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Dual Consensus Measure for Multi-Perspective
Multi-Criteria Group Decision Making

Iván Palomares , Michael Crosscombe, Zhen-Song Chen , Jonathan Lawry

Abstract—This paper investigates the problem of measuring
consensus in multi-perspective Multi-Criteria Group Decision
Making (MCGDM) problems, in which participants have indi-
vidual views on the relative importance of different evaluation
criteria. A novel dual consensus measure for multi-perspective
MCGDM problems is introduced. The proposed measure deter-
mines the level of agreement between participants’ opinions based
on: (i) the global performance or satisfaction of alternatives, (ii)
their partial performances of alternatives under each criterion,
and (iii) the similarity between the perspectives of participants
regarding criteria weights. Preliminary experiments are con-
ducted for an example multi-perspective MCGDM scenario. The
degree to which global and partial performance information are
jointly taken into account - together with the actual pairwise
distances between the opinions of participants - are shown to
directly affect the overall measurement of consensus in the group.
An application example is introduced in a MCGDM problem
on selecting the safest logistic route to transport hazardous
materials.

I. INTRODUCTION

Group Decision Making (GDM) problems are decision situ-
ations in which multiple participants, or experts, with distinct
background and interests attempt to make a collective decision
on ranking of a finite set of alternatives or to the selection
of the best or most suitable one(s). When participants must
evaluate the satisfaction or performance of each alternative
according to multiple criteria separately, we have a Multi-
Criteria GDM (MCGDM) problem. Conventional GDM and
MCGDM approaches involve a selection process in which
the experts’ preferences are combined into an aggregated
collective preference utilized to determine the solution for
the decision problem. Notwithstanding, many real-life col-
lective decisions demand alleviating internal disagreements
and achieving a high level of agreement among participants
[1]. Hence, consensus reaching processes are introduced in
an attempt to bring the initial preferences of experts closer
to each other before making the group decision. A large
body of research [6] has been devoted in recent decades
to defining consensus-driven (MC)GDM models, consensus
support systems, and consensus measures to determine the
level of group agreement based on the individual preferences
of participants.
Consensus measures have been scarcely investigated in the
existing MCGDM literature, with few works focused on
consensus approaches for multiple-criteria decision contexts
(compared to consensus-based GDM approaches [6]). Xu
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et al. [10] pointed out the necessity of consensus reaching
approaches in MCGDM, and proposed a consensus model
for MCGDM problems under an uncertain linguistic setting.
Although their consensus model and underlying consensus
measure takes account of decision weight information related
to the importance of participants, it is assumed that all cri-
teria are equally important. In [7], Pang et al. introduced a
consensus framework for MCGDM with uncertain linguistic
assessments. The underlying consensus measure relies on
determining, for each alternative xj and pair of experts ei, ei′ ,
two closeness degrees: (i) pairwise closeness for xj among
the upper limits of the uncertain linguistic assessments, and
(ii) pairwise closeness for xj among the lower limits of such
assessments. Both upper and lower pairwise similarities are
then fused into a single pairwise consensus degree on the
alternative. Yan et al. in [12] defined a consensus measure
between individual and collective preferential information in
linguistic MCGDM. Their measure is based on the concept of
stochastic dominance, a probabilistic interpretation of impor-
tance weights assigned to the participants, and the concept of
fuzzy majority. Concretely, the authors define a new consensus
measure along with its main properties, predicated on the devi-
ation degree between two random preferences generated by a
probability distribution resulting from aggregating the original
experts’ assessments. A consensus measure for MCGDM with
linguistic preference relations was established by Sun and
Ma in [9]. Their proposed method not only measures the
level of agreement based on linguistic interval comparison
operations, but also allows for flexibility in calculating an
acceptable threshold agreement level. However, although their
method is envisaged for a MCGDM framework, it requires
eliciting separate preference relations in the cases when several
criteria must be considered. In [3], Choudhury et al. presented
an intelligent consensus-driven decision model for advanced
technology selection. Three dimensions of criteria, namely
strategic, technological and social factors, are considered
in the target scenario, along with heterogeneous preference
structures and formats (preference orderings, utility functions,
fuzzy preference relations, multiplicative preference relations).
Notably, Choudhury et al.’s preference information does not
involve assessments and pairwise comparisons across various
alternatives , but rather direct assessments of the relative
importance of criteria.

