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Abstract

The analysis of medical image data currently requires the interpretation of a trained and experienced user. The
technological advances in imaging machinery and the understanding of disease onset, as well as medical plan-
ning, all favour the need for ever more automatic and robust methods for evaluating the health state of a subject.
Here, we concentrate on methods for processing medical image data, as currently provided by existing imaging
technologies, in particular the effectiveness of automatic image filtering in order to remove noise and improve the
sharpness of distinct objects. The filtering approach is based on a partial differential equation, namely the Perona-
Malik anisotropic diffusion equation. The approach adopted for terminating the iterative filtering procedure is
based on image quality descriptors. In specific, we observe the rate of change of these to infer the transient effects
of the filtering process. The entire pipeline is demonstrated to work effectively on different sets of medical image
data, including MRI, CTA and CT, both in individual 2-D images in a stack, as well as treating the complete 3D
volumetric dataset.
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1. Introduction1

The importance of medical imaging has increased rapidly in the last decades, in the diagnosis and evaluation2

of a wide range of pathologies. Medical imaging acquisition systems inevitably introduce noise and are limited3

in resolution, reducing the apparent quality and ease of analysis of the data. Additionally, imaging artefacts may4

further deteriorate the image dataset and introduce unwanted features. In practice, medical image datasets can be5

thought to contain uncertainties that hinder a clear analysis or interpretation. The degradations may be attenuated6

to some extent by filtering algorithms in a post-processing step, and in doing so extend the scope and use of a7

given dataset. The filtering process, as all image processing, should not destroy meaningful anatomical detail nor8

erroneously create features, which could compromise an accurate interpretation of the medical image data. Image9

filtering is not only essential in medical imaging applications for noise removal, but also to enhance and recover10

fine details that may not otherwise be easily detected.11

The research community has focused on the design of fast and robust methodologies to remove noise with-12

out distorting clinically relevant data [2, 3, 4, 10]. Image processing methods, beyond filtering, also serve to13

improve and facilitate an accurate interpretation of the medical image data, for example: contrast enhancement,14

bias correction, and shape detection [8, 9, 19, 22, 42]. The methods introduced above to improve image quality,15

support the advances in imaging equipment technology, complementing them but largely retaining their role as16

post-processing techniques.17

An important step in medical image analysis and clinical evaluation is the delineation of relevant objects, hence18

object segmentation and extraction. The segmentation and reconstruction of a 3D virtual model is additionally19

a key component of mathematical modelling and numerical simulations of patient specific cases, in a range of20

topics. The computer simulation of human physiology has been influential in furthering our understanding of the21
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mechanical and biological functioning, especially in relation to a number of diseases and pathologies. However,22

these simulations are sensitive to variations in the reconstructed 3D virtual model that naturally arise from the23

uncertainty present in medical images [11, 34]. It is of great interest therefore, to process medical images with24

emphasis on object segmentation, with an algorithm that performs both automatically, to ensure both repeatability25

of results, and accurately, to retain fidelity to the raw medical data.26

Methods in image processing based on partial differential equations have been widely used due to their suc-27

cessful performance in reducing noise while preserving important features, such as object or region edges. Their28

scope is not limited to the image denoising problem, but also other restoration tools such as deblurring, enhance-29

ment, edge detection and segmentation. Here, we focus our work on the use of the anisotropic diffusion method,30

largely studied since its formulation by Perona and Malik [30], known commonly as the Perona-Malik (PM)31

equation. This model has benefited from much attention of the research community, is considered a simple and32

valuable tool for image filtering and is consequently still commonly used. However, this method is affected by33

the correct choice of parameters needed, namely the gradient threshold selected for the conductance function and34

the diffusion time (or number of iterations), which together form the set of parameters that define the behaviour35

and amount of diffusion. Incorrect estimation of the parameters may lead to an over-filtered, blurry image or an36

under-filtered one.37

Several works have investigated both the theoretical and computational aspects of the Perona-Malik anisotropic38

diffusion model. Regarding the theoretical behaviour, the ill-posedness of the PM equation makes it difficult to de-39

rive analytical results estimating the behaviour [16, 17, 1], and some authors have therefore focused on developing40

new well-posed models or regularising methods, see [16, 17] and references therein. Computationally, filtering41

algorithms created from discretisations of the PM equation have shown limitations, such as poor performance in42

flat regions that result in the well known staircasing artefact. Beyond these concerns, the task of automatic choice43

of parameters for the PM equation has not been satisfactorily addressed.44

Investigation of the appropriate stopping criteria to the filtering by anisotropic diffusion has seen some mixed45

success, and on the whole the works rely on synthetic images as opposed to real world images. In Gilboa et al.46

[13], it was shown that stopping in the steady state with respect to signal-to-noise ratio (SNR) yields an overly47

smooth image. In Dolcetta and Ferrati [7] the stopping criteria is defined as the minimum of the performance48

index. This index is found a priori using a synthetic image with similar details and discontinuities to the one to be49

filtered. Sporring and Weickert [33] proposed that the stropping criteria is based on the signal-to-noise ratio and50

the relative variance at each iteration, and the image information known at the beginning of the diffusion process.51

A comparison of the spectral content of the iterations with that of a smoothed image was usind in restoration of52

corrupted images [21] and medical image processing [25]. Other approaches have been introduced to choose a53

stopping criterion, largely making use of statistical data [43, 35] or spatial entropy [24, 23].54

