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Abstract

Ultradian pulsatile hormone secretion underlies the activity of most neuroendocrine sys-

tems, including the hypothalamo-pituitary adrenal (HPA) and gonadal (HPG) axes,

and this pulsatile mode of signalling permits the encoding of information through both

amplitude and frequency modulation. Thus in the HPA axis, glucocorticoid pulse ampli-

tude increases in anticipation of waking, and in the HPG axis changing gonadotrophin-

releasing hormone (GnRH) pulse frequency is the primary means by which the body

alters its reproductive status during development. The prevalence of hormone pulsatility

raises two crucial questions: how are ultradian pulses encoded (or generated) by these

systems, and how are these pulses decoded (or interpreted) at their target sites? We

have looked at mechanisms within the HPA axis responsible for encoding the pulsatile

mode of glucocorticoid signalling that we observe in vivo. We review evidence regard-

ing the ‘hypothalamic pulse generator’ hypothesis, and present an alternative model for

pulse generation which involves steroid feedback-dependent endogenous rhythmic ac-

tivity throughout the HPA axis. We also consider the second question concerning the

decoding of hormone pulsatility, taking the HPG axis as a model system, and focussing

on molecular mechanisms of frequency decoding by pituitary gonadotrophs.

Keywords. Endocrine signalling; ultradian rhythm; pulsatile hormone secretion; glucocorti-

coid hormones; gonadotrophin-releasing hormone; mathematical modelling
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Introduction

Rhythms are fundamental in nature and endocrine rhythms span time frames

that have periods ranging from milliseconds to years. Many of these are organ-

ised by endogenous mechanisms, including the circadian cycles of many hormones

that free-run under constant conditions (1), and even slower circannual endocrine

rhythms that are maintained under photoperiodic clamping (2). Hormone secre-

tion is also rhythmic over much shorter time frames, as illustrated by neuroen-

docrine systems where oscillators controlling neuronal membrane potential, with

time frames of milliseconds to seconds, control the coordinated activity of hy-

pothalamic neuronal networks. These characteristically secrete hormone releasing

factors into hypophysial portal blood in a pulsatile fashion with ultradian time

frames of minutes to hours which in turn, drive the secretion of hormones from

the anterior pituitary with similar time frames. The pituitary hormones act on

target tissues including the adrenals and gonads which synthesise and secrete glu-

cocorticoid hormones and gonadal steroids in a pulsatile fashion. The magnitude

of this pulsatile hypothalamo-pituitary target gland activity is also modulated in

a circadian manner by the suprachiasmatic nucleus (SCN) for the hypothalamo-

pituitary-adrenal (HPA) axis and in an oestrus/menstrual cycle temporal profile

for the hypothalamo-pituitary-gonadal (HPG) axis which also shows circannual

cycles for cyclical breeding animals.

Oscillatory signals are well described for both intracellular and cell-to-cell com-

munication in many biological systems (3). When compared to steady state sig-

nalling, pulsatile signalling allows greater control, is more robust to degradation,

and is generally more energy efficient (4). Moreover, pulsatile signalling provides

target sites with a quiescent inter-pulse interval allowing target receptor recovery,

and is therefore essential for maintaining tissue responsiveness (5). Pulsatile sig-

nals may also be more information rich in the sense that pulse amplitude, pulse

duration, pulse shape and inter-pulse interval can all theoretically provide infor-

mation to the target cell, as compared to amplitude alone with a steady state

input. Most importantly, pulsatile signalling permits not only amplitude, but also

frequency modulation, and the potential advantage of this is amply illustrated by
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comparing the information provided by a black and white TV image (where each

pixel has a given signal amplitude) and a colour TV image (where each pixel has

a given frequency as well as amplitude).

Ultradian pulsatility underlies the secretion of most hormones (6). Despite this,

the physiological implication of these rhythms and the mechanisms underlying their

generation (encoding) and interpretation (decoding) at target cells are still unclear.

Here, we address both of these questions. Specifically, we have studied mechanisms

within the HPA axis responsible for encoding glucocorticoid pulsatility. We review

the ‘hypothalamic pulse generator’ hypothesis, as well as discussing an alternative

model for pulse generation which involves steroid feedback-dependent endogenous

rhythmic activity throughout the HPA axis. We also consider the second question

concerning the decoding of hormone pulsatility, taking the HPG axis as a model

system, and focussing on molecular mechanisms of frequency decoding by pituitary

gonadotrophs.

