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Abstract— Collaborative intelligence involves a combination of 

human and machine-based analysis, in which humans focus on 
higher-level tasks involving insight and understanding, whilst 
machines deal with gathering, filtering and processing data into a 
convenient and understandable form. We have proposed the use 
of graded concept lattices as a representation for exchanging 
information between machine and human in a collaborative 
intelligent system. Graded concepts allow summarization at 
multiple levels of discernibility (granularity). In this paper, we 
outline a new interpretation of fuzzy concept lattices as graded 
sets of crisp lattices. In addition, we prove equivalence between 
graded (fuzzy) formal concept analysis and the standard crisp 
framework. Consequently, any software tools developed for crisp 
data can be extended to the graded case without change. 

I. INTRODUCTION 
Collaborative intelligence is a term used to describe any 

system where processing is shared between humans and 
machines. It can be traced back to multi-agent systems where 
computational tasks were distributed amongst processors - 
either in a heterogeneous manner where each component had 
a specific “expertise” or in a homogeneous fashion, where a 
problem was divided into similar, but smaller, sub-problems, 
processed separately. Many systems are founded (formally or 
informally) on the idea of collaborative intelligence - an 
obvious example is the idea of querying large datasets to gain 
some insight into a topic, then refining queries once further 
understanding is gained. This is an iterative process - the 
machine contributes speed of searching/indexing, while the 
human contributes insight and conceptual organisation. 

With the increasing volume of data generated by online 
systems (internet logs, transaction records, communication 
records, transport networks, sensor networks, etc.), machine 
assistance is needed in filtering, fusing and finding causal and 
other relations in data flows. Collaborative intelligence can be 
used to monitor and proactively control the behaviour of a 
complex system such as a computer network, and includes 
prediction, perception and comprehension of data (in a broad 
sense) on a fluid basis that evolves over time. Collaborative 
intelligence relies on simple, effective and efficient 
communication of information between the “processing 
components” i.e. computers and human analysts. A key 
feature in enhancing human understanding of large scale data 
is the notion of summarisation. By combining many values (or 
objects) into a few entities, concise summaries enable analysts 
to gain insight into bulk patterns and focus on the mechanisms 
underlying relations in the data, leading to greater 
understanding of current data and prediction of future data.  

A. Knowledge Representation for Collaborative Intelligence 
To function effectively, the "components" of a 

collaborative intelligent system must be able to communicate 
efficiently. However, there is a fundamental difference in the 
knowledge representations used. Machine processing is 
generally centred on well-defined entities and relations, 
ranging from the flat table structures of database systems 
through graph-based representations and up to ontological 
approaches involving formal logics. On the other hand, human 
language and communication is based on a degree of 
vagueness and ambiguity that leads to an efficient 
transmission of information between humans without the need 
for precise definition of every term used. Even quantities that 
can be measured precisely (height of a person or building, 
volume of a sound, amount of rainfall, colour of an object, etc.) 
are usually described in non-precise terms such as tall, loud, 
quite heavy, dark green, etc. More abstract properties such as 
beautiful landscape, delicious food, pleasant weather, clear 
documentation, corporate social responsibility, are essentially 
ill-defined, whether they are based on a holistic assessment or 
reduced to a combination of lower-level, measurable 
quantities.  

Zadeh’s initial formulation of fuzzy sets [1] was inspired 
primarily by the flexibility of definitions in natural language. 
He argued that most natural language terms (concepts) admit 
“graded membership”, in that it is possible to compare two 
objects and to say whether or not one belongs more strongly 
to the concept. Clearly in the case of an elementary quantity 
such as height,  we are generally able to say that person-1 
satisfies the concept “tall” better than person-2 (or that they 
satisfy the concept equally well). Such gradation can be 
confirmed by measurement, if necessary. However, it is also 
valid to speak of graded membership in the case of more 
complex concepts such as those listed above. We can 
generally rank the membership of different objects in the set 
representing the concept extension - in other words, the 
concept extension can be modelled as a fuzzy set. The interval 
[0, 1] is a convenient range for the membership function. It 
maps naturally to a scale where definite membership can be 
represented by 1, non-membership by 0, with intermediate 
values used to reflect the lack of a precise border between the 
two extremes. However, the fundamental idea is that 
membership is ordered, not the precise membership on a scale.  