Equally important, the diffusion coefficient should be carefully chosen to ensure correct identification of the55

threshold between desired object and noise scales. It was suggested [26] that the diffusion coefficient should56

to be a decreasing function of time, consequently preserving edges above this decreasing threshold as the filter-57

ing progresses. Other methods for estimating this parameter have been proposed, for example using statistical58

characteristics of the initial image and morphological operators [5, 28, 36, 12].59

In the present work, we set out to investigate the quality of the processed images in order to obtain an automatic60

filtering algorithm. The Perona-Malik anisotropic diffusion method is employed, and hence the parameters to61

be automatically chosen are both the gradient threshold (in the diffusion coefficient equation) and the diffusion62

time. Unlike previous studies, the parameter choice is found independently for each datasets and makes use of63

image quality metrics. No a priori information or estimated parameter is necessary, but may be used to speed up64

the computational time by restricting the permissible variable range. Additionally, we compare the anisotropic65

diffusion filter in two and three dimensions when applied to medical imaging datasets.66

The paper is organised as follows. Details of the synthetic and medical data used are described in section67

2. Section 3 includes a detailed description of the image quality metrics used to analyse an image and optimize68

the automatic selection of parameters. A brief introduction to the Perona-Malik model is provided in section 4.69

The proposed automatic selection of the stopping criteria and gradient threshold is detailed in section 5. Some70

preliminary but promising results are presented in section 6. Discussion and conclusions of the proposed automatic71

filtering methodology are finally given in section 7.72

2. Test images and patient specific datasets73

In this work, in order to obtain meaningful insight of the outputs produced by the automatic denoising algo-74

rithms in one, two and three dimensions, different datasets have been chosen. This provides us with a varied set75

of numerical tests in order to infer generality of the methodology.76
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Image type Image ID Dataset Resolution

Sy
nt

he
tic 1 step functions 1/140

2 f (x) = sin(x) + cos(3x) 0.2 π
3 binary circle with 10% Gaussian noise 100 pixels / diameter

M
ed

ic
al

im
ag

es
4 Cerebral aneurysm (CTA) (0.28 × 0.28 × 0.4) /mm
5 Cerebral aneurysm (CTA) (0.26 × 0.26 × 0.6) /mm
6 Cerebral aneurysm (CTA) (0.39 × 0.39 × 0.5) /mm
7 Cerebral aneurysm (CTA) (0.265 × 0.265 × 0.8) /mm
8 Nasal cavity (CT) (0.49 × 0.49 × 0.6) /mm
9 Cerebral ventricular system (MRI) (0.48 × 0.48 × 1.45) /mm

Table 1: Image datasets used for numerical validation in the present work.

We denote an image as a 2-dimensional orthogonal domain Ω = (1,Nx) × (1,Ny), with Nx and Ny being the77

height and width of the image respectively, measured as the number of row and columns. In 3-dimensions, a stack78

of 2-dimensional images is considered, hence Ω = (1,Nx)×(1,Ny)×(1,Nz), with Nz being the depth of the volume,79

measured as the number of slices in the stack. The greyscale pixel intensity of the dataset has been normalised80

to [0 − 255]. Let us denote the image during its processing by It = I(x, y, t), where x, y are the integer valued81

coordinates of a pixel in the image, and t denotes the integration time (or the integer valued time step count) of the82

diffusion process. The original 2-dimensional image is hence denoted by I0 = I(x, y, 0).83

Several tests are performed numerically in order to evaluate if the proposed methodology is robust and effective84

in image filtering. The datasets comprise of both synthetic images and patient-specific medical image scans,85

shown in (Figures 1 and 2), and summarised in Table 1. The tests involve employing the filtering method to 1D,86

2D and 3D signals, to incrementally evaluate the filtering action and the importance of the parameter choice in the87

anisotropic diffusion method.88

3. Image quality measures89

The effects of the image processing may be assessed by quantifying the image quality, including an estimate90

for the amount of noise present. This is relevant not only when analysing the accuracy of both denoising or object91

extraction algorithms, but also in order to adapt any algorithm parameter that may be dependent on the image92

characteristics. In this work we are interested in tuning the filtering process based on the following factors: i)93

reduction of noise; ii) image quality based on comparison; iii) object edge preservation.94

We analyse the local variance of the image intensity as a measure of image noise, since for a binary image95

high values of variance are seen only at feature edges. At a given pixel I(i, j), the local (biased) variance σ2, in a96

surrounding region of interest of size n × n, is given by97

σ2(I(i, j)
)

=
1
n2

n−1
2∑

X=− n−1
2

n−1
2∑

Y=− n−1
2

(
I(i + X, j + Y) − µ

)2
(1)

where µ is the mean intensity of the local region of interest, and n is a positive, odd-valued integer. In this work98

n = 3 was chosen, being the smallest symmetric mask size.99

There are several measures of image quality, typically used to compare images. In the present study the100

unprocessed image is compared to those filtered at increasing stages. The quality metrics used are:101

• mean squared error, MS E = 1
n2

∑n
i=1

∑n
j=1[I0(i, j) − It(i, j)]2.102

• peak-signal-to-noise-ratio, PS NR = 20 log
(

256
√

MS E

)
103

• signal-to-mean-square-error, S/MS E = 10 log
( ∑n

i=1
∑n

j=1 I0(i, j)2∑n
i=1

∑n
j=1[I0(i, j)−It(i, j)]2

)
104

• contrast-to-noise-ratio, CNR =
|rA−rB |

σ
, where rA and rB are respectively signal intensities for the region of105

interest and noise, and σ is the standard deviation of the image noise.106
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ID (a) (b) (c) (d)