Encoding glucocorticoid pulsatility

A pulsatile mode of signalling underlies the activity of the HPA axis, a system

crucial for maintaining basal and stress-related homeostasis by regulating the cir-

culating levels of vital glucocorticoid hormones (cortisol in man, corticosterone in

rodents). The glucocorticoids govern a broad range of physiological functions, in-

cluding the regulation of cardiovascular, metabolic, cognitive and immunological

activity (7-10). The regulation of HPA activity depends on multiple inputs. In the

hypothalamus, the paraventricular nucleus (PVN) receives an indirect input from

the SCN which regulates circadian variation in HPA activity, as well as afferent in-

formation from brainstem nuclei responding to physical stressors such as hypoten-

sion and inflammation, and from limbic areas of the central nervous system that

respond to cognitive and emotional stressors (11). The PVN regulates corticotroph

activity in the anterior pituitary via two neuropeptides – corticotrophin-releasing

hormone (CRH) and arginine vasopressin (AVP) – released into the pituitary por-

tal circulation and hence the anterior pituitary. Upon stimulation, corticotrophs
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secrete corticotrophin (ACTH) into the general circulation, through which it ac-

cesses cells of the adrenal cortex initiating the synthesis and secretion of the glu-

cocorticoid hormones.

Glucocorticoids act at target sites via their two cognate receptors – the glu-

cocorticoid receptor (GR) and mineralocorticoid receptor (MR) – the expression

of which is widespread in areas regulating HPA activity (12-14). The classical ef-

fect of glucocorticoids is via activation of their receptors which translocate to the

nucleus acting as ligand dependent transcription factors binding to GREs at pro-

moter regions of glucocorticoid sensitive genes (15-18). In addition to these classic

genomic effects, there has been considerable recent interest in rapid non-genomic

mechanisms through which glucocorticoids can also act (19,20).

In the basal state, glucocorticoids are released in an ultradian pulsatile fashion

from the adrenal cortex, which results in rapidly changing levels of hormone con-

centration observable in blood plasma (21-24), as well as within target tissues such

as the brain (25,26). The classic circadian glucocorticoid rhythm, which peaks in

the morning in man (27) and evening in the rodent (28), is in fact the result of am-

plitude (and to a lesser extent frequency) modulation of the underlying ultradian

rhythm (22,23,29-33). A particularly striking feature of glucocorticoid pulsatility

is the appearance of a more distinct ultradian rhythm during the peak of the cir-

cadian cycle, which operates at a frequency of around 1 pulse/h (see shaded region

2 of Figure 1). Variations in amplitude and frequency of the ultradian rhythm not

only compose the circadian rhythm, but also characterise changes in HPA activity

that occur during early life programming (34), chronic stress (35), lactation and

aging (36), and a number of other physiological and pathological conditions (37).

The importance of glucocorticoid pulsatility resides in its ability to provide a

digital signalling system which can respond rapidly to stress or changes in envi-

ronmental conditions. A recent study by Stavreva et al. (38) clearly shows that

the pattern of glucocorticoid presented to a tissue is critical for its transcriptional

response – an effect that is seen in vivo as well as in vitro. The details of the

mechanisms underlying both genomic and non-genomic signalling of glucocorti-

coid hormones are beyond the scope of this review, but they not only act directly
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on multiple genes throughout the body, but also have major effects on the ‘clock

genes’ and through them on circadian physiology (39,40).

Despite the significance of glucocorticoid pulsatility (36), surprisingly little is

known about the mechanisms that encode this rhythm. Whilst the role of the SCN

is well founded in regulating circadian HPA activity (41,42), evidence suggests it

is not required for the generation of ultradian rhythmicity. Indeed, lesioning of the

SCN completely abolishes the circadian glucocorticoid rhythm in both the adrenals

and blood plasma (43-45), but has little effect on the ultradian rhythm, which per-

sists at amplitudes and frequencies comparable to those observed at the peak of the

native circadian rhythm (Eleanor Waite personal communication). Furthermore,

pulsatility in the HPA axis is regulated independently of the ultradian rhythmic-

ity found in other neuroendocrine systems such as the HPG axis. Thus although

glucocorticoids and luteinising hormone (LH) are secreted in pulses with similar

frequencies, their release is not concurrent (37).

Given the wealth of evidence showing that the circadian pacemaker resides

within the hypothalamus (46), it is perhaps not surprising that it has also been

assumed that the ultradian rhythm was the result of a pulse generating neural

network within the hypothalamus. We review this hypothesis, covering what we

feel to be the most important experimental studies and go on to discuss recent

developments from theoretical studies, which have led us to propose a new model

for the encoding mechanisms of glucocorticoid pulsatility.

