
 Mavromatis, A., Gunner, S., Tryfonas, T., & Simeonidou, D. (2019).
Dynamic Cloud Service Management for Scalable Internet of Things
Applications. Paper presented at IEEE Smart World Congress and the 3rd
IEEE Conference on Smart City Innovations, Leicester, United Kingdom.

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/223353634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research-information.bris.ac.uk/en/publications/dynamic-cloud-service-management-for-scalable-internet-of-things-applications(81029199-5585-4815-8fad-3ca88ed2255d).html
https://research-information.bris.ac.uk/en/publications/dynamic-cloud-service-management-for-scalable-internet-of-things-applications(81029199-5585-4815-8fad-3ca88ed2255d).html

Dynamic Cloud Service Management for Scalable
Internet of Things Applications

Alex Mavromatis

High Performance Networks
University of Bristol

Bristol, United Kingdom
a.mavromatis@bristol.ac.uk

Sam Gunner
Intelligent Transport Systems

University of Bristol
Bristol, United Kingdom
sam.gunner@bristol.ac.uk

Dimitra Simeonidou
High Performance Networks

University of Bristol
Bristol, United Kingdom

dimitra.simeonidou@bristol.ac.uk

Theo Tryfonas
Engineering Systems & Design

University of Bristol
Bristol, United Kingdom

theo.tryfonas@bristol.ac.uk

Abstract— The Internet of Things (IoT) is growing rapidly
and official reports suggest that soon it will become one of the
key technologies of the Internet infrastructure. Cloud services
are already integrated with IoT, providing solutions for a large
number of applications. Various Cloud IoT platforms are
available for IoT users, both as open source and commercial
solutions. One of the important features of a cloud IoT
platform is the management of services and the deployment
time required to set up a platform dedicated to a specific IoT
use case. This paper presents a cloud IoT platform deployment
mechanism that aims to improve the deployment time between
an IoT network and a cloud IoT platform. The approach is
based on a platform descriptor which describes the IoT
application requirements. Therefore, software-based
functionalities automate the provisioning of the platform to
accommodate scalability in cloud IoT applications. The
experimentation and evaluation of the proposed mechanism is
conducted over a real data-center laboratory. We are
comparing our mechanism with a Unix bash shell scripting
deployment method and the results achieve over 50%
improvement in both platform deployment time, as well as the
time required to update the platform.

Keywords— IoT, Cloud, Scalability

I. INTRODUCTION

The Internet of Things (IoT) is touted as being on track
to revolutionize much of the way the world works, and
real-time remote sensing is already allowing optimizations
to be made across a broad range of sectors, from
manufacturing to public transport, finance to healthcare. The
remote device is only part of the technology picture
however, as the amalgamation and processing of data at
scale has to happen on hardware not constrained by power
and size limitations. Physical servers are an option, but to
deliver a scalable solution without the hassle of managing
their own server farm system designers are increasingly
turning to Cloud Computing.

Cloud Computing and IoT are two technologies that,
when used together, are able to deliver end-to-end services
and applications. Research and Development into the
combination of these technologies is already gathering
momentum, and implementation at scale is not trivial. The
billions of connected devices expected by 2020 [1] mean

that the ability to implement at scale is crucial, and this is as
true for the researchers in the field as it is for industry.

This work has been supported by the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No. 691735
(project REPLICATE).

Albeit state-of-art cloud platforms provide effective and
reliable service, there is a need for greater automation in the
way researchers specify and implement cloud platform
instances, as this will aid the rapid deployment of
experiments. Presently the provision and deployment of
resources, both computing and storage, is most commonly
done through a graphical user interface, and although this
generally provides a user-friendly mechanism for launching
single instances, it quickly becomes cumbersome as the
number of deployments increase.

It is for this reason that we propose our Cloud IoT
platform. The Cloud IoT Platform is a service providing
solution for IoT deployments, aiming to facilitate the easy
provisioning of cloud resource for IoT applications.

In this paper we present the cloud IoT platform
architecture and show how it facilitates users in generating
cloud-based resources tailored to the needs of their cloud
based IoT applications. Our mechanism equips the user with
a descriptor file that abstracts the platform elements and
introduces a DevOps logic to IoT cloud service
provisioning. With these descriptors a user can implement a
dynamic resource allocation algorithm based on the
application’s needs, moving closer towards fully automated
cloud IoT resource management. By automating this process
our work aims to significantly reduce the deployment time
of an end-to-end IoT application.