3

4

5

6

7

8

9

Figure 1: The medical image datasets are a stack of images acquired in the axial plane. For each, a representative image is considered: (a)
original image showing the full acquisition dimensions; (b) the region of interest; (c) the image gradient for the region of interest; (d) section
of the region of interest in the sagittal plane, highlighting the presence of inter-slice noise.
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These measures are appealing due to their simplicity and clear physical meaning, however they lack visual107

quality perception. To complement these, the structural similarity measure (SSIM) is also considered [37], for108

which the original and filtered images are compared. The SSIM metric is based on the hypothesis that the human109

visual system is adapted for extracting structural information, and compares local patterns of pixel intensities110

normalised for luminance, contrast and structure.111

The use of a set of image quality metrics will improve the analysis regarding the effectiveness of the filtering.112

The metrics are also used to guide the choice of optimal parameters in the anisotropic filtering equations.113

Beyond image quality metrics, we are interested in preserving object edge location and improve edge def-114

inition. This is evaluated in the present work by object segmentation as a post-processing step. Segmentation115

is performed both on single image slices from of the dataset, as well as directly extracting a surface from the116

volumetric dataset. Object segmentation is performed based on the zero-crossing of the second directional deriva-117

tives of the image intensity [18, 27]. The approach adopted for computing the directional derivatives follows that118

proposed in [10], which allows for the removal of outliers on computing the derivatives.119

4. Diffusion in Image Filtering120

The general non-linear anisotropic (non-homogeneous) diffusion process looks for the solution of:121 
∂I
∂t = ∇ · (c∇I), in Ω

I(0) = I0

(2)

where, Ω = Rn ,∇· and ∇ represent the divergence and gradient operators respectively, and c(x, y, z, t) is the122

diffusion coefficient, allowing for spatial anisotropy. Depending on the model chosen, c can be a scalar or a123

tensor/function, to allow for directional anisotropy [38, 41]. When c is chosen to be a function of the image I, (Eq.124

2) becomes non-linear.125

It is easily seen that if c is set to be a constant scalar, then Eq. 2 reduces to the isotropic heat equation. Solving126

the heat equation can be carried out by convolving the initial temperature distribution (i.e. image intensity) with127

a Gaussian kernel, which variance depends linearly on the total time of diffusion. The Gaussian function in fact128

is the Green’s function (i.e. the impulse response) for the diffusion equation. This operation is commonly used in129

image filtering by radial weighted pixel intensity averaging within a given compact support.130

4.1. An overview of the Perona-Malik method131

The anisotropic diffusion method, also known as Perona-Malik (PM) model [30], makes use of a spatially132

varying diffusivity coefficient, such that smoothing occurs within regions rather than across region boundaries.133

Boundaries are commonly described as functions of |∇I|, though alternatively higher order derivatives may also134

be used [17].135

The motivation for a spatially varying gradient threshold is the following. For small spatial gradients of the136

image pixel intensity, which can be considered as homogeneous regions, large values of the diffusivity are desirable137

in order to perform a stronger local smoothing, hence confidently removing the local noise. Conversely, in regions138

with large gradients, which can be considered as containing region boundary, smaller values of diffusivity are139

sought to reduce the diffusion process and preserve important image features. The diffusion coefficient c is,140

therefore, suggested to be a decreasing function of the spatial gradient and is commonly formulated based on two141

possibilities [30]. Both definitions are non-linear and space-invariant transformation of the initial image. In the142

present study, c in (Eq. 2) is given by143

c =
1

1 +

(
|∇I|
β

)2 (3)

By choosing this formulation, emphasis is given to wide regions over smaller ones [39]. It is shown in Appendix144

A that (Eq. 2) allows for backward diffusion in the direction normal to the ridges of I for large enough gradients145

|∇I|, while always maintaining a forward nature in ridge tangential directions.146

Filtering discrete signals requires a reformulation of Eq. 2 for discrete computations. In the discrete case147

therefore, the local image gradients are computed as differences between neighbouring pixel intensities. For148
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example, in the 1D case the spatial discretisation can be derived as follows:149

∂I
∂t

= ∇ · (c∇I)

=
∂

∂x

(
c ·

∂I(x, t)
∂x

)
'

∂

∂x

(
c ·

1
∆x

(
I(x +

∆x
2
, t) − I(x −

∆x
2
, t)

))
'

1
∆x2

([
c(x +

∆x
2
, t) · (I(x + ∆x) − I(x))

]
−

[
c(x −

∆x
2
, t) · (I(x − ∆x) − I(x))

])
= φeast − φwest for ∆x = 1

(4)

and finally adopting a first order time discretisation, we obtain150

I(t + ∆t) ' I(t) + ∆t ·
∂I
∂t

= I(t) + ∆t · (φeast − φwest) (5)

Stability of this one-dimensional scheme is achieved by appropriate choice of the time discretisation, such that151

∆t < 1/2 [40]. The two-dimensional discretisation of the procedure is presented in Appendix B. This scheme has152

been adopted due to its simplicity, though it should be noted that alternative and more computationally efficient153

approaches have been developed, based on operator splitting or factored schemes [15, 40, 32]154