The ‘hypothalamic pulse generator’ hypothesis

Neural signalling to the anterior pituitary is encoded in the dynamic patterns of

hypothalamic neuropeptides released into the portal circulation (47). Both in man

and the rat, the major ACTH secretagogue is CRH and to a lesser extent AVP,

although oxytocin, norepinephrine, and epinephrine may modulate corticotroph

activity (48). Moreover, CRH is the only corticotrophin-releasing factor known to

regulate POMC gene expression in the rat (48). In ovine species, CRH is also an

important ACTH secretagogue, although there is also evidence to suggest that the

predominant corticotroph secretagogue is AVP (49).
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Push-pull perfusion studies of the median eminence in free-moving rats show

that CRH follows an irregular pulsatile mode of secretion, with a frequency of ap-

proximately 3 pulses/h (50). Interestingly, no significant difference is seen in CRH

pulse frequency between the morning and evening, indicating a relatively steady

frequency over the diurnal period (51). On the other hand, mean CRH concentra-

tion levels do vary significantly over the 24 h period, with evening concentration

levels nearly twice those of the morning (51). These increased levels result from

the fact that mean pulse nadir and peak levels, as well as pulse amplitude, and to

a lesser extent pulse duration, are all significantly higher in the evening (51).

An episodic mode of secretion for CRH and AVP has also been demonstrated

in vivo in a number of other species under basal conditions (48). In the portal

blood of unrestrained conscious rams a pulsatile pattern of CRH and AVP secretion

is evident (52), and measurement of AVP in the pituitary venous effluent of the

unanesthetised horse also demonstrates an episodic secretory pattern (53). In

conscious sheep also, both CRH and AVP display a pulsatile secretory pattern in

the portal blood (54).

The regulatory oscillator(s) underlying the pulsatile mode of CRH secretion

remains to be defined. It is certainly interesting to compare the pulses of CRH

with the much more organised pulsatile secretion of gonadotrophin-releasing hor-

mone (GnRH) into portal blood. GnRH and LH release has a relatively consistent

frequency which correlates well with organised increases in electrical activity in net-

works of GnRH-producing neurons (55). In contrast, the irregularity of episodic

CRH secretion not only suggests a different underlying mechanism, but may also

reflect an inability of CRH-producing neurons to effectively synchronise with one

another in a coherent way (51).

ACTH pulsatility and its relationship to CRH

Given this episodic release of CRH, it was not surprising that pulsatile patterns

of ACTH measured in blood plasma were also found in many species (4). What

has been more surprising, however, is that in most cases the relationship between

pulsatile neuropeptides and ACTH rhythmicity is far from straightforward.
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In the rat, two ultradian ACTH rhythms are found simultaneously (56). Con-

centrations of ACTH in blood plasma display fast episodic bursts of variable

amplitude that occur at a frequency of approximately 3 pulses/h (so-called ‘mi-

cropulses’), as well as larger and more prolonged episodes of secretion that appear

approximately every 1-2 h (we shall refer to this as ‘ultradian’). The two rhythms

in ACTH are related in the sense that it is in fact rhythmic variation in micropulse

amplitude that makes up the slower ultradian rhythm (56).

Further, in rats blockade of endogenous CRH by passive immunoneutralisation

results in a significant reduction in micropulse amplitude without any effect on

micropulse frequency (57), which could be attributed to the pulsatile release of

other corticotrophin-releasing factors, an intrinsic rhythmicity of the corticotroph,

or a combination of these factors (58). Moreover, blockade of endogenous CRH

practically completely destroys the slower ultradian rhythm (57), which prompted

speculation that the slower ultradian rhythm in ACTH is driven by rhythmic

secretion of CRH (57). However, there is currently no solid data that supports this

hypothesis, which is actually contradictory to data on the frequency of pulsatile

CRH measured in a number of median eminence perfusion studies on rats of the

same strain (male Sprague-Dawley), which was 3 pulses/h across the circadian

cycle (50,51,59), and which in fact correlates well with the ACTH micropulse

frequency.

In larger species, which allow for the simultaneous measurements of portal

blood and blood plasma, a straightforward connection between pulsatile CRH/AVP

and pulses of ACTH is also absent. In rams, for example, a clear relationship be-

tween portal levels of AVP/CRH and temporal patterns of ACTH is not seen (52).

In sheep, a large proportion of CRH/AVP pulses are not followed by a significant

rise in ACTH, and a significant number of ACTH pulses are not preceded by a

pulse in CRH or AVP (54). Moreover, in sheep that have undergone surgical dis-

connection of the hypothalamus from the pituitary (HPD), pulsatility in ACTH

and cortisol is maintained (60).

Bringing together these diverse experimental studies, highlights the lack of any

clear causal relationship between changes in portal CRH concentrations and the
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ultradian rhythmicity of ACTH and the glucocorticoid hormones. This suggests

that the generation of HPA ultradian activity must involve other factors, presum-

ably at a sub-hypothalamic level.

