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TWIN PRIME CORRELATIONS FROM THE PAIR

CORRELATION OF RIEMANN ZEROS

J. P. KEATING AND D. J. SMITH

Abstract. We establish, via a heuristic Fourier inversion calculation,
that the Hardy-Littlewood twin prime conjecture is equivalent to an
asymptotic formula for the two-point correlation function of Riemann
zeros at a height E on the critical line. Previously it was known that the
Hardy-Littlewood conjecture implies the pair correlation formula, and
we show that the reverse implication also holds. An averaged form of
the Hardy-Littlewood conjecture is obtained by inverting the E → ∞
limit of the two-point correlation function and the precise form of the
conjecture is found by including asymptotically lower order terms in the
two-point correlation function formula.

1. Introduction

The Riemann zeta-function is defined by

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
(1.1)

when Re(s) > 1 and then by analytic continuation. It has zeros at the
negative even integers, and infinitely many zeros lying off the real line which
are termed the non-trivial zeros. The non-trivial zeros lie in the strip 0 <
Re(s) < 1, and the Riemann Hypothesis asserts that they all lie on the
critical line Re(s) = 1/2; that is, they all lie at points s = 1/2 + iE, where
E is real. The functional equation asserts that the zeta function, when
multiplied by π−s/2Γ(s/2), is symmetric with respect to reflection in the
critical line [37]. The zeros of the zeta function are of central importance in
Number Theory.

There has for a long time been an interest in a conjectural connection
between the non-trivial zeros of the Riemann zeta-function and the semi-
classical theory of quantum chaotic systems [2, 4, 10, 27]. This is motivated
by two observations. First, the explicit formula relating the zeros and the
primes closely resembles the semiclassical trace formula connecting classi-
cal periodic orbits and quantum energy levels in chaotic systems. Second,
Montgomery conjectured that the limiting pair correlation of the zeros co-
incides with that of the eigenvalues of random complex Hermitian matrices
drawn from the Gaussian Unitary Ensemble (GUE) of Random Matrix The-
ory (RMT) [32], and proved a theorem consistent with this; and it is one of
the central conjectures of Quantum Chaos that the energy levels of generic,
classically chaotic, non-time-reversal-symmetric systems should, on the scale
of the mean level separation, also exhibit GUE statistics in the semiclassical
limit.
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Odlyzko computed statistics close to the 1020th zero of the zeta function,
finding that there is a remarkably close agreement between the numerical
data and predictions based on Montgomery’s conjecture on the scale of the
mean zero spacing, but that there are significant deviations on scales large
compared to the mean zero spacing [34]. In [3], Berry wrote down a formula
describing Odlyzko’s data uniformly. This augments the random-matrix
limit with lower order terms which describe the pair correlations at a height
E on the critical line and which vanish when E →∞.

It was shown in [7] that the lower order terms identified by Berry may
be expressed in terms of the lowest zeros of the zeta function; that is, there
is a resurgent relationship between the pair correlation of the high-lying
zeros and the positions of the low-lying zeros. Moreover, an additional
contribution from the low-lying zeros not captured in Berry’s formula was
identified. For a review of these formulae and a comparison with numerical
data, see [4]. The results described above concerning the pair correlation of
the Riemann zeros have been extended to other principal L-functions [26,35]
and to all n-tuple correlations [5, 6, 35]. For an overview, see [28,29].

Connections between RMT and the statistical properties of the Riemann
zeta-function and other L-functions have subsequently been developed in
a number of different directions, including moments [12, 30, 31], their con-
nections with divisor correlations [14–18], and ratios formulae [13]. The
connections have led to several alternative heuristic derivations of the pair
correlation formula with lower order terms first derived for the zeta function
in [7]; see, for example, [8, 9, 19–21].

