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A B S T R A C T

Developing an objective video quality metric that accurately estimates perceived video quality is challenging.
Developing a metric that can additionally be embedded in the rate distortion optimization process of a video
codec can be even harder given that decisions have to be made locally. In this paper, we present a method for
combining a number of existing state of the art objective video quality metrics at the coding block level by
employing a fusion of local content features for deciding how to best utilize the chosen metrics. Our results
indicate promising performance in terms of the correlation of the developed locally-acting quality metric with
the overall perceived quality of the video.

1. Introduction

Although video quality has been traditionally evaluated using Mean
Squared Error (MSE), it is already known that it does not linearly
correlate with the perceived quality due to the human visual system
properties that are not captured by it [1]. The most reliable method to
assess the quality of the compressed videos is through the subjective
assessment of the perceived quality. This, however, for a real-time
system is impractical due to the time constraints imposed. As a solution,
many different objective quality metrics that purport to correlate well
with perceived quality have been proposed. However, the performance
of these metrics varies widely on different video content [2].

The literature is rich in quality metrics which claim better correla-
tion to perceptual quality than MSE. These metrics were either initially
designed for images, such as the Structural Similarity Index (SSIM) [1],
Peak Signal to Noise Ratio based on HVS (PSNRHVSM) [3], Multi-Scale
SSIM (MS-SSIM) [4], Visual Information Fidelity (VIF) [5], Feature Sim-
ilarity Index (FSIM) [6]; or for video, such as Perception-based Video
Metric (PVM) [7], Motion-based Video Integrity Evaluation (MOVIE)
index [8], or Video Quality Metric (VQM) [9]. Although most of the
aforementioned metrics correlate better with perceived quality than
PSNR [10] for compressed video, they lack the capability of oper-
ating as an integral part of the RDO process, either because they
are highly complex (e.g. MOVIE) or because they do not offer the
additive property; the measured quality of a region is not equal to the
sum of measured quality of its parts. RDO addresses this problem by
utilizing the SAD and SATD metrics that offer such a property up to
the CTU level; RDO optimizations are performed on each level of block
segmentation. However, this is limited to the size of the CTU. Several
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CTUs are never assessed together and therefore their collective score
is never calculated for the purposes of RDO. Our work is a method
for assessing the overall quality at a different segmentation level, as
our method segments the CTUs based on their content characteristics.
Some of the metrics above have been tested within an RDO framework.
SSIM is typically an example of such an attempt (e.g. [11–13]) which
has been applied to RDO [14] and quantization [15]. SSIM is also an
example of a metric that does not offer the additive property, rendering
it difficult for use by the RDO process. It is also important to note that
improving PSNR [16] by adapting it to subjective quality evaluation
scores has received extensive research.

Choosing amongst all these metrics is a challenge by itself as they
each offer different levels of performance for different content. One
way to address metric selection is through fusion of several metrics
using machine learning techniques. VMAF [17] is a good example of
a practical quality metric that fuses VIF [5], DLM [18] and motion
information (i.e. frame differencing). Being trained on a large varied
dataset, VMAF shows higher correlation to subjective quality compared
to other objective quality metrics. However, it evaluates the over-
all frame quality, which is not ideal in an RDO environment where
block-level quality estimation is required.

Motivated by the above, this work introduces a block-level fusion
of objective metrics for video quality assessment (BVQA). BVQA is
a result of fusing state of the art objective metrics based on their
spatio-temporal content at a block level. A diagrammatic outline of
the proposed method to develop BVQA models is depicted in Fig. 1.
First a small scale study is performed on a set of best-performing
objective metrics. Then, based on this, a content analysis takes place. In
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Fig. 1. Diagrammatic outline of the proposed method to develop the BVQA models.

Table 1
Linear & Rank correlation of DMOS & SOA metrics for BVI_Texture data set and relative
average complexity.

