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At a macroscopic level, part of the ant colony life cycle is simple: a colony col-
lects resources; these resources are converted into more ants, and these ants in
turn collect more resources. Because more ants collect more resources, this is a
multiplicative process, and the expected logarithm of the amount of resources
determines how successful the colony will be in the long run. Over 60 years
ago, Kelly showed, using information theoretic techniques, that the rate of
growth of resources for such a situation is optimized by a strategy of betting
in proportion to the probability of pay-off. Thus, in the case of ants, the fraction
of the colony foraging at a given location should be proportional to the prob-
ability that resources will be found there, a result widely applied in the
mathematics of gambling. This theoretical optimum leads to predictions as
to which collective ant movement strategies might have evolved. Here, we
show how colony-level optimal foraging behaviour can be achieved by map-
ping movement to Markov chain Monte Carlo (MCMC) methods, specifically
Hamiltonian Monte Carlo (HMC). This can be done by the ants following a
(noisy) local measurement of the (logarithm of) resource probability gradient
(possibly supplemented with momentum, i.e. a propensity to move in the
same direction). This maps the problem of foraging (via the information
theory of gambling, stochastic dynamics and techniques employed within
Bayesian statistics to efficiently sample from probability distributions) to
simple models of ant foraging behaviour. This identification has broad appli-
cability, facilitates the application of information theory approaches to
understand movement ecology and unifies insights from existing biomecha-
nical, cognitive, random and optimality movement paradigms. At the cost
of requiring ants to obtain (noisy) resource gradient information, we show
that this model is both efficient and matches a number of characteristics of
real ant exploration.
1. Introduction
Life has undergone a number ofmajor organizational transitions, from simple self-
replicatingmolecules into complex societies of organisms [1]. Social insects such as
ants,with a reproductivedivision of labour between the egg-layingqueenandnon-
reproductive workers whose genetic survival rests on her success, exemplify the
highest degree of social behaviour in the animal kingdom: ‘true’ sociality or euso-
ciality. The workers’ cooperative genius is observed in diverse ways [2] from nest
engineering [3] and nest finding [4], to coordinated foraging swarms [5] and dyna-
mically adjusting living bridges [6]. This has inspired a number of technological
applications from logistics to numerical optimization [7,8]. All of these behaviours
may be understood as solving particular problems of information acquisition, sto-
rage and collective processing in an unpredictable and potentially dangerous
world [9]. Movement (the change of the spatial location of whole organisms in
time) is intrinsic to the process. Here, we consider how optimal information
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processing is mapped to movement, at the emergent biological
levels of the organism and the colony, the ‘superorganism’. We
develop a Bayesian framework to describe and explain the
movement behaviour of ants in probabilistic, informational
terms, in relation to the problem they are having to solve: the
optimal acquisition of resources in an uncertain environment
to maximize the colony’s geometric mean fitness [10–12].
The movement models are compared with real movement
trajectories from Temnothorax albipennis ants.

1.1. Operationalizing conceptual animal movement
frameworks

Scientists have studied animal movement for many years
from various perspectives, and in recent years, attempts have
been made to unify insights into overarching frameworks.
One such framework has been proposed by Nathan et al.
[13]. We describe it briefly to set the research context for the
reader. Their framework identifies four components in a full
description: the organism’s internal state, motion capacity,
navigational ability and influential external environmental
factors. This framework also characterizes existing research as
belonging to different paradigms, namely, ‘random’ (classes
of mathematical model related to the random walk or
Brownian motion), ‘optimality’ (relative efficiency of strategies
for maximizing some fitness currency), ‘biomechanical’ (the
‘machinery’ of motion) and the ‘cognitive’ paradigm (how
individuals’ brains sense and respond to navigational infor-
mation). However, scientists have yet to create a theoretical
framework that convincingly unifies these components.
Frameworks such as proposed by Nathan et al. are also
focussed on the individual, and so for group-living organisms,
especially for eusocial ones, they are incomplete. The concepts
of search and uncertainty also need to be better integrated
within the foraging theory, so that the efficiency of different
movement strategies can be evaluated [14].