In some consensus measures defined in the above studies
[7], [12], the criteria weights are taken into consideration in
the underlying aggregation processes to obtain the collective
consensus degrees. Other approaches [3] do not accommodate
assessing multiple alternatives under several criteria within
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the same preference structure. Moreover, not all existing con-
sensus measures for MCGDM consider different importance
weights for criteria in their underlying computations [9],
[10], [12], and hence, such criteria weights are taken into
account during the subsequent aggregation and alternative(s)
exploitation processes exclusively. Nevertheless, the interest in
this study lies in the fact that existing consensus approaches
for MCGDM in the literature [7], [9], [10], [12] assume
that the evaluation criteria have associated a unique set of
importance weights for the whole decision problem at hand.
In other words, the weights assigned to criteria are common
to the entire decision group. By contrast, in this paper we
investigate multi-perspective MCGDM problems, i.e. problems
in which each expert has his/her own perspective on the
relative importance weights of the evaluation criteria. We for-
mulate the following assumptions: (i) the consensus measures
defined in existing works for MCGDM are not suitable to
accommodate multi-perspective MCGDM situations in which
both the individuals’ opinions and their perspectives on the
available criteria must be taken into consideration throughout
the process of measuring and building consensus, and (ii)
the effect of using a consensus measure varies depending
on whether it considers the level of agreement/disagreement
among participants on the global performance of each alterna-
tive, or separately for the alternative performance under each
criterion.

To illustrate the second assumption above, consider the
following motivation example (whose employed notations are
formally introduced later in Section II-A). A family with four
members wishes to choose a new car to buy from several
available car models. Each of the family members subjectively
assesses each candidate car model in accordance with three
criteria: c1: comfort, c2 : design and c3: equipment. Assume
that the first family member, e1, provides the following assess-
ments in the unit interval [0,1] for model x1: p11 = (0, 0.75, 1).
Furthermore, for e1 all three criteria are moderately important,
with the second one (design) being slightly less important than
the other two, thus e1’s importance weights for criteria are
W1 = [0.4 0.2 0.4]T . Similarly, e2 supplies the following
assessments for x1 and importance weights for the existing
criteria, p12 = (0.75, 1, 0), W2 = [0.2 0.4 0.4]T . For e1, an
overall assessment of x1, denoted P1(x1) and indicating the
satisfaction degree (or performance, as referred to herein) of
x1, can be calculated as the criteria-weighted average of her
three assessments on x1, which yields P1(x1) = 0.55. For e2,
we also have P2(x1) = 0.55. Therefore, measuring consensus
between e1 and e2 based on their global performance on x1
would indicate that they fully (unanimously) agree on their
opinion for x1. However, a consensus measure that looked at
differences between assessments for each criterion separately,
would easily identify that e1 is completely satisfied with the
equipment criterion of x1, whereas e2 is completely dissatis-
fied with x1’s equipment. This situation clearly contradicts
the full agreement among their global assessments on x1.
Moreover, both members have different perspectives on the
relative importance of criteria (e.g. for e1, comfort is more
crucial than design, and vice versa for e2), and this situation,
such information is lost in the aggregation process.