FSIM MSSSIM PSNR PSNR- PSNR- SSIM VIFP
HVS HVSM

Blk Lin .629 .623 .257 .280 .365 .474 .507
Rnk .605 .651 .443 .499 .609 .526 .522

Frm Lin .736 .726 .325 .355 .453 .544 .615
Rnk .697 .804 .479 .523 .640 .658 .600

Seq Lin .746 .743 .327 .357 .457 .551 .621
Rnk .709 .815 .479 .525 .639 .665 .602

Rel. Cmplx 3.00 1.82 1 1.36 1.36 1.55 2.18

Table 2
Cluster centroids in the three content feature dimensions.

Cluster EDGE_ENT SI TI

K0 .126 .141 .138
K1 .251 .456 .061
K2 .392 .585 .048
K3 .443 .576 .270
K4 .059 .050 .031
K5 .164 .288 .039
K6 .170 .254 .328

particular, content-based clustering of the video blocks is performed to
group blocks with similar content features and quality. Considering this
grouping of content and quality, different block-level quality prediction
models are developed. The aim here is to identify the fusion of metrics
that performs best in specific scenarios, as some metrics might perform
better at relatively static scenes compared to others. BVQA does not
aim to provide the equation that accurately describes subjective quality
based on simple objective metrics but rather attempts to estimate it.
Moreover, three different categories of models of different levels of
complexity are examined. All three categories consider the content
features in the fusion of metrics into models and take advantage of
the fact that the correlation of the objective metrics to the perceptual
quality depends on the content features. To the best of our knowledge,
this is the first time a content-driven fusion of objective metrics at a
block level has been proposed in the literature.

The rest of the paper is arranged as follows: in Section 2 we do a
small study on the performance of state-of-the-art (SOA) metrics at a
block level. In Section 3, we perform a content analysis of the different
blocks of the considered video sequences with the aim of identifying
groups of content that have similar quality performance. Based on this,
we introduce a content-driven multi-metric fusion approach at a block
level in Section 4. Finally, in Section 5 conclusions are drawn.

2. Quality evaluation at the block level

In recent years, the assumption of optimizing on short video clips (at
a ‘‘chunk’’ or ‘‘shot’’ level) has been adopted either with respect to the
trade-off between streaming performance and coding efficiency [19–
22] or because of the trade-off of the presentation duration and the
scoring for subjective quality purposes [23]. If we assume that for
short-duration videos (up to 5 s) the spatial and temporal character-
istics are consistent (within one shot), then the perceived quality after
compression is expected to be effectively the same across all frames.
Moreover, if we consider sequences with no apparent viewing pattern,
the foveation effects are omitted and the perceived video quality is
not expected to change dramatically within a frame. To this end,
the dataset employed here is one with sequences of one shot and
without an obvious focal point. This is the BVI_Texture dataset [24]
that contains 20 full high definition (HD) video sequences at 60fps
and is annotated with differential mean opinion scores (DMOS). This
specific dataset has been selected for two important reasons: firstly, it
satisfies the criterion for spatial and temporal homogeneity that allows
the extrapolation of the content evaluation scores to the block level.
Secondly, the subjective tests were performed in our lab and the raw
subjective scores were available. There do not exist many datasets at
HD resolution at 60 fps with no apparent viewing pattern that are also
providing subjective assessment scores.

The sequences were encoded using the HEVC HM 16.2 (CTC Low
Delay mode) at four different compression levels (different quantization
levels) and then we computed the value of seven objective quality
assessment metrics for each block as reported in Table 1. We would like
to note that we did not use metrics that have shown better correlation
to perceptual quality like PVM, MOVIE, and VQM due to their high
complexity and their design to operate at a frame level. The sequences
were divided into 64 × 64 pixel blocks, so that the size and positioning
coincides with the block partitioning of HEVC HM (i.e. CTUs). This
created a total of 11.52 × 106 paired data points (i.e. 20 sequences of
four different compression levels, 300 frames per sequence, 480 blocks
per frame) of subjective quality score and objective quality metric value
pairs at a block level.

