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Abstract  

Case-control studies are potentially open to misclassification of disease outcome which may be 

unrelated to risk factor exposure (non-differential), thus underestimating associations, or related to risk 

factor exposure (differential), thus causing more serious bias.  

We conducted a systematic literature review for methods of adjusting for outcome misclassification in 

case-control studies. We also applied methods to simulated data with known outcome 

misclassification to assess performance of these methods. Finally, real data from the Prostate Testing 

for Cancer and Treatment (ProtecT) randomised controlled trial, gauged the usefulness of these 

methods. 

Adjustment methods range from recalculating cell frequencies to probabilistic sensitivity modelling and 

Bayesian models, which incorporate uncertainty in sensitivity and specificity estimates. Simulated data 

indicated that substantial bias in either direction resulted from differential misclassification. More 

sophisticated methods, incorporating uncertainty into estimates of misclassification, provided 

appropriately wide confidence intervals for corrected estimates of risk factor–disease association.  

Method choice depends on whether the objective is to assess if an observed association can be 

explained by bias, or to provide a “corrected” estimate for the primary analysis. Accurate estimation of 

the degree of misclassification is important for the latter; otherwise further bias may be introduced. 

mailto:Becky.Gilbert@bristol.ac.uk
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1  I N T R O D U C T I O N  

Potential risk factors for many important diseases are widely researched using case-control study 

designs. Associations are investigated by determining whether levels of exposure to specific risk 

factors differ in cases versus controls.1 Case-control status may be misclassified, e.g. when a 

definitive but invasive diagnostic test is carried out only on individuals shown to be at high risk of 

having the disease by a screening test. For example, in case-control studies that investigate risk 

factors for prostate cancer (the motivating example used in this paper), there are two main scenarios 

that may lead to misclassification of outcome: 

1) A man with prostate cancer has a prostate specific antigen (PSA) level (a preliminary 

diagnostic test) below the threshold for further diagnostic evaluation so no biopsy (the 

definitive test) is carried out, i.e. some men with a ‘normal’ PSA have prostate cancer.2 

2) A man may have a negative biopsy when prostate cancer is in fact present. Biopsies sample 

varying amounts of tissue from different areas of the prostate; the greater the number of cores 

sampled, the greater the likelihood of finding cancer.3  

In both scenarios, a ‘true’ case would be incorrectly classified as a control, i.e. a false negative.  In 

Thompson, 20042 15% of men with PSA<4ng/mL (the usual threshold for biopsy) had prostate cancer. 

False positives are very unlikely to occur in this context since biopsies will not be positive if no cancer 

is present.3 Other contexts may present scenarios where false positives are much more likely, for 

example, research into predictors of smoking cessation. It may be a concern that, among participants 

that did not quit, some might report that they had (i.e. specificity<100%). 

 

 Misclassification of disease outcome may be unrelated to risk factor exposure (non-differential), when 

associations will be modestly underestimated,4-7 or related to risk factor exposure (differential), 

causing more serious under- or over-estimation of association.5, 8-10 Misclassification bias in binary 

outcomes can be described as a function of two parameters, sensitivity and specificity, which can be 

allowed to differ by exposure group to account for differential misclassification. Sensitivity is the 

proportion of true positives correctly identified as such and specificity is the proportion of true 

negatives correctly identified as such.1 The effect of misclassification of exposure status has been well 

researched,8, 11-13 but there has been less methodological work looking at the effects of 

misclassification of disease status.6, 7  
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If sensitivity and specificity can be accurately estimated, then adjusted estimates of the risk factor-

disease association can be presented alongside observed estimates. If assumed ranges of sensitivity 

and specificity can be justified then simulations can be used to investigate the effect of 

misclassification on estimates by varying the levels of sensitivity and specificity. Deciding between the 

two options will depend on the available information and the aim of the analysis. If the researcher is 

confident in their estimates of sensitivity and specificity, the adjusted estimate could be presented 

alongside the observed estimate. Varying the amount of sensitivity and specificity may be more 

appropriate to investigate how the results would change under differing amounts of misclassification 

and to allow confidence in the direction of the effect. 

 

This paper aims to review and compare the available methods for correcting for non-differential or 

differential misclassification of outcome in case-control studies. The search for risk factors for prostate 

cancer will be used as an example area of application. The paper is organised as follows: Section 2 

describes the systematic review of the methods available for correcting such misclassification, with 

results from a simulation study presented in section 3. Section 4 presents the application of the 

methods demonstrated using the ProtecT study dataset, and in section 5 the findings are discussed 

and recommendations are made for practical use of these methods. 

 

2  S Y S T E M A T I C  L I T E R A T U R E  R E V I E W  

2.1 Review Methods 

A systematic literature review was carried out using a MEDLINE search up to 21st January 2010 to 

identify papers that present methods for adjusting for misclassification of outcome in case-control 

studies. The following search strategy was used, where one term from each group must be present:  

• Sensitivity and Specificity (MeSH); disease misclassification, sensitivity,  specificity, 

misclassification, misclassification bias, differential misclassification, nondifferential 

misclassification, non differential misclassification (text)  

• Logistic Models (MeSH); logistic regression, binomial regression, case-control studies, binary 

outcome, odds ratio, Odds Ratio (text) 

• (Prostatic Neoplasms (MeSH); prostate cancer, outcome, disease (text). 