Here, we contend that animal foraging (movement) models
should be developed with reference to the particular infor-
mation processing challenges faced by the animal in its
ecological niche, with information in this context referring to
the realized distribution of fitness-relevant resources: in par-
ticular, the location and quality of foraging patches, which
are unknown a priori to the organism(s). Furthermore, an
important ‘module’ in any comprehensive paradigm for
animalmovement is the role of the group and its goals in deter-
mining individual movement trajectories; there has beenmuch
research on collective behaviour in recent years, with infor-
mation flow between individuals identified as an important
focus of research [15]. Eusocial insects like ants exhibit a
highly advanced form of sociality, even being described as a
‘superorganism’, that is, many separate organisms working
together as one [16]. Their tremendous information processing
capabilities are seen clearly in their ability to explore and
exploit collectively their environment’s resources. Ants thrive
in numerous ecological niches and alone account for 15–20%
of the terrestrial animal biomass on average and up to 25% in
tropical regions [17].

The collective behaviour of tight-knit groups of animals like
ants has been described as collective cognition [18]. Because a
Bayesian framework seems natural for a single animal’s
decision-making [19], an obvious challenge would seem to be
applying its methods to describe the functioning of a super-
organism’s behaviour. First, we identify a simple model that
describes the foraging problem that ants, and presumably
other collectives of highly related organisms, have evolved
to solve.
1.2. Placing bets: choosing where to forage
Evolution by natural selection should produce organisms that
can be expected to have an efficient foraging strategy in their
typical ecological context. In the case of an ant colony, although
it consists of many separate individuals, each worker does not
consume (all) the food it collects and is not independent, but
there is rather a colony-level foraging strategy enacted without
central control that ultimately seeks to maximize colony fitness
[20]. Following the colony founding stage comes the ‘ergo-
nomic’ stage of a colony’s life cycle [21]. This is when the
queen is devoted exclusively to egg-laying, while workers
take over all other work, including collecting food. Thus, the
colony becomes a ‘growthmachine’ [21], wherebyworkers col-
lect food to increase the reproductive rate of the queen, who
transforms collected food into increased biomass or more
numerous gene copies. Ultimately, the success or failure of
this stage determines the outcome of the reproductive stage,
where accumulated ‘wealth’ (biomass) correlates with more
offspring colonies. This natural phenomenon has parallels
with betting, where thewinnings on a gamemay be reinvested
to make a bigger bet on the next game. In the context of infor-
mation theory, John Kelly made a connection between the rate
of transmission of information over a communications channel,
which might be said to noisily transmit the outcome of a game
to a gambler while bets can still be made, and the theoretical
maximum exponential growth rate of the gambler’s capital
making use of that information [22]. To maximize the gam-
bler’s wealth over multiple (infinite) repeated games, it is
optimal to bet only a fraction of the available capital each
turn across each outcome, because although betting the
whole capital on the particular outcome with the maximum
expected return is tempting, any losses would quickly com-
pound over multiple games and erode the gambler’s wealth
to zero. Instead, maximizing logarithmic wealth is optimal,
since this is additive inmultiplicative games and prevents over-
betting. Solving for this maximization results in a probability
matching or ‘Kelly’ strategy, where bets aremade in proportion
to the probability of the outcome [23]. For instance, in a game
with two outcomes, one of 20% probability and one of 80%
probability, a gambler ought to bet 20% of his wealth on the
former and 80% on the latter. This does not depend on the
pay-offs being fair with respect to the probabilities of the out-
come, or si ¼ 1=pi, which in the aforementioned case would
be 5 and 1.25. Instead it simply requires fair odds with respect
to some distribution, or

Pð1=siÞ ¼ 1, where σi is the pay-off for
a bet of 1, so they could, for instance, be 2 to 1 or uniform odds
in the case of a game with two outcomes (electronic sup-
plementary material, methods). For the purposes of our
foraging model, we can simply impose the constraint of fair
odds, and any distribution of real-life resource pay-offs can
be mapped to this when renormalized.

In the case of ants choosingwhere to forage, the probability
matching strategy can be directly mapped onto their collective
behaviour. With two available foraging patches having a 20
and 80% probability of food being present at any one time,
the superorganism shouldmatch this probability by deploying
20 and 80% of foragers to the two sites (although it is also poss-
ible to follow a Kelly strategy while holding back a proportion
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of wealth; electronic supplementary material, methods).
Regardless of the particular pay-off σi available at each site,
provided

Pð1=siÞ ¼ 1, this strategy is optimal over the long
term, with the evolutionary timescale of millions of years
favouring its selection. Figure 1 shows a simulated comparison
of the Kelly strategy where probabilities of receiving a resource
pay-off are matched, regardless of the pay-off, with a strategy
that allocates foragers proportional to the one-step expected
return piσi, which does take the pay-off into account.