Looking into the raw data pairs prior to any processing, we report
the absolute values of the linear (Lin) and rank (Rnk) correlation
coefficients in Table 1 when the metrics are calculated at a per block
(Blk), per frame (Frm) and per sequence (Seq) level. The metrics have
been calculated at a block-level and the fusion occurs at a block
level. The correlation is computed at this level. Then based on the
segmentation of the frame (depending on where each block belongs to),
a weighted average is computed per frame (weighted average because
of the different number of blocks per content class). At this level the

153



M.A. Papadopoulos, A.V. Katsenou, D. Agrafiotis et al. Signal Processing: Image Communication 78 (2019) 152–158

Table 3
Correlation between DMOS and metrics per cluster.

Cl. % of inst. FSIM MSSSIM PSNR PSNR-HVS PSNR-HVSM SSIM VIFP

Lin Rnk Lin Rnk Lin Rnk Lin Rnk Lin Rnk Lin Rnk Lin Rnk

K0 17% .734 .651 .797 .810 .719 .748 .731 .775 .752 .811 .768 .715 .736 .753
K1 12% .844 .884 .776 .860 .727 .850 .767 .881 .781 .898 .797 .856 .796 .869
K2 8% .918 .913 .824 .883 .847 .898 .855 .906 .840 .910 .899 .896 .859 .897
K3 7% .828 .830 .781 .816 .726 .843 .706 .832 .698 .831 .838 .819 .763 .840
K4 36% .588 .481 .713 .606 .399 .619 .397 .613 .411 .636 .588 .516 .290 .127
K5 15% .703 .686 .698 .773 .392 .541 .428 .586 .522 .691 .472 .599 .595 .615
K6 6% .565 .579 .609 .737 .625 .715 .657 .771 .689 .813 .557 .658 .648 .678

frame correlation to subjective scores is computed. Finally, all frame
scores are averaged over the length of frames and the sequence level
correlation over all sequences is computed. In Table 1, we observe
that in most cases the best performing metrics are FSIM and MS-
SSIM. Another important observation is that the correlation coefficients
increase as we move from the block level to the frame and then to the
sequence level. This is expected because of the different distributions
of the metric values at the different spatial levels.

Furthermore, in order to give an idea of the complexity in terms of
execution times, in the bottom row of Table 1, we report the relative
average complexity of the metrics as ratios of the average execution
time over the minimum average execution time. As can bee seen, PSNR
requires the lowest execution time on average. On the other hand,
FSIM, which is one the most well performing metrics in this table, is
concurrently the most expensive in terms of execution time.

3. Content analysis

In this section, we study the quality performance of video blocks
with similar content features. Therefore, we propose the clustering
of blocks into groups according to their content. As a first step, we
calculate three spatio-temporal features for all blocks of the considered
sequences. These help identify content characteristics. The selected
features are edge entropy (EDGE_ENT), spatial information (SI) and
temporal information (TI) that are also used in the ITU-T P.910 rec-
ommendation [25]. SI is based on the Sobel filter and expresses the
temporal maximum of the standard deviation of luminance over the
filtered frame. TI represents the temporal maximum of the standard de-
viation of spatial differences of adjacent frames. To determine the edge
entropy of a block, we first search for regular and homo-directional
edges in the scene using the directional edge entropy approach [26,27].
First, a Sobel filter is applied to determine the horizontal and vertical
gradients and after determining the direction of edges in every block,
we calculate the 73 bins histogram for the values −180◦ to 180◦,
equivalent to a resolution of 5◦ per bin. The edge entropy is given by:

EDGE_ENT = −
73
∑

𝑖=1
(𝑏𝑖 ⋅ 𝑙𝑜𝑔10(𝑏𝑖)) , (1)

where 𝑏𝑖 is the number of observations for the bin 𝑖. The data collected
during feature extraction, are then randomized and 1∕10-th of them are
selected to be used for 𝑘-means clustering (due to software and memory
limitations). To avoid cluster biasing, especially in the case of the TI,
all features were normalized in the range [0, 1].