Directly after this introduction Chapter 2 gives some
related work, followed by a detailed explanation of the
Cloud IoT Platform architecture in Chapter 3. Chapter 4
provides some context for the platform, using a number of
examples to describe how it would be used, Chapter 5 then
evaluates the Cloud IoT Platform, and Chapter 6 contains
our final conclusions.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

II. RELATED WORK

Cloud computing is well established in the industry
where services are provided to users for a specific price. In
the IoT era there is a lot of research on the integration with
cloud and how the device and data management can be

efficient and secure [2]. The challenge of managing billions
of devices dynamically is open and R&D moves towards the
direction of automation and DevOps to enhance scalability
and efficient management.

A survey [3] on cloud IoT providers presents the
selection of services and options available today in the
market. This paper described the services that the cloud
providers make available to users. The basic technologies
and elements of IoT are similar across the platforms,
however the implementation and costs are different.
Furthermore, although all the platforms enable a wide range
of applications to be developed, they do not permit on the
fly reconfiguration of the platform resources. In [4] the
authors present a methodology for selecting the most
appropriate cloud platform for an application. Commercially
available platforms are evaluated against a list of
requirements taken from a number of use cases, and the
results of this are analysed to aid cloud platform selection.
However, the authors do not address questions on how
possible future changes in requirement can be managed, or
how resources on these platforms can be modified to
accommodate new applications.

A general study in [5] presents the building blocks of a
cloud IoT architecture. Furthermore, the authors analyse
different applications that use cloud infrastructure for IoT
and describe the advantages of the cloud implementation.
This study does not focus on the need to have a generic
cloud platform for new applications and IoT requirements.
Further to having a generic approach on to the IoT platform
architecture, increases in scale exacerbates the requirement
to engineer efficient solutions, thereby optimizing the
deployment time of an IoT application. The authors in [6]
present the principles of the IoT cloud systems and how the
whole lifecycle of an IoT application works. This study is
interesting since the authors present an analysis of the
end-to-end IoT deployment and highlight that the
deployment and provisioning phase for IoT has to be diverse
and on demand. Our proposed scheme facilitates the later by
being based on continuous integration techniques where a
deployment descriptor defines the cloud platform
capabilities.

Improvement of IoT deployments are a common goal
within R&D. The work in [7] presents a cloud IoT
architecture for improving the deployment process and time.
The authors implement the architecture and show improved
results comparing the architecture with other IoT platforms.
We identify that not only the deployment process needs to
be optimized, but also the deployment control has to be
accessible to the application user, therefore our system
implements a REST Application Interface (API) able to
provide updates on the IoT platform descriptor. This paper is
focused on improving the cloud IoT services deployment
and allowing the user to define the dynamic allocations of
the cloud IoT platform based on the user’s needs.

III. CLOUD IOT AND PROPOSED ARCHITECTURE

A. Proposed Architecture & Platform Life-Cycle
Figure 1 presents the proposed architecture, a bottom up

design where the experimenter sets up an IoT network and
then requires cloud resources to accommodate the data
processing. The architecture comprises four layers where the
first one is the IoT devices, with the second layer being the
physical infrastructure such as computing and storage
capacity within a data center. The third layer contains the
middle-ware developed for this research. This middleware is
comprised by two applications:

● Physical Resource Manager (PRM): The first
software element developed for this paper is the
PRM which is responsible for allocation of physical
resources (such as storage, RAM and CPU capacity)
for the IoT application. This is a nodeJS application
running on the cloud server that allocates docker
containers based on the descriptor provided by the
user. A REST API is implemented and the
application then waits for a POST request, the body
of which is the descriptor JSON object.

● IoT Services Manager (ISM): The ISM is also a
nodeJS application running at the cloud servers. ISM
is the application responsible for pairing the platform
service IDs to specific containers created by the PRM
therefore providing isolation between the different
users of the platform. Each platform user can have
one or many unique service IDs. The ISM reads the
descriptor and creates the user’s Service ID, Service
Path and authorization token, all of which are stored
to a database. Finally, the ISM returns all the
information to the user, including the user credentials
and the platform instance details.

Fig. 1. Overall IoT Provisioning Architecture.

Figure 2 depicts the life cycle of the platform in the form
of a flow diagram, showing all the transactions between the
devices and the cloud services. The first step when
establishing communications between a device and the IoT
platform is the device provisioning [8]. This process is
manual or dynamic, depending on the implementation. Once

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

the device is authorized for communication data must be
retrieved by the IoT platform and be made accessible to the
user. At this stage the aforementioned ISM application is
waiting for a platform descriptor, in which the user defines
all the application requirements. The middleware software
initializes the platform and creates instances for the end-user
based on the descriptor details. Then it returns the platform
instance information to the end-user (i.e. IP endpoint
address, platform instance description etc.).