Previous analysis of the behaviour of Bayesian foragers
versus those modelled using the marginal value theorem indi-
cated that, rather than abandoning a patchwhen instantaneous
food intake rate equals foraging costs, a forager should con-
sider the potential future value of a patch before moving on,
even when the current return is poor [24]. The priority of
resource reliability over immediate pay-off in our model,
when long-term biomass maximization is the goal, is itself
an interesting finding about the superorganismal behaviour;
but here we go further and specify models of movement to
operationalize this strategy.

Certain methodologies designed to sample from prob-
ability distributions—Markov chain Monte Carlo (MCMC)
methods—may be used as models of movement that also
achieve a probability matching (Kelly) strategy. Exploring the
environment and sampling from complex probability distri-
butions can be understood as equivalent problems. MCMC
methods aim to build a Markov chain of samples that draw
from each region of probability space in correct proportion
to its density. Such a well-mixed Markov chain is analogous
to a probability matching strategy. Once the Markov chain
has converged on its equilibrium distribution (the target prob-
ability distribution, or resource quality distribution in our ant
model), it spends time in each location proportional to the
quality or reliability (probability) of each point.
1.3. A colony-level strategy
There is a central ‘social’ (colony-level) element in attempting
to enact a Kelly strategy of allocating ‘bets’ in proportion to
the probability of their pay-off. This is because it requires a
‘bank’ (collection of individuals) that can be allocated. This
logic does not seem to apply when one is thinking of a
single individual, which might instead prefer (or need) to
pursue high expected returns to survive in the short term.
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Therefore, our model is relevant to groups of individuals who
have aligned interests in terms of their fitness function—this
is notably true in the social insects such as the ants, because
workers are (unusually) highly related, or in clonal bacteria,
for instance.

However, using MCMC as a model of movement does not,
in itself, imply that social interactions are necessary. Multiple
MCMC ‘walkers’ can sample in the parallel from a space and
still achieve sampling (foraging patch visitation) in proportion
to probability. Nevertheless, social interactions could be highly
advantageous in expediting an efficient sampling of the space,
through, for example, ‘tandem running’ [25] to sample impor-
tant areas [26], or pheromone trails to mark unprofitable
territory [27].

1.4. Ant trajectory data
We use our data [28] from the previous work examining
the movement of lone T. albipennis ants in an empty arena
outside their colony’s nest [29]. T. albipennis ants have been
used as a model social system for study in the laboratory,
because information flow between the environment and
colony members, and among colony members, can be rigor-
ously studied. The ants typically have one queen and up
to 200–400 workers [30]. The colony inhabits fragile rock
crevices and finds and moves into a new nest when its nest
is damaged. With workers being only about 2 mm long,
relatively unconstrained trajectories of individuals can be
tracked on the laboratory workbench (for example [29]).
Behavioural state-based models have been developed that
account for the flow of individuals between states with differ-
ential equations [31,32], but these lack an account of the ants’
movement processes.
2. Material and Methods
We run simulations of our MCMC movement models in
MATLAB 2015b (pseudocode is available in the electronic
supplementary material). Each new model is introduced to
explain an important additional aspect of the ants’ empirical
movement behaviour.

In our movement data [28], there are two experimental
regimes, one in which the foraging arena was entirely novel to
exploring ants, and one in which previous traces of the ants’ activi-
ties remained. We use the data from the former treatment, where
each ant encounters a cleaned arena absent of any pheromones
or cues from previous exploring ants. We restrict our analysis to
the first minute of exploration, well before any of the ants have
an opportunity to reach the boundary of the arena. Log-binned
root mean square displacement is calculated, and a linear
regression ismade against log time. A gradient equal to a half indi-
cates a standard diffusion process (Brownian motion), whereas
greater than a half indicates superdiffusive movements. This
approach to characterizing ant search behaviour has been adopted
from the study by Franks et al. [33].
3. Results
We present simulation results from three different models of
ant movement. Each model is directly based on a known
MCMC. This follows the recognition that we can consider
the problem of sampling from probability distributions of
two continuous dimensions as analogous between animal
movement and statistics (for example). The trajectories
produced by each model are compared with the real ant
movement data. The development of MCMC methods from
the 1950s onwards, to become more efficient, might be con-
sidered to parallel the evolutionary history of animal
foraging strategies. Some more details on the methods are
found in the electronic supplementary material, methods.