The behaviour of the anisotropic diffusion equation can be observed with simple tests. Here we take as exam-155

ples two 1D functions: i) a smooth trigonometric function f (x) = sin(x) + cos(3x), and ii) a series of incremental156

step functions. Additionally, on stacking these 1D function, one obtains a 2D image, which can in turn be stacked157

to obtain a 3D volume. For these datasets the image intensity varies only in one Cartesian direction, allowing158

for a simple analysis of the anisotropic filtering in different dimensions for effectively equivalent initial data. By159

considering these additional dimensions, the noise present will be interpreted according the dimension, and the160

filtering will additionally be performed in each Cartesian direction. Results of the anisotropic diffusion carried out161

in 1D, 2D and 3D are shown in Figure 2. We will see subsequently that the two-dimensional and three-dimensional162

experiments on the medical image datasets corroborate the one-dimensional findings. A significant difference is163

seen in terms of computational speed, while the same behaviour is seen for both the smooth trigonometric function164

and the step functions.165

4.2. Overview of parameter choice for the Perona-Malik method166

Filtering methods are sensitive to the choice and fine tuning of different parameters. The Perona-Malik method167

is mainly affected by the threshold β, which appears in the anisotropic diffusion coefficient (see Eq. 3), and the168

stopping criteria T , which is the total diffusion time (T =
∑

∆t, see Eq. 5). Thus, a critical question is how to169

choose these two parameters for a given image dataset in order to obtain the most favourable filtering result.170

The gradient threshold β plays a major role in the diffusion process, since it defines the difference between171

noise and object edges. Different approaches to estimate β have been proposed in the literature. Perona and Malik172

[30] suggested to fix β by trial and error, or using a noise estimator as described in [6]. Alternative approaches173

have been proposed, such as using the p-norm of the image intensity [36], or through linking robust local statistics174

estimators and diffusion [20, 5].175

Let us now consider some of the different approaches found in the literature for selecting a stopping criteria.176

The main challenge when deciding an optimal stopping criteria lies in the fact that a noise free image is not always177

known a priori. Therefore, T should be estimated using only statistics of the filtered image at each iteration of178

the diffusion process. A decorrelation criteria was proposed in [29], in which T is considered as the time which179

minimizes the correlation between the difference (I0 − It) and It, where I0 and It are the original image and filtered180

image after t iterations, respectively. Therefore,181

T = arg min
t

cov(I0 − It, It)
√

var(I0 − It) · var(It)
(6)

Another approach suggested in [12] is to maximize the signal-to-noise-ratio (SNR) of the filtered image as:182

SNR = 10 log
var(Ic)

var(It − Ic)
. (7)
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Figure 2: Typical evolution of the anisotropic diffusion method as proposed by the Perona-Malik method (Eqs. 2 and 3). Here β = 1, while
the total integration time T is varied. Two test functions are considered: top row shows a sequence of incremental step functions; bottom row
shows smooth trigonometric function. Left column: 1D filtering at different T . Right column: comparison between 1D, 2D and 3D filtering at
different T .

where Ic is the noise free image, such that I0 = Ic + noise. Given that ∂(S NR)/∂(var(I0 − It)) = 0 yields the183

condition for finding the maximum of SNR, then T can be found as184

T = arg min
t

∂tcov((I0 − Ic), (I0 − It))
∂tvar(I0 − It)

. (8)

The variance of noise (I0 − Ic), however, has to be known a priori, and while this may be estimated it may lead to185

significant errors in practical applications.186

A similar approach, proposed by [31], involves selecting T that maximizes the signal-to-mean-square-error187

S/MS E improvement, which is computed as the difference in S/MS E values at two consecutive time steps.188

Again, this is a very successful metric when dealing with synthetic images, where a noise free image is known189

beforehand.190

All the above methods give emphasis to reducing noise and do not take into consideration the quality of object191

edges within the image. It has been shown in the literature that, over filtering the image (selection of T larger than192

the one needed) blurs feature edges and effectively degrades the image. It is clear that as an edge degrades the193

PSNR of the filtered image starts decreasing as well.194

5. Automatic choice of gradient threshold β, and total integration time T195

In the present work, both T and β are selected based on a combination of different metrics (defined earlier196

in Section 3): mean image variance (σ), mean square error (MSE), contrast-to-noise-ratio (CNR), structural sim-197

ilarity measure (SSIM), peak-signal-to-noise-ratio (PSNR). In doing so, both the overall image quality and the198

object edges are taken into consideration. While the aim is to identify preferred choice for parameters β and T in199

the filtering process, the concept of ‘optimal’ should be used loosely since no formal optimisation is performed.200
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β � βopt βopt β � βopt

PS NR = 31.9 PS NR = 26.0 PS NR = 19.4

σ = 714.6 σ = 617.6 σ = 279.6

S S IM = 0.94 S S IM = 0.78 S S IM = 0.57

T � Topt Topt T � Topt

PS NR = 36.9 PS NR = 26.0 PS NR = 19.8

σ = 734.5 σ = 617.6 σ = 509.6

S S IM = 0.98 S S IM = 0.78 S S IM = 0.51

Figure 3: Image dataset 6, highlighting effects of under- and over-filtering based on alternative choices of β and T around the identified optimal
values. Top row: varying the gradient threshold β, while T = Topt . Bottom row: varying total integration time T , while β = βopt .