The above example shows that measuring consensus on the
global performance of an alternative yields different results
than those obtained by reflecting the agreement positions on
assessments separately for each criterion, i.e. partial perfor-
mances of the alternative. Although both approaches follow a
similar rationale to existing consensus approaches in MCGDM
scenarios, using one or another in isolation might lead to
unreliable results, in which relevant decision information has
not been taken into account properly. The objective in this
work is to investigate and define a “compromise” dual con-
sensus measure for multi-perspective MCGDM problems, that
meaningfully incorporates both “views” jointly. To do this,
related preliminaries on MCGDM and consensus measures
are firstly overviewed in Section 2. In Section 3, two dis-
tance metrics among participants’ opinions are introduced:
(i) distance based on the the global performance of each
alternative “as a whole”; and (ii) distance based on the partial
performances of such an alternative for each criterion. Both
distances are subsequently combined to define a novel dual
consensus measure (illustrated in Section 3.4 for the selection
of the safest logistic route to transport hazardous materials)
that comprehensively reflects the agreement level based on
both global and partial performances of each alternative. The
proposed consensus measure also takes the similarity between
individual perspectives on criteria into account. Section 4
concludes the paper.

II. PRELIMINARIES

A. Decision-Making Framework

A MCGDM problem is defined as a situation in which a set of
at least two experts, E = {e1, e2, . . . , em} (m ≥ 2) attempt
to jointly select the best alternative(s) out of a finite set,
X = {x1, x2, . . . , xn}, (n ≥ 2), or to rank them in decreasing
order by satisfiability. Given a finite set of evaluation criteria,
C = {c1, c2 . . . , cl}, (l ≥ 1), each expert ei supplies an
assessment matrix, Pi = (pjki )n×l, in which each assessment
pjki , expressed in an assessment format D, indicates ei’s
opinion on the performance or satisfiability degree of xj under
the kth criterion. Examples of assessment formats frequently
considered in MCGDM literature include numerical values in
the unit interval, interval-valued, triangular fuzzy numbers,
linguistic terms, etc [11], [13]. Within the scope of this paper,
we assume the use of quantitative benefit1 assessments lying
in the unit interval. We also consider a particular case of
MCGDM problems referred to as multi-perspective MCGDM,
in which each group member ei ∈ E has their own view of
the relative importance of criteria, represented as an individual
weighting vector Wi = [w1

i . . . wli]
T , such that wki ∈ [0, 1]

and
∑l
k=1 w

k
i = 1.

B. Consensus measures in Group Decision Making

In most practical GDM and MCGDM problems, obtaining
a solution deemed as acceptable by the whole group becomes

1Several MCGDM approaches distinguish between cost and benefit criteria,
such that assessments on both types of criteria are interpreted differently. We
assume hereinafter that higher assessment values imply a better performance
of the alternative under each criterion.
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paramount. Consensus reaching processes are introduced in
such cases to foster the interaction among participants and to
modify their preferences, so as to bring them closer to each
other and increase the level of collective agreement [6]. There
are various interpretations to the concept of consensus, the
most strict of which views consensus as full agreement or
unanimity. However, achieving consensus as unanimity is in
practice infeasible in most real-life decision making contexts.
As a counterpart to the strict view of consensus as unanimous
agreement, flexible interpretations implying that consensus
can be measured under different levels of partial collective
agreement, have been widely adopted in numerous consensus-
based (MC)GDM approaches [2], [5]. Based on individual
preferential information provided by participants in a group, a
consensus measure [8] determines the level of agreement in a
group or consensus degree, indicating how close (or distant)
the individual opinions are from unanimity. This consensus
degree is numerical value in the unit interval (such that the
closer the value is to 1, the closer the group is to unanimity),
which is compared against a threshold consensus degree or
minimum level of consensus required, established a priori.

There exist two broad types of consensus measures, as
categorized in Palomares et al.’s survey [6].
• Consensus measures based on distances to the collective

preference: These measures firstly determine the collec-
tive preference Pc representing the overall opinion of
the group. Each assessment in the collective preference
is obtained by aggregating m individual assessments of
participating experts, using an aggregation function φ, i.e.
pjkc = φ(pjk1 , p

jk
2 . . . , pjkm ). Consensus degrees are then

obtained at assessment level based on the distance be-
tween each individual opinion and the collective opinion,
and finally aggregated into a global consensus degree.
Lower distance values between each individual opinion
and the collective opinion contribute to a higher level of
consensus, and vice versa.