3.1. Basic model: Metropolis–Hastings
The first MCMCmethod to be developed was the Metropolis–
Hastings (M–H) algorithm ([34,35], which is straightforward to
implement and still commonly used today.

We are trying to sample from the target probability distri-
bution (resource quality distribution) P(x), which can be
evaluated (observed) for any x, at least to within a multiplica-
tive constant. Thismeanswe can evaluate a functionP*(x), such
that P(x) = P*(x)/Z. There are two challenges that make it diffi-
cult to generate representative samples from P(x). The first
challenge is that we do not know the normalizing constant
Z ¼ Ð

dNxP�(x), and the second challenge is that there is no
straightforwardway to draw samples from Pwithout enumer-
ating most or all of the possible states. Correct samples will
tend to come from locations in x-space, where P(x) is large,
but unless we evaluate P(x) at all locations, we cannot know
these in advance [36].

The M–H method makes use of a proposal density Q
(which depends on the current state x) to create a new proposal
state to potentially sample from. Q can be simply a uniform
distribution: in a discretized environment, these can be
x(t) + [− 1, 0, 1] with equal probability. After a given proposed
movement is generated, the animal compares the resource
quality at this new location with the resource quality at the
previous location. If the new location is superior, it stays in
its new location. By contrast, if the resource quality is worse,
it randomly ‘accepts’ this new location or ‘rejects’ this location
based on a very simple formula based on the ratio of resource
quality (if it is far worse, the animal very rarely fails to return,
whereas if it is not much worse, it often accepts this mildly
inferior location—see also electronic supplementary material,
methods). What is important about this extremely simple
algorithm is that, as long as the environment is ergodic
(all locations can be potentially reached), given time, the
exploring animal will visit each location eventually. Visits
will be made with a probability proportional to its resource
quality: it will execute an optimal Kelly exploration strategy.
The problem here, however, is the time taken. While the
M–H method is widely used for sampling from high-
dimensional problems, it has a major disadvantage in that
it explores the probability distribution by a random walk,
and this can take many steps to move through the space,
according to

ffiffiffiffi
T

p
e, where T is the number of steps and e is the

step length. T. albipennis ants were found to be engaged in a
superdiffusive search in an empty arena (electronic sup-
plementary material, methods), and similarly MCMC
methods also have been developed to explore the probability
space more efficiently.

3.2. Introducing momentum: Hamiltonian Monte Carlo
Random walk behaviour is not ideal when trying to sample
from probability distributions because it is more time con-
suming than necessary. One popular method for avoiding
the random walk-like exploration of state space is hybrid
Monte Carlo [37], also known as Hamiltonian Monte Carlo
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or HMC. This simulates physical dynamics to preferentially
explore regions of the state space that have higher probability.

Unlike the M–H model of movement, HMC makes use
of local gradient information such that the walker (ant)
tends to move in a direction of increasing probability.
How T. albipennis may measure this is explored in the Discus-
sion section. For a system whose probability can be written in
the form:

P(x) ¼ 1
Z
exp [�E(x)],

the gradient of E(x) can be evaluated and used to explore the
probability space more efficiently. This is defined as follows:

E(x) ¼ � lnP(x):

By using this definition, the local gradient rE(x) can be
calculated numerically.

The Hamiltonian is defined as H(x, p) = E(x) +K(p), where
K(p) is a ‘kinetic energy’, which can be defined as follows:

K(p) ¼ pTp
2

:

In HMC, this momentum variable p augments the state
space x, and there is an alternation between two types
of proposals. The first proposal randomizes the momentum
variable, with x unchanged, and the second proposal
changes both x and p using simulated Hamiltonian
dynamics. The two proposals are used to create samples
from the joint density

PH(x, p) ¼ 1
ZH

exp [�H(x, p)] ¼ 1
ZH

exp [�E(x)]exp[�K(p)]:

As shown, this is separable, so the marginal distribution
of x is the desired distribution exp[− E(x)]/Z, and the
momentum variables can be discarded and a sequence of
samples {x (t)} is obtained that asymptotically comes from
P(x) [36].

We set the variable number of leapfrog steps (see elec-
tronic supplementary material, methods [38])) to L = 10;
after following the Hamiltonian dynamics for this number
of steps, a new momentum is randomly drawn and a new
period of movement begins. This behaviour of moving inter-
mittently in between updating the walker (ant) behaviour
captures the behaviour observed in real ants [29] (see Discus-
sion section on gradient sensing). We set the leapfrog step
length ε = 0.3 (see electronic supplementary material,
methods for further introduction to L and ε).

