I−Y (0)
n )I(2) = v1(Y (2)

n +λ2)I(0) +v1(Y (1)
n +λ1)I(1)

(A.43)

and as before the LHS is equal to zero and substituting in the value of I(1) given in Eq. A.42 we

have

v1(Y (2)
n +λ2)I(0) +v1Y (1)

n p1 = 0. (A.44)

This can be transformed into an eigenvalue equation and has two possible solutions:

I(0) = (1,0,0,ζ∗) when λ2 = 0,

I(0) = (0,0,0,1) when λ2 =λ∗
2 . (A.45)

The first of these corresponds to the nuclear steady state, such that

I(0)
x = 0

I(0)
y = 0

I(0)
z = ζ∗ (A.46)

where ζ∗ is determined by the control sequence chosen, and the second to the relaxation rate (the

rate at which the nuclear spin reaches its steady state) with

γn = λ∗
2

TR
(A.47)

which vanishes when TR is a multiple of the electron precession period (and A2

w2
e
). The electron is

now being driven so strongly that the nuclei have no effect, but a nucleus is still able to feel the

effective field caused by the steady state of the electron (Knight field).

We can then calculate the nuclear spin flip rate, which is defined as

ω1
± = γn

2
(1± Iz) (A.48)

where w1+(w1−) is the rate to flip from down (up) to up (down). This tells us that the nuclear spin

flip rate changes depending on the initial nuclear spin state, i.e. if the initial state has no z

polarisation (Iz = 0) then the spin flip rate is just γn
2 . This can also be written as

dP↑
dt

= −ω−P↑+ω+P↓ (A.49)
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where P↑ is the probability that the nucleus is aligned on the same axis as the magnetic field and

P↓ = 1−P↑ is the probability that it is aligned anti-parallel to this axis. In terms of Sn,z, we have

P↑ = 1
2

(1+ Iz)

P↓ = 1
2

(1− Iz) (A.50)

To derive this equation we need to consider the nuclear spin state at some time, t which is defined

by

I(t) = ∑
j

v j e−iλ j t

≈ I(0)e−γn t + I(∞)(1− e−γn t). (A.51)

Note that the nuclear steady state is now being written as I(∞)
z . This leads to

Iz(t) = I(0)
z e−γn t + I(∞)

z (1− e−γn t) (A.52)

and also

Iz(t) = P↑−P↓. (A.53)

Combining Eqs. A.52 and A.53 and differentiating with respect to t gives

d(P↑−P↓)
dt

= −γnI(0)
z e−γn t +γnI(∞)

z e−γn t

= −γn(Iz(t)− I(∞)
z ). (A.54)

We can then rearrange this in terms of P↑ and P↓ as follows:

d(2P↑−1)
dt

= −γn((P↑−P↓)− I(∞)
z )

d(P↑)
dt

= −γn

2
((P↑−P↓)− I(∞)

z (P↑+P↓)) (A.55)

which leads directly to Eqs. A.48 and A.49.
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A.5 Derivation of the probability distribution of values of m

We can define the probability that N↑−N↓ = m to be

P(m) = P
N+m

2
↑ P

N−m
2

↓

(
N

N+m
2

)
(A.56)

where P
N+m

2
↑ (P

N−m
2

↓ ) is the probability that N↑ = N+m
2 (N↓ = N−m

2 ) and

(
N

N+m
2

)
are the binomial

coefficients representing how many spins are in the state N↑ compared to the total number of

spins N = N↑+N↓. P(m±2) can be defined similarly. We can then define the available transitions

to and from the state |m〉. For example, we can define the transition from the state |m〉 to the

state |m+2〉 as

T|m〉→|m+2〉 = −l+(m)
N −m

2
P(m) (A.57)

where the sign of the transmission is defined by the direction if the flip in relation to the starting

state |m〉 (i.e. if the spin flips away from |m〉 the sign is negative and if the spin flips towards the

state m, the sign is positive). This allows us to define a probability distribution for m as

dP(m)
dt

= ∑
±

P(m±2)l∓(m±2)
( N ±m

2
+1

)
−∑

±
P(m)l±(m)

N ∓m
2

. (A.58)

The steady state occurs when dP(m)
dt = 0. Then

P(m)l+(m)
N −m

2
−P(m+2)w−(m+2)

( N +m
2

+1
)

= P(m−2)l+(m−2)
( N −m

2
+1

)
−P(m)l−(m)

N +m
2

(A.59)

implying that both sides are constant. As the full equation is invariant as P(m) is rescaled, this

constant must be zero. Then, taking the right hand side of Eq. A.59 we can define a recursion

relation for P(m) in terms of P(m−2), given by

P(m) = N −m+2
N +m

l+(m−2)
l−(m)

P(m−2). (A.60)

This tells us all of the possible nuclear spin bath configurations for given ∆, Ω, Bext and A.
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