Extra search terms regarding prostate cancer were included in the search, as this is the area of 

application of interest to us. Results were limited to the English language. An automatic alert was set 

up for the same search and any new studies were incorporated up until 23rd March 2012. Papers were 



 

4 

 

included in the review if they presented methods for dealing with outcome misclassification in case-

control studies of any outcome. Papers were excluded from the review if they considered exposure or 

covariate misclassification, other types of bias such as recall or selection bias, presented methods for 

adjusting rate ratios, or presented methods for adjusting odds ratios from cohort studies. Papers that 

presented supporting information, such as information regarding misclassification of prostate cancer 

status, were also retrieved and referenced as appropriate. 

The initial search identified 9 199 hits, of which 8 893 were in English. After reading titles and 

abstracts for potential relevance, 36 papers were retrieved for detailed reading. Sixteen papers were 

included, of which seven were methodological.4-7, 14-16 Searching the reference lists of these sixteen 

papers led to a further twelve papers being retrieved and seven papers being included, of which four 

were methods.8, 17-19 A textbook that presented a method was also identified via a reference list and 

included as a method.20 Citation searches, using ISI Web of Knowledge, were carried out on six ‘key’ 

papers,4-7, 15, 19 leading to a further eighteen papers being retrieved and a further five papers being 

included, one being a method.21 Personal communications led to one further paper being added, 

which has since been published.22 The automated alert (up to 27th May 2013) identified one further 

paper for inclusion.23 Overall, fifteen methodology papers were included in the review (Figure 1). Web 

of Science was also searched with a similar set of terms, identifying 5155 titles and abstracts. 

Screening these did not identify any new papers. 
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Figure 1: Flowchart of included papers (up to 27th May 2013) 
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2.2 Notation  

Methods fall into five main categories, with the following notation used to describe each (Box 1).  

The observed (biased) numbers and odds ratio shall be denoted by the superscript *.  

 

The standard 2*2 table will be denoted as: 

 Cases (D1) Controls (D0)  

Exposed (E1) a c M1 

Not exposed (E0) b d M0 

 A B N=A+B 

 ⇒ OR = 𝑎𝑑 𝑏𝑐⁄   
 

 

Sensitivity and specificity shall be denoted as Sei and Spi respectively, where i = 1 for the exposed 

group and i=0 for the unexposed group and can be calculated in the following way: 

Classified 

disease status 

Actual Disease Status  

D1i D0i  

D1i* ri ti  

D0i* si ui  

 Ri Ti Ni 

 Sei = Sensitivity in i = ri/(ri + si);   

Spi = Specificity in i=  ui/(ti + ui) 

Where: 

Under non-differential misclassification Se1=Se0 and Sp1=Sp0. 

E[Sei + Spi – 1] ≥ 0 

VSei and VSpi are the variances of Sei and Spi respectively, where 

VSei = Sei*(1- Sei)/Ri and VSpi = Spi*(1- Spi)/Ti; 

P(D0i) and P(D1i) are the actual proportions of subjects in exposure group i who are controls and cases 

respectively; 

P(D*0i) and P(D*1i) are the proportion of subjects in exposure group i observed as controls and cases 

respectively. 

Box 1: Notation 

 

2.3 Altering cell frequencies to adjust the crude estimate of association 

Eight papers identified present alternative methods which alter the cell frequencies of a 2*2 table. Four 

papers demonstrate the effect of outcome misclassification by estimating the percentage of 

misclassification and altering the cell frequencies accordingly.5-7, 22 Another four methods use 

estimates of sensitivity and specificity to calculate the true numbers of diseased and non-diseased.14, 

17, 18, 20 The new cell counts can then be used to calculate odds ratios as usual. These methods can be 

easily applied to published summary statistics. Differential misclassification can be incorporated by 

allowing the sensitivity and specificity to differ by exposure group.  
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For example, Lash et al20 present the equations in Table 1 for recalculating the cell frequencies based 

on estimates of sensitivity and specificity. If Sp1 = Sp0 = Se1 = Se0 =1, the adjusted cell frequencies 

are equal to the observed cell frequencies. 

 

 Observed  Adjusted 

 D1* D0*  D1
I D0

I 

E1 a c  aI = [a-(a+c)( 1- Sp1)]/[ Se1 - (1- Sp1)] cI = (a+c) - aI 

E0 b d  bI = [b-(b+d)(1- Sp0)]/[ Se0 - (1- Sp0)] dI =(b+d) - bI 

Total A=a+b B=c+d  AI =aI +bI BI =cI +dI 

Table 1: Formulae for correcting observed data for estimated values of sensitivity and specificity 

(based on Lash, 200920) 

 