In his paper [32], Montgomery mentioned heuristics based on the Hardy-
Littlewood conjecture concerning the distribution of prime pairs with a given
separation (known as twin primes) [24] to justify his conjecture that the
limiting pair-correlations of the zeta zeros coincide those of GUE eigenval-
ues. He did not give the details of this calculation, but it has subsequently
been repeated with variations several times in the literature, for example
in [5, 6, 22, 27]. Goldston and Montgomery [23] proved rigorously that the
limiting pair correlation conjecture is equivalent to an asymptotic formula
for the variance of the number of primes in short intervals, and Montgomery
and Soundararajan [33] proved that this variance formula follows from the
Hardy-Littlewood twin prime conjecture, under certain assumptions. The
analysis in [23] has since been extended to all L-functions in the Selberg
Class [11, 36]. The Hardy-Littlewood twin prime conjecture was also the
basis of the original heuristic derivation of the pair correlation formula in-
cluding lower order terms derived in [7]; that is, the Hardy-Littlewood twin
prime conjecture heuristically implies the the pair correlation formula in-
cluding all lower order terms.

Our purpose in this brief note is to show via a heuristic calculation that
the reverse implication is also true, namely that the the pair correlation
formula including lower order terms obtained in [7] can be used to derive
the Hardy-Littlewood twin prime conjecture. Thus, heuristically, the two
formulae are equivalent. (Here by heuristic we mean that the calculation
relies on unproved conjectures and does not attempt to estimate the errors
associated with various approximations.) We demonstrate this via Fourier
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inversion of the pair correlation formula. This calculation extends one re-
ported in [1], where an averaged form of the Hardy-Littlewood twin prime
conjecture was obtained from the random-matrix limiting expression for the
pair correlations, in a manner similar to [23].

We denote the non-trivial zeros of the Riemann zeta-function by 1/2+iEn
and assume the Riemann Hypothesis, so that En ∈ R ∀n. Let d(E) =∑

n δ(E − En) denote the density of zeros at height E on the critical line.
The pair correlation function may then be defined by

R2(ε) = 〈d(E − ε/2)d(E + ε/2)〉 , (1.2)

where the angular brackets denote an average with respect to E. It may be
expressed in the form

R2(ε) = d̄2(E) +R
(diag)
2 (ε) +R

(off)
2 (ε), (1.3)

where

d̄(E) =
1

2π
ln

(
E

2π

)
(1.4)

is the asymptotic mean density of the zeros, R
(diag)
2 (ε) represents the con-

tributions from the diagonal terms when the pair correlation function is
expressed as a sum over pairs of primes using the explicit formula, and

R
(off)
2 (ε) represents the off-diagonal terms [27].
The diagonal part of the correlation function may be evaluated to give

lim
E→∞

1

d̄2(E)
R

(diag)
2

(
ε/d̄(E)

)
= − 1

2π2ε2
. (1.5)

Montgomery’s conjecture is then equivalent to

lim
E→∞

1

d̄2(E)
R

(off)
2

(
ε/d̄(E)

)
=

cos(2πε)

2π2ε2
. (1.6)

For finite E the diagonal part is given by [4, 7]

− 1

4π2

 d2

dw2
ln ζ(1 + iw) +

∑
p

k≥0

(ln p)2kp−(1+iε)(k+1)


w=ε

+ c.c. (1.7)

The off-diagonal correlations of Riemann zeros may be expressed in terms
of primes through the von Mangoldt function;

Λ(n) =

{
ln p if n is a power of a prime, p,

0 otherwise;
(1.8)

explicitly [27],

R
(off)
2 (ε) =

1

4π2

∞∑
n=1

∑
h6=0

Λ(n+ h)Λ(n)

n
exp(i(ε lnn− Eh/n)) + c.c. (1.9)

The finite-E expression for the off-diagonal contribution to the pair correla-
tion of Riemann zeros can then be calculated by making use of a conjecture
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by Hardy and Littlewood [24] concerning the distribution of pairs of primes.
This states that if

α(h) = lim
N→∞

1

N

N∑
n=1

Λ(n+ h)Λ(n), (1.10)

then

α(h) =


2C2

∏
p|h

p− 1

p− 2
if h is even

0 otherwise,

(1.11)

where C2 is the twin prime constant

C2 =
∏
p>2

(
1− 1

(p− 1)2

)
≈ 0.6601618. (1.12)

Using the Hardy-Littlewood conjecture, the finite-E off-diagonal contri-
bution to the two-point correlation function was evaluated in [7] to give

R
(off)
2 (ε) =

1

4π2
|ζ(1+iε)|2

(
exp(−2πiεd̄(E))

∏
p

(
1−

(
1− p−iε

p− 1

)2
))

+ c.c.