For N = 18 simulated HMC ‘ants’ sampling from a sparse
probability distribution (a gamma-distributed noise; elec-
tronic supplementary material, methods), for 600 iterations,
the r.m.s. displacement was again found and its log was
regressed on log time. The gradient was found to be 0.567,
95% confidence interval (CI) (0.528–0.606), which is signifi-
cantly greater than 0.5, so in this respect, it is more similar
to the superdiffusive search found in real ants [33].

We can also examine the correlation of velocities between
successive movement periods. Since momentum p =mv is a
vector in two-dimensional space, we can set m = 1 and find a
magnitude for the momentum to determine the ‘speed’ of
each movement (over the course of L = 10 leapfrog steps). In
the previous research on ant movements [29], the correlation
between successive average event speeds in the cleaning
treatment was found to be 0.407 ± 0.039 (95% CI). As expected
for the HMC model, because the momentum is discarded
and replaced with a new random momentum after each
movement, the correlation of successive event speeds is
equal to zero in this model. We can make the HMC model
more ‘ant-like’—and potentially more efficient—by only
partially refreshing this momentum variable after the end of
a movement period.
3.3. Increasing correlations between steps: partial
momentum refreshment

HMCwith one leapfrog step is referred to as Langevin Monte
Carlo after the Langevin equation in physics (e.g. [39]) and
was first proposed by Rossky et al. [40]. However, these
methods do not require L = 1, so we use L = 10 to enhance
comparability with the previous HMC model.

The momentum at the end of each movement can be
updated according to the equation p0 = αp + (1− α2)1/2n,
where p is the existing momentum, p0 the new momentum,
α is a constant in the interval [− 1, 1] and n is a standard
normal random vector. With α less than 1, p0 is similar to p,
but with repeated iterations, it becomes almost independent
of the initial value. This technique of partial momentum
refreshment (PMR) was introduced by Horowitz [41]. Such
models are well described in Brooks et al. [38]. Setting α
equal to 0.65 (for example) and simulating with N = 18 results
in speed correlations equal to 0.387 ± 0.012 (95% CI), which
overlaps with the CI for the real ant data.

The PMRmethod can be compared to an ant moving with
a certain momentum (direction and speed) and then intermit-
tently updating this momentum in response to its changing
position in the physical and social environment, with a
degree of randomness also included. The momentum changes
as per the HMCmethod along a single trajectory, according to
its subjective perception of foraging quality and potentially
influenced by the pheromonal environment. If at the end of
the trajectory it does not find itself in a more attractive
region than before, it returns to its previous position, and
with the correct model parameters (step size and number of
leapfrog steps), this should be a relatively infrequent occur-
rence (see methodological discussion in Brooks et al. [38]).
Real ants have been predicted, and found, to leave ‘no entry’
markers when they turn back from an unprofitable location
[42,43]. Its starting momentum in a particular direction is
maintained to some degree but with some randomness
mixed in, and so, its previous tendency to move towards
regions of high probability (quality) is not discarded as in
HMC but used to make more informed choices about which
direction to move in next. This is because foraging patches
are likely to show some spatial correlation in their quality,
with high-quality regions more likely to neighbour other
high-quality regions [44,45]. Previous empirical research [29]
found evidence that ant movements may be predetermined
to some degree in respect of their duration. This implies that
periods of movement are followed by a more considered
sensory update and decision about where to move to next.
A series of smaller movements (like 10 leapfrog steps)
followed by a larger momentum update, as in the PMR
model, would seem to correspond well with this intermittent
movement behaviour.
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3.4. Measuring the performance of Markov chain Monte
Carlo foraging models

The performance of the three MCMC models developed here
can be measured in the following way. As discussed, the fora-
ging ants should pursue a probability matching strategy,
whereby they allocate their numbers across the environment
in proportion to the probability that it will return (any) pay-
off. This will maximize the long-term rate of growth of the
colony or its biological fitness. Matching the probability distri-
bution of resources in the environment can be understood as
minimizing the distance between it and the distribution of
resource gatherers. In the domain of information theory, the
difference between two probability distributions is measured
using the cross-entropy

H( p, q) ¼ H(p)þDKLðpjjqÞ:

whereH(p) ¼ �P
i p(i)logp(i) is the entropy of p andDKL( p∥q)

is the Kullback–Leibler (K–L) divergence of q from p (also
known as the relative entropy of p with respect to q). This is
defined as follows:

DKLðpjjqÞ ¼
X

i

p(i) log
p(i)
q(i)

:

If we take p to be a fixed reference distribution (the
probability of collecting resources in the environment),
cross-entropy and K–L divergence are identical up to an
additive constant, H(p), and is minimized when q = p, where
the K–L divergence is equal to zero. Cross-entropy minimiz-
ation is a common approach in optimization problems in
engineering and in the present case can be used to represent
the task that the ant foragers are trying to perform: match
their distribution q with the distribution p of resources in
the environment. Therefore, the magnitude and the rate of
reduction of the cross-entropy are used to compare the
effectiveness of the MCMC models (M–H, HMC and
PMR) presented here. However, as noted later, for dynamic
environments (where the distribution of resource probabilities
p is not fixed), K–L divergence is the suitable cost function
to minimize.

We perform example simulations of the three MCMC
models. Each samples from a target distribution with three
‘resource patches’, of high, medium and low reliability (prob-
ability). This example distribution is generated by combining a
gamma-distributed background noise (shape parameter = 0.2,
scale parameter = 1) on a 100 × 100 grid given a Gaussian blur
(σ = 3, filter size 100 × 100), what we refer to later as the ‘sparse
distribution’, in equal 50% proportion with three patches of
resources, which are single points of increasing relativemagni-
tude of 1, 2 and 3 that have been given a Gaussian blur (σ = 10,
filter size 100 × 100). The distribution p is thus also on a 100 ×
100 grid. The simulations are run for 50 000 time steps, a
reasonable period of time to explore this space of 10 000
points. Figure 2 shows the M–H model, which converges
rather slowly on the target environment p. Figure 3 shows
the performance of the HMC and PMR models, which show
an improvement in the convergence rate because they avoid
the random walk behaviour of the M–H model.

Figure 4 shows example trajectories from real ants [28] for a
period of 100 s and for 100 time steps of the three models.
The ants are in an empty arena, and the models are sampling
from a sparse distribution (electronic supplementary material,
methods). The random walk behaviour of the M–H model is
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evident, while the greater tendency tomake longer steps in one
direction is evident in the PMR model in comparison with the
HMC model.

Figure 5 shows the distribution of directional changes
(change in angle heading) between steps. The distribu-
tion of direction changes is known as the phase function in
statistical physics and has been applied to ant trajectory
analysis by, for instance, Khuong et al. [46]. Real ants
can make large changes of direction, of course, but this is
rarely done with an abrupt heading shift. The M–H model
moves grid-wise in single steps; the HMC model has no cor-
relation between step directions, while the PMR model tends
to make each new step in a similar (correlated) direction to
the prior one. In this respect, too, PMR is a better model of
ant movement.

3.5. Optimal foraging and Lévy flights
We have presented a new class of foraging model based
on MCMC methods, which operationalize movement for a
Kelly strategy (probability matching) in a two-dimensional
space. There is an extensive theoretical and empirical litera-
ture examining the distribution of step lengths for foraging
animals that considers the hypothesis that a Lévy distribu-
tion is optimal [47–50]. Lévy flights are a particular form
of superdiffusive random walk where the distribution of
move step lengths fits an inverse power law, such that the
probability of a move of length l is distributed like (l )≈ l−μ,
where 1 < μ≤ 3.

We use the method proposed by Humphries et al. [51] to
identify individual movement steps in two-dimensional data,
treating monotonic movements in a certain direction in one
dimension (i.e. x or y) as a step. We estimate the exponent
using maximum-likelihood estimation [52]. The distribution
of the ranked step length sizes in both real and simulated
data is shown in figure 6.

There are similar exponents estimated (table 1) for both
the real ant data in an empty arena (N = 18 ants from
three colonies) and PMR trajectories (100 ‘ants’ for 5000 iter-
ations) sampling from a sparse probability distribution
(electronic supplementary material, methods). The exponent
μ in both cases is in the right region for a Lévy flight 1 <
μ≤ 3. This would seem to be evidence for a Lévy strategy
in the ants (although variation in individual walking behav-
iour can also contribute to the impression of a Lévy flight
[53]), but we suggest an alternative in the next section of
this paper.
4. Discussion
4.1. Markov chain Monte Carlo models and existing

