UNCOVERING A NEW CLASS OF REACTIONS IN THE ATMOSPHERE: SN2-TYPE SUBSTITUTION REACTIONS OF NITROGEN OXIDES AND SEAWATER

LAURA M McCASLIN, Department of Chemistry, University of California Irvine, Irvine, CA, United States; MARK JOHNSON, Department of Chemistry, Yale University, New Haven, CT, USA; R. BENNY GERBER, Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.

Recent studies indicate that nitrogen oxide species in the atmosphere, including N₂O₅ and ONONO₂, undergo a new class of S_N2-type substitution reactions when in contact with seawater and sea spray aerosols.^{*a,b,c*} The reactions of atmospheric nitrogen oxides with seawater play many integral roles in regulating levels of O₃, OH, NO_x, and CH₄, thus directly affecting radiative forcing and global climate. However, the effect of the number of water molecules on the mechanisms for this new group of S_N2-type reactions of nitrogen oxides and the competition of these processes with hydrolysis have not yet been characterized. Here we present the mechanisms and timescales of S_N2-type substitution and hydrolysis reactions of N₂O₅ with seawater in the cluster series N₂O₅ + Cl⁻ + nH₂O (n=1-5). Previous studies of the cluster N₂O₅ + Cl⁻ + H₂O provide deep insights into the local behavior of these systems.^{*c*} The presented studies of this cluster with water molecules added one-by-one allows for a detailed understanding of the effects of a solvation shell as it is built, providing a connection between the behavior of these small clusters and atmospherically relevant systems. Vibrational spectroscopic signatures of key intermediates are discussed and compared to recent and ongoing experiments.^{*a*}

^cL. M. McCaslin, M. A. Johnson, R. B. Gerber, (In review)

^aP. J. Kelleher, F. S. Menges, J. W. DePalma, J. K. Denton, M. A. Johnson, G. H. Weddle, B. Hirshberg, R. B. Gerber, J. Phys. Chem. Lett. 8, 4710 (2017).

^bR. B. Gerber, L. McCaslin, N. V. Karimova, Faraday Discuss. (Accepted).