Network encoding of pulsatility

Some biological systems are endogenously rhythmic and oscillate under the influ-

ence of constant stimulation, or even in the absence of stimulation – such systems

are often referred to as ‘pacemakers’ (61). In hepatocytes, for example, continuous

stimulation with physiological levels of AVP induces intracellular Ca2+ oscilla-

tions, the frequency of which increases with increasing concentrations of agonist

(62). The endogenous rhythmicity of these systems typically finds its roots in the

underlying regulatory mechanisms that govern the dynamics of that system (3),

and these often involve some form of feedback, which may be positive and/or neg-

ative, nonlinear in nature, and is often time-delayed (3,61,63). Indeed, circadian

time-keeping in neurons of the SCN is achieved through an intricate molecular

circuitry involving ‘clock genes’ which take part in a complex regulatory network

consisting of transcriptional and translational feedback loops (64). Feedback also

underlies the generation of ultradian rhythmicity at the cellular level. For example,

stimulation by serum of cultured murine cell lines induces oscillatory expression

of the transcription factor Hes1 at ultradian frequencies (period approximately

2 h), which is due to a negative feedback loop whereby Hes1 binds directly to

regulatory sequences in the Hes1 promoter, thereby repressing transcription of its

own gene (65). Similarly, it is also now clear that delayed negative feedback un-

derlies rhythmic cytoplasmic-nuclear shuttling of NF-kappaB following TNFalpha

stimulation (66). The network comprising the HPA axis also features some of the

properties that are common to pacemaker circuitry. In particular, the anterior

pituitary, PVN and higher centres are all targets for negative feedback by circu-

lating glucocorticoids (67-70). In addition to feedback, delays are inherent in the

HPA network, which arise from transmission times through the blood, as well as

delayed response times.

The existence of pacemaker traits in the HPA network has prompted specu-
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lation that the generation of ultradian rhythmicity in glucocorticoids is not nec-

essarily due to a neural pulse generator in the hypothalamus, but may actually

arise from the complex network of excitatory and inhibitory interactions between

CRH, ACTH and the glucocorticoids. This view has mainly come about through

a handful of mathematical studies, rather than experimental work, that have de-

veloped models characterising the dynamic interactions between HPA hormones

(71-73). Most of these studies assume it is feedback at the level of both the pitu-

itary and the hypothalamus that gives rise to the ultradian rhythm. If this were

the case then CRH, ACTH and glucocorticoids would all oscillate over the same

time frame. However, there is no good evidence for this. Specifically, in the rat the

roughly hourly rhythm observed in ACTH (56) and corticosterone (22) is not ob-

servable in CRH during either the nadir or peak of the circadian rhythm (51), and

if glucocorticoid feedback at the hypothalamic level was important in generating

ultradian rhythmicity then removal of this feedback should ablate CRH pulsatility.

However, in cultured explants of the macaque hypothalamus, the pulsatile release

of CRH persists both in the presence and absence of glucocorticoids (74), and in

conscious rats CRH pulsatility in the median eminence is maintained following

adrenalectomy (59).

Recently, we have taken a mathematical approach to explore the encoding

mechanisms underlying glucocorticoid pulsatility. Our model builds upon one de-

scribing dynamic interactions within the HPA axis (75), and focuses on the effects

of nonlinear feedback of glucocorticoids mediated by GR at the level of the anterior

pituitary. Furthermore, we incorporate the delayed response of glucocorticoid se-

cretion following ACTH stimulation (76), which results from the lack of releasable

pools of glucocorticoids and the need to synthesize the hormone prior to secretion.

Our approach does not discount the possibility of a hypothalamic pulse genera-

tor, but demonstrates that ultradian pulsatility in ACTH and glucocorticoids can

also occur even in the absence of pulsatile input from the hypothalamus, providing

the mean levels of hypothalamic drive are sufficiently high (77). These oscillations

are born out of the excitatory-inhibitory loop formed by the interactions between

the anterior pituitary and the adrenal gland. Implicit in this idea is that there
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is a close coupling between ultradian rhythms in ACTH and glucocorticoids, and

there is indeed good evidence supporting such a relationship (Figure 1).

It follows from our work that the HPA axis has multiple ways of encoding

glucocorticoid pulsatility (Figure 2). During the nadir of the circadian rhythm,

when mean CRH levels are low and pulsatile (3 pulses/h), we expect that pulses

observed in ACTH and glucocorticoids most likely reflect the activity of pulsatile

CRH and other corticotrophin-releasing factors. However, during the peak of the

circadian cycle, when CRH release is still pulsatile (3 pulses/h) but mean CRH

levels are significantly higher, we predict that these higher mean CRH levels are

sufficient to generate the endogenous hourly rhythm in ACTH and glucocorticoids,

an intrinsic property of the pituitary-adrenal system (77).

