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Internet of things will bring connected devices to a new level of pervasiveness,
where any tangible thing of our daily life may embed some electronics. From a
sophisticated smartwatch that embeds complex sensing and communication tech-
nologies, to the use of a basic electronic component to implement a digital signa-
ture, such as RFIDs. All these smart things worn or distributed around us enables
multiple functionalities, when they can interact with each other. In this thesis, I
describe the design, characterization and validation of a monitoring system based
on Internet of Things technologies, for managing groups moving together in a city.
Communication and energy efficiency aspects are firstly explored, to identify Blue-
tooth Low Energy as a promising protocol enabling scalable and energy efficient
networks of things. In the thesis, the protocol has been stressed to demonstrate
trade-offs between throughput, energy efficiency, scalability and the possibility to
perform multi-hop communication. The potential of the protocol has been exploited
within the framework of the CLIMB project. Here, the application requirements and
constraints fostered the use of Bluetooth for localization and proximity detection,
leading to the investigation of novel strategies to improve accuracy without affect-
ing power consumption and ease of use.
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Chapter 1

Technologies for group
management in smart communities

1.1 Introduction

In the context of smart cities, an interesting subject of personalized services are
groups, for example families, tourists on organized trips, school groups. For this
reason, there is a broad branch of research related to the use of identification and
tracking technologies to manage groups. Many wireless sensor network applica-
tions require the management of group memberships, not only for the pure purpose
of organizing the network (node addressing, routing algorithms), but also because
the membership itself is the data the application cares about.
I consider the group membership monitoring in general as the problem of managing
instances of any kind (also referred as group members) that are grouped following
a given rule and that should be managed together by a group manager or by the
group members their selves. An example of this are walking buses, where one or
more adults are in charge of bringing a bunch of children to school. They follow a
predefined path, which is considered safe and convenient, and they walk together
joining new children when they meet at the predefined stops. In this example the
instances are the children while the group managers are the adults.
This is just a use case that will be further analyzed later, but it is representative of
many other applications where we want to know the exact list of (collaborative) at-
tendees. We refer to collaborative attendees because for the rest of the thesis we
discuss about technologies that require some identifying tag on the user. When the
user is collaborative, the tag will be correctly managed and then it will work prop-
erly, instead if the user is not collaborative (i.e. he does not want to be identified or
tracked) he can easily sabotage the system by just acting on its tag.

Groups are entity that are very common in the communities and in the IoT world:
examples are people with a common interest or a common aim (students, athletes,
colleagues), animals to be monitored (herd, bird flock), means of transportation
(shared bikes, buses), but also goods in a supply chain or in a storehouse.
In the today’s digital domain, the membership of a group can be obtained by em-
ploying any technology that provides identification using wireless communication
(i.e. radio identification). These technologies require to equip the instance to be
identified with a kind of tag. It can be battery-less such as passive RFIDs: given
their short range (at most in the order of meters) they typically require explicit ac-
tion by the user (i.e. passing the RFID close to the reader to be detected). Less
interaction is required if active technologies are used since the range is increased by
the means of active circuitry on the tag that is typically powered by a small battery.



2 Chapter 1. Technologies for group management in smart communities

Common examples of nowadays low power radio standards are: active RFID, Blue-
tooth, Wi-Fi low power, 802.15.4 (or Zigbee), also long-range protocols such as LoRa
or Sigfox1, each of them can be considered viable solution, the choice depends on
the application requirements.

When managing groups, another key information that is often useful to couple
with the membership list is the position of the members. For many applications,
such as the walking bus mentioned earlier, it is important not only to know that a
member is in the proximity of the manager, but also to have a measure of how far
it is, so that an alarm can be triggered once the member is going too far. In partic-
ular, most of the time when dealing with (moving) groups, what really matters is
the relative distance or the relative position of the members with respect to the man-
ager rather than the absolute position (i.e. latitude-longitude coordinates). Even in
applications employing static nodes, like environmental monitoring, having the po-
sition of sensors is important, both as data source and for maintenance purposes. In
fact, if a sensor network collects data about temperature, humidity and atmospheric
pressure for whether forecast, it is mandatory also to know the position (absolute
position in this case) where the samples have been acquired, otherwise they are use-
less for the purpose of the forecasts. Regarding static nodes, positions may be as-
signed manually during the network setup. This is reasonable in low-to-mid sized
networks, but with larger ones it may become a cumbersome operation. Moreover,
by monitoring the position of nodes in static networks, the manager can understand
if there are failures or sabotages and geo-reference them.
Nowadays, global navigation satellite systems (such as GPS or Galileo) can provide
absolute localization on most of the earth surface; however, it is not always a viable
solution because of three main reasons:

• Accuracy: typical accuracy of satellite-based positioning system ranges from
less than one to 30 meters [19], which is fine for many applications, but for
those relying on the relative distance, errors accumulate, and they might be no
more acceptable. There are ways for reducing the error to the centimeter level
[14], however cost and energy consumption grows; and in large network de-
ployments the single node cost plays a fundamental role for obvious reasons.

• Coverage: the satellites provide a good coverage of the earth surface, how-
ever when the open sky is not visible (i.e. inside natural or urban canyons,
or indoor) satellites’ signals may be too weak or inaccurate to provide good
position estimation.

• Consumption: typical consumption of commercial GPS receiver is in the order
of tens of mW, which can be considered low power, but not ultra-low power
that is the target for IoT sensor nodes.

For these reasons it worths studying alternative ways to obtain node location, and
one of this is by exploiting radio signals that are already available for enabling wire-
less communication.

1.2 Group Monitoring

In general, what it is expected from a group monitoring system is to handle every-
thing that concerns the list of members and the logs of events regarding the group.

1 LoRa and Sigfox are two protocols optimized for transmitting small chucks of informations (in
the order of few tens of Bytes) over long distances (> 1 km) while remaining relatively low power.
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More specifically, such a system should automatically detect and identify the mem-
bers of the group that are in the proximity of the manager. By using the distance
estimation (or localization) it can understand the actual proximity between the man-
ager and the members, and if some of them is going out of communication range, the
system should trigger an alert informing both the loner member and the manager
that they are probably too far away for being part of the same group. The system
should also provide a periodic journal (daily, monthly, one-off, depending on the
application) reporting timestamped events such as:

• Member in range: a member is detected in the proximity of the group, but it
is still not part of it.

• Member join: a new member formally joined the group.

• Member leave: a member left the group in a controlled way.

• Alert: a member is going too far away, or a member is no more detected (and
it never formally left the group).

• Member location: relative or absolute coordinates of the member.

Having a log of what happened permits an off-line analysis that can be many fold.
It may be used for maintenance (battery change/recharge, software updates), for
safety, insurance or statistics (the periodic fee for the insurance or for the system
concession may be dependent on the use).

Depending on the application, there may be the need of monitoring the group
from within it (local monitoring) or from the outside (remote monitoring).
Local monitoring can be effectively used for instance when managing group of chil-
dren on the street: given the reactivity required to intervene in case of danger, the
application should have low latency in detecting dangerous situations. However, it
is clear that a group manager should pay its attention to the children (that must be
in line of sight) rather than focusing on the smartphone. Then the proposed system
is intended to be as support of and not in place of the physical person, it can tell if
somebody is missing with respect to the expected list of participants, but it cannot
stop a (nowadays) car if a child is walking in a dangerous zone2.
Remote monitoring instead can be employed when the application is more latency
tolerant: remaining in the context of children, remote monitoring may be applied at
school. When all are in, the information from all the classrooms can be collected in a
central point, where a person or a machine can check the missing ones and eventu-
ally informs the parents.
This difference between local and remote monitoring is important to the purpose of
stack optimization. However, the same system can integrate both and use the proper
one depending on the specific application needs.
Given the nowadays’ level of penetration of technologies like smartphone and inter-
net, it is strongly advisable to reuse technologies where possible, otherwise people
will hardly accept solutions that require application specific devices in place of their
own smartphones: this paradigm is called bring-your-own-device [42]. For this rea-
son one of the key features for such a system is to be well integrated into nowadays
technological ecosystem.

2 If we consider autonomous cars (that are only at prototype stage at the time of writing) their
sensing system may integrate the technology to detect people using radio frequency identification if
available on the person.
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1.2.1 Stack description

Regardless the technology chosen for the implementation, the requirements of group
management with position awareness cover the full stack: from the physical layer,
which is important to analyze for the purpose of localization, to the cloud services
that can be used to synchronize expected attendees list (i.e. the list of service sub-
scribers). It is worth highlighting that the data security in IoT applications employ-
ing people identification is a crucial point, then it should be carefully addressed at
all levels.

The lower layers are in charge of handling radio signals to implement wire-
less communication and perform measurements to obtain location information. The
communication channel will be used, at least, to send identity information, which
is typically encoded in a numeric code called ID. Another kind of data that may
be transmitted is sensor data or other high-level information such as position data.
Since the target is the IoT, the energy efficiency of the devices is one of the top prior-
ity. To accomplish this, low power radio protocols employ aggressive duty cycling
technique to turn off the radio peripheral when not in use. In fact, it is known that
the radio is one of the most energy hungry component of a wireless sensor node [78],
then optimizing the radio operations is the first step toward the energy efficiency of
the device. This optimization is typically done at low level to increase the accuracy
of the behaviour and the performance of the code.

Mid layers manage the overall system logic: for instance, the device may use
sensors to understand the context it is and perform actions in response of a context.
In other words, if the device is steady it may lower the position report rate, saving
power. Another task of the mid-levels is to manage and store device configurations,
providing tools for an easy, convenient and possibly unified interface to access the
settings. This seems to be trivial in nowadays systems, but in the view of IoT we will
have really huge amount of sensors, if each family of them has a proprietary tool, it
may become hard to set up and maintain deployments.

High layers are mostly focused to the application specific behaviours. They han-
dle cloud database storage to allow a permanent and easily accessible information
and event logging. If needed by the application, upon authorization they provide the
mapping between the ID number and the actual identity (name, family name). High
levels also include the visualization tools like web-based consoles or smartphone
applications and some part of reasoning that is use case dependent. For instance, in
the walking bus example, a message may be sent to child’s parents informing them
that their son arrived at school. This kind of operations are managed by the higher
layers because they are strictly application dependent.

1.2.2 Applications of group monitoring

Some of the possible applications of group monitoring are analyzed here, with par-
ticular attention to those that can be in the ecosystem of the smart city and commu-
nities. Moreover, the discussion is restricted to group monitoring applied to living
beings (humans or animals) since monitoring of things have different needs. Ap-
plication specific requirements and challenges are discussed and solutions to main
problems are briefly described.

Children monitoring

We already introduced the walking bus application, but it can be generalized as the
monitoring of children that move outdoor in one or more organized groups, with
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various level of autonomy. Monitoring school trip, recess break in the school’s court-
yard or outdoor sport (ski school, running, outdoor workouts) belong to the same
class of application since all of them have a group of children being monitored by
one or more adults that are in charge for their safety.
In this context, it worths highlighting that, in the last decades, childhood in urban ar-
eas has changed and the technology can be used to re-establish "the spatial practices
of children" [112, 97]. At the same time, there is a scarce adoption of technologies
that permit precise position tracking, which are available on the market since last
decade (Weenect Kids GPS Child Tracker, Ubisafe, AngelSense Kids GPS Tracker are
only few examples). As pointed out by [111], these devices are mainly adopted to
relieve the short-term personal anxieties without a real look at the long-term con-
sequences on children’s sense of autonomy and independence. On the other hand,
non-adopters prefer less intrusive practices, such as curfew or activity boundaries.
For this reason, the user interaction with such systems must be carefully addressed
to avoid the technology to absorb all the user attention. This consideration regards
both the children and the group manager (i.e. the teacher, the parent or the adult in
charge of managing the group of children).
From the technical point of view, this class of applications requires a continuous
monitoring of the presence of all the children. However, as found in [111], a real
time tracking of child position might be counterproductive. Therefore, only impor-
tant notification should be given to the group manager: for instance, as already pro-
posed, an alert can be risen when someone is moving too far for being effectively
supervised by the adults. Since in this kind of monitoring the readiness of the group
manager (typically a teacher or a relative) to react is of primary importance, the mon-
itoring should be done from within the group. Therefore, the most convenient way
to interact with the system is through a device that everybody has in the pocket and
can easily being used, like a standard smartphone. Providing smartphones to all the
children such as proposed in [84] might not be acceptable for ethical reasons, then
we want a technology that is transparent to the child, requiring no direct interaction
with the tag. At the same time, adults’ smartphones can have a low latency con-
nection with the children’s tags that provide the identification and tracking, and in
the meanwhile the smartphone can be connected to the internet to download other
kinds of information used by the application.
In the case of school-like applications it is important to compare the actual list of
group members with the expected one to obtain the list of absents by difference.
A further yet controversial feature is the communication with the parents. If a child
is supposed to be part of a walking bus, but it is not detected, a message could be
sent to the parents. Such a message may be alarming for them, therefore a double
check is recommended to avoid false alerts due to empty batteries or a tag that has
been forgotten at home.