Fig. 2. Flow Diagram of Proposed Scheme for Provisioning a New
Device.

The platform descriptor is a JSON object created by the
user and interpreted by the ISM application component of
the Cloud IoT Platform. Once the devices are provisioned
the user is presented with an interface which can be used to
post the descriptor and initialize the platform equipped with
the desired services and capacity. An example of the
platform descriptor is presented in Figure 3. The descriptor
requires all the fields specified in Figure 3, starting with the
application name and a short description. The Service ID,
Service Path and token are the user credentials within the
platform. The ISM application reads the remainder of the
descriptor and provisions the IoT platform accordingly,
including the granting of access to specific IoT data
protocols, allocating of a cap to the number of messages per
day that can be sent, and launching the necessary platform
applications. Once all the information about the user’s
application requirements are stored, the PRM executes any
created container instances as detailed in the ‘Resources’
field of the descriptor. The ‘Platform-Instances’ element
allows the user to specify the number of containers on which
to run the platform. The descriptor also gives the user the
option to enable load balancing where multiple instance are
created.

Fig. 3. An Example Descriptor Snippet Showing Fields Available to a
System Designer: Our system uses this descriptor to provision the
appropriate cloud computing resource.

B. Cloud IoT Platform Building Blocks
A Cloud IoT platform comprises different software

elements running over an infrastructure that is
accommodating data generated from IoT networks. Our
implementation is based on the open source IoT platform
FIWARE [9] the building blocks of which are presented in
Figure 1. Our FIWARE IoT platform implementation
contains five main building blocks:

● Context Broker (CB): The CB element is the main
feature of the platform, accommodating multi-tenant
users and the data from different IoT deployments.
The operation of the CB is initialized by creating
credentials for the user which are used for sending
and retrieving the data being generated from the IoT
Devices. The implementation of FIWARE requires a
service id and a service path which are unique, and
must used within any IoT data protocol. The CB
implements a publish/subscribe philosophy able to
accommodate a large number of users, assuming the
resources permit.

● IoT Agents: This element is responsible for the
convergence of different IoT data protocols. This
includes protocols such as HTTP, MQTT and CoAP
which are already enabled on the platform. This
component allows extendibility, providing an API
that can be used for developing new data handling
agents.

● NoSQL Database: The third component, used to
store the user’s data, is a NoSQL MongoDB database
integrated with the CB component. The CB is able to
isolate the data using the service ID and therefore
store the information using the service ID as a key.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

The database is mainly used for historical data and
analytics.

● Complex Event Processing (CEP): CEP is a
powerful tool that allows the triggering of events and
can be used to inform both the CB and applications
themselves. These events are flexible and can be
configured to enable a range of use cases.
Furthermore, CEP can detect patterns that occur and
alert the application concerned. This component
enhances the platform by making it more dynamic
and flexible. Although complex, and offering a range
of additional tools, a level of abstraction is used and
this simplifies significantly the task of creating
effective events handlers. CEP is integrated with the
CB, it can therefore monitor real time actions based
on the CB subscription.

● Short Term Historic (STH): This module is an
instance of the CB and is responsible for storing the
historical data. This feature is very important for the
application developer since it provides targeted data
through a RESTful API which simplifies the use of
the platform. For the purpose of this paper we have
extended the STH component to consistently store
data to the NoSQL database described above.

IV. CASE STUDY APPLICATIONS

The range of possible IoT applications is huge, but at the
core of almost all is the collection, storage and processing of
data, with the aim of aiding decision making through the
condensing of (potentially massive) datasets down to a far
smaller number of meaningful, salient pieces of information.
In this paper we will briefly look at one such IoT
application, and describe how the Cloud IoT Platform can
aid both the initial deployment and subsequent enhancement
of a project. The focus here is research, where specific goals
(and far less specific methodologies) are known at the point
of project conception. In this environment it is crucial that
systems can be deployed quickly and easily, thereby
lowering the barriers that might prevent a researcher from
implementing her or his next idea.