2.3.1 Adjusted Standard Errors 

Sensitivity and specificity can be estimated either ‘internally’ from a validation sub-sample or from 

comparable external data.  When recalculating odds ratios based on recalculated cell frequencies, it is 

not appropriate to calculate confidence intervals in the standard way if sensitivity and specificity have 

been estimated from external data. Standard confidence intervals only take account of sampling 

variation and would be too narrow. Methods for incorporating systematic error into the calculation of 

standard error, when external estimates of sensitivity and specificity have been used to adjust for 

misclassification of outcome, are presented by Greenland et al, 1988.19  The variance of the log odds 

ratio, incorporating estimates of sensitivity and specificity, can be estimated using the following 

equations:  

𝑉𝑎𝑟(𝑛𝑜𝑛 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙) =
𝑉𝑆𝑒(1

𝑃(𝐷01)⁄ −1
𝑃(𝐷00)

⁄ )2+𝑉𝑆𝑝(1
𝑃(𝐷11)⁄ −1

𝑃(𝐷10)⁄ )2+∑ 𝑃(𝐷0𝑖
∗ )𝑃(𝐷1𝑖

∗ ) 𝑀𝑖𝑃(𝐷0𝑖)2𝑃(𝐷1𝑖)2⁄1
𝑖=0

(𝑆𝑒 +𝑆𝑝 −1)2      (1)             

 

𝑉𝑎𝑟(𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙) = ∑
𝑉𝑆𝑒𝑖 𝑃(𝐷0𝑖)2+⁄ 𝑉𝑆𝑝𝑖 𝑃(𝐷1𝑖)2+ 𝑃(𝐷0𝑖

∗ )𝑃(𝐷1𝑖
∗ ) 𝑀𝑖𝑃(𝐷0𝑖)2𝑃(𝐷1𝑖)2⁄⁄

(𝑆𝑒𝑖+𝑆𝑝𝑖−1)2
1
𝑖=0                                           (2)                            

 

The equations for the two scenarios differ since, under non-differential misclassification, the corrected 

case numbers are not independent of the corrected control numbers. In the above equations, P(D0i) 

and P(D1i) (the actual proportions of subjects in exposure group i who are controls and cases 
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respectively) can be calculated from one of the presented methods for recalculating cell frequencies, 

for example Lash et al20 as discussed in section 2.3. 

2.4 Logistic Regression Models 

So far, all of the considered methods have made corrections at the summary statistic/aggregate data 

level. A method that can be applied to individual records enables complex relationships involving 

adjustment for confounders to be investigated. Magder et al15 presents a method that fits a logistic 

regression model with each subject being included twice, as diseased and not diseased, with weights 

determined by the probability that the subject is truly diseased given the data. The procedure is 

described using the following example.  

Suppose an individual, classified as diseased, has 90% probability of being truly diseased, determined 

by sensitivity, specificity and values of the individual’s covariates reflecting a known risk factor. This 

individual would be entered into standard logistic regression twice, once as diseased with a weight of 

0.9 and once as not diseased with a weight of 0.1. Since these probabilities depend partly on the 

values of covariates and therefore on the parameters of the logistic regression, they need to be 

recalculated after the logistic regression parameters are estimated. This process is repeated using the 

new probabilities as weights until the model converges. Differential misclassification can be 

accommodated by allowing the values of sensitivity and specificity to differ for individuals. The formal 

algorithm is presented in the paper, a downloadable macro has been implemented in the SAS 

software package, and a user-written command (‘logitem’) is available for the Stata software package/ 

This method cannot be applied to simple case-control studies since there is no way to estimate the 

underlying probability of disease as the numbers of cases and controls are fixed by design. One way 

around this would be to incorporate external estimates of disease frequency as sampling weights. 

2.5 Probabilistic Sensitivity Analysis 

Probabilistic sensitivity analyses is a semi-Bayesian approach, a compromise between classical and 

Bayesian methods which allow prior distributions to be assigned to the unknown parameters, i.e.  

sensitivity and specificity estimates. This produces a frequency distribution of adjusted estimates of 

the association which can be easily summarised by a median and confidence intervals that 
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incorporate both random and systematic error. This differs from traditional Bayesian methods, where 

distributions are assigned to all parameters and specialist software is required to refit models. 

For example, the method discussed earlier by Lash et al20 (Table 1) can be incorporated into a 

probabilistic sensitivity analysis. The user can define probability distributions of sensitivity and 

specificity (either two distributions for non-differential misclassification or four distributions for 

differential misclassification). Since the sensitivity and specificity in the exposed group is likely to be 

related to the sensitivity and specificity in the non-exposed group if the same diagnostic procedure has 

been used in each, a correlation coefficient between the sensitivity/specificity in the non-exposed 

group and the exposed group must be specified (a correlation of 1 indicates non-differential 

misclassification by forcing the sensitivity/specificity in the two groups to be identical). The method 

assumes that the true misclassification is non-differential, which may be observed by chance as 

differential misclassification (due to the specified correlation between the sensitivities/specificities in 

the two groups). Therefore, the method cannot correct for true differential misclassification. 