Museum or guided tours

Another quite popular application of group monitoring is related to the guided tours
both in museum or outdoor areas. In [29] the group monitoring concept is used in
the context of guided tours in museums where RFIDs and Wireless Sensor Network
are employed as technology enabler. Authors highlight that the group is composed
of peers, and, contrary to Children monitoring applications, the guide is the group
manager, which is not intended to be a supervisor. She/he will be just a guide, and
therefore, the members may be free to step away from the main group for some time
if they are interested in something the other members do not care about. Localization
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is used to inform the member about the position of the main group in case she/he
get lost. Another important requirement is the coexistence of different group in the
same area.
The guide becomes an autonomous robot in [23]; in this case a key role is played
by the localization techniques (based on a mixture of tactile, infrared, sonar, laser
sensors), which is mandatory for ensuring the autonomy of the robot. A simpler
ultrasound based system that runs on users’ smartphones is presented in [17] where
the focus is the use of personal devices (i.e. smartphones) as electronic guide in or-
der to reduce the cost for ad-hoc solutions typically employed in museums. The
outdoor scenario is considered in [97], where gamification techniques are applied
to digitally augment field trip. The game’s hardware architecture is composed by
several different kind of devices (pingers) that are carried by children. This appli-
cation might be also included in the Children monitoring class of applications. From
the point of view of this thesis, the more relevant pingers are those used for location
and/or context detection: in fact, for absolute localization the information is ob-
tained through the GPS Pinger complemented with Dead Reckoning Pinger, while for
relative localization (for detecting the proximity to a point of interest) short range
radios (Location Pinger) are preferred. This confirms that the GPS is not the final
solution for localization, in particular when the goal is to detect relative proximity
rather than the absolute position.

Therefore, in this class of applications, the system with the localization feature
can be used for two main purposes: provide a digital guide with description and
suggestion based on the position (absolute localization is then a requirement), keep
the group membership coupled with members’ location to allow sharing this infor-
mation with the other members and/or the human guide. To these purposes having
a basic tag for identification and localization is not enough; instead, the system can
be implemented with the users’ smartphones in a way that every member can install
an application, which will act as interface with the system and, at the same time, the
smartphone’s resources are used for the identification and localization.
Moreover, also the museum managers can benefit from such a system, in fact they
can have a remote console from where they monitor the number of presences both
for statistical and safety reasons. For this purpose, all the museum guests have to be
forced to carry a compatible tag or the smartphone with the application running.

Sports competition

For this use case, we distinguish between two kinds of sport competitions: sports
played in specific fields (like basketball or rugby) and sports played outdoor (like
running or cycling). An example of the former is provided in [53] and in [52] where
the WASP system is described: a large radio bandwidth (125 MHz) in the 5 GHz
ISM band is used to locate players with respect to a number of reference nodes (an-
chors) and with a high sample rate (up to 200 Hz). The architecture requires ad-hoc
hardware that is build using commercial low-cost components. Using this system,
athletes can be tracked in the play field with respect to the anchors; however, there is
no link nor range estimation between athletes (only between athletes and anchors),
then the localization can be done only in confined environment (indoor/outdoor
fields) and relative group localization is not considered here.
Instead, for those sports where the key information is the position of the athlete with
respect to the others, rather than the position with respect to a play field or to a fixed
infrastructure, cooperative localization [92] is a more adequate technique. In cooper-
ative localization, nodes perform range estimation not only to the anchors, but also
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to the peer nodes. In the absence of fixed anchors, mobile nodes can still localize
themselves with respect to the others. This can be very effective in competitions like
cycling or marathons, since many athletes (hundreds) might be moving in group. In
this situation, the absolute location of the single participant is not relevant, however,
the relative position inside the group can be an important information for the strat-
egy.
In this use case, the group members (i.e. athletes) do not like to carry extra weight;
then the devices need to be small and they should work without the need of user in-
teraction since the monitoring is mainly remote: this means that the system should
be as transparent as possible for the athletes. Their assistant or trainers will com-
municate only relevant information using other channels (just voice or using radios
if they already in place). If this is applied to non-professionals athletes, without a
personal training team, the same information can be accessed directly by athletes if
they accept to carry a smartphone like device.

Crowd monitoring

In large public events such as concerts or religious events being able to monitor
the crowd can be highly valuable for safety reasons. It is not so unusual that large
crowds go out of control creating panic, then wounded and even deaths. Of course,
a monitoring system will not directly protect event participants, but it may help the
organizers to manage the crowd avoiding creating dangerous situations.
In [13] it is highlighted how passive sensing techniques such as those based on cam-
eras can detect crowd flow, can count people and estimate the crowd density; how-
ever, they fail when accurate mobility patterns need to be analyzed on the long scale.
The author indeed identified the Bluetooth Low Energy (BLE) to be a viable technol-
ogy to the purpose; in fact, it is cheap, low power and pervasive. In the proposed
experiment, where the aim was to detect people mobility, we could say that "the
crowd is sensed by the crowd". In fact, both the BLE beacons and the BLE scanners
(smartphones equipped with an application that scans for BLE devices) are carried
by participants. Contacts between the beacons and the scanners are pushed to an
online server together with the GPS location of the contact. Even in such collabo-
rative scenario the privacy can be ensured if no association between beacon ID and
the person who is carrying it is made during the deployment, the same considera-
tion applies to the smartphone app.
It is also important to note that, in this class of applications, it is impractical to tag
hundreds of thousands of users: tagging only a relevant subset of them is a choice,
using people’s own devices to this purpose is another choice (in [13] a mixture of the
two is employed), complementing it with other complementary technique (camera
based) is another choice.

Smart City

Being cities and communities made of groups of people, the concepts of group man-
agement and localization find several possible applications in the context of Smart
Cities and Communities. Smart Cities experts envision applications that are de-
scribed as: smart transportation, smart grid, smart health, smart waste collection,
authors in [90] define it Smart World. To make a city (or the world) smart, a set
of components are required. Probably the three most important are: a network to
allow information communication between entities, a processing power to process
the available information, and the data sources that generate the information. As
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pointed out by the authors, location and time are the most relevant underlying fea-
tures of any observation (after the observation itself), and since Smart City appli-
cations will be fed with data coming from observations, localization in Smart City
must be more pervasive and accurate. In fact, for what concerns the time, technol-
ogy already permits to timestamp the data with a very high accuracy and resolution,
while for what concerns location this is not always realized.

Wildlife monitoring

Not only groups of humans can be monitored, also animals can, in fact one key tool
for zoologist and biologists is to monitor animals’ movements and interaction in
their daily routines. For instance, authors in [93] applied a technique similar to the
one described in Section 1.2.2 but using much more constrained devices. In fact, they
use a low power contact detection technique (also referred as neighbour discovery)
applied to 802.15.4 radios to detect proximity between mid-sized animals (deer, fox).
Any contact between animals activates a GPS receiver, coordinates are stored to a
memory and the georeferenced contacts are then off-loaded using either fixed nodes
in the wood or alternatively, in the absence of the previous, using an on-board mo-
dem. Energy consumption is also studied, and a model based on a weighted average
is used to help biologist choosing the proper set of parameters to reach the most ap-
propriate trade-off between accuracy/resolution and consumption. Much smaller
animals are instead considered in [79] where a miniaturized BLE based device tar-
gets the collection of small birds’ vocalizations. In this case the main challenge is to
compress weight and size to avoid stresses to the animal and hence a change in the
behaviour, which is obviously unwanted. To this purpose minimal components are
allowed on the device; however, it can still acquire audio from a contact microphone
and also, temperature. Even if not explicitly described in the paper, the presence of
the short range BLE radio allow to geo-reference acquired data. If these techniques
are applied for studying the animals, remote monitoring with offline data analysis
may be enough; instead for other animal related application the requirements may
be the opposite. When dangerous animals (bears, wolfs) reach villages they can be
harmful, by having a system that detects them an automatic bollard may discourage
their stay or alternatively a communication may be sent to forest rangers. This is
what has been done in the BearFence project [89], where contact detection of bears
(based on collar mounted RFID) has been used to localize the animal in a protected
area.
It must be noted that an animal cannot be considered a collaborative user and, to
detect it, the tag must be deployed on the animal itself. This procedure may be chal-
lenging and if only a fraction of the herd is tagged, the effectiveness of the system
drops as in the crowd monitoring (Section 1.2.2) class of applications.

Some of these applications are already addressed by specific technologies, for
instance in the context of sport, position trackers based on GNSS and inertial sensors
are already in use. For the purpose of crowd monitoring phone cells data could be
analyzed, and some specific wildlife trackers are used by biologist. However, it is
very difficult to find a technology with enough flexibility to fulfill the requirements
of more than one application.
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1.3 Requirements and challenges

Using radio signals to identify and localize things or people is not a new concept.
The radar is one of the first devices exploiting the radio signal to localize object by
listening to the signal echo reflected by the object itself. However, a technology that
can fulfill all the requirements of the previously mentioned use cases have not still
emerged. There are many technologies nowadays fulfilling very well a specific set
of application requirements; however, a general yet flexible and convenient solution
for all cases still does not exists.
Therefore, to choose the technology that better fits the application, it is mandatory
to define a set of design parameters, on which the application requirements will be
based. The most relevant are:

• Energy efficiency: a typical requirement of an identification device (i.e. the
tag) is to guarantee a long battery life in the order of years with reasonably
small battery. A bracelet-like device, for example, to be wearable and not
cumbersome needs a small-size battery such as those available today, e.g. a
15x10x2.7mm3 battery with a capacity of 25 mAh. However, to guarantee that
such kind of battery lasts 1 or 2 years, the average consumption should be in
the µW order 3. Properly configured Bluetooth Low Energy devices are not
that far from these values [44]. BLE Manufacturers often rate their beacons to
last more than one year with a small coin cell battery.

• Range: communication range depends on many factors: transmission power,
modulation scheme, antennas gain, receiver sensitivity, carrier frequency and
bandwidth, environment and other. For most of the mentioned applications,
the required range does not overcome 100 m. Since the data is used locally,
a longer communication range is not mandatory. A longer communication
range might look always welcome; however, this should be traded-off with
power consumption and with scalability. In fact, the easiest way to increase the
range is to increase the transmission power, however this leads to higher en-
ergy consumption; at the same time a longer communication range will reduce
the spatial reuse of spectrum, since communication collisions can happen on
a wider area effectively reducing the maximum supported node density. Fur-
thermore, the network can be equipped with a gateway connected to internet;
this, with the help of cloud services and protocols can make the data available
anywhere there is an internet connection.

• Localization accuracy: radio based localization is a well studied topic in par-
ticular in the wireless sensor network community. Many signal processing
techniques have been proposed [113, 69, 12, 74, 91]. However, what really sets
the accuracy is the metric that is used for estimating the distance, which can be
for instance, RSSI or time-of-flight.
The required localization accuracy for almost all applications mentioned in
this chapter is in the order of 1 m (sport applications typically require higher
accuracy).

• Reliability: if the radio device is supposed to be used in safety critical applica-
tions, the reliability of both the acquired data (sensors, location) and the device
itself (it must be rugged) plays a fundamental role. For instance, many of the

3 The maximum accepted consumption that satisfies the wanted battery life (given the battery size)
is estimated with: capacity

target battery life = 25[mAh]
730[days]24[h/day]3.7[V] ≈ 5µW
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Bluetooth modules on the market are made with commercial grade compo-
nents that may fail in critically harsh environments.

• Scalability: if radio identification and tracking is performed on large scale, the
technology should be scalable enough to avoid network congestion. It is a
common experience to have problems with the cell phone system when there
are too many people that use the phone in a small area. In that case a single
cell cannot handle all the traffic and some of the user will be put offline. In
this regard requirements are application specific; then, an adaptive solution is
advisable: when many nodes are in the neighbourhood it should use conser-
vative settings such that the network does not get congested, while when the
group is small the settings may be tuned to optimize other parameters (such
as latency)

• Latency: because of scalability and energy efficiency aspects, the radio cannot
transmit all the time; some form of duty cycle has to be applied. This makes
the system active only a fraction of the time and then the detection can suffer
of latency.

• Security: security of data is another key aspect of a radio identification beacon.
If the personal device broadcasts the user identity all the time in clear, an of-
fender may sniff the data and understand where the user is or where she/he
is not violating basic privacy rights.

• Throughput: links speed is one of the few relaxed requirements, in fact to rec-
ognize a device only the ID must be transmitted. The ID length can range up
to 128 bit (16 bytes) that is the length used in the definition of UUID given in
ISO/IEC 9834-8:2005 that is often used when a unique identifier is required for
any reasons. If the full ID is transmitted every 100 ms the required through-
put is 1.28 kbps, which can be considered low throughput (it is less than 1 %
of what available on modern wireless communication standards [21]). There
are however cases where higher throughput is necessary, in fact if the appli-
cation requires multihop contacts detection, any node, together with its local
information, will also forward the list of its neighbours, and maybe also the
list of the neighbours of its neighbours and so on. This increases the required
throughput exponentially with the size of the network, imposing severe limits
on the system scalability.

1.3.1 Application specific vs generic solution

Given the wide spectrum of possible applications, a question arises: do we need
an application specific device for each of them, or a common solution may be em-
ployed? Requirements are similar, then the same technology may apply; unfortu-
nately, such technology does not exist yet. An ideal candidate for group manage-
ment in IoT application should be flexible from the physical layer up to the cloud to
fit the widest range of applications.
A viable solution may be to create a hybrid design, with heterogeneous radio in-
terfaces for the different purposes. Anyhow, such hybrid solution might become
complex, because different standards (Bluetooth, LoRa, 802.15.4, UWB) will expose
proprietary and not compatible interfaces. Moreover, the hybrid solution built with
the fusion of multiple standards should manage these standards such that they do
not conflict and their use is well defined. In other words, a standard use of standards
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should be defined. This seems not to be a viable way because concerting different
standards to work together while guaranteeing interoperability and compatibility
is not convenient. Then for now, system designers are forced to make application
specific solutions.