Then, in order to select the optimal number of clusters, we em-
ployed the Expectation Maximization (EM) algorithm [28] and the
elbow method [29]. According to the latter method, we check the ratio
of the within class to across classes distortion:

𝐷𝑅 =
∑𝑁max

𝑘=1 (𝐼𝑘 − 𝑐𝑘)2
∑𝑁max

𝑘,𝑚=1,𝑚≠𝑘(𝐼𝑘 − 𝑐𝑚)2
(2)

where 𝐼 is the data point with coordinates (EDGE_ENT, SI, TI), 𝑐𝑘
is the centroid of the 𝑘𝑡ℎ cluster and 𝑁max is the maximum number
of clusters to be considered. During the elbow method application,

Table 4
Uniformity and coverage of the three content attributes.

U−Uniformity T Score
No Sequence EDGE SI TI Mean Cover. Umean⋅T_ENT

1 BallUnderWater .110 .374 .212 .232 .373 .087
2 Bookcase .398 .674 .761 .611 .539 .330
3 BrisckBushesStatic .655 .673 .299 .543 .395 .214
4 BricksLeaves .583 .588 .385 .518 .446 .231
5 BubblesClear .049 .462 .338 .283 .213 .060
6 CalmingWater .389 .522 .484 .465 .389 .181
7 CarpetCircleFast .195 .217 .236 .216 .256 .055
8 CarpetPanAverage .286 .239 .249 .258 .278 .072
9 CarpetSlowTrans .312 .417 .339 .356 .286 .102

10 DropsOnWater .308 .497 .483 .429 .468 .201
11 Flowers2 .561 .703 .065 .443 .369 .164
12 LampLeaves .642 .748 .436 .608 .436 .265
13 PaintingTilting .623 .553 .360 .512 .440 .225
14 PaperStatic .274 .209 .000 .161 .149 .024
15 PlasmaFree .415 .543 .362 .440 .586 .258
16 PondDragonflies .546 .692 .008 .415 .300 .124
17 SmokeClear .127 .094 .139 .120 .247 .030
18 Sparkler .415 .485 .473 .458 .556 .255
19 Squirrel .561 .667 .005 .411 .303 .125
20 TreeWills .706 .751 .042 .500 .390 .195

ALL .643 .779 .429 .617 .741 .457
Training set .627 .712 .458 .599 .729 .436
Testing set .614 .805 .349 .590 .563 .332

𝑘-means clustering was applied following a five-fold centroid initial-
ization. Fig. 2(a) depicts 𝐷𝑅 for the different number of clusters tested.
By inspecting this figure, we observe that the distortion ratio converges
at seven clusters. The same number of clusters is suggested by EM
clustering when applied on the three content attributes and the seven
SOA metrics. Therefore, we conclude that seven clusters is the optimal
number of clusters for our data. Fig. 2(b) shows the clustered blocks in
the content feature space and Table 2 reports the corresponding cluster
centroids. We note that the clustering approach has grouped together
regions that feature similar content characteristics. Indeed, K1, K2 and
K3 clusters express high SI and EDGE_ENT values, indicating mostly
static textures, whereas K0, K4 and K5 clusters are populated by data
points that belong to dynamic textures of high TI.

Table 3 lists the linear and rank correlation coefficients for the
clustered blocks. It is clear that the metrics perform differently for
blocks of different types of content. FSIM performs better for content of
high SI and edge entropy index, whereas MS-SSIM stands out for those
blocks with lower content feature values. Also, the metrics that exhibit
the highest correlation values overall are FSIM, MSSIM and PSNR-
HVSM. Based on this small study, we will consider the SOA objective
metrics as content features that will help to develop a multi-metric
approach for quality prediction closer to the human visual experience.
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Table 5
Distribution of blocks per dataset.