In addition to the use of flexible terms, human reasoning is 
characterised by an ability to switch between different levels 
of granularity when dealing with a problem - for example, at 



top-level, a hunter needs only to categorise animals as prey 
(something to eat) or predator (something that might eat me), 
but could then subdivide into easy catches, difficult catches, 
nutritious to eat, tasteless, etc. Similarly a manager analysing 
sales data might initially divide the data by sales volume and 
profitability, then sub-divide into regular customers, one-off 
sales, special promotions, etc. Formal concept analysis [2] is a 
convenient way to represent this hierarchical categorisation, 
and previous work [3-5] has shown how it can be extended to 
work with fuzzy categories. 

In the remainder of the paper, we outline the essentials of 
formal concept analysis and its fuzzy extension. The novel 
contributions of this paper are twofold. We introduce a new 
interpretation of fuzzy formal concept analysis, in which a 
fuzzy lattice is regarded as a fuzzy set of crisp lattices. The 
main result is to show that a fuzzy version of formal concept 
analysis can be reduced to a set of crisp calculations. The 
approach converts each fuzzy set of objects to a crisp set (of 
object-membership pairs), and we prove that a crisp concept 
lattice derived in this way is isomorphic to the fuzzy concept 
lattice derived by using our previous formulation [5]. By 
converting the fuzzy problem to a crisp equivalent, we enable 
existing software and tools to be adapted for fuzzy use without 
any change in the underlying code. 

II. BACKGROUND 

A. Formal Concept Analysis 
Formal concept analysis (FCA) extracts the implicit 

structure in data using an approach based on lattice theory. 
The basic method uses data in binary object-attribute-value 
form and groups objects into sets which have shared attributes. 
These sets form a lattice, which can be used for association 
rule analysis, ontology creation, knowledge representation and 
other tasks in data mining. The standard formulation starts 
with a formal context  (O, A, R),  where  

 
O is a set of objects,  
A is a set of attributes and  
R is a relation. 
     (1) 

For X, a subset of objects and Y, a subset of the attributes  

  

the operators ↑ and ↓ are defined as follows: 

   (2) 

Any pair (X, Y) such that  is a formal 
concept with extension X (the set of objects belonging to the 
concept) and intension Y (the set of properties defining the 
concept). For example, Table 1 shows a relation on the set of 
objects {o1,o2,o3} and attributes {a1,a2,a3} which has the 
formal concepts : 

 
 

({ }, {a1, a2, a3}),  
({o2}, {a1, a2}),  
({o1}, {a1, a3}),  
({o1, o2}, {a1}),  
({o1, o3}, {a3}),  
({o1, o2, o3}, { }) 

Using the second and fourth concepts for illustration, the 
object o2 is the only one to have both attributes a1 and a2, 
objects o1 and o2 are the only objects to have attribute a1 etc. 
In larger tables, this is less obvious to inspection. Fig 2 shows 
the lattice of formal concepts derived from the relation. 

TABLE I.  A CRISP CONTEXT 

 a1 a2 a3 
o1 1 0 1 
o2 1 1 0 
o3 0 0 1 

 
Fig. 1. A concept lattice corresponding to the formal context in Table I. The 

lattice is drawn using the conexp tool (conexp.sourceforge.net) 

To simplify the lattice view of formal concepts, it is normal 
to adopt reduced labelling [2] as shown in Fig 1. Instead of 
listing the entire extension and intension of each concept, we 
adopt the convention that the intension of a concept in the 
lattice is the attribute label attached to the concept AND all 
attributes attached to its super-concepts. In an analogous 
manner, the extension of a concept is the object label attached 
to the concept and all objects attached to its sub-concepts. 
Each object and attribute thus appears exactly once, at the 
greatest lower bound of concepts whose extension contains an 
object or least upper bound of concepts whose intension 
contains an attribute respectively. The lattice reflects the 
natural partial ordering on concepts arising from subset (resp. 
superset) relations between concept extensions (resp. 
intensions). The approach is closely linked to frequent itemset 
discovery, often used as the basis of association rule-mining 
[6] - for instance, in Fig 1 we see that all objects having 
attribute a2  also have attribute a1. 

Formal concept analysis is extended to non-binary 
attributes by scaling, i.e. creation of one or more binary 

R⊆O × A

X ⊆O and Y ⊆ A,

X
! = y "Y #x "X : x, y( )"R{ }

Y
$ = x "X #y "Y : x, y( )"R{ }

X↑ = Y and Y ↓ = X



attributes which discretise or summarise the underlying values. 
For example, an attribute taking numerical values in the range 
0-10 might be replaced by two mutually exclusive binary 
attributes A0-5 and A5-10 (or a finer partition if required).   