1.4 Case Study and motivation: The CLIMB project

During my three years of PhD school I have tested some of the technologies that are
suitable for group management. I tested them within the context of walking buses
organized to bring children at school.
The CLIMB project of Fondazione Bruno Kessler aims at promoting the independent
mobility of children inside the neighbourhood . To this purpose IoT technologies are
used to monitor their way to school. Parents volunteer to supervise the walking
bus, which have a time schedule and predefined stops, and the children, instead of
reaching the school on board of the parents’ car, they walk to it together. For insur-
ance and safety reasons, adult volunteers of the walking bus are requested to write
a daily journal to keep track of all the children presence. Usually, this journal was
compiled manually, which is not the most appropriate way if at the same time the
volunteer has to supervise some tents of children on the road.
For this reason, at Fondazione Bruno Kessler we designed an IT solution employ-
ing Bluetooth tags for recognizing the children and help the volunteers recognizing
them through a smartphone application. From the technological prospective, I iden-
tified the following high-level functional requirements for the basic group manage-
ment:

• Continuous discovery of new group members

• Detection of member leave (relative members localization)

while non-functional requirements are:

• Detection latency should be less than 5 s

• Scalability should be guaranteed up to hundreds of nodes (the target will be
150)

• Communication range in the order of hundred meters: it often happens that
children form long caravans when walking on the sidewalk, the radio contact
to the manager should not be lost in that case.

• Compatibility with personal devices such as smartphones will help the adop-
tion

• Low maintenance efforts: being this system management (i.e. the need of man-
ually turning on/off devices) or pure maintenance (i.e. the battery life should
not be shorter than three months).

Others and more specific technical requirements will be given in the next chapters.

The group management system will be also complemented by a game (Kids Go
Green, [81]) to improve user engagement, then encourage the adoption and keep the
motivation high on the long period. The design, validation and description of this
game is out of this thesis’s scope.
I took the CLIMB project as an opportunity for experimenting group management
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in the IoT and smart city ecosystem, providing basic functionalities to walking bus
users and at the same time exploring more advanced functionalities offered by the
technology.

1.4.1 Evolution of the walking bus management system

The present section is an overview of the thesis. It describes the evolution that the
walking bus management system has undergone during the doctorate.
Bluetooth Low Energy (or BLE) has been chosen as the most appropriate technology
because of three main reasons:

• Energy Efficiency: manufacturer declare that in its basic use (beacons) devices
can last a couple of years when powered by a small battery with capacity in
the order of 200mAh

• Pervasiveness: BLE is now supported by almost all personal devices (smart-
phones, tablets, pc)

• Communication range: in open field the range of a BLE beacon (with 0 dBm
transmission power) overcome 60m, when nodes are carried by children in the
backpacks the signal propagation is perturbed, but it is still adequate for the
application.

BLE have many interesting features that perfectly fits this sort of applications, how-
ever lower layers are not optimized for localization or range estimation. Moreover,
latency-scalability trade-offs are not well defined and sometimes device dependent.
To the purpose of better characterize and understand the possibilities offered by the
BLE devices, several experiments and applied studies that asses the unknown aspect
of BLE have been carried on in this thesis.
First assessments have been focused on a basic characterization of throughput and
consumption trade-offs during data streaming operations (Chapter 2). Even if the
use case is a bit different from the group management task, we used the same anal-
ysis technique in several other situations.
After this preliminary study, the first version of the group management system
(MIGnOLO - ManagIng Groups with bluetOoth LOw energy) has been developed
and it is described in Chapter 3. Localization on version 1 of MIGnOLO is based only
on RSSI and literature on this technique suggest that the accuracy is low [54]. The
first attempt to cope with the low accuracy is to approach it with brute force, which
means adding more input data to the problem and let a machine learning algorithm
to find out patterns of behaviour (Chapter 4). From this point of view, version 1 of
MIGnOLO was able to collect really a large amount of data, anyway it suffered of
two interconnected problems:

MIGnOLO (ManagIng Groups with bluetOoth LOw energy)

• Excessive current consumption: to collect the additional data needed for en-
forcing the localization algorithm, the radio duty cycle had been substantially
increased, reducing battery life to 3-4 weeks. This is not acceptable for a system
that should be transparent to the children and their parents.

• Localization accuracy brought by the brute force approach did not increase
sufficiently to justify the battery life reduction.
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The first version of MIGnOLO have then been updated to the version 2 with reduced
functionalities (with respect to the version 1), however it required much lower main-
tenance efforts due to the reduced energy consumption. This version employed the
simplest form of BLE device: beacons. They periodically broadcast a small packet of
information containing (in our case) a numerical ID. This packet can be received by
all neighbouring devices just by activating the BLE scanning and without the need of
performing any kind of pairing or synchronization. On the other hand, data transfer
is not acknowledged and the available throughput is rather low.
Still, some other open challenges remain in this version of MIGnOLO; in fact, scala-
bility and latency where assessed only experimentally for a reasonably low amount
of beacons (less than 30). This is enough for a single line of walking bus; however,
when multiple lines merge during their way or when all the lines meet at school the
number of beacons easily overcome 100, then a deeper analysis is needed to ensure
system stability.
The focus of the work moved then to the study of the performance of more complex
networks involving communication over the BLE advertising mode (Chapter 5). For
this a BLE Link Layer simulator that aims at detecting packet collisions has been de-
veloped, given that colliding packets will be always corrupted at the receiver side.
In real world this is not true, in fact, if two packets collide but one has much higher
power with respect to the other (this happens when the first node is close to the re-
ceiver, while the second is far away), the first one may be properly received while
the second remains masked4.
The same simulator, properly adapted, have been used for assessing some energy ef-
ficiency techniques that are suitable for the consumption optimization of the version
1 of MIGnOLO. I will show that the technique is effective in Chapter 5; however, it
requires a new hardware component, a BLE compatible wake-up radio [106, 100, 94]
that at the time of writing is not available on the market.
The last and largest part of the study was addressed at the improvement of localiza-
tion techniques to be used on top of BLE. Great effort has been spent to improve RSSI
(Received Signal Strength Indicator) ranging and localization. However the drop of
performance when passing from ideal testbed to real world deployment was not
acceptable. For this reason, the approach has been changed by embedding the time-
of-flight as input information into the localization algorithm. Radio signals’ time
of flight is known to be a good distance estimator. In fact, it is employed in GNSS
(Global Navigation Satellites System) and on many of its terrestrial predecessors.
Since the time-of-flight is not available on commercial BLE modules, an ad-hoc soft-
ware library has been developed for that purpose. It adds this functionality to the
BLE just by using the resources available in the system-on-chip (SoC). This means
that no specialized hardware is required and although the library demonstrate the
principle only on one family of BLE chips, similar functionalities can be ported on all
BLE SoC. The description and characterization of this alternative ranging technique
can be found in Chapter 6.
Time-of-flight alone is not a breakthrough in BLE based localization since the noise
level of raw data is quite high (up to 10 meters) to be directly used; however, the
overlying noise is more gaussian with zero mean with respect the error found with

4 Note that if a beacon is far away and its packets are always masked by closer beacons, the receiver
will never discover the remote one. We are interested in having the whole list of beacons (i.e. children)
then if a node is never discovered it means that the system is not reliable, therefore the simulation
results remain valid even if they discard the effects of the physical layer.
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RSSI. This means that by applying the proper filtering techniques distance estima-
tions can be cleaned out and effectively used for localization and tracking. In Chap-
ter 7, the description of the filtering and tracking technique for indoor anchor-based
applications is provided. With minor changes this technique can be extended to per-
form anchor free relative localization.
The final version, i.e. version 3, of the MIGnOLO system will then use time-of-flight
measurements to estimate relative members distance. The algorithm that performs
the filtering will be embedded in the tag nodes while the group shape will be com-
puted in the adult’s smartphone.
At the time of writing, version 3 of MIGnOLO is still in progress, therefore I will
present only ideas and proposals for the future work.

1.4.2 Premise and contextualization

The present thesis has been carried out in a constrained context. The CLIMB project
started as a relatively confined experimentation (one school, twenty parents, forty
children), and in a couple of years more schools joined bringing the number of testers
(children and parents) to more than 600 people. It must be clear that the develop-
ment of smartphone applications, cloud services, the game, and all the components
not mentioned in this thesis has been a work of the Smart Community team of FBK,
who worked with me and other colleagues in order to embed the proposed group
management solution into the CLIMB smartphone application.
Practical limits in such context are countless:

• At the beginning of the project (2015), only a fraction of our users’ smartphones
where equipped with BLE connectivity since Bluetooth was supported only in
its previous versions. Even where present, the software support was poor and
device dependent, making it very hard for the developers to create a stable and
usable application.

• A variety of smartphones platform (Android, iOs, Windows Phone) further
complicates the development.

• The environment of the experimentation are mainly the roads of small villages
in the neighbours of Trento. In such situation very small attention is given to
the experimentation itself since the volunteers, obviously, pay more attention
to children rather than the application running in the smartphone, making it
difficult to get feedback about encountered problems.

• For technical and privacy issues, it is almost impossible to retrieve a ground
truth to be compared with system’s observations.

• Deploying a new feature on the BLE devices requires, in most of the cases, to
flash a new firmware on all the devices. This means retrieving all of them,
flash one by one and return them to the testers. We found this to be really
impractical, then we gave more importance to the stability and the absence
of maintenance of the solution, rather than improving the system with more
functionalitie. Therefore, some of the methods described in the thesis are tested
on smaller testbeds that are easier to control).

• Given the high number of BLE devices that can be found in a typical scenario
(hundreds), ensuring the stability it is not easy. For instance, performing a
scalability test in a real scenario would require all the hundreds of devices
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to be together, this is not easy because of cost and feasibility (any parameter
change requires all the devices to be reprogrammed).

For these reasons not all the techniques proposed in this thesis are actually in use in
the walking bus. Nevertheless, reported results are based on real experiments exe-
cuted on real hardware and where possible the test setup tries to mimic what can be
found in the walking buses. Simulations are only used to asses Link Layer behaviour
in crowded environments (hardly feasible otherwise). The custom simulator devel-
oped is firstly validated in Chapter 3.5.2, and then it is refined and expanded in
Chapter 5.

Note about the IoT acronym: the application scenario of this thesis is the nowa-
days ecosystem of heterogeneous devices with communication capability and some
form of processing power (this often make them be defined smart things, even though
the smartness of something should be weighted considering how the processing
power is used). In literature this is often referred with Internet of Things or IoT.
During the PhD I head this acronym more times than I can contemplate, and I found
that it is used in at least two different scopes.
For people working at network or cloud level, the most important part of IoT is the
Internet, and for them IoT refers to the set of tools, rules, protocols and technologies
that allow the communication of any kind of data between heterogeneous devices
and services, how the data is produced is not of primary importance for the devel-
oper.
Instead, for those that work on hardware, or low-level communication (typically
wireless) the most important part of IoT are the Things, and how the data is trans-
ferred to the end user is not a key point.
It is clear that, in the IoT context, the internet without the things (and vice versa)
will be of scarce use, then there is no reason to consider one more important than the
other.
In the present thesis the focus is the second scope, the Things, and when mentioned,
IoT will be considered from the Things point of view.
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Chapter 2

Bluetooth Low Energy Analysis

2.1 Introduction

Bluetooth and in particular the Low Energy version emerged in the last years as
enabler for many applications. Given its range (from few meters to 100 in optimal
conditions) and its energy efficient controller, it has found many applications in par-
ticular in the context of wearables. Such devices at least employ some sensors, a
radio interface and an MCU that is used both for the management of the overall sys-
tem (reading sensors, managing radio interface) and for preprocess data to be sent
through the radio.
The most frequent scenario is the use of wearable Body Sensor Networks (BSNs) for
the monitoring and analysis of selected features of the human body. Dedicated sig-
nal processing techniques extract high level information from sensor data, both in
real time and offline, providing useful insights of the user’s state and performance.
A common BSN architecture is formed by multiple sensing nodes and one central
unit, acting as data collector, processing hub and gateway towards further systems.
The sensing nodes usually have a very limited dimension to be comfortably worn
on the point of interest, hence they are carefully designed for wearability embedding
the very needed sensing and communication technologies [24].
While in the past years there was research and development of custom wearable
central units, now smartphones are the standard option in most of cases. This is
supported by several reasons: their cheap availability and the possibility for the
development of custom applications, the ease of use and the robustness of such so-
lutions and their ever growing computational and communication capabilities [7].
Radio interfaces and communication protocols have always been a crucial part of
BSNs. Their choice determines the nature of the data that the network will be able to
exchange, setting the BSN specifications in term of supported number of nodes and
data throughput or latency [26]. Every application has its requirements in terms of
throughput, latency, number of nodes, then the flexibility of the protocol is crucial to
tune it to the specific application. Moreover, the communication subsystem is usu-
ally the most power-consuming one, hence the need for its optimization and energy
efficient power management [15, 77].
Since the beginning of the development of BSNs, several standard radio protocols
have been employed, including Bluetooth, ZigBee, ANT [34], along with ad-hoc pro-
posed solutions [22]. With the diffusion and adoption of smartphones, it has become
more convenient to rely on standard protocol supported by almost all mobile phones
and tablets, eliminating the need for additional hardware. This resulted in a wide
adoption of Classic Bluetooth1 for the wearable nodes, even with its limitations in
terms of number of devices and high-power consumption.