Cluster Training Testing Total

K0 15.2% 21.8% 17%
K1 8.7% 19.1% 12%
K2 7.1% 9.4% 8%
K3 9.3% .2% 7%
K4 44.7% 14.6% 36%
K5 9.3% 29.4% 15%
K6 5.7% 5.5% 6%

4. BVQA: Block-level multi-metric fusion for video quality assess-
ment

4.1. Dataset partition for training and testing

Prior to the multi-metric fused model development and to avoid
over-fitting, we divide our dataset into two parts: 70% of the data are
used for fitting our models and 30% for testing purposes. In addition
to this, the partitioning is performed on a sequence level ensuring
that only blocks from sequences of the training set are extracted for
training purposes (and the same for testing). Due to the small number
of sequences, a selection method based on the content characteristics
is suggested. Particularly, a scoring system is formulated to indicate
which sequences can best represent the total population. This scoring
is based on uniformity and coverage [30] of the block data in each
sequence against the total population of data points available.

Table 4 lists the uniformity and coverage of the three chosen
content attributes. The uniformity is calculated using the entropy of the
histogram bins that evenly span the whole set of sequences, whereas
the coverage is calculated for the normalized dimensions of the three
content features, as explained in [30]. Finally, the product of the
mean value of the uniformity for each dimension and of the coverage
generates a score (i.e. Score Umean ⋅ T) that indicates how well each
sequence represents the population. Out of this score we select the six
sequences that are located within the 35th and 65th percentile. This
decision derives from the motivation to partition the dataset in two
representative sets suitable for training and testing. Choosing sequences
from the same percentile for training (i.e. featuring great coverage and
uniformity) would result in poor performance in testing.

In Table 4, the chosen sequences are highlighted in light grey. As
can be observed, the choice of the middle six sequences based on the

score allowed the division of the population into training and testing
sets that adequately represent the whole population and are referred
to in Table 4 as ‘‘Training Seqs’’ and ‘‘Testing Seqs’’. Indeed, while
the overall population scores a total of .457, the training and testing
subsets follow closely with a score .436 and .332 respectively. Next, we
inspect the distribution of the blocks across the 7 clusters in Table 5.
It can be seen that although the training set adequately represents the
total population, the testing set includes a higher percentage of blocks
in some clusters (e.g. K5) against others (e.g. K3). This is expected to
impact on the performance of the prediction models between the testing
and the training set.

4.2. Model fitting

Our hypothesis here is that a better performing quality assessment
metric can result by combining several other state of the art metrics
in a content-dependent manner. The fusion of the multiple metrics is
achieved by applying multivariate fitting of the objective metrics and
the content features. We have designed different families of predictors
that use a different combination and number of inputs, that as a
consequence also result in different computational complexity. The first
two families, LL and LH, are a result of a linear combination of input
metrics. Particularly, LL models are a result of the linear combination
of up to three state-of-the-art quality metrics and LH models are a result
of all considered quality metrics. The third family of models, NL, are
non-linear combinations of quality metrics and content features. The
software used for the model fitting purpose is Eureqa Pro software [31,
32]. We would like to note that we used a justified hold-out method
instead of a random 𝑁-fold cross-validation (see Section 4.1).

The predicted DMOS, DMOS𝑝, is continuous and limited within the
range [0, 5] according to the reported range for the collected DMOS
values. The fitted models in all three families of predictors are reported
in Table 6.

In order to assess the goodness of fit of the models, the following
metrics are reported in Table 7: R2, Lin, MSE and mean absolute error
(MAE). We observe that the models fit reasonably well and provide
good DMOS prediction. LL predictors consider only positive weight
coefficients, resulting in solutions that are simple linear combinations
of a few metrics. This limitation is removed for the LH family of
predictors, where all metrics are considered for the first order linear
fitting. This introduces a clear computational overhead as all metrics
have to be calculated within the RDO. Finally, for the NL predictors
non-linear formulas are examined that can potentially combine all

Table 6
BVQA Models.