B. Fuzzy Formal Concept Analysis 
The extension of FCA based on a propositional table to the 

fuzzy propositional case is straightforward - instead of a table 
entry indicating that an object has (1) or does not have (0) an 
attribute, intermediate values are allowed to indicate the degree 
to which an attribute is applicable - in other words, the relation 
R in eq (1) is generalised from a binary to a fuzzy relation with 
membership function 

  

Formal treatments such as [7, 8] generalise both concept 
extension and intension to fuzzy sets. In previous work [5, 9, 
10] we have adopted a formulation of fuzzy FCA in which a 
fuzzy formal concept is defined as a pair  (X, Y) where X is a 
fuzzy set of objects and Y is a crisp set of attributes. As in the 
crisp case, concepts satisfy 

   
where we adopt the usual definition of equality for fuzzy 

sets (any element has identical membership in both sets) and  

  (3) 

   (4) 

(crisp sets of objects and fuzzy sets of attributes arise from 
a dual of these operators) An efficient algorithm for calculating 
concepts from a fuzzy context table is presented in [5].  

C. Simple Example 
Table II shows a small illustrative fuzzy context, with four 

objects {o1, o2, o3, o4} and four attributes {a1, a2, a3, a4}. 
The associated lattice is shown in Fig 2 with full labelling, and 
in Fig. 3 with reduced fuzzy labelling. 

TABLE II.  A FUZZY CONTEXT 

 a1 a2 a3 a4 
o1 1 0.8 0 0.8 
o2 1 0 0.7 0 
o3 0 0 0.5 1 
o4 0.4 0 1 0.5 

 

The reduced labelling for the fuzzy lattice (Fig 3) shows 
each element/membership pair exactly once. The extension of 
a concept is the fuzzy union of the object label attached to a 
concept and the extensions of all its sub-concepts. 

The reduced labelling for a fuzzy lattice is defined as 
follows. For any concept C =(ext(C), int(C)), we associate the 
attribute label a with the concept if 

   

and we associate the object label and membership 
 o / µext(c)(o) with the concept if 

 ∀o∈O,∀Ci <C :µext Ci( ) o( ) < µext C( ) o( )   

for non-zero memberships. Note that in some cases, this 
leads to nodes with no associated label, as shown in Fig. 3.  

  
Fig. 2. Fuzzy Formal Concept Lattice from Table II 

 
Fig. 3. Fuzzy Formal Concept Lattice from Table II with Reduced Labelling 

 

µR :O × A→ 0,1[ ]

X↑ = Y and Y ↓ = X

X↑ = y ∈Y |∀x ∈X :µR x, y( ) ≥ µX x( ){ }

Y ↓ = x / µX x( ) µX x( ) = min
y∈Y

µR x, y( )( ){ }

a∈int C( ) ∧ ∀Ci >C :a∉int Ci( )



III. A GRADED  INTERPRETATION OF FUZZY FCA 
More recent work [11] has combined the notions of formal 

concept analysis with graded tolerance relations. A concept is 
a set of objects, which cannot be distinguished on the basis of 
the describing attributes (intension). Given a partition of 
attribute values, equivalence classes naturally divide the 
objects into non-overlapping sets, each of which contains 
objects that are indiscernible on the basis of the attribute. For 
graded partitions, we obtain a nested sequence of lattices. We 
form a concept lattice using standard techniques - however, 
the lattice varies according to the membership grade used to 
create the partition. For example, Fig 4 shows the concept 
lattices at α=0.7 and α=1. We note that using graded 
equivalence relations to define concepts automatically ensures 
that the graded concepts are nested.  

The fuzzy FCA lattices obtained using eqs (3) and (4) are 
often complex and difficult to interpret visually. This problem 
is shared with crisp FCA, but is more pronounced because 
each object gives rise to several labels (one label for each 
distinct membership level for the object in the table).  

In the graded view proposed here, we treat the concept 
lattice as a crisp, membership-dependent structure. The 
conversion of a general function using fuzzy objects (such as 
sets, intervals, etc.) to a crisp function with an explicit 
dependence on membership is described in [12] and builds on 
our earlier work[13] and (in part) the work of [14, 15].  

In this interpretation, we view the conventional FCA 
process of lattice construction as a mapping  

 C :R O, A( )→ L :P O( )→ P A( )( )   
where R is the relation as defined in eq (1) ,  P(O),  P(A) 

are the powersets of objects O and attributes A respectively, 
and L is an anti-monotonic 1-1 function (usually a partial 
function) representing the lattice.  