1We call Classic Bluetooth all the Bluetooth versions before 4.0
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The development of the Bluetooth 4.0 standard (also called Bluetooth Low Energy
or BLE) was directly targeted to increase the energy efficiency and device connectiv-
ity of such protocol, with positive impact for wearable devices and BSNs for both
consumer and medical applications [5]. However, it is not compatible with previous
versions of the standard, having different stack layers and data exchange protocols
and its low energy optimized profiles result in a reduced data rate.
In this chapter we start analyzing the BLE protocol from an application point of view,
trying to extract an analysis methodology that can be applied also to other scenarios.
For doing so we target data streaming applications with high throughput and reli-
ability requirements, such as wearable healthcare applications, and we explore the
capabilities of this protocol in relation to its tunable parameters. To avoid being too
biased by the BLE implementation we will repeat the same analysis on three widely
used BLE chips.
We consider a BSN scenario with up to 6 wearable devices connected with a smart-
phone and we focus on application-level development. While existing literature
relies mainly on simulation and hardware/software customization of the used de-
vices, we target real-life scenarios for application development, avoiding the need
for hardware or stack development. The chapter discusses the observed results and
provides indications if BLE is suitable for an application and guidelines for efficient
deployment of BLE based BSNs.
In the following Section 2.2 we introduce the related works and, for the reader’s
convenience, we present an overview of the BLE protocol focusing on the top layers
of the stack in Section 2.3. Power consumption is analyzed and modelled in Section
2.4, while Section 2.5 describes the implemented BSN. The experimental setup and
results are reported in Section 2.6 and discussed in Section 2.7, together with guide-
lines for an optimal BLE performance. Finally, the last Section VIII concludes the
work.

2.2 Related work

Since the introduction of BLE in 2010, its benefits in terms of connectivity and low
power consumption have been exploited in BSNs, with several applications: motion
sensing [76, 117, 66], ECG and biopotential sensing [118, 58, 107, 32], blood pressure
measurement [72]. BLE is optimized for low power applications and its power con-
sumption has been compared to competing communication protocols (Bluetooth,
ZigBee and ANT) [34]. In particular, the comparison with older Bluetooth versions
highlights the energy benefits of this widely adopted solution [118, 32].
The drawback of the BLE solution is the relatively low data throughput that a device
can achieve. In [46], a model for throughput estimation is presented with a calcu-
lated maximum throughput of 236.712 kbit/s, but it does not consider the limited
hardware resources available on real BLE chips. Furthermore, the calculation is done
in master-to-slave direction and a master device usually has significantly less hard-
ware/software constraints than a BSN node. In [83], a BLE performance analysis is
accomplished and compared with results obtained from other wireless transmission
protocols. For BLE they report a maximum experimental link layer throughput of
122.6 kbit/s, but this work did not use the upper BLE stack layers and the achieved
throughput considers also the packet overhead, which does not contribute to the
application data throughput. In [47] similar theoretical results have been reported
with the additions of experimental tests, which highlights that with a real device the
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FIGURE 2.1: The graphical representation of the BLE stack.

application level throughput is 58.48 kbit/s. In this chapter two identical modules
are used for master and slave devices, with custom software on both ends.
To allow the connected devices to effectively employ duty cycling strategies, data
exchange in BLE can only be performed sending data packets on pre-determined
connection events. Given the application requirements, different choices of the pe-
riod of the connection events and the number of packets to send at each event can
satisfy the needed throughput, affecting in different ways the overall performance
of the system. While theoretical and preliminary studies on the connection parame-
ters optimization have been carried out [103], the real application-level performance,
which is dependent on the hardware and stack employed, has not been carried out.
Therefore, I investigated the performance in a realistic scenario analyzing different
commonly used BLE chips for BSN nodes and using an Android smartphone with
its default stack. Moreover, I also evaluated a multi-slave scenario, where up to 6
data streaming nodes were connected to a smartphone, analyzing the network per-
formance in relation to the choice of the protocol parameters.

2.3 Overview of the BLE communication protocol

BLE is the last version of the protocol specification designed by the Bluetooth SIG
and first released in 2010 [18]. It is targeted to low power, low throughput and low
cost devices and it is not backwards compatible with previous versions of the stan-
dard. It has been designed for short range wireless communications for BSNs and
wearable technologies. As for previous versions, a BLE network has a star topology,
with multiple slave devices connected to one master.
The BLE stack (Fig. 2.1) can be divided in three main layers: Controller, Host and
Application. Controller and Host layers can reside in two separate chips or on the
same chip and they communicate via the standard Host Controller Interface (HCI).
Application and Host layers can also reside in separate chips, but no standard exists
for their interface.
In this work, I target application level optimization of BLE, hence I focus on its up-
per layers. In particular, the Logical Link Control and Adaptation Protocol (L2CAP)
is responsible of protocol and channel multiplexing, segmentation and reassembly
of packets for the lower levels, along with error and flow control. The Security Man-
ager (SM) is responsible for device pairing and key distribution, while the Attribute
Protocol (ATT) allows a device to expose a set of attributes (also called Services and
Characteristics) and their associated values. The Generic Attribute Profile (GATT)



20 Chapter 2. Bluetooth Low Energy Analysis

defines a service framework for the interaction with attributes, and the Generic Ac-
cess Profile (GAP) defines the procedures related to the discovery and link manage-
ment of the device’s connection. It also defines the role of the device, which can be
Broadcaster, Observer, Peripheral, and Central. While the L2CAP is transparent to
the user application, it interacts with the GAP and GATT for the data exchange and
ATT and SM during connection initialization.

2.3.1 Data exchange in BLE

In a BLE connection there is a Central (or master) device and one or more Peripheral
(or slave) devices. The master initiates the connection with the Peripherals and once
the desired network is established, the connected devices can expose their Services
and Characteristics to the Central device (it can be also that the Central device ex-
poses its attributes to Peripheral device). The device that exposes its attributes is
called the GATT Server and the other one assumes the role of the GATT Client. The
GATT role is independent form the master/slave GAP role.
Within an established network, data exchange can only be performed through the
exposed Characteristics, which are data containers for 8 bit data values, arranged
in arrays of up to 512 octets. Similar Characteristics can be grouped into Services
and they all are stored in the attribute table in the form of a data structure. Both the
GATT server and client have their own local copy of the table.
Each Characteristics has its own Properties that define how the GATT client can in-
teract with it. The available Properties are:

• Read: the client can read the Characteristic value;

• Write: the client can write the Characteristic value;

• Notify: the client can be notified when a Characteristic value has been updated
by the server, without the need of a read operation;

• Indicate: as Notify, but with an application level acknowledgment of the notifi-
cation to the server.

There are two ways for transferring data from the GATT server to the client: the
first is through notifications or indications and the second is through explicit read
requests. With notifications/indications, when the GATT server changes a Charac-
teristic value in its local attribute table, the new value is automatically updated on
the client’s attribute table. With read requests, the update is done only when the
GATT client requests the reading of that value. Transferring data from the client to
the server is allowed only through write requests.
Data exchange between connected devices is always performed within Connection
Events (CEs) and between two consecutive CEs the radio is in sleep mode to save
energy. The time interval between two consecutive CEs is called Connection Inter-
val (CI): the BLE standard permits CIs from 7.5 ms to 4 s (with steps of 1.25 ms).
An example of typical current absorption during BLE operations is shown in Fig.
2.2. Another important parameter in a BLE connection is the Slave Latency (SL).
This parameter represents the number of consecutive CEs that can be skipped by
the Slave device if it has no data to send. In the ideal case, the best overall perfor-
mance is obtained with SL set to zero [65]. The connection parameters and timings
are negotiated at the connection set up and they can be changed any time during
the connection. However, each device can accept or reject a timing change request
based on its hardware and stack implementations.
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FIGURE 2.2: Example of BLE duty cycling strategies: in this case the CI is set
to 30 ms and only one PPCE is sent.

Each CE contains at least one TX and one RX event, allowing to send/receive data
Packets (i.e. one or more Characteristics values). Each Packet contains up to 20
bytes of application data and the standard defines procedures for segmenting and re-
assembling longer Characteristics, which will result in more than one TX/RX events
to be sent. There is no imposed limit to the maximum number of Packets per CE
(PPCE) that can be sent, but in practical applications limitations occur because of
the timing requirements, the used stack implementation and the limited hardware
resources of the devices.

2.3.2 BLE for streaming applications

BLE is a general purpose protocol suitable for a wide range of applications, but it is
mainly optimized towards low power consumption rather than high data through-
put. While the low power consumption is an universal specification for battery pow-
ered BSN devices, different applications and scenarios may lead to very different
data throughput and latency specifications.
Typical use cases may range from the requirement to exchange a few bytes of data
per second (i.e. event notification) to consistent data rates to be delivered in real
time (i.e. high-resolution ECG or inertial sensing). A 9-axis inertial measurement
unit (IMU) sampled at 100 Hz requires 14.4 kbit/s, while biopotential applications
such as ECG or EMG range from 8 kbit/s for a 3-lead ECG signal to 64 kbit/s for
12-lead ECG signals or 8 channels of EMG sampled at 500 Hz. Moreover, advanced
sensor nodes can dynamically change their requirements, adapting data sampling,
compression and transmission to the context.
Given this variable scenario, a desired data rate can be achieved with different com-
binations of CI and PPCE, which can lead to different results in terms of power
consumption and data latency. Therefore, in this work I explore the most efficient
use of the BLE protocol evaluating the highest application data rate in relation to the
connection parameters and the number of connected devices.

2.4 Power consumption model

In order to evaluate the efficiency of a BLE module, I analyzed the power consump-
tion profiles during data exchange and I extracted a model to calculate the current
consumption given the CI and the number of PPCE. This model is in a way like to
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FIGURE 2.3: Current absorption of CC2541 sending 4 packets in one CE: 1)
startup, 2) pre-processing, 3) pre-RX, 4) RX, 5) RX-TX inter frame, 6) TX, 7)
TX-RX inter frame, 8) post-processing, 9) pre-sleep. The phases 4 to 6 are
repeated PPCE times, phase 7 is repeated PPCE-1 times, the rest is executed

only once.

the one presented in [9], but targeting the BLE standard and in particular the three
chips under investigation in this chapter.
To set up the model, I identified the different phases of the BLE operations as re-
ported by the manufacturers [62, 88] and illustrated in Figures 2.2 and 2.3. Some of
the sections are fixed regardless the number of PPCE or CI duration (phases 1, 2, 3,
9), others are repeated PPCE or PPCE-1 times (phases 4 to 7), while others increase
their length proportionally to PPCE (phase 8). The model has two parameters, the
CI and the PPCE. I considered a constant current absorption during each phase and
we expressed all the temporal repetitions and durations in function of the two pa-
rameters. The resulting current consumption is then computed as follows:

ICEmean =
IFtF+PPCE IPtP+(PPCE−1)IP1 tP1

tCE
(2.1)

Imean =
ICEmeantCE+Isleeptsleep

tConnInt
(2.2)

In this model, IF is the mean current and tF is the duration of the fixed phases that
do not depend on PPCE (phases 1, 2, 3, 9); IP and tP have the same meanings but
for phases with length proportional to PPCE (4, 5, 6 and 8); in the same way IP1 and
tP1 are for phase 7 iterated (PPCE − 1) times; Isleep is the sleep current, tsleep is the
Sleep Interval and tCE is the total duration of the Connection Event (from phase 1
to the end of phase 9 in Fig. 2.3). In other words, the model is a weighted average
average: the current consumption of each phase is averaged weighting it with the
relative duration of that phase.
For each analyzed chip, each phase was characterized measuring its mean duration
and absorbed current over several intervals, allowing to analytically evaluate the
current consumption for different combinations of connection parameters. To vali-
date this approach, I performed extensive current measurements in different config-
urations and observed an error between the computed and measured currents below
5%.
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2.5 Implementation

To evaluate the performance of selected BLE chips, I implemented a firmware to use
them as nodes of a BSN. I employed modules from three different vendors and, as
much as possible, I implemented the same functionalities on all of them. In particu-
lar, to evaluate data throughput and consumption, I programmed the modules to be
generators of dummy packets to be delivered to the central unit.
Before a module can transmit data over the BLE connection, it needs to configure
hardware (timer, interrupts) and software (Bluetooth stack) components. Once the
basic configuration is performed, the needed GATT services are added to the GATT
server (which resides on the BLE module) and the BLE is set to be visible and con-
nectible. Now the BSN node is ready, and it waits to get connected by the smart-
phone.
To implement the data streaming between the nodes and the smartphone, I created a
service composed by two characteristics: DATA_CHARACTERSITIC (20 Bytes with
notify and read properties) and ENABLE_CHARACTERISTIC (1 Byte with write and
read properties). The first one is for the data exchange: every time the sensor node
has new data, it is packaged in 20 Bytes and it is written in the DATA_CHARACTERSITIC.
The transfer is done with the notification mechanism, so the master device will au-
tomatically receive the new data on the next CE. The ENABLE_CHARACTERISTIC
is used to control the data stream from the master side, enabling it when set to 1 and
disabling it when 0.
The high efficiency of the BLE standard is largely due to the duty cycling between
active and sleep states (see Fig. 2.2). The BLE radio of a sensor node is usually in
sleep and wakes up at pre-defined intervals (CIs) to exchange data with the con-
nected device. To maximize the benefits of the duty cycling policy, our BLE sensor
nodes synchronize all their application tasks with the CEs and thus perform all the
needed operations right before or after a CE and go to sleep in between.
The CI time is used to define the data throughput/power consumption trade-off.
Given a needed application throughput, there is a degree of freedom in setting dif-
ferent combinations of CI and PPCE to achieve it. Since each configuration leads to
different performance, these parameters are investigated to find the most convenient
settings for the application requirements.

2.6 Experimental Results

2.6.1 Experimental Setup

The test system used in this chapter is composed by three different BLE modules,
which have been selected for their availability and large diffusion. The modules are:
CC2541 from Texas Instruments (TI), nRF51822 from Nordic Semiconductor and Blu-
eNRG from ST Microelectronics.
Each of them is used on a development board and with the provided proprietary
BLE stack (BLE-STACK 1.4.0 for CC2541, SoftDevice S110 v8.0 for nRF51822 and
BlueNRG FW v6.4 for BlueNRG). The TI and Nordic modules do not need an exter-
nal microcontroller to be used and they allow to add some user application code to
the microcontroller embedded in the chip (an 8051 for TI and an ARM Cortex M0 for
Nordic). The BlueNRG module is different since its embedded Cortex M0 microcon-
troller is reserved for the BLE stack and it is not accessible to the user. In this case it
is mandatory to use an external microcontroller to run the desired application and
for the tests I used a development board equipped with a STM32L chip.