movement paradigms
The framework we develop here is an important step in inte-
grating key perspectives in movement research, as described,
for example, by Nathan et al. [13]. It incorporates elements of
randomness, producing correlated random walks in certain
environments; it quantifies optimality in respect of foraging
strategies via cross-entropy (Kullback–Leibler divergence); it
includes an important aspect of common animal behaviour,
namely intermittent movement [54], and specifically for the
ants’ neural and/or physiological behaviour, apparent motor
planning [28]; and it makes explicit the information used by
the animal step by step. Finally, and crucially, it explicates cog-
nition at the emergent group level, because individual
movement is at the service of a group-level Kelly strategy.
One component of Nathan et al.’s framework is the internal
state of the organism. This is not included in the models
here, although state-dependent behaviours such as tandem
running [25] could be included by analogy with particle filter-
ing (e.g. [55]), for instance [26]. Our use of the Markov
assumption (movement being memoryless, depending only
on the current position) is justifiable with respect both to the
worker ant’s individual cognitive capacity and its single-
minded focus on serving the colony through discovering and
exploiting resources. Its motion capacity is linked to the speci-
fication of a PMR model; while we specify the navigation
capacity in its ability to measure the quality gradient, which
is also an externally determined factor.

4.2. The mechanisms and challenges of gradient
sensing

Wemay consider further the ability of ants to use local gradient
information, as in the HMC and PMR models, with respect to
the ants’ sensory system. T. albipennis is well known for relying
heavily on visual information in movement [56,57] and in
common with most (or perhaps all) ants on olfactory infor-
mation. It may be that the intermittent movement examined
in Hunt et al. [29] is associated with limitations in the quality
of sensory information when moving [54]. We suggest that
T. albipennis workers have relatively good eyesight for a
pedestrian insect and their small size, having around 80 omma-
tidia in each compound eye [58] and may be assumed
conservatively to have an angle of acuity of 7° [57]. Therefore,
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Table 1. Power law exponents in both empirical and PMR simulated
trajectories potentially indicate a Lévy walk.

dimension
of steps

maximum-likelihood estimate of
exponent, truncated Pareto distribution

empirical
data PMR data

x 2.41 2.26

y 2.55 2.26
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movement would seem unlikely to make much difference to
how well they can see. Since our model highlights the impor-
tance of gradient following, this may be more difficult to
measure for the olfactory system during movement. Indeed,
in Hunt et al. [29], we suggest that social information from
pheromones or other cues is only fully attended during periods
of stopping because of motor planning, with the duration of
movements being predetermined by some endogenous
neural and/or physiological mechanism. Therefore, this may
be a mechanistic reason for the stepwise movement in the
PMR model, in addition to its informational efficiency, which
is its evolutionary origin. Even more sophisticated MCMC
models that rely on the second derivative of the probability
distribution, such as the Riemann Manifold Langevin
method [59], may be relevant, because this property (the rate
of change of the gradient) may be only measured with
adequate accuracy when the ant is at rest.

4.3. Lévy step length distributions indicate a world
with little gradient information

In a ‘flat’ quality landscape, or sparse world, our model gener-
ates Lévy-like behaviour as seen for instance in [60]. This
remains an adaptive response, but it is not a true Lévy distri-
bution, because there is a finite variance. Much interest has
been generated by Lévy flight-based foraging models, which
theoretically optimize mean resource collection for certain
random worlds; and this would seem to be evidence for just
such a strategy in T. albipennis ants. Yet here we make a simple
point that rather than being a deliberate strategy, Lévy-like
behaviour may result from an organism lacking cues about
which way to move. Scale-free reorientation mechanisms have
indeed been suggested as a response to uncertainty in invert-
ebrates [61]. Yet the generation of a Lévy-like distribution
from our gradient-following model suggests that such obser-
vations may not really be scale free. The empirical distribution
of momentums provides insight into the length scales on
which the world remains smooth.

4.4. Measuring efficiency, selecting for unpredictability
The rate of resource collection can be straightforwardly
calculated by finding the cross-entropy (Kullback–Leibler
divergence) between the spatial distribution of resources, and
the realized foraging distribution resulting from the foraging
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strategy. Thedistribution of resources is seen froma ‘genes-eye’
view of the animal or superorganism, with respect to
maximizing the long-term biomass or number of copies of
genes in the environment: this focuses on a location’s prob-
ability of yielding resources, or reliability, as opposed to the
one-off pay-off. The foraging strategy is that chosen by natural
selection. Minimizing the cross-entropy (Kullback–Leibler
divergence) is achieved by obeying the matching law: foraging
proportional to the probability finding the best resources at
each available location. This strategy is especially suited to a
superorganism like an ant colony, because it can forage in
multiple locations simultaneously by allocating worker ants
in numbers proportional to the location’s reliability, through
self-organization [2].