Estimates of sensitivity and specificity, by exposure group, are randomly sampled from the defined 

distributions.20 The formula given in Table 1 can then be applied substituting in the random values of 

sensitivity and specificity calculated above, and an adjusted odds ratio is calculated (ORI), accounting 

for systematic error. A further step calculates an odds ratio corrected for both systematic and random 

error (ORII). The additional random error is calculated from multiplying the observed standard error by 

a random number, r, r~N(0,1):  

𝑂𝑅𝐼𝐼 = exp [ln(𝑂𝑅𝐼) − √𝑉𝑎𝑟 ∗ 𝑟] 

This process is repeated many times to create a distribution of odds ratios, corrected for 

misclassification. Impossible values are dropped (for example, combinations of sensitivity and 

specificity that lead to negative cell counts). Results are easily summarised as a median estimate of 

association and confidence intervals that can be compared to the observed results. Three intervals 

can be outputted: the conventional 95% confidence interval (accounting for random error), a 

simulation interval that accounts for systematic error, and a second simulation interval that accounts 

for both random and systematic (total) error. Macros to carry out this method are available for SAS 
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and Excel via the author’s website (http://sites.google.com/site/biasanalysis, accessed 18/11/2011). 

Alternative methods are available which correct the individual data values (Fox et al,8 Lyles et al23). 

2.6 Bayesian Methods 

A fully Bayesian method (McInturff et al16) uses subjective prior information, for example, estimates of 

sensitivity and specificity, to estimate corrected log odds ratios under a logistic regression model when 

there is non-differential misclassification.  Sensitivity and specificity are not treated as fixed values, 

and uncertainty is allowed in the estimates of them. A simple Bayesian method for logistic regression 

is applied using the WinBUGS software. The likelihood function is written in terms of the coefficients, 

sensitivity and specificity: 

𝐿(𝛽, 𝑆𝑒, 𝑆𝑝) = ∏ [𝜋𝑗𝑆𝑒 + (1 − 𝜋𝑗)(1 − 𝑆𝑝)]𝑦𝑗[𝜋𝑗(1 − 𝑆𝑒) + (1 − 𝜋𝑗)𝑆𝑝]1−𝑦𝑗𝑛
𝑗=1                     (3) 

where β is a vector of regression coefficients; yj denotes the observed outcome for the jth individual, 

j=1,…,n; and 𝜋𝑗 = Pr (𝑧𝑗 = 1|𝑥𝑗) is the probability that an individual is diseased, based on the observed 

outcomes across individuals with the same risk factor profile.  

Independent beta priors, Be(a,b), are assumed for sensitivity and specificity, where a-1 successes are 

expected out of a+b-2 trials. A multivariate normal distribution is assumed for the coefficients. The joint 

posterior is: 

𝑝(𝛽, 𝑆𝑒, 𝑆𝑝|𝑋, 𝑌) ∝ 𝐿(𝛽, 𝑆𝑒, 𝑆𝑝)𝑝(𝛽)𝑝(𝑆𝑒)𝑝(𝑆𝑝) 

and Gibbs sampling is used to obtain a numerical approximation to the posterior distributions, from 

which adjusted odds ratios can be calculated. The WinBUGS code is given in the appendix to the 

paper.16 This method assumes that covariates are measured perfectly, and cannot accommodate 

differential misclassification. It is not included in the Simulation Study presented here, which focuses 

on differential misclassification, but is applied to the real data example in section 4. An alternative 

Bayesian approach is presented by Gerlach et al.21 

 

3  S I M U L A T I O N  S T U D Y  

A simulation study was carried out, firstly, to assess how odds ratios are affected by misclassification 

and, secondly, to assess how well the presented methods adjust effect estimates for misclassification. 

The data are designed to reflect an exposure that is inversely associated with prostate cancer 

http://sites.google.com/site/biasanalysis
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(specifically, diabetes, as presented in section 4) which is expected to be related to (differential) 

misclassification of outcome. The mean odds ratio prior to misclassification being incorporated (i.e. the 

unbiased estimates) is OR=0.79, 95% CI: 0.64, 0.97 (Box ). 

Two-hundred simulated datasets were created, based on the distribution of diabetes exposure in the 

real data example in section 4. All methods were applied to the same 200 datasets. The number of 

true cases and true controls who are exposed to the risk factor (n11 and n01 respectively) is generated 

using a binomial distribution with parameters ~Bin(number, probability of being exposed), where the 

parameters are taken from the distribution as presented in the real data example. Misclassification is 

assumed to be due to less than perfect sensitivity and specificity of the diagnostic process, and that 

there are no other biases present. Hence, ‘observed’ datasets with a known mean sensitivity were 

created, i.e. by recoding a proportion of true cases as observed controls. Specificity is assumed to be 

100% under all scenarios, in line with the cancer diagnosis example where cancer would not be 

diagnosed from biopsies in its absence. As presented in Box 2, the number of observed cases is π11 

amongst the exposed and π10 amongst the unexposed. The notation and distributions are shown in 

Box 2. All simulations are based on random numbers generated using the Stata ‘rbinomial’ 

function. 

