

ULTRAVIOLET PHOTOABSORPTION OF SO ISOTOPOLOGUES AND THE B $^3\Sigma^-$ AND C $^3\Pi$ STATES

ALAN HEAYS^a, School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA; GLENN STARK, Department of Physics, Wellesley College, Wellesley, MA, USA; JAMES R LYONS, School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA; NELSON DE OLIVEIRA, DESIRS Beamline, Synchrotron SOLEIL, Saint Aubin, France; BRENTON R LEWIS, STEPHEN T GIBSON, Research School of Physics and Engineering, Australian National University, Canberra, ACT, Australia.

The sulphur-monoxide $B^3\Sigma^-(v \ge 4)$ levels are known to be strongly affected by vibrationally-dependent predissociation and local energy perturbations (Liu et al. 2006 JMS 238:213). The isotope-dependence of this predissociation and the SO photodissociation cross section is a candidate atmospheric-source for explaining the anomalous 32 S/ 34 S/ 36 S isotopic fractionation found in 2.5Ga old sedimentary material (Ono 2017 Annu. Rev. Earth Pl. Sc. 45:301).

We have recorded new photoabsorption spectra between 195 and 230 nm to determine spectroscopic constants, predissociation linewidths, and transition strengths for the excited $B^3\Sigma^-(v=4-17)$ levels of $^{32}S^{16}O$, $^{33}S^{16}O$, and $^{34}S^{16}O$. The $C^3\Pi$ state is also observed and perturbs $B^3\Sigma^-(v=4-17)$ through spin-orbit interaction. $B^3\Sigma^-$ and $C^3\Pi$ potential-energy curves, electronic transition moments, and a global spin-orbit interaction are deduced from the new data so that it may be extrapolated to the rare $^{36}S^{16}O$ isotopologue.

We use the new cross sections to explore the potential for isotope-dependent photodissociation of SO in the ancient-Earth atmosphere due to structured solar UV radiation and atmospheric opacity.

^aNASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California