Cl. DMOSp Model

BV
Q

A-
LL

K0 5 − 1.025 ⋅ M1 − 2.072 ⋅ M2 − 6.057 ⋅ M3
K1 5 − .541 ⋅ M2 − .592 ⋅ M4 − 4.359 ⋅ M5
K2 5 − .786 ⋅ M4 − 2.096 ⋅ M7 − 2.558 ⋅ M5
K3 5 − 1.714 ⋅ M7 − 3.265 ⋅ M5
K4 5 − .811 ⋅ M1 − 1.769 ⋅ M2 − 6.757 ⋅ M3
K5 5 − .823 ⋅ M5 − 1.389 ⋅ M2 − 2.119 ⋅ M1 − 2.677 ⋅ M3
K6 5 − 2.766 ⋅ M3 − 3.581 ⋅ M1

BV
Q

A-
LH

K0 5 + 33.989 ⋅ M4 + 28.285 ⋅ M6 + .462 ⋅ M5 − 1.296 ⋅ M2 − 1.934 ⋅ M1 − 3.198 ⋅ M7 − 63.533 ⋅ M3
K1 5 + 37.308 ⋅ M4 + 1.186 ⋅ M7 − .263 ⋅ M2 − .636 ⋅ M1 − 2.461 ⋅ M5 − 1.656 ⋅ M6 − 3.271 ⋅ M3
K2 5 + 3.785 ⋅ M6 + 2.718 ⋅ M3 + .364 ⋅ M2 − .001 ⋅ M1 − 1.690 ⋅ M7 − 3.4 ⋅ M5 − 7.612 ⋅ M4
K3 5 + 3.028 ⋅ M4 + 1.168 ⋅ M2 − .011 ⋅ M1 − .881 ⋅ M3 − 2.124 ⋅ M5 − 2.53 ⋅ M7 − 4.361 ⋅ M6
K4 5 + 56.792 ⋅ M4 + 2.851 ⋅ M6 + 2.065 ⋅ M7 − .828 ⋅ M5 − .922 ⋅ M2 − 3.03 ⋅ M1 − 64.715 ⋅ M3
K5 5 + 34.499 ⋅ M4 + 4.268 ⋅ M7 + .794 ⋅ M6 − .996 ⋅ M2 − 1.868 ⋅ M1 − 3.256 ⋅ M5 − 42.748 ⋅ M3
K6 5 + 101.003 ⋅ M4 + 2.535 ⋅ M7 + .573 ⋅ M5 − .256 ⋅ M2 − 1.413 ⋅ M1 − 32.252 ⋅ M6 − 76.128 ⋅ M3

BV
Q

A-
N

L

K0 .136∕(.162 ⋅ M3 + 575.559 ⋅ SI ⋅ M2 ⋅ M5
3 − EDGE_ENT ⋅ M2)

K1 .892∕(74.811 ⋅ M2
3 − 71.726 ⋅ M2

4)
K2 (1.03 + 1.771 ⋅ SI ⋅ TI ⋅ M7 − TI − M2

5)∕M3
K3 M4∕(.917 + 11.458 ⋅ M6 ⋅ M2 ⋅ M3

5 ⋅ M2
7 − M7 − M2)

K4 (2.167 + 44.807 ⋅ M4 − TI − 47.642 ⋅ M3)∕(M6 + M2 − ⋅EDGE_ENT)
K5 (M7 − 3.372 ⋅ M1 ⋅ M2

3)∕(.236 ⋅ M5 + M5 ⋅ M2) − EDGE_ENT
K6 .874 + SI + 3.565 ⋅ M5 ⋅ M4 ⋅ M2

7 + −.008∕(M2
4 − 1.015 ⋅ M2

3) − SI ⋅ M2 − 5.083 ⋅ M6

where M1:MSSSIM, M2:VIFP, M3:PSNRHVSM, M4:PSNRHVS, M5:FSIM, M6:PSNR, and M7:SSIM .
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Fig. 2. Results of the clustered blocks in the three content feature dimensions.

Table 7
Goodness of fit of BVQA Models and relative average complexity.