 

 

Characteristics of the ‘true’ simulated data 

 

N=13 175 (1 733 cases) 

Within cases, the number exposed is randomly realised by 𝑛11~𝐵𝑖𝑛(1733,0.065) and therefore 𝑛10 =

1733 − 𝑛11 

Within controls, the number exposed is: 𝑛01~𝐵𝑖𝑛(11442,0.081) and therefore 𝑛00 = 11442 − 𝑛01 

𝑂𝑅 =
0.065 (1−0.065)⁄

0.081 (1−0.081)⁄
=0.7887 

 

Notation and distributions for simulated data 

 

Truth  Observed (biased) 

 D1 D0    D1 D0  

E1 n11 n 01   E1 𝜋11~𝐵𝑖𝑛(𝑛11, 𝑆𝑒1) 𝜋01 = (𝑛11 + 𝑛01) − 𝜋11  

E0 n 10 n 00   E0 𝜋10~𝐵𝑖𝑛(𝑛10, 𝑆𝑒0) 𝜋00 = (𝑛10 + 𝑛00) − 𝜋10  

 n1 n0 N   n1 n0 N 

      For non-differential misclassification: 𝑆𝑒1 = 𝑆𝑒0  
 

Box 2: Characteristics of the ‘true’ simulated datasets 
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Each method from section 2 was evaluated by comparing the mean of the corrected beta coefficients 

(across simulated datasets) to the true beta value, and by comparing the mean method-specific 

standard error (calculated for each corrected beta distribution) to the empirical standard deviation (the 

standard deviation of estimated beta coefficients across simulations).  

3.1 Results 

3.1.1 Characteristics of the simulation data 

The change in mean odds ratio with varying levels of sensitivity showed potential for both the 

magnitude and direction to be incorrectly estimated depending on the amount of misclassification 

present (Figure 2). Examining the estimated odds ratios when the misclassification is non-differential, 

there is the expected attenuation towards the null result, but it is very small in magnitude. Under 

differential misclassification, for a given difference between sensitivity in the exposed and unexposed 

groups (for example, a difference of 10%), there is a constant under- or over-estimation of the odds 

ratio. 

 

 

Figure 2: Change in mean odds ratio (presented on a log scale) by varying sensitivity in the exposed 
and unexposed groups. The odds ratios under varying levels of sensitivity in the unexposed group are 
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depicted by: x  60%; ○ 70%; + 80%; ◊ 90%l; ● 100%.  The true OR is depicted by the line parallel to 
the x-axis. 

3.2 Comparison of methods using simulated data 

Table 2 gives the results with the different methods of correcting for misclassification of outcome.  

Under the right assumptions, the method of altering tabulated frequencies by estimating sensitivity 

corrects back to the true OR, but as the method is applied using increasingly wrong estimates of 

sensitivity, the corrected OR begins to differ quite widely from the ‘true’ OR. Very similar results are 

obtained using logistic regression methods incorporating sensitivity estimates. 

 

Therefore, these methods can correct results accurately if there are accurate estimates of sensitivity. 

The simulation study was repeated for a non-differential example (data not shown) and, as expected, 

providing that the assumption of non-differential misclassification was correct, then no bias was 

introduced even if the wrong amount of misclassification was assumed.  

 

Table 2: Mean log odds ratios (ln(OR)), mean standard error and empirical standard deviation 

produced for differential misclassification (with known true sensitivity of 90% in exposed and 80% in 

non-exposed groups), after adjusting for varying sensitivities using: altering cell frequencies using 

estimated sensitivity (Lash et al20); Logistic regression models (Magder et al15); Probabilistic sensitivity 

analysis using the method from Lash et al20) . Mean corrected standard error calculating using method 

by Greenland et al19.  Specificity=100%. 

Assumed Sensitivity (%) 
Mean 
ln(OR) 

Empirical 
SD 

Mean 
Std 

Error 

Mean 
corrected 
Std Error Exposed  Unexposed 

True ln(OR) -0.24  0.08  

 
Altering cell frequencies using estimated sensitivity 

70 80 0.04 0.12 0.09 0.12 

80 80 -0.11 0.12 0.10 0.11 

90 80 -0.24 0.11 0.10 0.11 

90 90 -0.11 0.11 0.10 0.11 
      

Logistic regression models   

70 80 0.04 0.12 0.12  

80 80 -0.11 0.12 0.10  

90 80 -0.24 0.11 0.09  

90 90 -0.11 0.11 0.10  

      

Probabilistic sensitivity analysis   

Sensitivity 
Range (%) 

Corr             
(Se1,Se0) 

 a b 
 

 

60-100 0.8 0.11 0.20 0.19  

50-90 0.8 -0.11 0.21 0.21  

50-90 0.6 -0.11 0.25 0.25  
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a Estimated as the standard deviation of all the beta coefficients that make up the distribution. 
b Estimated via calculating the error factor from the pseudo confidence interval. 
 

The frequency distributions of adjusted odds ratios, for three different ‘observed’ scenarios corrected 

for estimates of sensitivity, using probabilistic sensitivity analysis to assign probability distributions to 

estimates of sensitivity are presented in Table 2. Within scenarios (the columns), the estimate varies 

more.  However, across scenarios (the rows), the mean estimate varies less as assumptions regarding 

the direction of differential misclassification are not incorporated. This method does not adjust for ‘true’ 

differential misclassification, but allows for chance differential misclassification in the observed data. 