24 Chapter 2. Bluetooth Low Energy Analysis

The BLE current consumptions and timings used as power model parameters have
been measured from the boards using a low-side shunt resistor where possible and
high-side shunt resistor with an amplification circuit otherwise.
The master device is a smartphone (Motorola XT1039) running Andorid 4.4.4 with a
custom application that connects to the desired BLE devices, receives the data stream
and logs it on a file. I used the device as is, without hardware modification and I de-
veloped the application using only standard Android APIs to evaluate the use of the
smartphone as a master node for reliable BSN applications with streaming nodes. In
the BlueNRG module it is not possible to synchronize the application task with the
CEs, since they are not notified to higher stack levels. Given this configuration, for
a close comparison of the radio chips, for the BlueNRG I report only the measured
current consumption relative to the BLE module.

2.6.2 Results

Given the BLE optimization towards low data rates, I first evaluated the maximum
application-level data throughput that can be achieved. The standard imposes the
minimum CI to be 7.5 ms, hence the maximum application throughput can be achieved
sending as much as possible PPCEs with the lowest CI. In a scenario where one node
streams data to the smartphone, I found that, regardless of the BLE module used,
the PPCE is limited by the smartphone (to 3 in this case) and imposes a maximum
throughput of 64 kbit/s.
With longer CIs, a greater number of PPCEs can be sent and if the application can
tolerate some degree of data buffering, the same throughput of 64 kbit/s can be again
achieved. To evaluate the performance of the different devices, I thus analyzed all
the configurations allowing for the maximum data throughput and compared their
current consumption. The result of this analysis is shown in Fig. 2.4, where I plotted
the mean current and the energy per bit for each module with different CI and PPCE
settings used to achieve 64 kbit/s. We can observe how the TI module is able to send
up to 15 PPCEs, while the BlueNRG and the Nordic stop at 7 and 6 respectively. The
BLE standard does not provide specifications on this, hence these differences are due
to the different stack implementations.
In the second experiment I analyzed application scenarios less demanding in terms
of data throughput, hence I used the proposed power model to compute the node’s
current consumption varying the throughput from the maximum value down to
zero. Since the maximum efficiency is achieved sending the maximum value of
PPCEs allowed, I set the PPCE to that value for each device and decreased the CI
from 7.5 ms to 4 s. The mean current consumption for each device is shown in Fig.
2.5. As expected, the current consumption decreases dramatically with the decrease
of the data throughput.
The last experiment was targeted to evaluate applications needing more than one
sensor device connected to the smartphone. This multislave configuration has been
tested with up to 6 slave devices and each node has been set up with the same con-
figuration (same CI and PPCE). For each number of nodes, I wanted to find the max-
imum achievable throughput. For this purpose, for each configuration, I recorded
5 minutes of streaming data for 5 times and the result of this test is summarized in
Table 2.1. The throughput is calculated knowing the number of PPCE, the payload
(20 bytes) and the CI; Fs is the corresponding sensor sampling frequency if one sam-
ple is sent each CE. The data logged during each test has been analyzed to verify its
integrity and that the streaming was consistent with the settings. When the through-
put was more than 3 % lower than the expected one or the lost packets were more
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FIGURE 2.4: Mean current and Energy per bit with fixed data throughput
(64kbit/s). For each CI the relative PPCE values are reported on the top hor-

izontal axis.

than 3 %, the connection has been considered not reliable. For each number of con-
nected nodes, I lowered the CI until I found a reliable connection. Moreover, in this
multislave case I could establish a reliable data stream only with 1 PPCE, even with
longer CIs up to 20 ms

2.7 Discussion

The reported results highlight that in a single streaming device scenario an opti-
mized choice of the connection parameters improves the system efficiency while
maintaining the desired throughput. Buffering data to transmit it less frequently
can give up to 47 % of energy saving. This saving is affected by the maximum value
of PPCE the module supports, the throughput needed and by the overall current
profile of the selected device. In some situations, the proposed optimizations have
a limited effect due to the hardware and stack implementations that limit the usable
configurations (see the red trace in Fig. 2.4).
As a guideline for optimal BLE connection parameters, one may consider the equa-
tion to compute the application throughput in the ideal case (no packet loss):

TH =
PL× PPCE

CI
(2.3)

TABLE 2.1: Result of multislave connection test

n CI [ms] PPCE TH [kbit/s] Equivalent
freq.[Hz]

2 7.5 1 21.3 133

3 7.5 1 21.3 133

4 10 1 16.0 100

5 13.75 1 11.6 73

6 16.25 1 9.85 62
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FIGURE 2.5: Current consumption as function of Throughput. This is com-
puted using maximum number of PPCE allowed on each module and for

minimum number of PPCE (i.e. one PPCE).

where, PL is the application level payload, whose maximum allowed value is 20
bytes, CI is the Connection Interval and TH is the calculated throughput. This rela-
tion can be rewritten as:

CI =
PL× PPCE

TH
. (2.4)

Knowing the throughput needed for the application and the maximum value of
PPCE allowed (this is affected by the chosen module, its BLE stack and also by the
smartphone and its operating system), it is possible to calculate the CI that gives the
best energy performance.
As example, if the application uses data from a 9 axis, 16 bit motion sensor sampled
at 100 Hz, each BLE packet can contain an entire sample of the sensor. In fact: 16 bits
each of the 9 axis gives 144 bits or 18 bytes each sample, two remaining bytes can be
used as counter. The needed throughput is 160 bits× 100 Hz = 16 kbit/s. Suppose
to use cc2541 module, taking some margins a possible choice for parameters is 10
PPCE and, appling eq.2.4, 100 ms for CI. If a latency of 100 ms is too much PPCE and
consequently, CI can be reduced.
It has to be remarked that the proposed optimization is an energy/latency trade-
off, since the data needs to be buffered between CEs and therefore a delay is intro-
duced. The introduced latency must be evaluated for each application considering
how much data has to be sent, the tolerated error rate, CI and SL parameters. In an
ideal case SL should be zero to avoid energy waste on the master side, but if there
are packet transmission errors, using a non-zero SL and a shorter CI will improve
the overall performance.
In the multislave configuration, I tried to send as many PPCEs as possible, with
relatively low values of CI and as many nodes connected as possible. Since the mas-
ter device can serve only one connection at the time (time multiplexing is used for
connecting multiple slaves), the number of connected nodes is dependent on the CI
duration and the consequent ability to serve all the desired devices within one inter-
val. Concurrently analyzing the operations and current consumption of a connected
network of devices, I found that the distribution of CE slots and their order in one
CI are randomly set by the master, they are managed by the Android stack and are
not controllable by the user. As general result, when more slaves are connected to
the smartphone, we obtain that a slave can reliably send only one PPCE. With longer
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CIs (i.e. 100 ms) these restrictions expire and more PPCE can be reliably sent.
I have also documented some situations where two nodes are overlapped each other
sharing the same CE window. In this case, the connection remains active but data
is transferred only from one of the two nodes at the time and they switch their role
about every second. Overall optimizations discussed above are valid in one slave
configuration or multislave configuration with long CIs (i.e. longer than 100 ms).
With multiple slaves and CI in the order of 20 ms (and shorter) only one PPCE can
be sent, therefore the only optimization is to properly set the CI using Eq.2.4. For a
comparison, the current Apple stack implementation for iOS limits the minimum CI
to 20 ms with one PPCE.
In all cases the sensors reading and/or data elaboration in the node should be per-
formed in synchrony with CEs to allow an effective duty cycling and prolonged
sleep states. Unfortunately, this is not always possible, since the BLE standard does
not define a unified notification of the CE between stack layers. Some of the stack
implementations add this feature, which results very useful but at this time it can
not be considered part of the standard.

2.8 Conclusion

In this work, I analyzed the BLE standard and its use for BSN applications, with par-
ticular interest for healthcare for devices with high data throughput and reliability
requirements. I introduced the protocol and its features from an application-level
perspective, evaluating its characteristics and how they are implemented in avail-
able devices and stacks. I employed a smartphone as the network master device,
taking the advantage of the availability of such devices and their ability to handle
the needed communication and processing requirements without the need for addi-
tional hardware.
An evaluation of three widely adopted BLE modules was performed and maximum
application level throughput of 64 kbit/s has been obtained. This limit has been
demonstrated to be imposed by the smartphone and its software instead of BSN
node. The effect of connection parameters optimization has been evaluated for the
BLE chips and their stack implementations. The multislave connection has also been
tested, but since in this configuration there are many variables that play a role in net-
work performances and lot of them are out of user control, evaluation has been done
in the most critical conditions and with a maximum of 6 active connections.
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Chapter 3

The MIGNOLO System: Managing
Groups with Bluetooth Low Energy

3.1 Introduction

Recent technological innovations such as miniaturized networked sensing devices,
widespread connectivity and advanced but affordable remote storage and process-
ing services have paved the way for the Internet of Things (IoT) [49]. Taken together,
these offer a rich ecosystem that enables the development of smart cities and the dif-
fusion of innovative applications. Integrated mobility and the development of IoT
systems and services for sustainable, efficient and independent mobility within the
future smart cities is an active and inspiring application area [8, 63, 98].

In this smart urban scenario, pedestrian mobility and the management of dy-
namic groups of people represent an important corner stone. I consider groups such
as organized tours, families with children, as well as informal groups of friends. I
take inspiration from a scenario with both educational and societal impact, namely
the safe and secure mobility of children throughout their neighbourhoods. Within
the CLIMB project 1, we are exploring ways that technology can be used to support
teachers, parents and students in the goal of increasing both children independence
and safety as well as encouraging and educating next generations towards sustain-
able mobility. The proposed multi-pronged solution incorporates wearable IoT de-
vices as well as gamification to increase motivation and participation.

This chapter focuses on a first step toward the goal of independent mobility,
namely supervised mobility of a group of children walking from their homes to
the school, known as a walking bus. This scenario, with a few adults responsible
for multiple children, maps directly to school outings where the responsibility lies
with the teachers. My focus lies with on IoT angle, developing a group manage-
ment system for individuals carrying wireless, mobile devices. It supports (i) group
formation, e.g., tracking which children are aboard the walking bus, and (ii) mem-
bership monitoring, e.g., raising an alarm if a child wanders too far from the driver of
the walking bus. The solution uses small, autonomous nodes carried by all partici-
pants, as well as a smartphone and the accompanying app carried by a single parent
monitor.

In this chapter, I first outline related efforts from the literature then focus on
the application requirements for the walking bus and how they generalize to other

1http://www.smartcommunitylab.it/climb/
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group scenarios. I move on to describe the design and implementation of the pro-
posed solution that uses the connectionionless capabilities of the Bluetooth Low En-
ergy (BLE) standard to build a flexible, efficient group monitoring service. This ver-
sion 1 of the group management system is built using only broadcast messages be-
tween group members but it uses this to build bi-directional information exchange
between the parent and child nodes to increase the reliability of the system. A more
sophisticated communcation is employed at the manager side where broadcast (or
advertising) based and connection-based communication are used at the same time
(concurrently).

The experimental evaluation analyzes performance in terms of network latency
and delay, system scalability and battery life. Moreover, I present results from a
controlled test of the walking bus scenario in an outdoor, real-life environment.

3.2 Related work

Group management through wireless wearable nodes has been tackled by the re-
search community in the past using a variety of technologies. The work presented
in [25] focuses on the problem of decentralized group management in general, from
a more theoretical perspective. Three different protocols are introduced for the dis-
semination of group membership information. The protocols are compared in a sim-
ulated environment in terms of energy consumption, accuracy, and latency, but no
real world implementation is provided.

In emergency and/or catastrophic situations, group communication and group
membership can be of vital importance, in fact coordinating rescue teams and prop-
erly address them in the first hours of emergency is the first priority. A peer-to-peer
wireless network, which is conceptually like the proposed solution, that targets this
is presented in [71] where laptop wi-fi is used to build the TCP/IP network. The
peer-to-peer network just provides the communication tool, on top of this support
services such as Walkie-Talkie, Push-to-Talk, and VoIP, they also run the Rescue In-
formation System for Earthquake Disasters (RISED) [57], which helps rescuers by
providing accurate and updated rescue-related information such as disaster loca-
tions, possible damages to both lives and constructions, available rescue and relief
resources.

Other works take a more pragmatic approach concentrating on the problem of
child kidnapping, and designing systems for the tracking of children through wear-
able wireless devices and their physical vicinity to trusted GPS enabled devices. Lee
et al. in [70] propose a system based on the de-facto standard TelosB WSN node.
Kids wear TelosB devices operating as beacons, while monitoring nodes are com-
posed of a TelosB node with a Bluetooth module that attaches to a smartphone. The
system is validated in a very limited setup of 5 nodes.

Recently, commercial start-ups, e.g., Lineable [73], have also begun to address
related problems, such as child safety. The Lineable solution is based on a wristband
used as a BLE beacon. Beacons are detected by smartphones, and presence informa-
tion is shared among the participating smartphones through the cloud. None of the
above, however, supports bi-directional communication in large groups, a techno-
logical advantage that we exploit in our solution.
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3.3 Requirements

Recent IoT technologies offer several possibilities for the core of a system to support
the management of a group of people in motion. Miniature devices that are capable
of dynamically forming wireless networks and sub-networks and estimating their
distances represent ideal candidates. Here, I describe the requirements of a group
management system composed of low power wearable wireless modules, able to
transmit and receive small amounts of data independently from the chosen protocol.