• Consensus measures based on pairwise distances between
experts: For each pair of experts ei, ei′ , i 6= i′, the dis-
tance between their opinions (or conversely, the similarity
between them, as considered in several consensus mod-
els) is computed at assessment level. Pairwise distances
(resp. similarities) are then aggregated into assessment-
level consensus degrees for the group. Successive aggre-
gation of such degrees finally yields the global consensus
degree.

III. DUAL CONSENSUS MEASURE FOR
MULTI-PERSPECTIVE MULTI-CRITERIA GROUP DECISION

MAKING

This section introduces a novel dual consensus measure for
multi-perspective MCGDM problems, which combines two
pairwise distance measures between experts’ opinions. The
proposed consensus measure jointly captures the level of
agreement between experts’ preferential information based on
(i) the global performance or satisfaction of alternatives, (ii)
the partial performances of alternatives under each criterion,
and (iii) the similarity between experts’ perspectives on the

Assessment value Semantics
0.0 Absolutely unsatisfactory
0.25 Unsatisfactory
0.5 Neither unsatisfactory nor satisfactory
0.75 Satisfactory
1.0 Absolutely satisfactory

TABLE I: Assessment scale utilized to illustrate the proposed
dual consensus measure

relative importance of criteria. Sections III-A and III-B in-
troduce the global and partial distance metrics underlying
the proposed dual consensus measure, which is formalized
in Section III-C. For the sake of simplicity and illustration,
the examples introduced in the sequel assume a discrete,
quantitative assessment scale across the unit interval (see Table
I).

A. Distance based on Global Alternative Performance

Let Pi, Pi′ denote the multi-criteria evaluation matrices
provided by the ith and i′th experts, ei ∈ E on X ,
i ∈ {1, . . . ,m}. Let pji = (pj1i , . . . , p

jl
i ) be ei’s preference

vector containing her/his assessments on the jth alternative.
Intuitively, pji coincides with the jth row in the evaluation
matrix Pi. Similarly, denote by pji′ = (pj1i′ , . . . , p

jl
i′ ) the

assessments elicited from ei′ on xj . Let Wi = [w1
i . . . w

l
i]
T

and Wi′ = [w1
i′ . . . w

l
i′ ]
T be their individual weighting vectors

of decision criteria. Based on pji , Wi, p
j
i′ and Wi′ we define the

distance between the ith expert’s opinion and the i′th expert’s
opinion regarding the global performance of xj , denoted by
dG(p

j
i , p

j
i′), as follows:

dG(p
j
i , p

j
i′) =

∣∣∣∣∣
l∑

k=1

wki ·p
jk
i −

l∑
k=1

wki′ ·p
jk
i′

∣∣∣∣∣ (1)

where
∑l
k=1 w

k
i ·p

jk
i and

∑l
k=1 w

k
i′·p

jk
i′ = P(xi) represent the

global performance of xj based on ei’s individual assessments
and the (aggregated) collective assessments, respectively. It
can be easily verified that dG(p

j
i , p

j
i′) satisfies the following

fundamental conditions for distance metric functions [4]: (1)
1) Non-negativity: dG(·, ·) ≥ 0
2) Symmetry: dG(p

j
i , p

j
i′) = dG(p

j
i′ , p

j
i )

3) Reflexivity: dG(p
j
i , p

j
i ) = 0

4) Identity of indiscernibles: dG(p
j
i , p

j
i′) = 0 ⇐⇒∑l

k=1 w
k
i ·p

jk
i =

∑l
k=1 w

k
i′ ·p

jk
i′

5) Triangle inequality: dG(p
j
i , p

j
i′′) ≤ dG(p

j
i , p

j
i′) +

dG(p
j
i′ , p

j
i′′), for any i 6= i′ 6= i′′.

Example 1: Consider a MCGDM problem consisting of
n = 4 alternatives, m = 8 experts and l = 3 evaluation
criteria. Two experts ei, e2 provide the evaluation matrices
P1 = (pjk1 )n×l and P2 = (pjk2 )n×l shown below, with
pjki ∈ [0, 1].