However an exhaustive search is carried out, computing the image quality metrics for a range of parameters T and201

β, and subsequently identifying the most desirable image, as well as an acceptable parameter ranges. The effects202

of alternative choices of the parameters β and T around the identified optimal value are shown in Figure 3, from203

which under- and over-filtering can be visually appreciated.204

The exhaustive parameter search proposed is a two stage process to reduce the computational cost. In the first205

stage, a range of β values are investigated. For each choice of β, the anisotropic diffusion is carried out and an206

optimal total integration time T is identified, based on image quality metrics, hence we write T = T (β). The207

output of the first stage therefore, is a set of plausible filtered images, each computed with a different, incremental208

β and up to its optimal T . The second stage involves making use of image quality metrics on this set of filtered209

images, identifying the most desirable one. By doing so, the difficulty in identifying optimal choice for β and T210

is decoupled. Hence, an effective choice of T for a range of β is first computed, and subsequently the selection of211

the optimal β.212

In both stages, one parameter is varied incrementally, which allows one to follow the filtering behaviour. In the213

first stage, for each choice of β, the diffusion integration time is advanced uniformly, while in the second stage the214

set of plausible filtered images are ordered by incremental β. The filtering behaviour is quantified by computing215

the rates of change of some image quality metrics, with respect to either T (in the first stage) or β (in the second216

stage). From these rates of change in image quality metrics, it is possible to identify different responses to the217

anisotropic diffusion as it progresses.218

These rates of change are effectively the gradient (∂| f |/∂t), and Laplacian (∂2| f |/∂t2), where f is replaced by219

each of the image quality metrics. For a constant time integration step ∆t, the rates of change are based on the220

iteration count, which for simplicity can be considered of unit size. We can therefore write the discrete gradient as221

∇ f = ft+1 − ft (9)

and the discrete Laplacian as222

∆ f = ∇ ft+1 − ∇ ft (10)
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Figure 4: Example behaviour for image dataset 6, highlighting the use of quality metrics to optimize β and T . The filtering responds differently
if an individual 2D image or volumetric 3D datasets are used. Note that βopt = 9; T (β = 9) = 55.

where the subscript t is the time integration iteration count. The gradient of a image quality metric describes the223

progression of the image processing, while the Laplacian can be used as an indicator of changing regimes in the224

filtering process. In practice the ratio of Laplacian to gradient is employed as a single indicator function to present225

the progressive effects of the filtering procedure, hence:226

F =
|∆ f |
|∇ f |

(11)

The premise considered in a filtering process of an image corrupted by noise, is that it will contain information227

of the noise at a smaller scale to that of the foreground objects in the image. As the filtering progresses, the228

suppression of noise occurs faster than the deterioration of the image object definitions because the noise appears229

at the smaller scale. By observing the rate of change of the image quality metrics, the different stages of the230

filtering process are identifiable. Hence, we look to terminate the filtering when the removal of the noise has231

slowed down sufficiently, and before the foreground object definition starts degrading excessively. Consequently,232

we seek the instant in the filtering process where only small changes occur between two successive images, hence233

a small gradient. Additionally we look for the iteration step t where the Laplacian changes sign, since we seek a234

distinct change in the filtering process, namely when the noise (small scale features) are effectively removed and235

the image object boundaries become evidently affected.236

In the first stage, for a given choice of β, the optimal number of iterations in the filtering process, hence the237

total integration time T of Equation 2, can be identified by observing the rates of change of the following image238

quality measures: the mean local image variance (σ), the contrast-to-noise ratio (CNR) and the structural similarity239

measure (SSIM), as a function of the time integration steps. In particular, we are looking for the zero crossing of240

the Laplacian of these metrics (i.e. ∆ ft = 0), however if this criterion is not met then the chosen total integration241

time is that which maximises F. Since for each metric an integration time T f = (Tσ,TCNR,TS S IM) is identified, the242

optimal stopping instant T is given by the mean value of the T f instants found, hence T = (Tσ + TCNR + TS S IM)/3.243

We note that the value of optimal T will vary with the value of β, hence we write T = T (β).244

In the second stage, we are interested in removing the most amount of noise possible, without compromising245

image edges. Once the maximum of CNR, S/MSE and PSNR improvement is reached then the sharpness of the246

edges starts degrading due to edge blurring. Hence, given that for a range of β its respective optimal T (β) is known247

(from the first stage), we aim to find β which maximizes the CNR, S/MS E and PS NR improvement (defined as248

fimp = | ft+1 − ft |, [31]), as well as minimizes the image noise σ. Optimal β is therefore the mean value of the four249

β obtained for each metric, hence β = (βCNR + βS/MS E + βPS NR + βσ)/4.250
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Figure 5: Image quality metrics for dataset 5, as the filtering progresses. The selection of optimal T is found
by observing (a)-(c), hence the behaviour of each metric used for the automatic selection of parameters as
the number of iterations varies. The selection of optimal β is found by observing (d), hence the variation of
each metric improvement. Here we identify the optimal values to be T = 21 and β = 27.

x

x

x

x

x

x

x

x

(a) (b)

x

x

x

x

x

x

x

x

x

x

x

(c) (d)

Figure 6: Image quality metrics for dataset 6, as the filtering progresses. The selection of optimal T is found
by observing (a)-(c), hence the behaviour of each metric used for the automatic selection of parameters as
the number of iterations varies. The selection of optimal β is found by observing (d), hence the variation of
each metric improvement. Here we identify the optimal values to be T = 13 and β = 32.
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The proposed algorithm is procedurally set out as follows:251

Proposed Algorithm:

Step 1. Find the optimal T (β), for a range of β:
for β = βmin : βmax

for t = 0 : max(t)
if ∆ ft changes sign

T f = t;
else

T f = t which maximizes F f , for f ∈ {σ; CNR; S S IM}
endif

end
end
Optimal T (β) subset is then given by T (β) = (Tσ + TCNR + TS S IM)/3

Step 2. Find the optimal β from the T (β) subset, such that:
for β = βmin : βmax

β f maximizes fβ, for fβ ∈ {CNRimp; S/MS Eimp; PS NRimp}

and
β f minimizes σimp

end
Optimal β = (βCNR + βS/MS E + βPS NR + βσ)/4

252

We now look in detail at the procedure of both stages, taking as examples image datasets 5 and 6, and pre-253

senting the results in Figures 5 and 6. It is evident that the values and behaviour of the computed image quality254

metrics vary considerably between both datasets and hinders direct comparison of absolute values between image255

datasets. However, on observing the rates of change of the metrics, hence the discrete gradient (Eq. 9), discrete256