A. Deployment of Real Time Civil Infrastructure
Monitoring
One example of an IoT Application is ‘Smart

Infrastructure’. All developed nations are reliant on their
civil infrastructure, and in many cases, this is aged and
operating well outside its original design capacity (such as
the metro networks of London or New York). Building new
civil infrastructure is extremely expensive and can be very
disruptive, so instead there is a desire to extend the life of
existing infrastructure through proactive, preventative
maintenance. It is hoped that by deploying a large number of
IoT sensors onto a structure enough data can be gathered to
allow accurate models to be made of it, and so predict
failures before they happen. One extreme example of this is
Hong Kong’s Stone-cutter Bridge which has been
instrumented with more than 1,700 sensors [10].

Bridge dynamics mean that in some situations a
relatively low number of sensors can still provide useful
information [11], so a smaller scale deployment might only

consist of six structural sensors. Modern IoT wireless
accelerometers can be very quickly deployed in key
locations, with the use of low power wireless
communications protocols such as 802.15.4 allowing
extended duration deployments to run on a single set of
batteries. A local wireless gateway can then relay vibration
data in real time to a cloud server, possibly using a message
broker system such as MQTT, where it could be stored in a
real-time database such as InuxDB.

If samples are taken at 32Hz this will result in a total of
192 measurements a second, with the total number of
messages likely to be between 200 and 250 per second due
to system diagnostics. With these low load requirements, a
VM of quite modest specification can be used, InuxDB’s
documentation [12] suggests that 4 cores and 4GB of RAM
will be sufficient, and an extra 4GB of RAM is
recommended for the MQTT message broker. HD space will
depend on the duration of the deployment, but 500GB
would sustain a deployment of many years.

With the requirements identified, our Cloud IoT
Platform allows the necessary VM to be deployed extremely
quickly. Values can be inserted into the descriptor, which is
then uploaded to the platform to trigger the automatic
provisioning of the necessary cloud resource. Such a
deployment mode is ideal for circumstances where low-cost,
temporary and/or opportunistic monitoring may be required,
such as e.g. in [13].

B. Reconfiguration of Resources
Although initially set, as the research project progresses

it is likely that system requirements will evolve. For
example:

● The sample rate might be increased to give visibility
of higher frequency components of the structural
response.

● Sensors might be added to give information about
vibrations along a different axis.

● Algorithms, developed using historical data, might
be adapted to process real time data using a
framework such as Spark.

● Non-technical project stakeholders, such as the
infrastructure manager, might desire visibility of the
data and so a user interface (e.g. Grafana) might be
integrated into the system.

● Other data source, such as vehicle count, might be
added to enrich the data.

Each of these changes has a required increase in
computing resource associated with it. This might be more
HD space and RAM to handle the increased number of
messages, or more CPU cores to enable the real time
processing and WebUI. In either case the Cloud IoT
Platform can be used to quickly relocate the necessary
resources with very little manual configuration required by
the user. Instead, a modified service descriptor can be
uploaded to the API, and the platform will automatically
reconfigure the system to match the new requirements.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

V. EXPERIMENTAL SETUP & EVALUATION

To evaluate our platform we have conducted a series of
experiments designed to compare the deployment time and
update time of a cloud IoT platform. The analysis is
evaluating our platform descriptor based applications for
cloud IoT platform deployment. As comparison we are
using Unix bash shell scripting to automate the deployment
process and evaluate both within the same experimentation
environment. The results we present between the two
approaches are average values with confidence interval of
95%.

A. Experimentation Set up
The experimentation set-up has been assembled within

the High Performance Network Group at the University of
Bristol data-center facilities. We have deployed the IoT
platform and the ISM and PRM applications. We are
emulating IoT devices for two different applications. During
the experimentation the configuration of the platform is
done through the descriptor, and this is benchmarked against
traditional configuration done using bash shell scripts. The
experiment ran for 24 hours and we compare the different
approaches in terms of deployment time and platform update
time. The experiments run twice, first implementing an
emulated IoT networks of 100 devices, and then again with
1,000 devices. Connectivity is over WiFi and each
experiment is repeated, first using MQTT as the IoT data
protocol, and then using HTTP.

B. Evaluation & Results
In Figure 4(a) we present evaluation results of the IoT

platform deployment time for 100 devices. This is the time
that the system requires to configure all the user requested
details concerning the platform. We are comparing the
proposed descriptor-based solution with a bash shell script
deployment mechanism. In both IoT data protocols our
solution outperforms the shell script approach and the
deployment time is reduced by over 50%.

Fig. 4. Testing Results: deployment time of 100 & 1,000 nodes (a)-(b);
configuration update performance for 100 & 1,000 nodes (c)-(d).