Under both basal and non-basal conditions the HPA axis functions as a closed-

loop control system, heavily influenced by negative feedback from circulating glu-

cocorticoids. The regulation of pulsatility in the HPA axis likely involves a number

of factors. The complex network of excitatory and inhibitory connections coupled

with the pulsatile activity of hypothalamic releasing factors renders the task of

unravelling mechanisms regulating glucocorticoid pulsatility extremely difficult.

Experimental studies have so far been unsuccessful in identifying both the mecha-

nistic and anatomical origin of the ultradian rhythm. We have been able to demon-

strate, using a mathematical approach, that glucocorticoid negative feedback at

the level of the anterior pituitary is not just involved in homeostatic regulation of

optimal levels of ACTH and glucocorticoids, but is actually involved in generating

ultradian HPA activity. The implications of this finding are that the pulsatile

patterns of glucocorticoids that we observe in blood plasma may well reflect the

integrated activity of pulsatile hypothalamic forcing on an endogenously rhythmic

pituitary-adrenal system.

Decoding GnRH pulsatility

In the preceding sections, the HPA axis was used as a model system to consider

physiological mechanisms generating pulsatile glucocorticoid signals. Recent work

10



has demonstrated that target cells are sensitive to the pattern of glucocorticoid to

which they are exposed but molecular mechanisms used by cells to decode pulsatile

glucocorticoid signals have not yet been extensively explored. Accordingly, we will

now focus on the hypothalamo-pituitary-gonadal (HPG) axis as a model system

for exploring pulsatile signal decoding.

The neuroendocrine network regulating the HPG axis has many similarities

to that which mediates HPA activity. In particular, it too is characterised by

an ultradian pattern of hormone secretion. The main role of the HPG axis is

in regulating reproductive function. Following its release from the hypothalamus,

gonadotrophin-releasing hormone (GnRH) acts via 7 transmembrane region (7TM)

receptors to stimulate the synthesis and secretion of luteinising hormone (LH) and

follicle-stimulating hormone (FSH) from gonadotrophs in the anterior pituitary. It

acts via type I GnRH receptors (GnRHR) to stimulate phospholipase C, activating

protein kinases C (PKC) and mobilizing Ca2+. This leads to activation of mitogen-

activated protein kinase (MAPK) pathways and Ca2+ effectors such as calmodulin,

mediating effects of GnRH on exocytotic gonadotrophin secretion, as well as on

expression of many genes including those for the gonadotrophin subunits (78-80).

Following their secretion into the general circulation, LH and FSH act to mediate

the control of gametogenesis and hormone secretion form the gonads. In a similar

manner to the glucocorticoid hormones, the gonadal steroids are self-regulatory

via their inhibition of processes at higher centres (81).

GnRH is synthesised in, and secreted from, a relatively small number (hun-

dreds) of hypothalamic neurons and has long been known to be secreted in brief

pulses. GnRH pulse frequency varies under different physiological conditions. For

example, it varies over the menstrual cycle with pulses on average every 6 h in mid-

to late-luteal phases and every 90 min during follicular and early luteal phases (82).

GnRH pulse frequencies are higher in rats and mice with physiological pulse in-

tervals of 8-240 min (83). Importantly, GnRH effects on its target cells depend

upon pulse frequency as illustrated by early studies showing that constant GnRH

suppresses LH and FSH secretion, whereas restoration of GnRH pulses restores go-

nadotrophin secretion (84). Changing GnRH pulse frequency is also the primary
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means by which the body alters its reproductive status during development, with

an increase in GnRH frequency driving the increased gametogenesis and gonadal

steroid production at puberty (85). Moreover, stimulation paradigm is crucial for

therapeutic manipulation of this system as pulsatile stimulation with GnRH ago-

nists is used to stimulate gonadotrophin secretion in assisted reproduction, whereas

sustained treatment ultimately reduces gonadotrophin secretion and this underlies

agonist efficacy against steroid hormone-dependent cancers (86).

Although frequency decoding is fundamental to the physiology and pharmacol-

ogy of the HPG axis, the mechanisms are poorly understood. Most recent work has

focused on effects of GnRH on expression of gonadotrophin subunit genes, which

(in both gonadotrophs and LbetaT2 cells) are sensitive to GnRH pulse frequency.