Laplacian (Eq. 10) and the ratio of these (Eq. 11), similar response to the anisotropic diffusion progression can be257

identified. As expected, either ∆ f changes sign at some instant t, as seen for f = S S IM, or f = CNR, in dataset 6258

(Figure 6), or the maximum of F marks the beginning of the excessive image degradation for f = σ. These trends259

are seen consistently for the metrics used, hence f ∈ {σ; CNR; S S IM}.260

One should note that image metrics are simplistic, since they are each a single number to describe potentially261

complex images. Indeed, we can see from Figures 5 and 6 that some metrics do not always reach an extremum262

for a given sweep test or β or T , in which case no parameter choice can be made based on this metric, and263

it is discarded from the set locally. The use of a varied set of image metrics is therefore important to ensure264

robustness and quality of the image filtering, and this is in contrast to existing methods for parameter choice. One265

may also consider the use of additional image metrics, which may improve the robustness and the quality of the266

image filtering. One could also consider performing the analysis on sub-regions within each image, allowing for267

a spatially localised quantification, enabling greater sensitivity in the parameter choice of the filtering process.268

While this exhaustive parameter search can be computationally intensive, it is evident that one need only269

evaluate a suitable range of β and T , hence reducing the time required for analysing a given image dataset. The270

parameter search within a suitable range remains feasible for a stack of 2D images if considered separately.271

For a 3D volumetric dataset the computational cost is prohibitive and the approach adopted involves identifying272

parameters from the analysis of individual 2D images within a dataset, and using these directly for the volumetric273

dataset. This approach appears effective from the numerical tests performed.274

6. Numerical Experiments275

In this section, we present some examples to show the effectiveness of the proposed approach to perform276

anisotropic diffusion with automatic parameter selection for β and T . Results have been analysed both in 2D and277

3D domain.278

6.1. Synthetic Results279

Controlled test cases using synthetic images allow us to construct both corrupted and noise-free images. Some280

results on the progression of the diffusion for both a smooth trigonometric function and a set of step functions,281

were presented in previous sections and can be seen in Figure 2.282
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smooth function noisy function filtered function

CNR 1.7 1.5 2.4
σ 412.6 537.6 188.8

SSIM 0.79 1 0.59
PSNR 42.4 - 37.3

βopt = 19 Topt = 544

Figure 7: Solution of the anisotropic diffusion for dataset 1 (trigonometric function f (x) = sin(x) + cos(3x)) corrupted with 10% Gaussian
noise. The parameter values β = 19 and T = 544 are identified as optimal using the proposed automatic selection criteria. Image quality
metrics are presented in the table.
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noisy circle filtered in 2D filtered in 3D

CNR 4.1 6.8 7.5
σ 1169.1 165.1 69.9

SSIM 1 0.16 0.12
PSNR - 17.9 17.1

Figure 8: Results of filtering using the Perona-Malik method, for a synthetic image of a binary circle with additive Gaussian noise. The
filtering is performed on the single 2D image, as well as for the volumetric dataset (analogous to a cylinder). The parameters values β = 35
and T = 76 are identified as optimal using the proposed automatic selection criteria. Image quality metrics are presented in the table.
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Here we focus on the effects of noise corruption on the function, and the use of the automatic methods for283

parameter selection. Our first example is the smooth trigonometric function (dataset 2), with the addition of 10%284

Gaussian noise, and results of the filtering are shown in Figure 7. When optimal values for β and T are used,285

based on the image quality metrics, the Perona-Malik method is able to differentiate local and global features and286

remove noise while maintaining feature objects. From the tabulated image quality metrics presented in Figure 7,287

we see the expected slight increase on the CNR after filtering, and a significant decrease in the local variance (σ),288

as the amount of noise is reduced and the filtered function flattens.289

Similar findings emerge from the results of the synthetic two dimensional image of the circle (dataset 3) with290

10% Gaussian noise, and its extrusion to a 3D cylinder, shown in Figure 8. Both visual and quantitative results291

show considerable improvements when filtering a stack of images in three dimensions as compared to in two292

dimensions, which can be easily seen by the improved segmentation obtained.293

It should be noted that the Perona-Malik method relies on a Cartesian discretisation for approximating the294

spatial derivatives of the anisotropic diffusion equation, and as evident from Figure 8, the edge definition deterio-295

rates when it is not aligned to the axes. Alternative discretisations for approximating the spatial derivatives could296

provide superior results in this regard [10].297

6.2. Medical Imaging Results298

We focus our attention on the clinically acquired medical data datasets. The results follow those presented299

earlier in Figure 3, where for incorrect values of β selected, either noise is not removed efficiently (β � βopt)300

or the blurring occurs and edges are excessively diffused (β � βopt). A similar behaviour is seen with the total301

integration time, hence for small number of iterations the filtering is ineffective (T � Topt), while for large number302

of iterations feature objects are also filtered (T � Topt). Parameters T and β may vary within a stack of images, if303

the images are considered individually. The reason for this is that features and objects of interest in medical image304

data can regionally vary in size and image characteristics, making it crucial to tune both parameters β and T for305

each image.306

On inspection of the image quality metrics of the filtered datasets using optimal parameters in the Perona-307