There has been some intimation before that MCMC could
be a model for biological processes [62], with some query
about whether the requisite randomness is possible in
organisms. We think that not only is spontaneous (i.e. non-
deterministic, ‘random’) behaviour present, it is necessary for
survival in terms of being unpredictable around predators,
prey or competitors [63], or for finding food using a ‘strategy
of errors’ [64]. Indeed, the Bayesian framework developed
here allows predictions to be developed regarding the optimal
amount of ‘randomness’ in behaviour at both the level of the
individual and the colony (in the PMR model, this is adjusted
with the α parameter) that can be tested in the future empirical
research. Further predictions arise from the momentum rever-
sal step in MCMC PMR [38], which may be compared with
observations of U-turning in ants [65,66]. Recent literature
[67] has developed methods to adjust the path length dynami-
cally, while removing the need to have a parameter L for the
number of leapfrog steps. Observing how ants (and other
organisms) adjust their step lengths according to different
resource distributions will be instructive of their underlying
movement model.

4.5. Selection for collective foraging phenotypes
The major evolutionary transitions [1] can be seen as
successive leaps forward in information processing efficiency.
The Bayesian framework developed here permits the
evaluation and prediction of alternative movement strate-
gies, for groups of high-related organisms, in quantitative,
informational terms, in relation to environmental resource
distributions. Our framework permits us to make the
simple statement that for a movement strategy to be favoured
under natural selection:

DKLðpjjqnewÞ , DKLðpjjqoldÞ , ð4:1Þ
i.e. the Kullback–Leibler divergence (measuring the simila-
rity of two distributions) between a potential (genetically
accessible) collective movement strategy that results in the
equilibrium distribution of foragers qnew, and the organism’s
resource environment p, has to be lower than under the
current strategy found in the population that results in distri-
bution qold. This reduction may indeed be achieved by more
sophisticated, coordinated, collective behaviour, notwith-
standing higher individual energetic cost. Future research
could relate such an expression to concepts in evolutionary
genetics such as fitness landscapes [10]. The theoretical
relationship between the level of relatedness within a social
group, and the relevance of the Kelly strategy, could also be
explored in future research.
5. Conclusion
We described the foraging problem as a repeated multiplica-
tive game, where an ant colony has to place ‘bets’ on which
foraging patches to visit, with an ultimate pay-off of more
colonies or copies of their genes being created. Ants are very
successful in terms of their terrestrial biomass [17], and so it
would seem likely that they are following a highly evolved
strategy. We suggest that the theoretical optimum is a
‘Kelly’ or probability matching strategy, which maximizes
the long-term ‘wealth’ or biomass of the colony rather than
the resource collection of single ants. By mapping the foraging
problem to a set of methods designed to effectively sample
from probability distributions, we present models of ant
movement that achieve this matching behaviour. These
MCMC-based models thus provide spatially explicit predic-
tions for movement that describe and explain how colonies
optimally explore and exploit their environment for food
resources. We also show how Lévy-like step length distri-
butions can be generated by following a local gradient
that is uninformative, suggesting that contrary to being an
evolved strategy, Lévy flight behaviour may be a spontaneous
phenomenon. While we do not include interactions between
ants in the model, past theoretical analysis of information
use in collective foraging suggests that totally independent
foraging is actually optimal for a broad range of model par-
ameters when the environment is dynamic. This is because
information about short-lived food patches may not be
worth waiting for [68].

Understanding the logic of information flow at the level of
the gene and the cell has been identified as a priority [69].
However, given that no level of organization is causally privi-
leged in biology [70], explicating this at the organismal and
superorganismal level should also advance our understand-
ing. Our Bayesian framework operationalizes earlier
proposed frameworks (such as that of [13]) for movement
in a coherent and logical way, accounting for the uncertainty
in both the individual ant and the colony’s cognition in
relation to the foraging problem. It also allows quantification
of the system’s emergent information processing capabilities
and hypothesis generation for different organisms moving
in different environments. Our MCMC models can be used
as a foundation upon which further organismal and eco-
logical complexity can be explained in future research
and suggest that the movement strategies of animal collec-
tives may be instructive for biomimetic improvements to
MCMC methods.
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