(1.13)
This formula has since been derived using a number of other approaches
[8, 9, 19–21]. It reduces to (1.6) in the limit E →∞.

The purpose of this note is to demonstrate a dual relationship between the
correlations of zeros and primes. An averaged form of the Hardy-Littlewood
conjecture will first be determined by making use of the limiting form of
the pair correlation of zeros (1.6) and then the full Hardy-Littlewood con-
jecture will be recovered using finite E corrections to the pair correlation,
as captured by (1.13).

We can therefore summarise the connections between the various con-
jectures discussed here as follows. It was proved by Goldston & Mont-
gomery [23] that Montgomery’s conjecture relating to the pair correlation of
the Riemann zeros is equivalent to a conjecture concerning the variance
of sums of the von Mangoldt function Λ(n) over short intervals; Mont-
gomery’s conjecture is also heuristically equivalent to an averaged version of
the Hardy-Littlewood conjecture for the pair correlations of the von Man-
goldt function [1,27,32], and the conjecture concerning the variance of sums
of the von Mangoldt function over short intervals follows, under certain
additional assumptions, from the Hardy-Littlewood conjecture [33]. The
Hardy-Littlewood conjecture heuristically implies the Montgomery conjec-
ture with lower order terms, if no averaging of it is employed [7], and what
we have shown heuristically here is that the reverse implication holds as
well, so these two formulae may be considered as being equivalent.

2. Inverting the 2-point correlation

Replacing Λ(n+h)Λ(n) in (1.9) by α(h), and approximating the sums by
integrals, heuristically, the off-diagonal contribution can be expressed as

R
(off)
2 (ε) =

1

4π2

∫ ∞
1

∫ ∞
−∞

α(h)

y
exp(i(ε ln y − Eh/y)) dhdy + c.c, (2.1)
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c.f. [5, 6, 27], and so an expression for α(h) may be determined by Fourier
inversion, as follows.

∫ ∞
−∞

R
(off)
2 (ε) dε =

1

2π

∫ ∞
1

∫ ∞
−∞

α(h)

y
δ(ln y) exp(−iEh/y) dhdy + c.c

(2.2)

=
1

2π

∫ ∞
0

∫ ∞
−∞

α(h)δ(z) exp(−iEh exp(−z)) dhdz + c.c

(2.3)

=
1

2π

∫ ∞
−∞

α(h) exp(−iEh) dh. (2.4)

Giving the Fourier transform

F [α(h)] = 2π

∫ ∞
−∞

R
(off)
2 (ε) dε, (2.5)

and by Fourier inversion,

α(h) =

∫ ∞
−∞

∫ ∞
−∞

R
(off)
2 (ε) exp(ihE) dεdE. (2.6)

3. Averaged form of the Hardy-Littlewood
conjecture

In [27] Montgomery’s expression for the pair correlation was shown heuris-
tically to follow from knowledge of the average of the function in the Hardy-
Littlewood conjecture. Asymptotically as |h| → ∞ the average is given by
1− 1

2|h| , in the sense that

1

2|h|

h∑
H=−h

α(H) ∼ 1− ln |h|
2|h|

as |h| → ∞. (3.1)

The − 1
2|h| term in the averaged Hardy-Littlewood conjecture was recovered

in [1] by assuming Montgomery’s conjecture (the first term does not con-
tribute to the zero correlations), specifically by inverting the off-diagonal
contribution of the limiting pair correlation (1.6). For completeness, this
calculation is shown here to follow from the inversion formula (2.6).