BVQA-LL BVQA-LH BVQA-NL

Cluster R2 Lin MSE MAE R2 Lin MSE MAE R2 Lin MSE MAE

K0 .749 .867 .169 .316 .774 .894 .153 .293 .817 .904 .123 .249
K1 .704 .839 .034 .135 .564 .867 .058 .196 .745 .864 .034 .124
K2 .833 .913 .017 .102 .804 .923 .020 .10 .860 .928 .015 .091
K3 .708 .841 .015 .084 .691 .851 .016 .077 .738 .859 .014 .077
K4 .533 .736 .279 .399 .470 .810 .316 .408 .630 .811 .221 .33
K5 .566 .754 .185 .304 .585 .826 .177 .316 .692 .833 .131 .238
K6 .506 .712 .077 .165 .468 .779 .083 .216 .646 .804 .055 .136

Rel. Cmplx 5.27 11.02 5.74

seven metrics as well as the three primary content features. In this case,
the goodness of fit metrics improve for the NL predictors. Although the
NL predictors could result in an arithmetically more complex solution
since they include floating point multiplication and division of the
individual features and metrics, during the fitting only a subset of
the features was selected resulting in an overall execution time that
is lower than that of the LH models. To provide an indication of the
computational complexity of the proposed models, we followed the
same approach as earlier in Table 1. Thus, in the last row of Table 7
we are reporting the relative average complexity of the three models
with reference to the minimum objective metric execution time, aka
PSNR. As expected by considering the execution times of the different

SOA quality metrics, BVQA-LL and BVQA-NL models are the fastest to
compute due to the smaller number of input metrics.

4.3. Model validation

Fig. 3 illustrates the process of using the proposed block-level qual-
ity assessment to predict the expected perceived quality per block. After
extracting the content features at a block level from the original video
blocks, the blocks are classified in one of the seven clusters identified
above. Then, the objective quality metric values are computed using the
encoded video blocks. The content feature values, the assigned class
and the quality metric values are fed into the BVQA models and the
perceived video quality per block is estimated.

156



M.A. Papadopoulos, A.V. Katsenou, D. Agrafiotis et al. Signal Processing: Image Communication 78 (2019) 152–158

Fig. 3. Block diagram of the BVQA deployment.

Table 8
Linear and Rank correlation performance of SOA metrics and BVQA on the Training
Set from BVI_Texture.

FSIM MSSSIM PSNR- BVQA- BVQA- BVQA-
HVSM LL LH NL

Lin
Blk .660 .732 .342 .775 .808 .833
Frm .764 .849 .443 .863 .894 .912
Seq .773 .862 .447 .875 .911 .926

Rnk
Block .598 .675 .596 .728 .740 .750
Frm .706 .850 .635 .830 .837 .845
Seq .725 .870 .644 .844 .851 .856

Table 9
Linear and Rank correlation performance of SOA metrics and BVQA on the Testing Set
of BVI_Texture.

FSIM MSSSIM PSNR- BVQA- BVQA- BVQA-
HVSM LL LH NL

Lin
Blk .568 .459 .649 .537 .494 .506
Frm .659 .535 .718 .590 .542 .568
Seq .672 .554 .726 .601 .558 .590

Rnk
Block .632 .630 .741 .692 .722 .789
Frm .692 .727 .803 .743 .787 .825
Seq .686 .720 .793 .731 .783 .804

For the BVQA model validation, we evaluate the performance of the
method against the best performing metrics from Table 3, namely FSIM,
MS-SSIM, and PSNR-HVSM. In Table 8, we list the linear and rank
correlation coefficients between the original [24] and the predicted
DMOSp using BVQA models for both the training set. For the training
set, we identify that the model has been fitted correctly for each cluster
by observing the first couple of columns. Each fitting solution (LL, LH
and NL models) shows a linear and rank correlation between .78-.83
and .73-.75 at the block level, respectively. As can be observed, the
correlation values increase at the frame (.86-.91 and .83-.85) and at
the sequence level (.88-.93 and .84-.86). This shows the effectiveness
of the method as high correlation with the DMOS scores is achieved at
the sequence level overall.