Figure 4(b) presents results of the deployment time for
1,000 IoT devices. The descriptor approach is still requiring
50% less time, as the larger size of the IoT network does not
have any impact on the relative deployment performance of
our proposed approach.

To further evaluate the system, we ran experiments
where the user of the platform updates the platform’s
configuration. In Figure 4(c) the results of the configuration
update time are presented. As shown, the descriptor
mechanism is faster in updating the platform, therefore
presents better performance for the 100 IoT devices
scenario. Similarly Figure 4(d) presents the results for 1,000
IoT devices. The results show that our proposed architecture
is not affected by IoT network size and still performs better
than the generic bash shell script deployment set up.

VI. CONCLUSION

As IoT technologies evolve rapidly, multiple
applications are developed both for research and industrial
purposes. This paper focused on end-to-end IoT
architecture, specifically addressing the problem of
provisioning cloud resource for IoT applications. The cloud
element of IoT applications is already a key enabler, as
methods of storing and processing the large amount of
generated data are required. A variety of cloud solutions are
available today and most of them are able to facilitate the
majority of the IoT requirements. We investigate the
deployment time of an IoT platform and how devices are
mapped to a data-center infrastructure. Our target is to
present a mechanism able to reduce the deployment time
and generally improve the control of the cloud IoT platform
from the user perspective. An end-to-end architecture is
presented including software components developed to
strengthen our approach. The evaluation section of this
paper is comparing the proposed mechanism with a
Unix-based bash shell scripting technique for cloud IoT
platform deployment. Our mechanism outperforms the shell
scripting technique and provides improvements of 50% on
the deployment and update time of a Cloud IoT platform
based application. Our future research will aim to improve
the quality of service of more complex applications by
enhancing the networking within the data-center hosting the
cloud IoT elements.

ACKNOWLEDGMENT

This work has been supported by the European Union’s
Horizon 2020 Research and Innovation Programme under
grant agreement No. 691735 (project REPLICATE).

REFERENCES
[1] D. Evans, “The Internet of Things: How the Next Evolution of the

Internet Is Changing Everything”, Cisco Systems, 2011, Accessed
March 2018.

[2] J. Zhou, Z. Cao, X. Dong and A. V. Vasilakos, “Security and Privacy
for Cloud-Based IoT: Challenges”, in IEEE Communications
Magazine, vol. 55, no. 1, pp. 26-33, January 2017.

[3] T. Panzner and A. Kertesz, “A survey of IoT cloud providers”, 39th
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), Opatija,
2016.

[4] P. Ganguly, “Selecting the right IoT cloud platform”, 2016
International Conference on Internet of Things and Applications
(IOTA), Pune, 2016.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

[5] O. Mazhelis and P. Tyrvinen, “A framework for evaluating
Internet-of-Things platforms: Application provider viewpoint”, 2014
IEEE World Forum on Internet of Things.

[6] H. L. Truong and S. Dustdar, “Principles for Engineering IoT Cloud
Systems”, in IEEE Cloud Computing, vol. 2, no. 2, pp. 68-76,
Mar.-Apr. 2015.

[7] V. C. Emeakaroha, N. Cafferkey, P. Healy and J. P. Morrison, “A
Cloud-Based IoT Data Gathering and Processing Platform”, 2015 3rd
International Conference on Future Internet of Things and Cloud,
Rome, 2015.

[8] Alex Mavromatis et al., “A Software Defined Device Provisioning
Framework Facilitating Scalability in Internet of Things”, 2018 IEEE
5G World Forum (5GWF), Santa Clara, California, 446-451.

[9] FIWARE, https://www.fiware.org/, Accessed in September 2017.

[10] Eddy Dascotte, Jacques Strobbe, Ulf T. Tygesen, “Continuous stress
monitoring of large structures”, 5th International Operational Modal
Analysis Conference, Guimaraes, 2013.

[11] J.H.G. Macdonald “Pedestrian-induced vibrations of the Clifton
Suspension Bridge, UK”, Proceedings of the Institution of Civil
Engineers Bridge Engineering 161(2), 2008.

[12] InuxDB V1.5 Docs “Hardware sizing guidelines”,
https://docs.influxdata.com/influxdb/v1.5/guides/hardware_sizing/,
Accessed May 2018.

[13] S. Gunner, P.J. Vardanega, T. Tryfonas, J.H.G. Macdonald and R.E.
Wilson, “Rapid deployment of a WSN on the Clifton Suspension
Bridge, UK”, Smart Infrastructure and Construction, 170(3), 59-71,
2017.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

