MATI SPECTROSCOPY OF Ln(OH)₂ (Ln = La AND Ce) FORMED BY O-H BOND ACTIVATION OF WATER.

<u>SILVER NYAMBO</u>, JONG HYUN KIM, PRIYA KARNA, YUCHEN ZHANG, DONG-SHENG YANG, *Department of Chemistry, University of Kentucky, Lexington, KY, USA.*

Lanthanide (Ln = La and Ce) atom reactions with water are carried out in a pulsed-laser ablation molecular beam source and characterized by mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical calculations. Both reactions yield Ln(OH)₂ as the main product through a hydrogen atom elimination of each water molecule. The MATI spectra of Ln(OH)₂ are dominated by the origin band and metal-ligand symmetric stretching and bending vibronic progressions. Adiabatic ionization energies measured from the spectra are 40135 (5) cm⁻¹ for La(OH)₂ and 40756 (5) cm⁻¹ for the Ce(OH)₂. The molecular symmetry of Ln(OH)₂ is C_{2v}, and the observed transitions are ¹A₁ - ²A₁ for La(OH)₂ and ²B₁ - ³B₁ for Ce(OH)₂. The ground valence electron configurations of La(OH)₂ and Ce(OH)₂ are La 6s¹ and Ce 4f¹6s¹, respectively. Ionization of each species removes a Ln 6s-based electron, and the resultant ion also has C_{2v} symmetry. The spectrum of Ce(OH)₂ has a broader linewidth than that of La(OH)₂, which is attributed to the unresolved spin-orbit levels by comparing with relativistic quantum calculations at the level of spin-orbit multi-reference quasi-degenerated perturbation theory. The metal-mediated hydrogen elimination of water is predicted to be thermodynamically and kinetically favorable by the density functional theory calculations.