 

The mean beta coefficients, empirical standard deviation and mean standard errors collected after 

applying the different methods to correct for varying estimates of misclassification, assuming that the 

correct sensitivity is 90% in the exposed group and 80% in the non-exposed group can be seen in 

Table 2. The standard error for data without misclassification is 0.08. After adjusting for 

misclassification, a larger standard error would be expected, that incorporates the extra error 

introduced by having to estimate the amount of misclassification. This is indicated by the observed 

variation in estimates across 200 simulated datasets with random error and misclassification. Under 

the differential scenario, the standard errors when using estimates of sensitivity to alter table cell 

frequencies are slightly increased (mean standard error=0.10) due to differences in observed and 

adjusted proportions. The formula to correct the standard error using estimates of sensitivity and 

specificity, gives an estimated standard error of 0.11, whilst the logistic regression model gives an 

estimated standard error of 0.12, both in close agreement with the SD. With vague prior knowledge 

the probabilistic sensitivity analysis gives estimates which vary more across simulated datasets. The 

model-based SE’s estimate this variation accurately. 

 

4  A P P L I C A T I O N  O F  M E T H O D S  T O  P R O T E C T  D A T A  

4.1 Example dataset: ProtecT  

During recruitment to the ProtecT study (between 2001 and 2009), men aged 50-69 years at 400 

general practices in nine UK centres were offered a PSA test at a community-based ‘prostate check 

clinic’, and those with raised levels ( 3 ng/ml) were offered diagnostic 10-core biopsy.24  All 
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participants in ProtecT who had no evidence of prostate cancer were eligible for selection as controls 

for nested case-control studies of risk factors; that is, men with a PSA test < 3ng/ml or a raised PSA ( 

3 ng/ml) combined with at least one negative biopsy and no subsequent prostate cancer diagnosis 

during the follow-up protocol for negative biopsies. 

Cancer Research UK includes family history of prostate cancer and diabetes mellitus amongst the risk 

factors for prostate cancer.25 Family history can increase the risk between two and seven-fold, 

depending on the age of onset and the number of relatives affected.25  A meta-analysis of studies 

assessing the association between diabetes and prostate cancer found that people with diabetes had 

a 9-16% decrease in risk of developing prostate cancer.26 

Family history has been shown not to be associated with PSA level, and so misclassification of 

outcome will be non-differential. It has been suggested that PSA acts as a distorter variable,27 in that if 

the risk factor of interest is associated only with PSA level, it will also appear to be associated with 

prostate cancer if case-control status is determined in men with a high PSA level. Diabetes is 

associated with lower PSA levels,28, 29 so diabetic men with prostate cancer may be less likely to 

undergo biopsy and hence have their prostate cancer detected. This potentially creates an artificial 

inverse association between diabetes and prostate cancer. There is therefore potential for differential 

misclassification between men with and without diabetes, as, in men with diabetes, cases are more 

likely to be misclassified as controls.   

4.2 Estimates of sensitivity and specificity 

Recent estimates obtained from the placebo arm of the US Prostate Cancer Prevention Trial (PCPT)30 

estimated a sensitivity of 32.2% and specificity of 86.7% using a PSA threshold of 3.1ng/mL. Due to 

repeated screening in the US, it is likely that sensitivity is under-estimated, since cases are more likely 

to be diagnosed at an early stage of disease progression (i.e. cases with high PSA and large tumours 

will have been removed from the cohort). Sensitivity did increase in men judged to have clinically 

important disease: using a PSA cut=off of 3.1ng/mL gave a sensitivity of up to 68.4% for men with 

tumours judged to be aggressive when compared with less aggressive or no cancer. 

The true sensitivity of biopsy (alone, without considering PSA testing) is also difficult to determine, 

since men with low PSA levels do not often undergo biopsy, and men who have a negative biopsy 
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result do not undergo surgical verification. Estimates of the sensitivity of biopsy range from 30-80%, 

depending on the number of cores and the zones biopsied.3, 31, 32 The specificity of biopsy is 

consistently approximately 100%, i.e. it is very rare to mistake other conditions for cancer.3, 31, 32  

 

A plausible range of sensitivities under which to investigate how the estimates may be affected if 

misclassification is present in the current example is assumed to be 60-100%. Diabetes may be 

associated with increased obesity and prostate volume, making biopsies more difficult and therefore 

lowering sensitivity in men with diabetes compared to men without diabetes. For ease of presenting 

results, specificity is held equal to 100%.  

4.3 Results 

The observed results are presented in Table 3. Recall bias is unlikely, since details of diabetes and 

family history were collected from men prior to their PSA results or subsequent biopsy results 

becoming available. 