Increasing GnRH pulse frequency to physiological levels increases its effects on LH-

beta, FSHbeta and GnRHR expression, but as frequency is further increased to

super-physiological levels transcription is reduced (83,87-93). Computational mod-

els suggest that such bell-shaped frequency-response relationships require feedback

mechanisms (Figure 3) and these could include GnRHR down-regulation, induction

of RGS (regulator of G-protein signalling)-2, inhibition of Ca2+ channels by the

calmodulin-dependent G-protein Kir/Gem, or induction of MAPK phosphatases

(MKPs). Rapid homologous receptor desensitization can be excluded as a mech-

anism because type I mammalian GnRHR do not show this behaviour. Uniquely,

they lack the C-terminal tails that mediate phosphorylation, arrestin binding and

desensitization of numerous other 7TM receptors (79,94-96). Alternative decoding

mechanisms involve interplay between Egr-1 and a co-regulator (Nab-2) at the LH-

beta promoter. In this model, low GnRH pulse frequency causes transient Egr-1

expression, causing expression of Nab-2 which inhibits LHbeta expression whereas

at high pulse frequencies more sustained increases in Egr-1 quench Nab-2 and in-

crease LHbeta transcription (97). For the FSHbeta promoter, similar interplay

between c-Fos and the co-regulator TGIF has been proposed to underlie preferen-

tial activation at low GnRH pulse frequency (81). Moreover, Ciccone et al. (98)

suggest CREB and Inducible cAMP Early Repressor (ICER) may be responsible.

Here, high pulse frequencies preferentially induce ICER causing transcriptional

12



repression by competing for a CRE-site in the FSHbeta promoter (98).

The data above highlight two distinct possibilities; that GnRH frequency de-

coding reflects feedback effects on signal generation in the cytoplasm, or that

frequency decoding occurs at the level of the transcriptome. Using conventional

techniques it has been difficult to test the first of these possibilities but we have

developed live cell readouts for signalling pathways implicated in frequency decod-

ing, and have used these to explore GnRH signalling, as outlined below.

Nuclear factor of activated T-cells (NFAT) signalling

GnRHR-mediated activation of the Ca2+/calmodulin pathway can influence go-

nadotrophin subunit gene expression (99-101) and mechanisms by which calmod-

ulins and their effectors interpret frequency-encoded Ca2+ signals are well es-

tablished (102-105). More recently, NFATs, transcription factors activated by

Ca2+/calmodulin-dependent activation of the protein phosphatase calcineurin (which

dephosphorylates NFAT), have been implicated in transcriptional regulation by

GnRH (106-108). This is of particular interest in light of the role of NFATs

as frequency decoders in other systems (109-112). When GnRHR expressing

HeLa cells were transduced with NFAT2-EFP (a reporter that translocates to

the nucleus after Ca2+/calmodulin/calcineurin activation), GnRH caused dose-

dependent NFAT2-EFP translocation although the effect was slower than the un-

derlying Ca2+ response (113). With pulsatile stimulation (5 min pulses, 1 h

intervals) responses were reproducible with no measurable desensitisation or re-

duction in GnRHR expression. Varying GnRHR number influenced response am-

plitude but not kinetics, and again no desensitisation was seen. At high pulse

frequency (30 min) integrative tracking (‘saw-tooth’ responses) occurred. GnRH

also caused dose- and frequency-dependent activation of alphaGSU-, LHbeta- and

FSHbeta-luc reporters and these responses were inhibited by cyclosporin A, indi-

cating calcineurin-dependence. Pulsatile GnRH also activated an NFAT-responsive

luc reporter but its effect was proportional to cumulative pulse duration (113).
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ERK signalling

Like many other 7TM receptors, GnRHR activate the Raf/MEK/ERK cassette

(78-80). Activated ERKs can translocate to the nucleus where they phosphorylate

transcription factors to control gene expression. GnRH activates ERK1/2, and

ERKs can mediate GnRHR-stimulated transcription of the common alphaGSU

subunit, as well as the LHbeta and FSHbeta (114-118). ERKs can mediate

responses to pulsatile GnRH stimulation (99,119,120), pituitary-targeted ERK

knockout can cause infertility (121), and the ERK cascade functions as a frequency

decoder in other systems (122-124). To explore ERK signal dynamics we developed

a model in which siRNAs are used to prevent expression of endogenous ERK1/2

and recombinant adenovirus (Ad) are used to add back an ERK2-GFP reporter

at a physiological expression level (125-127). With this system we found that pul-

satile GnRH causes dose- and frequency-dependent ERK2-GFP translocation to

the nucleus. The responses were rapid and transient and therefore showed only

digital tracking. They also failed to desensitise under any condition tested (dose,

frequency and receptor number varied). GnRH also caused dose- and frequency-

dependent activation of an Egr1-responsive luc reporter (used as a downstream

readout for ERK activation) but the responses were again proportional to cumu-

lative pulse duration. This response, like effects of pulsatile GnRH on FSHbeta-

luc, was inhibited by siRNA-mediated knock-down of endogenous ERKs (125).