Malik method, reported in Table 2, we find that similar responses are obtained, though the parameter choices are308

seen to vary. In practical applications, the image quality metrics are not suitable for direct comparison purposes,309

due to different information present in the datasets (such as imaging modality, patient specific anatomy and regions310

of interest). However, as noted above, the rate of change of the image quality metrics during the filtering does311

provide sufficient insight to analyse the individual datasets and give an indication of what parameter choices yield312

favourable results.313

Dataset 4 Dataset 6

original filtered in 2D filtered in 3D original filtered in 2D filtered in 3D

CNR 2.3 2.5 2.5 1.9 2.0 2.2
σ 60.2 26.3 11.9 796.0 634.2 617.6

SSIM 1 0.85 0.69 1 0.78 0.62
PSNR - 34.9 29.0 - 26.0 21.4

Dataset 8 Dataset 9

original filtered in 2D filtered in 3D original filtered in 2D filtered in 3D

CNR 41.2 39.9 39.2 59.6 67.7 65.0
σ 880.7 775.8 705.6 191.2 170.8 151.9

SSIM 1 0.94 0.88 1 0.81 0.74
PSNR - 33.6 28.9 - 22.8 22.3

Table 2: Image quality metrics of the solution of anisotropic diffusion for example datasets.
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Figure 9: Original and filtered image from dataset 4, with optimal β = 27; T = 21
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Figure 10: Original and filtered image from dataset 6, with optimal β = 32; T = 13

14



Original Filtered 2D image Filtered 3D volume

Im
ag

e
in

te
ns

ity
Im

ag
e

gr
ad

ie
nt

m
ag

ni
tu

de
Sa

gi
tta

lp
la

ne
im

ag
e

in
te

ns
ity

Im
ag

e
in

te
ns

ity
an

d
se

gm
en

ta
-

tio
n

Figure 11: Original and filtered image from dataset 8, with optimal β = 15; T = 27
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Figure 12: Original and filtered image from dataset 9, with optimal β = 12; T = 64
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Figure 13: Image dataset 4: contours of lumen boundary of region of interest (left) and detail (right). Segmentation of the image results in:
light blue - original geometry; orange - filtered considering single 2D image; magenta - filtered considering volumetric 3D dataset.

Original 2D filtering 3D filtering
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Figure 14: Surface segmentation, applied directly to the 3D volumetric dataset, based on the zero-crossing of the second directional derivative.
The reconstructed surface for the original dataset is of poor quality. The reconstructed surfaces for images filtered individually within the
stack, show substantial improvement though inter-stack noise is still present to some degree. As the image datasets are filtered in 3D, noise is
more effectively identified and removed using information within the stack, resulting in quality reconstructed surfaces of the anatomy. For all
these segmentations, in order to allow for clear visibility of the anatomy, all surrounding structures and features have been removed if |∇I| < 20
for dataset 4 and |∇I| < 40 for dataset 6 in the marching cubes method for surface extraction.

Results of the filtering process for a selection of the medical image datasets analysed are shown in Figures314

9-12, from which it is possible to visually appreciate the quality of the noise removal. From these results it is315

apparent that the filtering using the 3D volumetric dataset yields superior results compared to those obtained for316

individual 2D images in a stack. The reason for this is that noise is more effectively identified using information317

within the stack, as such also more effectively removed while preserving major foreground objects. The exception318

to this is for image dataset 9, where possibly important features, such as the different cerebral tissue identification,319

are degraded while dominant features such as the delineation of the ventricles are more clearly identifiable. The320

reason for this is that the image quality metrics give greater weight to dominant changes in the image as feature321

objects, and the resulting methodology hence focuses on these.322

Additional evaluation of the filtering process is prudent beyond the visual inspection, and we turn our attention323

to image segmentation. Here, we use an automatic method, in line with the desire to provide an entirely automatic324

pipeline for processing medical image data. As introduced earlier in Section 3, the zero-crossing of the second325

directional derivatives of the image intensity is used, both for the individual images as well as for the volumetric326

data. For ease of visualisation, in the figures only the segmented lines with |∇I| > 10 are shown. We first327
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compare the segmentation of a section of a cerebral aneurysm, belonging to dataset 4, which can be considered as328

a representative result and is shown in Figure 13. The result of the filtering is effective in removing much of the329

noise present, and subsequently also the spurious objects identified in the segmentation of the unprocessed image.330

The comparison between the filtering performed on the 2D image and the volumetric 3D dataset are similar,331

though subtly different, with the greatest discrepancy in a region where the vessel is angled with respect to the332

plane of the image. In this case the information from the volumetric dataset serves to handle the partial volume333

effects more accurately, since depth information is now available.334

From the results of the surface segmentation for image datasets 4 and 6, shown in Figure 14, noticeably335

superior results are obtained if the filtering is performed on a volumetric dataset as opposed to the individual336

images in a stack. When the filtering is performed on the volumetric dataset, we observe both that vessels angled337

with respect to the image plane are processed satisfactorily, and noise across the image stack is more easily338

identified and removed.339

Image quality metrics for the filtered image results are presented in Table 2, where the measures are computed340

by comparison to the original noisy image. This is done for all image comparison metrics, since, when dealing341

with medical data, an optimal image is not known. We see that PSNR always decreases for all datasets tested,342

which is expected and desirable. For datasets acquired using CTA, results show a mean reduction of 38% of image343

noise (σ) when filtered in 2D (56% and 20% for dataset 4 and 6, respectively), while when 3D filtering is applied,344

a mean decrease of 51% is seen (80% and 22% for dataset 4 and 6, respectively). This results in a smoother345

surface segmentation of the anatomical geometry, seen after geometry reconstruction (Figure 14). For the other346

two modalities (CT and MRI), dataset 8 and 9 (Figures 11 and 12) the same behaviour is seen in Table 2.347