 L X( ) = X↑ if X↑↓ = X
undefined otherwise

⎧
⎨
⎪

⎩⎪
  (5) 

For example, in Fig 2,  

 L o1, o2{ }( ) = a1{ }, L o1{ }( ) = a1, a3{ }  , etc. 

Similarly, for a fuzzy relation Rf we can write  

 
 
Cf :Rf O, A( )→ Lf :P O( )→ P A( )( )   

where  is the set of fuzzy subsets of O and Lf is a 
fuzzy lattice, defined by  eqs (3, 4). 

Adopting the X-µ approach [12], we have a mapping 

 CX :Rf O, A( )→ X : 0,1( ]→ L :P O( )→ P A( )( )( )   

i.e. from a fuzzy context (table) to a function, X, which 
takes us from membership (alpha-cut) to a crisp lattice. In 
other words if X(αi) maps to Lαi representing the set of 
concepts at membership grade αi and Lαj is the same at 
membership grade αj such that αi > αj then each object concept 
(Xc, Yc) in Lαi   has a parent object concept (Xp, Yp) in Lαj, such 

that Xc ⊆ Xp  and each object concept (Xp, Yp) in Lαj has one or 
more child object concepts in Lαi . We illustrate how this can 
be calculated and related to the fuzzy lattice, although we do 
not present a formal treatment of the problem.  

The fuzzy concept lattice is treated as a graded set of crisp 
lattices, where for any membership value in (0, 1] we have a 
corresponding crisp lattice as shown in Fig. 4. These lattices 
correspond to membership grades of at least 0.7 and 1 
respectively. Clearly the lattices are related to each other (for 
clarity, the lattice diagrams use the same position for 
corresponding concepts). They are also related to the full fuzzy 
concept lattice in Figs 2 and 3 which can be generated from the 
graded lattices by taking the union of all graded lattices with 
the appropriate memberships. This approach fits well with 
incremental methods for generating concept lattices such as 
[17], as the core lattice an be created quickly, with new 
concepts introduced as the alpha-threshold is reduced.   

 

 

 
Fig. 4. Graded formal concept lattices from the extended context in Table III 

at membership ≥ 0.7 (top) and membership 1 (bottom) 

IV. EXTENDED CRISP CONTEXTS  
When converting a fuzzy concept lattice to its crisp 

equivalent, we derive a crisp lattice on an extended set of 
objects which is formed by considering the set of pairs (o,m) 
where o is an object and m is in Λ, the level set of the fuzzy 
relation Rf.  

 Λ = α µR x, y( ) =α for some x, y( )∈O × A{ }   

 P
 O( )



In this case we have the lattice construction operation:  

 Ce :Rf O, A( )→ Le :P O × Λ( )→ P A( )( )   
TABLE III.  AN EXTENDED CONTEXT CORRESPONDING TO TABLE II 

 a1 a2 a3 a4 
(o1, 1) 1 0 0 0 
(o1, 0.8) 1 1 0 1 
(o2, 1) 1 0 0 0 
(o2, 0.7) 1 0 1 0 
(o3, 1) 0 0 0 1 
(o3, 0.5) 0 0 1 1 
(o4, 1) 0 0 1 0 
(o4, 0.5) 0 0 1 1 
(o4, 0.4) 1 0 1 1 

 

 
Fig. 5. Formal concept lattice from the extended context in Table III 

In this formulation, introduced in [5], we replace the fuzzy 
extension with a crisp extension based on element-membership 
pairs as follows. As before, let O be a set of objects, A be a set 
of attributes, and define a relation R as in eq (1). X, Y are 
subsets of O, A respectively. We use subscripts e and f  to 
indicate the extended and fuzzy cases respectively. 

Instead of the objects O, the extended context is defined on 
a set of pairs :  

Oe = oi , mk( ) ∃ak ,aj :mk = µR oi , ak( ) ∧ mk ≤ µR oi , aj( ){ }   (6) 

giving 

Rext = oi , mk( ), aj( ) ∃ak :mk = µR oi , ak( ) ∧ mk ≤ µR oi , aj( ){ }   

For example, Table III shows the extended fuzzy context 
corresponding to Table II. There is at least one row in Table III 
for each row in Table II, i.e. there is at least one element in the 
extended context for each i where there is a  j  such that   

 
in the fuzzy context.  Also 

  (7) 

Applying the crisp definitions to the extended context  : 

   
we have 

  (8)  

  (9) 

These operators applied to the extended context (Table III) 
do not give an identical set of concepts to those derived from 
the fuzzy context (Table II) with the fuzzy operators (eqs 3, 4). 
However, the intensions of the concepts are identical, leading 
to isomorphic lattices. In the next section, we prove this claim. 

