MICROWAVE SPECTRA, MOLECULAR GEOMETRIES AND BARRIERS TO INTERNAL ROTATION IN COM-PLEXES OF Ar. $C_5H_7N_2$ AND $H_2O \cdots C_5H_7N_2$ (WHERE $C_5H_7N_2$ IS 1-, 2-, 4- OR 5-METHYLIMIDAZOLE)

<u>NICK WALKER</u>, EVA GOUGOULA, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK; CHRIS MEDCRAFT, School of Chemistry, UNSW, Sydney, NSW, Australia; JULIANE HEITKÄMPER, Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.

Experiments performed to observe the broadband microwave spectra of 1-methylimidazole, 2-methylimidazole, 4methylimidazole and 5-methylimidazole also yielded the spectra of molecular complexes containing these molecules. The complexes were generated through laser vaporisation of a solid target rod in the presence of a gas sample undergoing supersonic expansion and containing Ar and H₂O precursors. Spectra have thus been recorded for a series of structural isomers of Ar···C₅H₇N₂ and H₂O···C₅H₇N₂ where C₅H₇N₂ is an isomer of methylimidazole. Rotational constants, B_0 , centrifugal distortion constants, D_J , and nuclear quadrupole coupling constants, $\chi_{aa}(N)$ and $\chi_{bb}(N)$ - $\chi_{cc}(N)$ have been determined through assignment of the observed rotational spectra. For each of the structural isomers identified, it will be shown that the argon atom of Ar···C₅H₇N₂ coordinates to π electrons of the aromatic ring of methylimidazole. The water molecule in H₂O···C₅H₇N₂ binds to the pyridinic nitrogen atom of the methylimidazole sub-unit. For each complex, the barrier to internal rotation, V_3 , of the methyl group has been determined.