The requirements for the proposed application can be summarized as follows:

• Discover new users when in range and, if they are part of the desired group,
add them to a current friend list.

• Detect if one of the current members separates from the group, notifying
both the disconnected user and the group manager and possibly the rest of the
group.

• Spatial localization of the group members relative to the rest of the group or to
the group manager. There is no need for highly accurate localization; a coarse,
relative estimate is enough.

• Bi-directional and multi-hop communication to allow the manager and dif-
ferent group members to sense each other’s presence even if they are not in
direct contact due to occlusions or interference.

• Latency and scalability are interconnected as many nodes with frequent trans-
missions will result in many concurrent transmissions causing packet colli-
sions and data loss. The maximum number of nodes that can be in the com-
munication range is set to 150 and the maximum tolerated packet loss to 10%2.
The maximum discovery latency is 5 seconds.

• Long battery life to avoid frequent recharging, my target is one school year
(i.e. approximately 9 months).

• Compatibility with established technologies to allow the system to integrate
with existing devices and infrastructure.

3.4 System description

3.4.1 General overview

To implement a group management system, a Leader-Member architecture is de-
fined, with one node acting as the group leader and all others taking the mem-
ber role. In our network, the Leader also acts as a gateway towards the external
world for data exchange and user interaction. Member nodes are intended to be
autonomous and require minimal user interaction. While this architecture naturally
maps to supervised groups, e.g., with the teacher taking the Leader role, it can easily
be adapted to peer groups, e.g., by automatically electing the Leader during group
formation.

2 At this point of the research I had no information to properly tune this requirement, than I choose
a value that looked reasonable, however, later on in 5.4 I found that an optimal configuration exist that
optimizes latency given the number of nodes. Here I just anticipate that the system can tolerate up to
50 % of packet loss if the latency needs to be minimized.
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TABLE 3.1: Matrix of possible Member node’s states

Wireless network state
Out of range In range

Group state
Loner BY_MYSELF CHECKING
Joined ALERT ON_BOARD

Given this architecture, the Leader node will track and manage the state of the
group, while the Member nodes assume different states depending on their local-
ization and network state. Table 3.1 summarizes the proposed states for a Member
node, which is a combination of its wireless link state (i.e. if it is in contact with
the Leader) and of its group state (i.e. if it is part of a group). The four resulting
possibilities are:

• BY_MYSELF: The Member node is far from any Leader and it is not part of
any group.

• CHECKING: The Member is in direct contact with a Leader node, but it is still
not part of its group.

• ON_BOARD: The Member is in direct contact with a Leader node and it is
part of its group. In this case the Leader is monitoring its presence.

• ALERT: The Member is part of a group but, at the moment, it is out of range
and not in direct contact with its Leader.

Since the Leader supervises the network, it directs the state transitions of its
Members, except for the ALERT state. In this case, when the Member is out of
communication range with its Leader, the ALERT must be autonomously detected
at both sides. For increased reliability, each state transition is requested by the
Leader and subsequently acknowledged by the Member. This approach requires bi-
directional communication and ensures correct synchronization of the group nodes
states.

The proposed system behaviour is the following:

• At power on/wake up a Member is in BY_MYSELF and remains in this state
until it comes in contact with a Leader.

• When the Leader discovers a new Member, it requests that Member to move
to the CHECKING state, which will be performed and acknowledged.

• The Leader checks if such node is part of its group, which may happen accord-
ing to a set of policies (e.g. accepting all nodes, checking a list or requesting
user interaction).

• To add the Member to the current group, a state transition to ON_BOARD is
requested from the Leader and acknowledged by the Member. From now on,
both the Leader and the Member will monitor each other’s presence.

• If the Member goes out of the Leader’s range and stops receiving its commu-
nications for a certain time both nodes will trigger the transition to ALERT and
will notify the user.

The complete set of states and the events that trigger their transitions are de-
picted in Figure 3.1. I also consider a SLEEP state when a node is not in use.
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FIGURE 3.1: Member state machine along with the high level events that
trigger the state transitions.

3.4.2 Network implementation

The proposed group monitoring system is based on the exchange of wireless broad-
cast messages among proximate nodes. In a nutshell, the group Members period-
ically announce their presence. The Leader listens for these announcements and
forms a local group membership list. To control the state changes of the Members,
as outlined in the previous section, the Leader periodically announces this list, which
is received by the Members, who update their states.

The current implementation is built on top of BLE, from which we utilize the BLE
advertiser and BLE observer modes for respectively sending and receiving broadcast
messages without establishing connections. BLE natively supports periodic adver-
tisements, at the so-called advertise interval, TAI , in the range of 20 ms to 10 s. This
forms the core of the Member behaviour, where the advertisement message of the
Members contains the 8-bit node identifier and the application state, which is sent
every TAI,m. Immediately after each transmission, the Member switches into the ob-
server state to listen for other advertisement packets. The Leader also uses periodic
advertisements to announce its state, namely a list of the nodes in its group, and the
application state that the Leader intends for them to switch to. This period is set to
TAI,l . The Leader switches to listening between advertisements.

It is worth noting that the payload of the BLE advertisement is 31 bytes long,
limiting the size of the membership list to 9 ID-state pairs. To handle larger groups,
the Leader cycles through the Member list in subsequent advertise packets. For
example, with a group size of 12 Members, the Leader will announce the first 9 in
one advertise packet, then after TAI,l it will announce the remaining 3 and will repeat
the first 6. This scheme offers a deterministic communication latency, dependent on
the maximum size of the group.

To increase usability, this core solution is extended in three key ways. First, we
note that the Members must actively listen for advertisements from the Leader in
order to update their states. While listening, Members also overhear the advertise-
ments of other Members. In this first extension, we simply save this information
to augment knowledge about node connectivity. Specifically, each Member node
maintains a list of its neighbouring nodes, storing their ID and the RSSI values of
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LEGEND

FIGURE 3.2: Schematic of the communication pattern. Note that this is not
drawn to scale. Specifically transmission events have a very short duration.

the received packets. This information is sent along with the ID-state pair as part
of the Member’s advertisement. As we have the same limit to pack at most 9 pairs
of information in each advertisement, we employ the same mechanisms to rotate
among the neighbour information in subsequent packets. This allows the leader to
discover nodes within two hops. Given that the communication range of BLE in out-
door spaces reaches 60m 3, a two hop detection means an (ideal) radius of detection
of more than 120m. This is considered enough for the walking bus application.

Second, while Member nodes are required to listen to receive their updated states
from the Leader, we must also consider the battery consumption of these devices.
Therefore, I choose to put the radio to sleep for slightly less than one advertising
period TAI,l every two periods, yielding the periodic behaviour shown in Figure 3.2
in which the node wakes up, transmits its state and the connectivity information of
some of its neighbours, then either listens for the whole period or listens for slightly
more than half the period then goes to sleep. Clearly when the node is sleeping,
it does not hear the advertisements of the other nodes, and it may miss the Leader
requesting it to change state. Nevertheless, as the node is likely to hear the subse-
quent transmission, the overall, correct behaviour is maintained, albeit with a delay
acceptable in the target applications.

Finally, I extend the behaviour of the Leader node to allow communication with
a proximate, more powerful device, e.g., a smartphone, useful for user interaction.
For this, a connection between the Leader device and the smartphone is established,
with the Leader acting as a BLE peripheral. Information between these devices is
exchanged at a period of TCI,l . This is shown schematically in Figure 3.2 as short
listening (L) and transmission (T) events between the Leader and the smartphone.

3.5 Experimental Evaluation

3.5.1 Experimental Setup

The prototype of the proposed system is based on the CC2650 chip by Texas Instru-
ments [27]. It is a System-on-Chip, which includes all the RF circuitry and a Cortex
M0 core dedicated for the lower layers of the BLE stack implementation and one
additional Cortex M3 core for user application and higher BLE stack layers. For the
test deployment, I used the SensorTag development kits, which include the CC2650,
a set of sensors (inertial, temperature, light), two application LEDs and buttons on
a 32× 42mm board powered by a coin battery (CR2032). Both Leader and Member

3 This data refers to a preliminary experiment. Architecture: CC2650, Tx power: 0dBm
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FIGURE 3.3: Percentage of corrupted packets with respect to the advertise
interval (tAI) for 50, 100, 150 and 200 nodes in range.

nodes are implemented using the same hardware, albeit with different firmware.
The final implementation includes a Nexus 9 tablet that runs an application on the
Android 5.1.1 operating system.

3.5.2 Network density and timings

As reported in the previous Sections, the advertise interval TAI sets the trade-off
between the network’s latency and the supported node density. The latter dictates
the maximum number of co-existing nodes and is limited by the loss of advertising
packets due to collisions. To obtain the TAI that guarantees the target performance, I
simulated the BLE Link Layer to estimate the Packet Error Rate (PER) given a num-
ber of nodes and a TAI . Simulations are based on a custom code developed in
Matlab, whose purpose is to detect packet collisions given a network configuration
(TAI , number of nodes, payload length) and protocol definition (protocol parame-
ters and rules are taken directly from the specification document [18]). A deeper
description of the simulator is given in Section 5.3.

To validate the simulator, I carried on the same test, first on real hardware, then
on the simulator, if the results of the two tests are coherent the simulator is validated.
Because, at that time, I had 10 actual nodes in the laboratory for testing, I validated
the simulator using a restricted setup with those nodes. To not stretch too much
the validity of the experiment, I decided to use shorter advertising interval in or-
der to maintain similar density for the number of packets transmitted in a given
time interval. I performed the experiment in the office laboratory environment, with
nodes uniformly distributed in a 0.5m2 area, placing them well within communica-
tion range. I experimented with 1, 2, 5 and 10 transmitting Member nodes and with
20, 40, 60 and 80 ms advertise intervals. Any experimental result given in this Sec-
tion represents the average over 5000 packets, while any simulation result is based
on 10000 independent and randomized trials.

The results of the tests are shown in Figure 3.4, where we observe that the simu-
lation closely matches the experimental validation. The variations can be attributed
to the fact that the simulation does not consider some hardware characteristics such
as channel switching by the receiver, concurrent accesses to the radio peripheral and
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(A) 1 Member. Irregularities due to the small y-
axis scale.

(B) 2 Members

(C) 5 Members (D) 10 Members

FIGURE 3.4: Packet error rate obtained from simulation (blue/circles) and
from experimentation (red/triangles) using different numbers of Member

nodes. Note: scale varies across figures.
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external interference, typical of an office scenario (e.g. wi-fi, mobile phones). These
side effects are particularly visible in the experimental PER with only one transmit-
ting node (Figure. 3.4-a). In this experiment, no packet collisions occur but I mea-
sured an average of 0.2% of lost packets, which can be attributed to receiver channel
switching and to the interferences found in the office (such as other BLE devices or
wi-fi). The simulator is indeed valid.

Considering the network simulation and its experimental validation, the Mem-
ber advertising interval is set to 1 s (TAI,m= 1s), which leads to an average packet
error rate of 10.6% with 150 nodes. Since the Leader node must track and manage
all the other nodes, its advertising interval is lowered to 0.625 s (TAI,l= 0.625s). The
transmission of advertising packets employs the radio for 3 ms and the remaining
time the nodes are free to switch to listening for incoming packets using the BLE
observer mode. To increase energy efficiency, I duty cycled the receiver with 1.25 s
of activity every 2 s. This solution gives us a Member listening duty cycle of 62.5%,
which reduces the power consumption of the device and leads to the timing profile
illustrated in Figure 3.2.

Time multiplexing is used to manage concurrent transmission and reception ac-
cesses to the radio peripheral inside the CC2650. Therefore, even if we want the
Leader’s receiver to be always-on and ready to receive the advertise packets, this
is not achievable due to the need to transmit advertise packets. In our setting, we
measured the Leader’s listening duty-cycle as 93.6%. The remainder of the time
(6.4%) the Leader’s radio is involved in the transmission of advertise packets or in
exchanging data with the tablet through the BLE connection.

3.5.3 Discovery latency and round-trip delay

To evaluate the average time for the leader to discovery a member node, I set up one
Member and I connected the Leader to the tablet via BLE. This setup recreates the
test base in which the Leader is paired with a smartphone for system configuration
and interaction.

I define the discovery latency (tD) as the time from the instant a Member device
enters the Leader’s range until the moment a notification of its discovery reaches
the smartphone app. The discovery latency can be seen as a one-directional network
delay, from a Member to the smartphone. In the worst case (t+D) when the receiver is
always on, this is given by:

t+D = tCI + 3t+AI,m (3.1)

where tCI = 220ms is the connection interval for the BLE connection between the
Leader and the smartphone and t+AI,m = 1.01s is the worst case advertise interval for
a Member, leading to t+D = 3.25s.

To limit the probability of repeated packet loss due to radio artifacts, the con-
nection and the advertise events (that occupy the Leader’s radio) are executed at
non-multiple time intervals (tCI = 220ms, TAI,l= 625ms). This ensures that the max-
imum number of consecutive lost packets is limited to two. In fact, the worst case is
when the Member’s first packet is transmitted during a Leader’s connection event
and the second one is transmitted during a Leader’s advertise event. In such case,
the subsequent packet will be received by the Leader, since it will be broadcasted in
a Leader’s listening interval (see Figure 3.2).