To further verify the BVQA models, we use two other datasets.
The first is the testing set of BVI_Texture and the other is the VQEG-
HD3 dataset. We have selected this dataset as it complies with the
assumption we made for sequences without an apparent viewing task
and it is annotated with subjective scores. It is expected that the
model performance will deviate for these two datasets compared to
the training set mainly because the available number of sequences
annotated with subjective scores is not high and diverse enough to
cover the feature and objective quality metrics space.

The results of deploying the BVQA models for the testing sequences
of BVI_Texture are reported in Table 9. As anticipated, the correlation
values drop in the testing set. However, BVQA outperforms the state
of the art quality metrics in terms of rank correlation. The drop of
performance in the testing set is a natural effect of the variability and
randomness of the selected blocks from the video sequences, as well as
of the small number of sequences available for the training.

Table 10
Linear and Rank correlation performance of SOA metrics and BVQA on VQEG-HD3.

FSIM MSSSIM PSNR- BVQA- BVQA- BVQA-
HVSM LL LH NL

Lin
Blk .413 .378 .462 .485 .477 .454
Frm .562 .455 .523 .563 .548 .537
Seq .742 .768 .658 .774 .791 .788

Rnk
Block .470 .468 .477 .496 .500 .499
Frm .595 .587 .551 .583 .575 .574
Seq .769 .867 .716 .786 .832 .816

Finally, we present the results on another dataset from Video Qual-
ity Expert Group (VQEG) with HD videos, the VQEG-HD3 dataset [33].
For this dataset, as reported in Table 10, all tested metrics achieve
lower linear and rank correlation values compared to those from the
testing sequences in BVI_Texture dataset (see Table 9). This is expected
due to the different content characteristics of this dataset. Nevertheless,
in most cases, BVQA outperforms the state of the art objective quality
metrics in this dataset.

5. Conclusion

We presented a multi-metric fusion approach, which delivers a
video quality assessment method at a block level that correlates better
with perceptual quality compared to the state-of-the-art objective met-
rics. This approach is a step towards combining several well-performing
metrics into one, exploiting the advantages of using objectives met-
rics that are embeddable in the RDO process in a content-dependent
manner. At the same time, the advantage of developing a block-level
quality metric is that of using it within the RDO environment. The
first results of BVQA are promising in terms of the correlation of
the developed locally-acting quality metric with the overall perceived
quality of the video. This allows us to argue that, within this group of
content, this combination of metrics produces a quality estimate closer
to the average experience. Consequently, the RDO is expected to be
more efficient as it will be using a model that is more affected by a
higher level of content awareness (what is around it) and not just by
the content of the block.

6. Limitations and challenges for future work

Recently, with the aim to optimize the trade-off of the encod-
ing pipeline and the streaming performance, the videos are split in
‘‘chunks’’ (often at a shot level) of a few seconds as proposed for
example in [19,20]. The presented multi-metric fusion method is built
on the assumption that for short videos that could represent one shot,
we have homogeneity in terms of the scene content across all tested
frames. We have also assumed for this work no apparent viewing
patterns. It is however important to take into account the perceptual
significance of specific parts of a frame either because of visual salience
or/and the semantic importance. Thus, the challenge is to extend our
method to take into account the perceptual importance of specific areas
that might be points of interest for most viewers.
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Furthermore, the results presented in this paper were based only
on a limited number of sequences coming from two datasets in order
to conform with the method assumptions. Then, we followed a hold-
out validation method using a justified splitting of the sequences that
was based on the relative coverage and uniformity of the low-level
features of the dataset at a sequence level. The challenge arising form
this is to further test the method against new datasets and perform a
cross-validation with randomized splits.

Finally, the biggest challenge once BVQA is the natural step of
integrating the proposed method in the RDO of a video encoder, and
computing the effectiveness (gains both in quality and bit rate) and
the efficiency (complexity overhead) of the BVQA-based optimized
encodings.
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