A. Equivalence of Extended and Fuzzy Contexts 
Theorem : the lattice of extended concepts is isomorphic to 

the lattice of fuzzy concepts i.e. there is a bijection between 
fuzzy and extended concepts preserving the concept order.  

Since the set of attributes, A, is the same in the fuzzy and 
extended contexts, we prove that 

  
is an extended concept iff   

  
is a fuzzy concept (we use f to indicate that the operation is 

with respect to the fuzzy context, e for the extended context). 

Proof : let  be a fuzzy concept. By definition, 

       (10) 

Now consider the closure of Y with respect to the extended 
context and use proof by contradiction to show that Y is the 
intension of a formal concept in the extended context. 

Assume  is not a concept, i.e.  so that 
there is some where  

Then 

  by 8,9  

i.e. any (x,m) pair with all attributes in Y also has attribute y* 

Hence  

   by (7) 

where  

  
Hence      by (4) 
and so     by (10)  
This contradicts our assumption, hence , 

  so that if  is a fuzzy concept then is an 
extended concept. 

µR oi , aj( ) > 0

µR oi , aj( ) = max
k

mk oi , mk( ), aj( )∈Re{ }

X ⊆Oe

Y ⊆ A

X↑e = y∈A ∀ x, m( )∈X : x, m( ), y( )∈Re{ }
Y ↓e = x, m( )∈Oe ∀y∈Y : x, m( ), y( )∈Re{ }

Y ↓e,Y( )

Y ↓ f ,Y( )

Y ↓ f ,Y( )
Y ↓ f ↑ f = Y

Y ↓e,Y( ) Y ≠ Y ↓e↑e

y* ∈Y ↓e↑e y* ∉Y

∀y∈Y : x, m( ), y( )∈Re( ) → x, m( ), y*( )∈Re

∀o∈O :µR o, y*( ) ≥min max
y∈Y

m o, m( ), y( )∈Re{ }⎛
⎝

⎞
⎠

min φ( ) = 0
y* ∈Y ↓ f↑ f

y* ∈Y
Y = Y ↓e↑e

Y ↓ f ,Y( ) Y ↓e,Y( )



A similar argument can be used to show that the reverse 
implication holds, hence 

  is an extended concept iff is a fuzzy concept.  
 

Therefore the lattices are isomorphic. Note that only the 
intensions are identical. Fig. 5 shows the lattice derived from 
the extended context (Table III) which is generated by the 
example fuzzy context in Table II. The lattice in Fig 5 has the 
same concept intensions as the fuzzy lattice in Fig 3 (and 2), 
although the concept extensions are obviously different.  

For a given concept intension, the extension of the fuzzy 
concept can be derived straightforwardly from the extension 
of the extended concept - for example, considering the 
concept with intension a3 we have concept extensions 

 {o2/0.7, o3/0.5, o4/1}      in the fuzzy case and 

 { (o2,0.7), (o3,0.5), (o4,0.4), (o4,0.5), (o4,1)}  

in the extended case. We perform a simple transformation 
of a fuzzy context, use any standard (crisp) software package 
to create the concept lattice and, if necessary, transform these 
back to fuzzy concepts. 

We also note that the lattice in Fig 5 has the same concept 
intensions as the union of lattices shown in Fig 4. It is possible 
to prove equivalence of the X-µ and extended approach. 

V. APPLICATION 
A specific application area is in the analysis of cyber 

attacks where we use an ontology such as 
https://capec.mitre.org/ to categorise events into hierarchical 
classes. The category labels are fuzzy (in the sense that events 
may belong more or less strongly to a category), and the 
approach described in this paper allows us to extend existing 
software to the case of fuzzy membership in categories, 
without needing to modify the underlying software. Fig 6 
shows a fragment of the concept lattice used. 

 

VI. SUMMARY 
Fuzzy FCA is an enabler for the exchange of information 

between humans and machines in a collaborative intelligent 
system. It can model many of the soft definitions used in 
natural language and also the different levels of granularity 
used. In this paper, we have outlined two ways in which 
standard (crisp) FCA algorithms can be extended to fuzzy 
contexts. They key result is that any software designed for 
crisp (non-fuzzy) data can be used for fuzzy data without 
modification. On-going research in this area is examining the 
extension to triadic concept lattices [18], allowing relational 
tables rather than the scaled propositional tables used here.  
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Y ↓e,Y( ) Y ↓ f ,Y( )

 

Fig 6 - Fragment of a formal concept lattice for analysis of cyberattacks 