P1 =


0 .75 1
.25 .25 .5
1 .5 .75
.75 .5 .5

P2 =


.75 1 0
.5 .75 1
0 0 .5
.25 .25 .75
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Assume that the importance weights vectors provided by e1
and e2 for the available criteria are, respectively, W1 =
[.4 .2 .4]T and W2 = [.2 .4 .4]T . Let us calculate the distance
between e1 and e2 on the global performance of x1. For e1,
we have that her (opinion on the) global performance of x1 is
P1(x1) = 0·0.4+0.75·0.2+1·0.4 = 0.55. On the other hand,
for e2 we have P2(x1) = 0.75 · 0.2 + 1 · 0.4 + 0 · 0.4 = 0.55.
Based on this, dG(p11, p

1
2) = |0.55 − 0.55| = 0, i.e. the two

experts are deemed as having an identical opinion on the
global performance of x1.

B. Distance based on Partial Alternative Performances

Let Pi, Pi′ , p
j
i , p

j
i′ , Wi and Wi′ be as introduced in Section

III-A. We now introduce the distance between the opinions of
ei and ei′ regarding the partial performances of xj (i.e. how
satisfactory xj is deemed under each criterion). This distance
function is denoted by dP (p

j
i , p

j
i′), and it is defined as:

dP (p
j
i , p

j
i′) =

l∑
k=1

∣∣∣pjki − pjki′ ∣∣∣σk
i,i′

(2)

with σki,i′ ∈ [0, 1] a coefficient describing how similar the
individual perspectives on the importance of ck ∈ C are
among ei and ei′ , i.e.,

σki,i′ = 1− |wki − wki′ | (3)

In Eq. (2), each addend |pjki − p
jk
i′ |

σk
i,i′ ∈ [0, 1] represents the

weight-adjusted deviation between (i) the partial performance
of xj under the kth criterion according to ei, and (ii) the
partial performance of xj under the kth criterion according
to ei′ . Figure 1 illustrates the behavior of |pjki − pjki′ |

σk
i,i′ .

Consequently, dP (p
j
i , p

j
i′) ∈ [0, l], with l ≥ 2 the number of

evaluation criteria considered in the decision problem. Eq. (2)
can thereby be normalized into the unit interval:

dP (p
j
i , p

j
i′) =

∑l
k=1

∣∣∣pjki − pjki′ ∣∣∣σk
i,i′

l
(4)

The weight similarity coefficient σki,i′ ∈ [0, 1] plays the role of
amplifying the deviation degree between assessments pjki and
pjki′ when wki and wki′ are different from each other. For any
non weight-adjusted deviation |pjki − p

jk
i′ | ∈ [0, 1], the lower

σki,i′ (i.e. the more distinct weights wki and wki′ are), the closer

its weight-adjusted counterpart |pjki −p
jk
i′ |

σk
i,i′ becomes to one.

In other words, the deviation between an individual assessment
pjki and the associated ei′’s assessment pjki′ is quantified as
higher if there also exists discrepancy among the importance
both individuals assigned to the kth criterion.

It is likewise easy to verify that dP (p
j
i , p

j
i′) satisfies the fol-

lowing fundamental conditions inherent to a distance function:
(1)

1) Non-negativity: dP (·, ·) ≥ 0
2) Symmetry: dG(p

j
i , p

j
i′) = dP (p

j
i′ , p

j
i )

3) Reflexivity for any weighting vectors Wi,Wi′ : If pji =
pji′ , then dP (p

j
i , p

j
i′) = 0, ∀σki,i′ ∈ [0, 1].

4) Identity of indiscernibles: dP (p
j
i , p

j
i′) = 0 ⇐⇒ pjki =

pjki′ , ∀k ∈ {1, . . . , l}.

σi,i'
k = 0 

σi,i'
k = 1 

σi,i'
k = 0.8 

σi,i'
k = 0.6 

σi,i'
k = 0.4 

σi,i'
k = 0.2 

Fig. 1: Behavior of the weight-adjusted deviation |pjki −
pjki′ |

σk
i,i′ between pjki and pjki′ , for different values of σki,i′

5) Triangle inequality: dP (p
j
i , p

j
i′′) ≤ dP (p

j
i , p

j
i′) +

dP (p
j
i′ , p

j
i′′), for any i 6= i′ 6= i′′.