To experimentally measure the discovery latency, I used the approach of [11],
in which the process of entering the node’s communication range is simulated for
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FIGURE 3.5: Cumulative distribution function (CDF) for a new Member en-
tering in the communication range of the Leader.

practical reasons. Specifically, the Member node being examined is considered to
be out of range until a randomly chosen time (t0). Then, the time when the node is
detected, denoted as the contact time tc, is identified, and the discovery latency is
calculated as tD = tc − t0. This sequence is repeated 1000 times and the obtained cu-
mulative distribution function (CDF) is showed in Figure 3.5. As only one Member
was active, this evaluation is of a collision-free configuration. The results show that
in 93% of the cases the node is discovered within 1.12s. The reminder of the cases
(approximately 7%) are detected within 2.2s, which is below the calculated value
of t+D, and represent the cases where the first packet is lost due to the Leader’s ra-
dio transmission multiplexing, but the second one is correctly received. While this
test never observed two consecutive packets losses, one cannot exclude pathologi-
cal cases when packets continue to collide. In other words, practically speaking, I
have identified a maximum discovery time that is valid in a collision free environ-
ment, but theoretically, longer discovery latencies are possible in a realistic use case
environment. These measurements closely match our earlier estimates.

The round-trip delay (tRT) is the time for a packet, originating in the app, to reach
a Member node and return back to the app. This is important since it represents
a node state change request and its acknowledgment and it strongly depends on
the network timings. Summing up the time intervals and delays the notification
encounters through the network, it is possible to calculate the worst (t+RT) and best
(t−RT) cases:

t+RT = 2t+AI,l + t+o f f ,m + 2t+AI,m + 3tCI (3.2)

t−RT = 2t−AI,l + t−AI,m (3.3)

Here, t+o f f ,m = 770ms is the worst delay caused by the sleep within the scan period
(TSP,m, see Figure 3.2), t+AI,m = 1.01s and t+AI,l = 0.635s are the worst case advertise
intervals for the Member and Leader nodes and the respective best cases are t−AI,m =

1s and t−AI,l = 0.625s. With the chosen parameters we obtain t+RT = 4.72s and t−RT =
2.25s. Even with the previously described Leader’s receiver duty cycling, during the
experimental validation I obtained tRT,MAX = 4.54s and tRT,min = 2.68s, which is in
between t−RT and t+RT, the average measured value is tRT,avg = 3.37s.

3.5.4 Memory requirements

Another key factor to allow the system to manage several tens of nodes is the mem-
ory footprint on each device. The Leader node must track all of the Member nodes
with their states and the Member nodes also track their neighbouring nodes. The
MCU on the device is equipped with 20kB of SRAM. The application, the BLE stack
and the operating system use 17.4kB, leaving 2.6kB for storing node information.
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To store information about each neighbouring node it requires 35 Bytes of memory,
hence each node can handle and track up to 76 devices. While this is smaller than
the maximum value of 150 established in the requirements, we can imagine reaching
larger group sizes by managing multiple co-existing groups with different Leaders.

3.5.5 Power consumption

To estimate the battery life of the proposed implementation, I applied the following
consumption model:

tBL =
Cbatt

δIA + (1− δ)IS
(3.4)

where tBL is the battery life in hours, Cbatt is the battery capacity in mAh, IA is the
average active current and IS is the sleep current. I assume that the device is not
constantly used and δ is its usage duty cycle (i.e. if the device is used only one hour
per day δ = 1/24).

For our platform and the chosen parameters IA = 3.6mA, IS = 100µA and Cbatt =
225mAh. The resulting expected battery life, if the device is used for one hour a day,
is tBL = 900h (or 37.5 days). This is an optimistic estimate since it does not take
into account the processing each node must perform, which slightly increases the
average current absorption, and the battery’s internal resistance. In an experimental
test in the same conditions, I measured a battery life of 24 days. This is clearly
shorter than the target of 9 months, then further work is required for the energy
optimization of the devices.

3.5.6 Case study: Walking bus

To validate the proposed system, I performed an experiment simulating a walking
bus with our research staff members. For one week, every day at the same hour, 10
people met and walked together on a 400 m path using our system to manage the
group. The outcome of this experiment was the log of each Member’s state, the RSSIs
among all node pairs and the GPS log from the leader’s smartphone. As example,
Figure 3.6a reports information for one Member during one of the performed walks,
summarizing the Member to Leader RSSI and the associated Member state. In Fig-
ure 3.6b part of the Leader’s GPS trace is reported and superimposed on the map
of the route. The numbers identify the sequence of the walk and align the spatial
information to the collected signals.

During this walk, the Member in focus was waiting in position 5 in Figure 3.6b
(on the right side of the picture) and the Leader user approached from the left, fol-
lowing the numerical sequence. Once the Leader reached the Member, he checked
him in (the state changes to ON_BOARD, as seen in Figure 3.6a just before minute
2.5) and they continued together following the outlined path. The Member to Leader
RSSI has been filtered applying a 30s sliding window with a 25s overlap. The test
was driven by the need to observe the network in an outdoor environment and to
identify possible issues or bugs. Further testing will be performed focusing on the
system performance and on the estimation of distances between group members.
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(A) The RSSI from the Member to the Leader (upper trace) and the Member state (lower trace).

(B) Aerial view of the Leader’s position recorded with GPS (red dots).

FIGURE 3.6: Results from the case study. The Member awaits the Leader at
position 5. The Leader follows the path as indicated by the numbers. Once

they meet, the Leader checks in the Member and they continue together.

3.6 Conclusions

I developed and evaluated the version 1 of MIGnOLO, a system for managing dy-
namic groups of people using the Bluetooth Low Energy technology. The main dif-
ference between the proposed system and those based on beacons is that the Member
nodes are also configured to receive, unlike other systems that only transmit. This
allows monitoring of Members that are not in direct contact, but are within two hops
from the Leader. However, this makes the node consuming more energy because of
the BLE scan procedure. I clearly see opportunities to further reduce the consump-
tion at each node since this is the main drawback of the proposed system. I also note
that this implementation today offers a clear proof of concept that such systems are
feasible for Smart City scenarios, especially considering our use of the standard BLE
protocol, which is supported by a majority of smartphones on the market at the time
of publication.

Starting from the application requirements in 3.3, I developed the system design,
tuning the parameters to achieve the wanted performance (the battery life require-
ment has not been met). Further, I performed extensive experimental validation to
verify the effectiveness of the proposed approach. The proposed system has been
tested “in-field” and the results are encouraging. The system acquires redundant in-
formation on RSSI (each node’s RSSI with respect to all the others), with the idea of
exploiting it to study group behaviour, e.g. in terms of proximity, regularity, density,
group shape etc.
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Chapter 4

Exploiting relative RSSI to estimate
group shape through cooperative
localization: a negative result

4.1 Introduction

Given the version 1 of the MIGnOLO system described and validated in the previous
chapter, the natural follow up was to deal with node localization. As previously
described, the developed network let us collect data about the relative RSSI values
between group members, and since RSSI can be used as raw distance estimation
I applied few state-of-the-art techniques to extract group shape information from
reciprocal RSSI between nodes. This technique is defined cooperative because not
only a minor fraction of the devices are used as reference (i.e. the anchors), but
also, measurement from peer nodes are exploited. Cooperative localization is deeply
reviewed here [92].

It is well known in literature that RSSI is not the most reliable metric to be used
for localization purposes. However, RSSI is available for all the links within two
hops from the master. This results in the availability of redundant data i.e. calcu-
lation of the same distance provided by different sources. Redundancy of indepen-
dent measurements can in some cases mitigate the error and therefore can be used
to compensate the unreliability of the single RSSI measurement.

In this chapter I briefly describe some of the ideas that have been tested in the
context of localization using RSSI data. Unfortunately, none of them brought to a
significant reduction of the error, then I decided to do a step back and change direc-
tion. However, since the exploration has been conducted with a scientific approach,
it still had some value. In the following, I will present briefly the experimental study
performed and I will draw some conclusion as lesson learned by analyzing what
was wrong in the approach.

4.2 RSSI based localization

Regardless the used radio technology, RSSI based localization is very attractive be-
cause of two main reasons:

• RSSI is easily available on all modern CMOS radio; the hardware already em-
beds all the circuits for measuring it energy efficiently

• Measuring RSSI does not impact on the communication and can be done on
any kind of packet, making it very suitable when scalability is a key aspect.
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For this, consistent efforts have been spent in literature [10, 61, 55, 92] in analyzing
techniques for estimating node position from RSSI data.

The basic idea behind this technique is that the power density of radio signals
fall with a known law as the distance between the transmitter and the receiver grows
(Friis equation [102]), and the RSSI represents exactly the RF power at the receiver’s
antenna. Given this, the node position can be calculated with two steps:

• First: distances (or ranges) between nodes in the network is estimated using
the RSSI

• Second: the nodes coordinates are calculated so that all the estimated ranges
are respected.

If distances are estimated with zero error this would lead to the correct results. How-
ever, if there are errors in the estimations (as it happens in real world) the second
phase can only calculate the coordinates that minimizes the difference between the
node distance in the calculated coordinates and the estimated ones.

4.3 Approaches

Various approaches with different complexities have been tested for the first step
(range estimation), while the second (the positioning one) remains the same. A
deeper analysis of the positioning algorithm is provided in Chapter 6; however, the
coordinate calculation procedure can be intuitively explained with a metaphor from
physics. In fact, if all the nodes are transformed into points in the reference plane,
radio links can be represented with springs connecting the points and the natural (or
resting) length of the springs equals the estimated range between the nodes. Further-
more, nodes’ location can be calculated by letting nodes move while springs relax
to the stable position. Mathematically this means that we are searching the point of
minimum energy of the springs system; it can be expressed as an optimization prob-
lem where the target is to minimize the cost function that is the total elastic energy
contained in all the springs.
In other words, the problem requires to solve:

minimize
P

fcost(P) =
N

∑
i=1

N

∑
j=i+1

1
2

qi,j(r̂i,j − ||pi − pj||)2 (4.1)

where: P is a Nx2 matrix whose rows (pk = {xk, yk}) represent the 2D position of the
k-th node, then N is the amount of nodes and r̂i,j is the estimated distance between
node i and node j.
If we apply the metaphor if springs, qi,j is the elasic constant of the spring between
node i and node j. However, this can also be a parameter that can be used to weight
the importance of each link in the cost function. An option is to set qi,j to have
an inverse proportionality with the expected error in the range estimation, in this
way the links whose range is estimated with poor accuracy are less trusted then the
others in the minimization process. For instance, a popular approach when RSSI
is used for ranging is to use qi,j = 1

r̂2
i,j

[48, 85]. This comes from the observation

that the logaritmic relationship between RSSI samples (given in dBm) and the link
range makes the expected error to be proportional to the link range (Figure 4.1). The
intuition given in the figure is confirmed, more rigorously and with the support of
math in [96].
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FIGURE 4.1: Simple RSSI model. A constant error interval (5dB for shake of
simplicity) in the RSSI context, becomes an error that is proportional to the
distance when it is passed through the logarithmic model. This is a prop-
erty of the logarithmic model that describes the way signal propagates in the
space and it remains valid if the logarithmic model is approximated with a

polynomial one.

FIGURE 4.2: Schematic view of the Basic-LR algorithm.

Since in Equation 4.1, the sum is iterated on all the links of the network, and since
links are between peer nodes, this kind of localization is said to be collaborative. This
means that each node with its links not only contributes to localize itself but also to
localize the other nodes.

4.3.1 Linear regression on basic model (Basic-LR)

The first and simplest model that is tested is mono-dimensional mono-tone. It rep-
resents how RSSI fades with distance and the exact model employs a logarithmic
function [92] that can be seen in Figure 4.1. Alternatively, a polynomial approxima-
tion can be used without relevant impact on error.
A graphical representation of the model is provided in Figure 4.2. Given its sim-
plicity this family of models is often employed when no other information rather
than RSSI is available. The low dimensionality makes it unreliable, in particular in
presence of reflections or in case of not pure monotonic signal fading, which often
happens indoor. Nevertheless, since it is the basic and most used model we use it as
baseline to compare the other solutions.

4.3.2 Linear regression on angles augmented model (Angled-LR)

The previous model hides, among many, a strong assumption that is the omnidi-
rectionality of the antenna. Radiation pattern of the antennas are never perfectly



44
Chapter 4. Exploiting relative RSSI to estimate group shape through cooperative

localization: a negative result

FIGURE 4.3: Example of the network where the localization algorithms are
applied. All the nodes are peers and no reference anchor is present. Red
lines depict an example of irregular antenna pattern, arrows represent node
orientation with respect to the magnetic north (bearing) and two link angles
(angle of departure at the transmitter side, angle of arrival at the receiver

side) are named with α.

isotropic in the real world and this directly impacts on the RSSI value sampled.
In an attempt to solve this problem, I adopted an iterative method, where both

RSSI and angles are exploited to calculate the link range. It must be noted that an-
gles of arrival and angles of departure (I call them αij) depends on relative bearing
of the nodes1 and also on their relative position (Figure 4.3), but the nodes position
is what the algorithm is supposed to calculate.
The intuition behind the proposed method is that the previous algorithm (Basic-LR,
4.3.1) is supposed to give a raw node map that does not consider the angles, once
this raw map is available the relative bearing angles can be computed and a new
set of distance estimation, which consider angle information, can be calculated. This
new set of distances (or ranges) are then hopefully more accurate than the previous
one, and a more precise map can now be computed. This new map will lead to new
angles that will lead to a new set of distances and a new map, the procedure becomes
hence iterative (Figure 4.4). This process can be iterated until some stop condition
is met.
To avoid the divergence of the solution, the effect of the angle on the range estima-
tion is slowed down by means of the angle correction rate (γ), which acts similarly to
the learning rate in the gradient descend algorithm.

4.3.3 Neural network on decomposed network basic (Basic-NN)

Neural networks (NN) are very powerful tool to make a machine (i.e. a computer) to
learn very complicated patterns, which are difficult to be detected by a human eye.
I tried to apply neural networks to estimate links range given the links RSSIs. The
idea is that the neural network should learn to distinguish and discard bad links by
having a global view of the sensor network.