Substituting the limiting form of the off-diagonal pair correlation gives
the integral over ε,

1

2π2

∫ ∞
−∞

1

ε2
cos(2πεd̄(E)) dε =

1

π

∫ ∞
−∞

1

ε2
cos(εd̄(E)) dε

=
1

π
F

[
1

ε2

]
(d̄(E)). (3.2)

This Fourier transform may be deduced by considering the Fourier trans-
form of the triangle function

T (x) =

{
1− |x| if |x| ≤ 1

0 otherwise,
(3.3)
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and by noting that the triangle function may be expressed in terms of the
sign function,

sgn(x) =

{−1 if x ≤ 0

1 otherwise,
(3.4)

by the linear relation

T (x) =
1

2
(1− x)sgn(1− x) +

1

2
(1 + x)sgn(1 + x)− xsgn(x). (3.5)

Then

F [T ](k) = 2

∫ 1

0
(1− x) cos(kx) dx =

(
sinc

(
k

2

))2

, (3.6)

by integrating by parts, where

sinc(x) =
sin(x)

x
. (3.7)

Then ∫ ∞
−∞

(
sinc

(
k

2

))2

exp(ikx) dk =π(1− x)sgn(1− x)

+ π(1 + x)sgn(1 + x)

− 2πxsgn(x) (3.8)

by Fourier inversion. Expanding the sinc function in terms of exponential
functions then gives∫ ∞

−∞

(
sinc

(
k

2

))2

exp(ikx) dk =−F

[
1

k2

]
(1− x)

−F

[
1

k2

]
(1 + x)

+ 2F

[
1

k2

]
(x), (3.9)

yielding the identification

F

[
1

x2

]
(k) = −πksgn(k). (3.10)

The averaged correlation function is then given by

−F
[
d̄(E)sgn(d̄(E))

]
(h). (3.11)

Substituting the expression (1.4) for the mean density and truncating the
integral (beyond the truncation range the integrand is highly oscillatory and
so the integral there makes a negligible contribution) gives

1

π

∫ 1

0
ln(E) cos(hE) dE as |h| → ∞. (3.12)

Integration by parts then yields

− 1

πh
Si(h) as |h| → ∞, (3.13)

where the sine integral,

Si(x) =

∫ x

0
sinc(t) dt, (3.14)
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has been introduced.
This gives, to leading asymptotic order as |h| → ∞, − 1

2|h| , since limx→∞ Si(x) =
π
2 ; recovering the result found in [1].

4. The full Hardy-Littlewood conjecture

4.1. Off-diagonal pair correlation. As reviewed in the introduction, var-
ious heuristic calculations [7, 8, 19–21] lead to an expression for the off-
diagonal contribution to the two-point correlation function;

1

2π2
exp(−2πiεd̄(E))|ζ(1 + iε)|2

∏
p

(
1− 1

p1+iε

)
(p2 − 2p+ p1−iε)

(p− 1)2
. (4.1)

Using the Euler product on the 1-line allows us to rewrite this as

1

2π2
exp(−2πiεd̄(E))ζ(1− iε)

∏
p

(
1− 1

(p− 1)2
+

p1−iε

(p− 1)2

)

=
1

2π2
exp(−2πiεd̄(E))ζ(1− iε)

∏
p

1 +
p1−iε

(
1− 1

p1−iε

)
(p− 1)2

 . (4.2)

Euler’s totient function φ(n) is the number of natural numbers less than
and coprime to n; and the Möbius function µ(n) is zero if n is divisible by
a square, and −1 to the power of the number of distinct prime factors of n
otherwise [25]. Both are multiplicative functions. This allows the products
over primes to be changed to sums over natural numbers in the following
way.

1

2π2
exp(−2πiεd̄(E))ζ(1−iε)

∏
p

(
1 +

(
µ(p)

φ(p)

)2

p1−iε
(

1 +
µ(p)

p1−iε

))
, (4.3)

which, by multiplicativity of φ and µ yields

1

2π2
exp(−2πiεd̄(E))ζ(1− iε)

∞∑
n=1

(
µ(n)

φ(n)

)2

n1−iε
∏
p|n

(
1 +

µ(p)

p1−iε

)
, (4.4)

where the sum is over squarefree values of n due to the presence of µ(n).
Making use of the multiplicativity of µ once more gives

1

2π2
exp(−2πiεd̄(E))ζ(1− iε)

∞∑
n=1

(
µ(n)

φ(n)

)2

n1−iε
∑
d|n

µ(d)

d1−iε
. (4.5)

Using now the series representation of the Riemann zeta-function on the
1-line results in

1

2π2
exp(−2πiεd̄(E))