 

 

 

Family History of 

Prostate Cancer 
Cases Controls  Diabetes Cases Controls 

Yes 205 930  Yes 113 923 

No 2 167 16 086  No 1 620 10 519 

Total 2 372 17 016  Total 1 733 11 442 

 64.1* = OR    79.0* = OR  

 95% CI: 1.40, 1.92   95% CI: 0.65, 0.97 

 p-value<0.001   p-value=0.026 

Table 3: Observed Results from the ProtecT Data 

 

4.3.1 Altering cell frequencies and logistic regression model 

The sensitivity in the exposed and non-exposed groups was allowed to vary between 60-100% (whilst 

holding specificity equal to 100%) using the method presented by Lash et al20 (section 2.3). The odds 
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ratios for family history slightly increase with increasing non-differential misclassification from the 

observed result of 1.64 to a corrected result of 1.75 when corrected for underestimation due to non-

differential misclassification, with sensitivity equal to 60% (Table 4). For diabetes (Figure 4), the odds 

ratio decrease remains constant under increasing non-differential misclassification from the observed 

result of 0.79 to 0.78 when sensitivity is 60%. Under assumed differential misclassification, however, 

the odds ratios vary from 0.43 (Se1=100, Se0=60) to 1.44 (Se1=60, Se0=100). With sensitivity 

estimated as 60% for men with and 65% for men without diabetes, the odds ratio is corrected to 0.86 

(0.86,1.09; Table 4). The results using the logistic regression method showed an almost identical 

pattern (Table 4).  

 

 

Figure 4: Correcting for misclassification using estimates of sensitivity and specificity using Lash, 

200933 , with specificity held at 100%. X and the horizontal line show the observed result. 
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4.3.2 Probabilistic Sensitivity Analyses 

The probability sensitivity method was applied to the simple method presented by Lash et al20 (Table 

1), allowing both Se1 and Se0 to range between 60 and 100%, whilst holding Sp1 and Sp0 equal to 

100%, by randomly sampling from a uniform distribution, [0,1), and allowing 100 000 iterations. For 

differential misclassification, the correlation coefficient for sensitivities and specificities was equal to 

ρ=0.8. For family history, the median estimate and 95% confidence intervals incorporating only 

systematic error are OR=1.67 (1.64,1.74) (Table 4). After incorporating total error, the results are 

OR=1.68 (1.43,1.97). For diabetes, incorporating systematic error gives a median OR of 0.79 

(0.61,1.01). Incorporating total error gives a median OR of 0.79 (0.57,1.08).  

 

4.3.3 Bayesian Methods 

The Bayesian model provided by McInturff16 was applied to the data using a prior distribution for 

sensitivity of beta(a,b), where there are (a-1) successes out of (a+b-2) trials  with an initial value of 

a=80%, i.e. beta(81,21). Specificity was fixed at 100%. Vague prior distributions were assigned to the 

regression coefficients (normal(0,0.001)), and the initial values, based on the beta coefficients from 

logistic regression models, were intercept β1=-2 and association β2=0.5 for family history and β1=-2; 

β2=-0.2 for diabetes. Convergence was ensured by allowing 100,000 burn-in iterations. The following 

50 000 iterations were monitored to calculate mean estimates and 95% posterior probability intervals. 

For family history, the mean estimate and 95% posterior probability intervals are OR=1.67 (1.41,1.98) 

and for diabetes are OR=0.79 (0.64,0.96) (Table 4). The method does not accommodate differential 

misclassification. 

Comparing the different effect estimates for family history (Table 4), the overall conclusion would not 

alter and the association between family history and prostate cancer, under these assumptions, 

appears to be slightly stronger than the observed results indicate. Considering diabetes, the direction 

of effect remains the same although the confidence intervals have widened to include the null result. 

The association between diabetes and prostate cancer, under these assumptions, therefore appears 

to be slightly weaker than indicated by the observed data, although it is unlikely that the overall 

conclusion would change in light of these findings.  
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Table 4: Adjusted effect estimates for two risk factors for prostate cancer when adjusted for 
misclassification of outcome 

 

Family History 
(assuming misclassification is 

non-differential) 
OR (95% CI) 

Diabetes 
(assuming misclassification is 

differential) 
OR (95% CI) 

Observed 1.64 (1.40, 1.92) 0.79 (0.65, 0.97) 

Altering cell frequencies using 
estimates of sensitivitya 

1.75 (1.45,2.10)c 0.86 (0.68,1.09) c 

Logistic Regressiona 1.75 (1.45,2.10) 0.86 (0.69,1.07) 

Probabilistic Sensitivity 
Analysesa,b 

1.75 (1.49,2.06) 0.78 (0.61,1.00) 

Bayesian Methodsa 1.67 (1.41,1.98) Not applicable 

a Non-differential sensitivity=60%. Differential sensitivity is 60% for men with diabetes and 65% for 
men without diabetes 
b Correlation coefficients for non-differential and differential misclassification are ρ=1 and ρ=0.8 
respectively. Sensitivities vary between 50-70% for family history and 55-75% for diabetes, drawn 
from a uniform distribution. 
c Adjusted CI, calculated using standard errors for misclassification. 
 

5  D I S C U S S I O N  

5.1 Summary of Findings 

This paper firstly reviewed the literature for methods of adjusting for misclassification of outcome in 

case-control studies, which identified sixteen methods. Secondly, simulation datasets were used to 

assess the performance of these methods. The methods were then applied to data from the ProtecT 

study by adjusting the effect-estimates of two risk factors for prostate cancer using estimated levels of 

outcome misclassification.  

 

Empirically adjusting for misclassification by estimating sensitivity produced corrected odds ratios that 

were very similar to the true odds ratio under both non-differential and differential misclassification 

when the estimates of sensitivity were accurate. However, misleading results could be produced under 

differential misclassification if sensitivity is estimated inaccurately, with both magnitude and direction of 

association being incorrect, although this only occurred under extremely mis-estimated sensitivities. 
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Standard errors incorporating the extra error can be calculated and used to produce confidence 

intervals that reflect the extra uncertainty.   

