LOW-LYING ELECTRONIC STATES OF C_4H : NOT SIMPLE

PAUL DAGDIGIAN, *Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA*; JOHN F. STANTON, *Quantum Theory Project, University of Florida, Gainesville, Florida, USA*.

The C_4 H molecule is of significant astronomical interest. It represents one of the smallest "carbon chain" radicals, is abundantly distributed in astronomical sources, and C4H *[−]* was the one of the first molecular anions to be detected in space. The acetylenic radicals $H(C_2)_n$ form an interesting sequence in which low-lying excited electronic states are conspicuous. The simplest radical (C₂H) has a ² Σ ground state, with the ²Π excited state just below 0.5 eV higher. As the length of the carbon chain increases, the delocalization present in the ²Π state (relative to ²Σ, which is acetylenic in nature with the unpaired spin localized on the terminal carbon) leads to its preferential stabilization, and ²Π lies comfortably below ²Σ for C_6H and larger members of the series. In this regard, C_4H sits essentially on the frontier: the most recent experiments place the ²Σ lowest, but by only *<*30 meV, and a clear picture of its low-level vibronic level structure has yet to emerge. This talk discusses all three of the low-lying states (²Σ and the two components of ²Π), which in fact display a low-lying three-state conical intersection within 150 meV of the minimum on the adiabatic surface, and undergo profound vibronic pseudo-Jahn-Teller (${}^{2}\Sigma/{}^{2}\Pi$) and Renner-Teller (${}^{2}\Pi$) mixing. High-level calculations are performed to identify the various principal stationary points and conical intersections on the potential, and this information is used to construct a three-state vibronic Hamiltonian of the Köppel-Cederbaum-Domcke variety. These results are used to present a view of the electronic structure of this molecule that goes beyond the simple description of simple ${}^2\Sigma$ and Renner-Teller distorted ${}^2\Pi$ states that has typically been invoked in the past, and to carry out a simulation of the photoelectron spectrum.