Some interesting particular cases of dP (p
j
i , p

j
i′) are de-

scribed below.

• If σ1
i,i′ = σ2

i,i′ = . . . = σli,i′ = 1 then dP (p
j
i , p

j
i′) =

(
∑
k |p

jk
i − p

jk
i′ |)/l, i.e. if the individual and collective

criteria weighting vectors are identical, then their distance
based on partial performances is purely based on the
deviation between the assessments provided by ei, ei′ on
xj .

• Let e, ei′ and ei′′ be three experts with identical assess-
ments on xj , i.e. pji = pji′ = pji′′ . Assume that ∀k ∈
{1, . . . , l} it holds wki,i′ ≥ wki,i′′ . Then dP (p

j
i , p

j
i′) ≤

d(pji , p
j
i′′). Furthermore, if we also have that ∃k ∈

{1, . . . , l} : wki,i′ > wki,i′′ , then dP (p
j
i , p

j
i′) < d(pji , p

j
i′′).

• If σ1
i,i′ = σ2

i,i′ = . . . = σli,i′ = 0 then dP (p
j
i , p

j
i′) = 1,

i.e. if the weighting vectors from ei, ei′ are completely
opposite to each other (which occurs when wki = 0 and
wki′ = 1 or vice versa for all criteria), then their distance
based on partial performances is maximal, for any two
non-identical assessment vectors pji and pji′ .

Remark 1: The particular case when σki,i′ and pjki = pjki′
yields the indeterminate form 00 in the computation of the
weight-adjusted deviation for cj . Without loss of generality,
we adopt the convention 00 = 0, which implies a null weight-
adjusted deviation when ei and ei′ assessments are identical.

Remark 2: The case when σki,i′ = 0, ∀k yields a drastic

approach to measuring dP , since |pjki − p
jk
i′ |

σk
i,i′ = 0 if pjki =

pjki′ , and |pjki − p
jk
i′ |

σk
i,i′ = 1 otherwise. In Section III-C we

propose an adaptive approach for combining dG and dP into
a consensus measure that softens this situation.

Example 2: Let P1, P2, W1 amd W2 be as shown in
Example 1. Based on Eqs. (3) and (4), Table II summarizes the
calculations of the non adjusted deviation, weight similarity
coefficient and weight-adjusted deviation between e1 and e2
on x1, for each criterion ck, k ∈ {1, . . . , l}. Consequently,
dP (p

1
1, p

1
2) = (0.794 + 0.330 + 1)/3 = 0.708, i.e. the two

experts are deemed to have highly different opinions on the
partial performances of x1 (in contrast to their same opinion
on the global performance of the alternative).



2018 IEEE INTERNATIONAL CONFERENCE 5

TABLE II: Pairwise deviation calculation for each criterion

ck

∣∣∣pjki − pjk
i′

∣∣∣ σk
i,i′

∣∣∣pjki − pjk
i′

∣∣∣σk
i,i′

c1 0.75 0.8 0.794
c2 0.25 0.8 0.330
c3 1 1 1

C. Dual consensus measure based on global and partial
alternative performances

Given the two distance functions dG and dP defined in the
previous two subsections, we now combine them into a dual
distance measure dα, which in turn leads to defining a pairwise
consensus measure at the alternative level, as follows:

CDi,i′(xj) = 1− dα(pji , p
j
i′) (5)

where,

dα(p
j
i , p

j
i′) = α · dG(pji , p

j
i′) + (1− α) · dP (pji , p

j
i′) (6)

with α ∈ [0, 1] a parameter indicating the relative importance
of the global performance distance function, with respect to
the distance function based on partial performances. It was
previously pointed out in Remark 2 that when two experts’
perspectives on criteria are completely opposite, i.e. σki,i′ =
0 ∀k, the resulting pairwise distance dP becomes 1. This
implies that when all σki,i′ are close to zero, the resulting dP
tends to be too drastically high (even though there exist high
similarities among both users at assessment level and in terms
of a low dG). To alleviate this situation and eliminate the need
for manually setting α, below we propose a setting its value
predicated on the similarity between experts’ perspectives as:

α = 0.5 +

∑
k |wki − wki′ |

2 · l
(7)

which restricts the parameter range to α ∈ [0.5, 1]. When
|wki − wki′ | = 1, ∀k then α = 1, i.e. the consensus
measure fully relies on the pairwise distance between global
performance dG exclusively. The opposite case occurs when
|wki − wki′ | = 0, ∀k, yielding α = 0.5, hence both the global
and partial distance views are equally taken into account within
the consensus measure. We note that the above strategy in Eq.
(7) should be interpreted as a particular example on flexibly
determining α in the absence of domain expert knowledge,
rather than being deemed as the only general solution to adopt
in cojunction with the proposed dual consensus measure.

Finally, we formally describe how the proposed dual con-
sensus measure can be instantiated as either of the two
categories of consensus measures previously reviewed (see
Section II-B).
• Dual consensus measure based on distances to the col-

lective preference
1) Calculate the collective decision matrix

Pc = (pjkc )n×l, with each assessment
pjkc = φ(pjk1 , p

jk
2 , . . . , p

jk
m ) and φ : [0, 1]m → m an

aggregation operator.
2) For each ei ∈ E and xj ∈ X , calculate dG(p

j
i , p

j
c).

3) For each ei ∈ E and xj ∈ X , calculate dP (p
j
i , p

j
c).

4) For each ei ∈ E and xj ∈ X , calculate CDi,c(xj)
based on Eqs. (5) and (6).

5) For each xj ∈ X , aggregate
CD1,c(xj), CD2,c(xj) . . . CDm,c(xj) into
CD(xj).

6) Aggregate CD(x1) . . . CD(xn) into an overall con-
sensus degree CD.

• Dual consensus measure based on pairwise distances
between experts

1) For each pair of experts (ei, ei′) ∈ E × E, i < i′,
and xj ∈ X , calculate dG(p

j
i , p

j
i′).

2) For each pair of experts (ei, ei′) ∈ E × E, i < i′,
calculate dP (p

j
i , p

j
i′).

3) For each pair of experts (ei, ei′) ∈ E × E, i < i′,
calculate CDi,i′(xj) based on Eqs. (5) and (6).

4) For each xj ∈ X , aggregate
CD1,2(xj), CD1,3(xj) . . . CDm−1,m(xj) into
CD(xj).

5) Aggregate CD(x1) . . . CD(xn) into an overall con-
sensus degree CD.

D. Application Example
We now illustrate the applicability of the dual consensus
measure based on pairwise distances between experts in a
logistics security scenario, as follows. Hazardous materials are
substances capable of causing harm to humans, properties and
the environment, such as explosives, flammables, oxidizing
substances, poisonous gases, and radioactive materials. The
release of hazardous materials caused by traffic accident or
other potential risk factors during the transport can make a
serious threat to residents, property and environment along
their route. In order to reduce the risk of hazardous material
transport, the enterprise should adopt a series of strategies to
reduce the risk associated with the transport of hazardous ma-
terial, among which the route selection plays an important role.
The choice of the best suitable route is a complex decision-
making problem, because the route with the minimal cost or
travel time often pass through the area with high population or
bad road condition. For a transport enterprise, there were four
candidate routes available to transport the hazardous material,
n = 4. Evaluating such alternatives in terms of three criteria
(l = 3): efficiency, population density and road condition; the
method proposed is applied to determine the most appropriate
route. Six experts on secure logistics with diverse viewpoints
on the importance of such three criteria, provide individual
decision matrices with assessments expressed under the scale
shown in Table I. The decision matrices and criteria weights
elicited from e1 and e2 are as introduced in Example 2. Table
III shows the assessments provided by the other four experts.