The results from the logistic regression model were identical to those from the method of empirically 

incorporating estimates of sensitivity, despite the stated limitation that the method is not supposed to 

be suitable for use with simple case-control studies where the number of cases and controls are fixed 

by design. The estimated standard error was increased to reflect the extra error in estimating 

sensitivity. Unlike the simpler method, adjustment for confounders could be incorporated into this 

method as with standard logistic regression. 

Using probabilistic sensitivity analysis produced adjusted odds ratios that were not as accurately 

corrected back to the true odds ratios as with previous methods, but neither did they vary as much 

under inaccurate estimates of sensitivity. Allowing for a range of sensitivities and specificities allows 

calculation of simulation intervals that reflect the uncertainty in the starting values. There is therefore 

the added benefit of confidence intervals that incorporate both random and systematic error.  

In our real data example, under likely levels of non-differential misclassification, the conclusion 

regarding the direction of the association between family history and prostate cancer would not 

change, although the magnitude does differ slightly. Under the assumption of differential 

misclassification, the conclusion regarding the associations between diabetes and prostate cancer 

would not change, although the magnitude changes and some methods cannot rule out a null result or 

a positive association under some more extreme combinations of sensitivity. 

5.2 Applying the Methods 

The choice of method depends on the available estimates of sensitivity and specificity, the form of the 

data (individual data or summary level), and whether the objective is to assess whether an observed 

association can be explained by bias or to provide an adjusted estimate. If sensitivity and specificity 

can be accurately estimated, then adjusted estimates of the risk factor-disease association can be 

presented alongside observed estimates. Varying the amount of sensitivity and specificity may be 

more appropriate to investigate how the results would change under differing amounts of 

misclassification.  This may provide reassurance, for example, that, even if there is misclassification, 

the overall conclusion would not change. Methods exist for application at both the record-level or at 
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the summary data level. Summary data level methods can be used on one’s own data or to adjust 

published results. Record-level techniques may be preferable, since they enable the investigator to 

adjust for confounders and inter-relations between variables. It is important to provide the ranges, 

distributions and rationale for all assumptions so that readers can judge themselves whether the 

methods have been used appropriately. 

Estimates of sensitivity and specificity can be gathered from either a validation sample or estimated 

from other studies with comparable data. However, the degree of misclassification is likely to be study 

specific, and external estimates taken from other studies may not apply to the current study.18 It is 

therefore important to carefully consider where estimates of sensitivity and specificity are derived from. 

Methods can also be altered to accommodate estimates of the positive predictive value and negative 

predictive value if estimates of sensitivity and specificity are not available. Estimates of sensitivity and 

specificity are more likely to be available non-differentially than broken down by exposure group.  

A number of authors34, 35 warn against the overuse of adjusting for misclassification.  There should be 

evidence that misclassification is actually present: mentioning the possibility of a limitation may be 

used to discount findings without any proof that the limitation is actually present. The assumption of 

non-differential misclassification should be deduced logically: simulations have demonstrated that 

adjusting under the assumption of non-differential misclassification introduces extra bias if the 

misclassification is actually differential10 (section 3). It is therefore important to make logical 

assumptions about the type and extent of misclassification before deciding whether to adjust, and 

what method to use.  

 

Ideally, the study design and classification method would be improved so that no correction is 

necessary, although this is impractical in most studies. Alternatively, avoiding differential 

misclassification in favour of non-differential misclassification would allow estimates to be left 

unadjusted, as fairly large amount of non-differential misclassification cause little problem. Through 

straightforward algebra it can be shown that non-differential misclassification is equivalent to adding a 

positive constant to the numerator and denominator of the odds ratio, which will shrink the ratio 

towards one. Examining the controls to detect any missed disease is a possibility, but not feasible 

when the diagnostic test, e.g. biopsy, is invasive, unpleasant and associated with side-effects. Other 
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potential methods for avoiding or reducing misclassification of outcome pose a series of problems.6 

For example, limiting the control group to subjects who have undergone a diagnostic test and been 

pathologically confirmed to be disease-free would increase detection, thus improve the sensitivity, but 

also increase the number of unnecessary diagnostic tests. The selection of a pathologically confirmed 

disease-free control group is likely to reduce the number of eligible subjects, thus reducing the sample 

size and therefore precision.  

5.3 Conclusions 

This paper has demonstrated that misclassification of outcome in case-control studies can bias 

estimates and may lead to incorrect conclusions being drawn. It is therefore important that 

epidemiological studies of disease-risk factor associations attempt to assess the possible impact of 

outcome misclassification in their data, and aim to avoid differential misclassification if possible. This 

paper has presented a number of methods by which this may be carried out and the performance of 

each described. Since estimates of sensitivity and specificity are required and are often difficult to 

accurately ascertain, using these methods as useful tools for sensitivity analysis assessing the impact 

of outcome misclassification on effect estimates over a range of plausible values may be the best 

approach. 
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