∞∑
n=1

(
µ(n)

φ(n)

)2

n1−iε
∞∑
m=1

∑
d|n

µ(d)

(md)1−iε
. (4.6)

Replacing md by l, the sum over m and d|n becomes a sum over l, d|n and
d|l,

∞∑
l=1

∑
d|n,d|l

µ(d)

l1−iε
=
∞∑
l=1

1

l1−iε

∑
d|(l,n)

µ(d), (4.7)
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which, by the indicator property of the the Möbius function [25] gives
∞∑
l=1

(l,n)=1

1

l1−iε
. (4.8)

The two-point correlation function is therefore given by

1

2π2
exp(−2πiεd̄(E))

∞∑
n=1

∞∑
l=1

(l,n)=1

(
µ(n)

φ(n)

)2 (n
l

)1−iε
. (4.9)

4.2. Full inversion. Substituting into the Fourier inversion formula after
substituting the expression (1.4) for the mean density and truncating the
sum over l at n (i.e. retaining just the largest, and least oscillatory terms)
then gives the approximation

1

2π2

∞∑
n=1

n∑
l=1

(l,n)=1

n

l

(
µ(n)

φ(n)

)2 ∫ ∞
−∞

exp(ihE)

∫ ∞
−∞

exp

(
−iε ln

(
En

2πl

))
dεdE.

(4.10)
Integrating over ε introduces a delta function, giving

1

π

∞∑
n=1

n∑
l=1

(l,n)=1

n

l

(
µ(n)

φ(n)

)2 ∫ ∞
0

δ

(
ln

(
En

2πl

))
exp(ihE) dE, (4.11)

where the domain of the logarithm restricts the integral over E > 0. Chang-
ing variables and truncating the upper limit (neglecting any highly oscilla-
tory contribution to the integral) gives the approximation

2

∞∑
n=1

n∑
l=1

(l,n)=1

(
µ(n)

φ(n)

)2 ∫ 1

0
δ(lnw) exp((2πiwhl)/n) dw, (4.12)

which after a further change of variables gives

2

∞∑
n=1

n∑
l=1

(l,n)=1

(
µ(n)

φ(n)

)2 ∫ 0

−∞
exp(z)δ(z) exp((2πi exp(z)hl)/n) dz. (4.13)

Finally integrating over z ≤ 0 captures half the mass of the delta function,
resulting in

∞∑
n=1

n∑
l=1

(l,n)=1

(
µ(n)

φ(n)

)2

exp((2πihl)/n). (4.14)

Introducing the Ramanujan sum [25],

cn(h) =

n∑
l=1

(l,n)=1

exp((2πilh)/n), (4.15)

this can be written as
∞∑
n=1

(
µ(n)

φ(n)

)2

cn(h). (4.16)
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Ramanujan sums are multiplicative,

cm(l)cn(l) = cmn(l) (4.17)

if (m,n) = 1. They also satisfy

cp(n) =

{
p− 1 if p|n
−1 otherwise

(4.18)

for all primes, p. Using these properties then gives

∞∑
n=1

(
µ(n)

φ(n)

)2

cn(h)

=
∏
p

(
1 +

(
µ(p)

φ(p)

)2

cp(h)

)

=


2
∏
p>2

(
1 +

(
µ(p)

φ(p)

)2

cp(h)

)
if h is even

0 otherwise,

(4.19)

where ∏
p>2

(
1 +

(
µ(p)

φ(p)

)2

cp(h)

)

=C2

∏
p|h

(
p− 1

p− 2

)
. (4.20)

Thus the exact Hardy-Littlewood twin prime conjecture may be derived
heuristically from the pair correlation formula for the Riemann zeros includ-
ing lower order terms. This is what we set out to demonstrate. As already
shown in [7] the reverse implication also holds heuristically. Therefore the
two conjectures may be thought of as being heuristically equivalent.

Finally, we again point out that this calculation involves several approxi-
mations for which we have not rigorously estimated the errors. It would
be interesting to do this because, whilst we believe that the errors are
small compared to the leading order expression in the Hardy-Littlewood
twin prime conjecture, it remains to demonstrate this explicitly.
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