ERK responses are modulated by many ERK interacting proteins including dual-

specificity phosphatases (DUSPs), some of which can both scaffold and inactivate

ERKs. Using siRNA to target DUSPs, we found that 12 of the 16 DUSPs expressed

in HeLa cells influenced ERK responses to sustained stimulation with GnRH or

a PKC activator (126,127). Moreover, GnRH can increase expression of nuclear-

inducible MKP family DUSPs (117,128-130) and a recent computational model

illustrated the potential for pulse frequency decoding by MAPK pathways and

inducible phosphatises (131). Accordingly, we tested for effects of cycloheximide

(to prevent nuclear-inducible MKPs induction), and used GFP fusions containing

ERK mutations (D319N which prevents D-domain-dependent binding of MKPs,

and K52R which prevents catalytic activity). These had little or no effect on the

14



ERK translocation responses arguing against a role for MKPs or ERK-mediated

feedback in shaping ERK activation (125).

In interpreting the data above it is important to distinguish between ‘frequency-

dependence’ and ‘frequency-decoding’. There are many systems in which increas-

ing pulse frequency increases responses but this could reflect either the increase

in cumulative pulse duration or the reduction in inter-pulse interval (132). True

frequency decoders sense inter-pulse interval independently of cumulative pulse

duration (Figure 3) as illustrated by GnRH effects on expression of genes encod-

ing rodent LHbeta and FSHbeta both of which are increased more effectively at

low or intermediate GnRH pulse frequency than at high frequency or with sus-

tained stimulation (83,87-93). Thus our data show that GnRH effects on the

Ca2+/calmodulin/calcineurin/NFAT signalling and Ras/Raf/ERK signalling are

frequency-dependent, and are consistent with roles for these pathways in mediating

pulsatile GnRH effects on gonadotrophin expression. Nevertheless, these pathways

appear not to act as genuine frequency-decoders of GnRH signalling in the models

used (HeLa and/or LbetaT2 gonadotrophs). We were unable to find evidence for

the negative feedback thought to underlie such frequency decoding (i.e. no desen-

sitisation was seen and responses to pulsatile GnRH were not MKP-dependent)

in spite of the fact that genuine GnRH frequency-decoding does occur in both

models (113,125). These data differ from those obtained by using a mathematical

model that predicts cellular responses to GnRH by simultaneous solution of differ-

ential equations describing various aspects of the GnRH signalling to LH secretion.

Solving these nonlinear equations by machine computation predicts that GnRH

effects will desensitise with pulsatile stimulation and that the extent of this desen-

sitisation will increase with GnRH dose, frequency and receptor number (113,133)

yet no such desensitisation was seen with either of our imaging assays. However,

reduction in cell surface GnRHR number is the primary cause of desensitisation

in this model and we have found that 5 min exposure to GnRH does not actually

reduce cell surface GnRHR number in the HeLa cell model (113).

Most of the previously developed mathematical models concentrate on a par-

ticular aspect of GnRH-signalling rather than on the system as a whole. Earlier
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theoretical work on modulation of pre-synthesized gonadotrophins was based on

GnRHR kinetics desensitization (134). Furthermore, LH release per se has been

the focus of several theoretical studies where frequency dependent modulation of

secretion is a consequence of the presumed decrease in GnRHR plasma membrane

expression (133,135). Most importantly, it is now clear that type I mammalian Gn-

RHR do not undergo rapid desensitisation (95) and although agonists do GnRHR

trafficking (136) agonist-induced down-regulation of cell surface GnRHR was not

seen with brief GnRH activation (113). Most work on GnRHR signalling has been

with sustained stimulation paradigms so signalling with physiological (pulsatile)

activation remains relatively poorly understood, as does the mathematical basis

for frequency decoding in this system. In this context only one study (132) recapit-

ulates experimentally-determined transcriptional characteristics of GSU synthesis;

nonetheless, it reflects a ‘top-down’ approach by considering the complex GnRH-

signalling as a ‘black-box’, subsuming this process within empirical assumptions

regarding translational delays and putative GnRH network modules. There are

very few models of transcriptional GSU gene regulation that have been developed

from the ‘bottom-up’ approach, building on the wealth of knowledge for the in-

tracellular pathways activated by GnRH. The Sealfon group (137) used single cell

imaging to monitor effects of GnRH on ERK and down-stream transcriptional re-

sponses. However their modelling concentrated only on the ERK1/2 pathway in

populations of cells and did not take into account pulsatile GnRH stimulation.