TABLE III: Assessments provided by e3-e6
ei e3 e4 e5 e6
p1i (.5,1,.25) (.5,.75,1) (.25,.5,.25) (1,.5,.5)
p2i (.5,.5,.5) (.5,0,.25) (.5,.5,.5) (1,.25,.25)
p3i (0,0,.25) (0,0,0) (.5,.5,.25) (0,0,.5)
p4i (.75,.75,1) (1,.75,.25) (1,1,1) (0,.25,.75)

Furthermore, W3 = [.1 .8 .1], W4 = [.5 .2 .3], W5 = [.4 .3 .4]
and W6 = [.5 .4 .1]. Without loss of generality, the arithmetic
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α

Fig. 2: Collective consensus degrees obtained at alternative
and global level for different settings of parameter α ∈ [0, 1].

mean operator is used to successively aggregate pairwise con-
sensus degrees. The group consensus degrees are calculated
for each alternative xj ∈X , when the control parameter α is
dynamically calculated based on the criteria weights assigned
by each pair of experts ei, eu, by using Eq. (7) (i.e. with
α ∈ [0.5, 1]), yielding: CD(x1) = .677, CD(x2) = .734,
CD(x3) = .631 and CD(x4) = .589. By aggregating these
consensus degrees, we obtain CD= .657.

To demonstrate the effect of α in the dual consensus
measure, CD(xj), j = 1, . . . , 4, and CD are now calculated
for different values of α ranging across the complete unit
interval [0,1]. The parameter value is fixed for the entire
decision group (i.e. for the experiments conducted, the value
of α is common to all pairs of experts instead of using Eq.
(7)). The results are depicted in Figure 2. In view of the results
obtained , it can be observed that: (i) increasing the relative
importance of dG with respect to dP (by increasing α) yields
a higher consensus degree both at global level and for all four
alternatives considered, i.e. the dual consensus measure be-
haves more optimistically (resp. pessimistically) by increasing
(resp. decreasing) α, hence considering the pairwise distances
between partial performances of alternatives contributes to a
stronger sensitivity towards disagreement positions between
experts opinions; and (ii) the highest (resp. lowest) variability
in the consensus degrees as α increases are observed for x1
(resp. x3). By analyzing the partial and dual distances between
all the m(m − 1)/2 = 15 different pairs of experts on each
alternative, dP (p

j
i , p

j
i′) and dα(p

j
i , p

j
i′), it was observed that

x1 presented the smallest differences between highest and
lowest pairwise values for dP (p

j
i , p

j
i′), dα(p

j
i , p

j
i′), whereas x3

presented the largest such differences. Importantly, the findings
expounded above are specific to the example presented in this
paper, hence it may not be generalized to any instance of multi-
perspective MCGDM problem. A comprehensive experimental
study on the behavior of the proposed dual consensus measure
and its implications in diverse practical applications, consti-
tutes our most immediate direction for future research.

IV. CONCLUDING REMARKS

In many real-life Multi-Criteria Group Decision Making
(MCGDM) situations, participants may have diverse perspec-
tives on the relative importance of evaluation criteria when
providing their individual opinions on the existing alternatives.

This paper introduced a novel dual consensus measure for
reliably quantifying the collective agreement level among
participants’ opinions in such MCGDM problems, taking
into consideration both the global performance of alterna-
tives according to each individual opinions, and the partial
performances of the alternatives under each criterion, along
with the similarity between the perspectives of participants
regarding the relative importance of criteria. Future work will
focus on generalizing the proposed dual consensus measure
to different multi-perspective MCGDM frameworks under
diverse preference formats and the participation of mixed
groups involving human experts and autonomous systems (e.g.
in multi-agent planning, surveillance, intelligent transporta-
tion, and smart cities domains). We also aim at defining
a complete consensus model for multi-perspective MCGDM
incorporating the proposed dual consensus measure, and to
extending its applicability to decision problems involving
large, highly heterogeneous groups of participants exhibiting
different behaviors during the process of building consensus.
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