The results presented indicate that the proposed automatic method for choosing coefficients for image filtering348

with the Perona-Malik method, is able to filter noise, preserve important features and enhance the image contrast.349

For all image modalities, the SSIM is kept high (SSIM ≥ 0.62), as well as typically an increase in CNR values350

after filtering. All the results indicate considerably better performance in segmentation and noise removal when351

the filtering is applied to the three-dimensional dataset directly.352

The results obtained for the medical images were validated by a clinical expert. Such methodology has been353

adopted in other recent works by the authors, involving numerical simulations of haemodynamics in cerebral354

arteries [14].355

7. Conclusions356

The anisotropic diffusion method as proposed by Perona and Malik [30] is widely used in filtering images. The357

two parameters in the model, namely the gradient threshold constant β (that appears in the diffusion coefficient),358

and the total diffusion time T (or number of iterations), need to be set a priori. In this work we have proposed an359

automatic method to select coefficients that yield appealing results for both noise suppression and quality object360

segmentation. The approach is based on a posteriori analysis, where the parameter search is reduced by firstly361

identifying appealing total diffusion times as a function of the gradient threshold constant, hence T = T (β), and362

subsequently choosing a gradient threshold constant from the subset of solutions.363

The evaluation of the filtering process, used in order to select the two parameters in the model, rely on image364

quality metrics. These compare the filtered images to the original noise-corrupted image. The rates of change365

of the image quality metrics are used to interpret the effects of the diffusion as it progresses, and subsequently366

a means of identifying the suitable parameters β and T . By taking into consideration a range of image quality367

metrics, different properties of the image could be tracked during the filtering evolution. While image metrics368

are simplistic, since they are each a single number to describe potentially complex images, by using a set of369

metrics we ensure robustness and quality of the image filtering. The additional use of other image metrics may370

improve the robustness and the quality of the image processing. One could also consider performing the analysis371

on sub-regions within each image, allowing for a spatially localised quantification, enabling greater sensitivity in372

the parameter choice of the filtering process.373

The automatic filtering method proposed was tested for a set of medical image datasets and synthetic functions.374

The scope of the approach can be extended for different applications, and may be easily further developed by375

considering additional quality metrics. The analysis in Section 6 showed that the proposed approach provides a376

robust solution for the stopping time and gradient threshold, with very promising results. The results obtained for377

the medical images were validated by a clinical expert. The rates of change of image quality measures are seen to378

be effective in revealing the response of the anisotropic diffusion to the image datasets.379

Although slightly more complex to compute, the filtering process performed in 3D yields more favourable380

results than considering individually each image of the stack. This is crucial when filtering medical images381
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due to the existent inter-slice noise which can be more efficiently identified and removed by considering the 3D382

volumetric data.383
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Appendix A. Anisotropic diffusion390

∂I
∂t

= ∇ · (c(|∇I|)∇I) = (c(|∇I|)∆I +
(c′(|∇I|)
|∇I|

∇2I(∇I,∇I) (A.1)

By setting391

392

∂ττI = (IxxI2
y − 2IxyIxIy + IyyI2

x )/|∇I|2, as the linear diffusion term in the orthogonal direction of ∇I, and393

394

∂ηηI = (IxxI2
x − 2IxyIxIy + IyyI2

y )/|∇I|2, as the diffusion term in the direction of |∇I|, the anisotropic equation395

(Eq. A.1) can be re-written as396

∇ · (c(|∇I|)∇I) = c(|∇I|) ∂ττI + C′(∇I)∂ηηI, (A.2)

with C(|∇I|) = |∇I|c(|∇I|).397

Appendix B. Discrete formulation of the Anisotropic diffusion in 2D and 3D398

The 2-D discretization procedure is simple and extension of the 1D implementation:399

∂I
∂t

= ∇ · (c∇I)

=
∂

∂x
(
c
∂I(x, y, t)

∂x
)

+
∂

∂y
(
c
∂I(x, y, t)

∂y
)

=
1

∆x2

(
c(x +

∆x
2
, y, t) (I(x + ∆x, y) − I(x, y)) − c(x −

∆x
2
, y, t) (I(x, y) − I(x − ∆x, y)

)
+

1
∆y2

(
c(x, y +

∆x
2
, t) (I(x, y + ∆y) − I(x, y)) − c(x, y −

∆y
2
, t) (I(x, y) − I(x, y − ∆y)

)
= φeast − φwest + φnorth − φsouth

(B.1)

In the first step of the process, the signal φ is computed between neighbouring pixels, while the second step400

the pixel intensities are updated by the localised sum of pixel contributions:401

I(t + ∆t) ' I(t) + ∆t
∂I
∂t

= I(t) + ∆t
(
φeast − φwest + φnorth − φsouth

)
(B.2)

The 3D formulation I(x) = I(x, y, z) follows directly the original anisotropic diffusion in 2D and 1D. The total402

contribution of each neighbour pixel is now taken from the 26 neighbouring voxels within a 3× 3× 3 window. For403

a d-dimensional problem the stability of this explicit scheme is given by ∆t < 1/(2d) [40].404
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