The effects of GnRH on the Ca2+/calmodulin/calcineurin/NFAT signalling and

Ras/Raf/ERK signalling are frequency-dependent can be regarded as sub-modules

acting within the overall GnRH signalling pathway. To further explore this math-

ematically, we have adapted a published model for GnRHR signalling (133) by

removal of receptor down-regulation as negative feedback mechanism and have ex-

tended it to incorporate two cellular compartments representing the cytoplasm and

the nucleus, respectively. We couple both compartments by incorporating into the

model the fluxes of activated/inactivated NFAT and ERK1/2 across the nuclear

envelope. Thus, the model includes a number of time-dependent evolution equa-

tions for all the key players involved in GnRH signalling as outlined above. To this
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end we have already calibrated preliminary model parameters using experimental

measurements of the nuclear to cytosolic ratios of total NFAT (113) and ERK1/2

concentrations (125) as shown in Figure 4. This model provides an excellent fit for

the experimental data but as noted above, digital or integrative tracking is seen

with no evidence of adaptation that might underlie genuine frequency decoding so

we are currently extending the model to incorporate the action of NFAT and an

ERK1/2-dependent transcription factor (e.g. Egr-1) as convergent inputs on GSU

promoters.

Concluding remarks

Hypothalamo-pituitary adrenal and gonadal axes are characterised by pulsatile

hormone secretion and digital hormonal signalling systems. We have used these

two model systems to demonstrate two major facets of neuroendocrine signalling

– mechanisms by which they can encode signals, well exemplified in the HPA axis,

and mechanisms by which the tissues decode them as described for the regulation

of gonadotrophin secretion. Mathematical modelling has been key to elucidation

of these signalling systems which exemplify the power of modelling to investigate

the organisation of these complex systems.
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Figure 1. Human data for ACTH and cortisol from a healthy male sampled at 10 min intervals,
adapted from (24). Concentration time series demonstrates strong concordance between rhythmic
secretion of ACTH and cortisol, as well as a short time lag in ACTH-induced cortisol secretion.
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Figure 2. Different ways in which the HPA axis encodes glucocorticoid pulsatility. In region
1, where mean CRH levels are low, glucocorticoid pulsatility may well reflect the irregular high-
frequency fluctuations in CRH and other corticotrophin-releasing factors acting on the anterior
pituitary. In region 2, higher mean levels of CRH drive on the anterior pituitary are sufficient to
excite the intrinsic rhythmicity of the pituitary-adrenal loop, which gives rise to the more distinct
roughly hourly rhythm in glucocorticoid secretion. CRH data adapted from (51), glucocorticoid
data adapted from (21).
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Figure 3. Frequency decoding mechanisms. Panel A illustrates possible responses to a square
wave pulsatile stimulation with 5 min pulse duration and 120, 60 or 30 min pulse intervals,
eliciting sequential responses (1-3) in a simple vectorial signalling pathway. With such pulsatile
inputs upstream responses may have rapid onset and offset, following the input in a process
known as digital tracking (rows 1 and 2). However, downstream responses with slower kinetics
may not have not returned to baseline before repeat stimulation and this can result in cumulative
saw-tooth responses in a process known as integrative tracking (row 3). Integrative tracking can
increase the efficiency of signalling and the differential kinetics at different response levels can
underlie differences in frequency-dependence (102) as illustrated in panel B. This shows the
relationship between pulse frequency and responses calculated as the area under the curve for
the input signal (A) or 3 sequential responses (B, C and D) in a vectorial signalling cascade,
again using a 5 min stimulus (so that the maximal frequency of 12 pulses.hr-1 is identical to
continuous stimulation). Note that maximal activation of response B is only seen with continuous
stimulation whereas near maximal activation of response C occurs at 1 pulse.hr-1. Importantly,
these processes can not alone explain the genuine frequency decoding (i.e. dependence on inter-
pulse interval that is independent of cumulative pulse duration) that is evident in the bell-
shaped frequency-response relationships for GnRH effects on gonadotrophin subunit and GnRHR
expression (i.e. all the curves in panel B reach the same maximum as pulse frequency increases).
Such frequency decoding is thought to require positive or negative feed-back or feed-forward
loops (132).
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Figure 4. Modelling pulatile GnRHR signalling. Pulsatile stimulation for 5 min with varied
GnRH pulse frequency at 30 min intervals, hourly intervals, or every two hours, as indicated.
(a) The data shown in the upper panel are the normalised nuclear to cytosolic (N:C) ratio
of NFAT2-EFP fluorescence intensity (113). The bottom panel illustrated preliminary model
simulations of the whole-cell model NFAT response. (b). The data shown are the N:C ratio
of ERK2-GFP fluorescence intensity (unpublished observations). The bottom panel illustrated
preliminary model simulations of the whole-cell model ERK1/2 response (125). The data with
GnRH at 1hr or 30 min intervals are offset by 1 or 2 units on the vertical axis for clarity.
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