1Relative bearing (or relative orientation with respect to magnetic north) can be obtained by means
of a magnetometer used as compass.
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FIGURE 4.4: Schematic view of the Angle-LR algorithm. Angles are actually
used only after the Spring energy minimization block is executed once, other-

wise angles are not available and angle models cannot be applied

FIGURE 4.5: Schematic view of the Basic-NN algorithm. To use the same
NN with any amount of nodes, the network is divided into triangular sub-
networks and the NN model is applied on triangles. Once the length of the

sides of the triangles are estimated the network is reconstructed.

Oversimplifying all the theory behind them, the NNs are machine learning tech-
niques that have a given number of inputs (in this case one input per link, which
fed with the RSSI samples of that link) and one or more outputs (the estimated links
range). From a practical point of view this means that a NN will be trained for a
given amount of links, and it will work only with that number of links. Then if the
architecture of the sensor network change for any reason (i.e. one node goes out of
range) the NN will not be able to cope with it. Having many NNs, one for each
amount of links, does not seem a feasible approach. Therefore, my proposal is to
decompose the network into basic building blocks (sub-networks composed by only
three nodes, called triangles), run the NN on these blocks and then rebuild the net-
work from the blocks. In this way the same NN with three inputs can be used on
any network with more than two nodes.
The graphical representation of the algorithm is depicted in Figure 4.5 where the
similarity with Basic-LR (Figure 4.2) can be easily noted.

4.3.4 Neural network on decomposed network with angles (Angled-NN)

As for the linear regression approach, also with neural networks I tried to consider
the angles by means of the iterative method; employing a raw distance estimation
that is then refined by embedding angle estimations. This is exactly the same intu-
ition as in 4.3.2, however, in this case, the distance estimation is performed by the
means of a neural network that decomposes the network in triangles as described in
4.3.3.
The first estimation is therefore made with Basic-NN algorithm, angles of arrival
and angles of departure are calculated, new ranges are estimated considering also
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FIGURE 4.6: Schematic view of the Angled-NN algorithm. Angles and posi-
tion are calculated and the iterative method is executed similarly to Angle-LR

algorithm shown before.

the angles and then a new set of coordinates are calculated. As for the Angled-LR al-
gorithm (4.3.2) the angle correction rate (γ) is employed to stabilize the output (Figure
4.6).

4.4 Experiments

4.4.1 Setup

Since the first aim of the experiments was to asses if angles information could help
increasing accuracy in the context of anchor free collaborative localization, the test
setup is such that the most diverse angles are present in the network. For doing so 9
nodes are employed, 8 are laid out on a circle and one stays in the centre, the I varied
the radius of the circle (r = {1, 3, 6, 9, 12}) as well as nodes orientation as depicted in
Figure 4.7.
The signal reflections and non-line of sight problems are reduced to the minimum
by doing the test in a big open field without any obstacle in the first 50 meters in all
direction from the test area. To better focus on localization the nodes behaviour have
been slightly modified with respect to what described in Chapter 3. For these exper-
iments the packets are sent with 100 ms and the receiver duty cycle is 1, then the BLE
radio is either transmitting or receiving, it never goes to sleep. This ensure a richer
data collection at price of more consumption and a reduced scalability. Network and
energy optimizations are eventually left as future step.

Sometime machine learning algorithms learn too much from examples and if
no precautions are taken the algorithm tend to learn the example rather then learn
from examples. This effect is called overfitting and it means that the algorithm is not
well generalizing the patterns it finds in the training data. When it happens the
algorithm outputs very good estimations when tested with the same data used for
training; however, when new and unseen data is used the algorithm totally fails in
the estimation. To cope with this a popular approach is to train the algorithm using
a data set (train set) but to use another data set (test set) to test it. By monitoring the
error obtained with the test set during the training process it is possible to stop the
training before overfitting. Ideally the train and test set should contain uncorrelated
data, otherwise, the effect is similar to use the same set for training an testing. To
ensure this, in the experiment train and test data comes from different sessions with
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TABLE 4.1: Ranging error values, obtained before the positioning step, i.e.
before the spring energy minimization.

Algorithm Linear Regression Neural Network
RMSE [m] 1.28 m 1.16 m

RMSNE [%] 32 % 36 %

different nodes layout. For the training the layout shown in Figure 4.7 is used, while
for the test, the layout of Figure 4.8 is used.

4.4.2 Used evaluation metrics

Since the localization is purely relative, the localization error (intended as the dis-
tance between real position and estimated ones) cannot be calculated. In fact, to cal-
culate the Euclidean distance, the two layouts (the ground truth and the estimated
one) must be aligned, but since no absolute reference is considered the alignment
may only be done with best fit algorithms (i.e. linear regression). Then the error
would depend on how well the minimization algorithm aligns the two layouts.
To get rid of this problem, error metrics are calculated on links range rather than
nodes position. In this way only nodes’ relative position count, and absolute ref-
erence is no more required. Moreover, in this way error can be normalized to the
link range, making it possible to give a percentage of error based on test ranges (1
meter of error in 2 meters of range is much more severe than 1 meter of error in 50
meters of range); further the error figures obtained after the positioning step can be
compared to the ranging error before the positioning step.
To compare performance of the different approaches two error metrics are used:
root-mean-square error (or RMSE) and root-mean-square-normalized error (or RM-
SNE) and they are calculated as follow:

RMSE =

√√√√√ N
∑

i=1

(
r̂i,j − ri

)2

N
(4.2)

RMSNE =

√√√√√ N
∑

i=1

(
r̂i,j−ri

ri

)2

N
(4.3)

The rationale behind these choices is that: (i) the mean error is not representative
for range estimation since negative and positive error cancel each other, then a zero
mean error could be obtained even on highly noisy data, (ii) large and small errors
are equally weighted; these drawbacks are not found in RMSE. Further, as already
pointed out with Figure 4.1 (iii) the error in RSSI based distance estimations tend to
be proportional to the range, then providing the indication on the error as absolute
value is not fair, since it should be weighted with the actual communication range.

4.4.3 Results

When only the ranging is considered, similar results are obtained with linear regres-
sion or neural network (Table 4.1):

If the positioning step is then executed (but not iterated in a loop as in the angle
augmented models) and nodes’ links range error is recomputed using the calculated
nodes coordinates, all errors are mitigated (Table 4.2). This is an expected behaviour
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(A) Aligned North (B) Aligned South

(C) Radial external (D) Radial internal

FIGURE 4.7: Node layout used for training the algorithms. Only a subset
of links is shown with light gray, during the test the network was actually
fully connected (all the nodes are in range of all the others). Nodes’ absolute

orientation with respect to the magnetic north is shown with red arrows.
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FIGURE 4.8: Node layout for the test set. It tries to mimic a compact walking
bus approaching a loner child. Links are not shown, however during the test
the network was fully connected (all the nodes are in range of all the others).

TABLE 4.2: Ranging error values, obtained before the positioning step, i.e.
before the spring energy minimization.

Algorithm Linear Regression Neural Network
RMSE [m] 0.58 m 1.10 m

RMSNE [%] 27 % 33 %

as long as the ranging error is not correlated between links. However, at this point
linear regression performs better than neural networks.

While if the positioning step is iterated and integrated with angles information
(it is the case of the two angle augmented models: 4.3.2 and 4.3.4) two different
behaviours are found: Figure 4.9 shows how the two error metrics used (RMSE
and RMSNE) evolve during the Angled-LR algorithm iteration, as expected some
kind of trend is visible. Even if it is not clear if the result is converging to a better
solution or not (the RMSNE is reduced, but RMSE is increased by the iterations) the
trend exists. However, for neural network approach (Figure 4.10) none of the two
error metrics show a trend toward a better or worse solution. This seems to indicate
instability of the Angled-NN algorithm: by reducing the angle correction rate to
very low levels (in the order of γ = 0.001) the behaviour gets smoother. However, it
is only an apparent improvement, because again there is not a stable condition. The
overall errors for the algorithms that exploit angles are noted in the Table 4.3, where
the neural network is missing because, as just said, no stable solution is found.

4.5 Discussion and conclusions

In general, the idea behind the proposed algorithm is that main RSSI localization
errors come from known sources: one is the antenna radiation pattern and the other
are signal reflections. These kinds of error are deterministic, but difficult to model
in a real uncontrolled environment. To deal with them I trained propagation models

TABLE 4.3: Ranging error obtained after the positioning step is iterated sev-
eral times, for Neural Network the result is not available because there is no

trend and it is not possible to find a plausible stop condition (Figure 4.10).

Algorithm Linear Regression Neural Network
RMSE [m] 1.07 m NA

RMSNE [%] 23 % NA
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FIGURE 4.9: How error figures evolve when linear regression on angles aug-
mented model algorithm is iterated.

that exploit angles of arrival and angles of departure (Angled-LR and Angled-NN):
models have been trained with data acquired in real word experiments and tested on
different datasets. RMSNE values from 23% to 36% has been found when the nodes
are deployed in a near optimal configuration (nodes fixed on poles free field without
obstacles). However, the effectiveness of the technique is still an open point. In fact
RMSNE is reduced only by 4% from Basic-LR to Angled-LR, when the algorithm is
iterated at least 15 times (Figure 4.9) and a clear stop condition for the iteration has
not been detected.

Undocumented work suggests that the results are not easily replicable, because
the random initialization of the node’s position during algorithm initialization, seems
to impact on the result. Moreover, the kind of plateau that is visible in Figure 4.9
sometimes breaks after hundreds of iterations, ending to lower or higher errors with-
out any clear motivation. In other words, when angles were considered neither the
linear regression approach nor the neural network gave stable results.

It has to be highlighted that all the tests have been conducted using Bluetooth
Low Energy devices. This wireless standard has the peculiarity of being based on
channel hoping, this means that the RSSI samples are not measured all on the same
channel. Although at the time of writing of this thesis commercial BLE devices start
to couple RSSI values with channel index, the first releases of BLE stacks lacked
this information. Then, during the test described in this chapter, RSSI sample were
collected but it was not possible to determine on which channel the sample have
been acquired. In Chapter 6 the heavy effect of the channel on the RSSI will be
shown, which justify (at least partially) the bad performance obtained in this set of
experiments.

In conclusion, the ideas explored in this chapter remain valid. However, the
experimental setup and the implementation of the algorithm were not adequate for
the evaluation.
It can be observed, however, that the proposed angled algorithms were a sort of
recurrent neural network, which is a family of algorithms used in the field of image
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FIGURE 4.10: How error figures evolve when the neural network on decom-
posed network with angles algorithm is iterated.

and audio processing [30]. The theory developed in that field may be exploited for
localization in a future work.
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Chapter 5

Wake up radio and BLE

5.1 Introduction

Maximizing the energy efficiency is fundamental in the Internet of Things (IoT) rev-
olution and the group management system described in this thesis is not different.
As concluded in Section 3.6, the consumption of the device in the MIGnOLO system
is one of the issues to face, and in this chapter, I explore an improvement that can be
applied to increase the battery life and then reduce the maintenance and replacement
costs.

When dealing with wireless devices, the radio interface is usually the most power
hungry component of the system [78]. Almost all modern low-cost integrated wire-
less transceivers exhibit very similar current consumption for data transmission and
for listening possible incoming communications. Hence, there is a consistent amount
of power dissipated in listening mode while no data is received. To increase the
node’s efficiency, the radio is usually duty-cycled, and it listens only at pre-defined
intervals. When a network of devices has been established and they share a common
clock reference, this technique is used to effectively reduce the listening intervals of
each device, while allowing for effective data exchange. This is the case of the Blue-
tooth Low Energy (BLE) standard: after the connection has been established, the
connected devices wake up at predefined intervals to exchange data, whilst during
the remaining time the radios are turned off saving a significant amount of energy
[44]. However, what happens when a shared time reference is missing or when there
is no continuous connection? This is the case of mobile and highly dynamic scenar-
ios, when nodes need to continuously discover the presence or availability of other
devices. In such cases, to receive data from a node or to discover new nodes in range,
the radio should be in listening mode most of the time. In the worst case, the receiver
will remain on continuously, hence the energy wasted can be orders of magnitude
higher the one needed for the actual data transmission and the one consumed by the
transmitter. There are specialized MAC protocols that optimize the radio activity
exploiting transmitter and receiver activation patterns aimed at reducing the total
time of activation, while keeping a short time for discovering the neighboring nodes
(discovery latency) [2]. However, it is always a trade-off between contact probability
or latency vs energy consumption.

To overcome these inefficiencies, the research community is developing a new
class of devices, the Wake-up Radios (WuR) [51, 95]. They are radio receivers with
near-zero power consumption, but without the capability of decoding complex RF
modulations or manage large data payloads. These devices cannot be used for data
exchange because of their low sensitivity, but they can be effectively employed to lis-
ten for incoming data transmissions and turn on the main radio only when needed.
In this view, the WuR helps in avoiding useless receiver activation (idle listening or
overhearing) leading to an increase in the energy efficiency of the system [78]. While
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research and experimental validations have proven this approach, there are no stan-
dardized protocols for the use of WuRs and they have not been integrated in widely
adopted solutions such as BLE.

In this chapter, I analyze some typical BLE beacons scenarios and architecture
that are often the starting point for indoor localization based on BLE RSSI finger-
printing technique (more on this in the next chapters). I will focus on the Link Layer
protocol1 rather than on the hardware of the WuR itself, trying to propose an ex-
tension of the BLE standard that can exploit the WuR to further improve energy
consumption, latency and scalability of the network. Performance of the proposed
methods will be compared to the legacy ones (i.e. how the same operations are per-
formed now, with BLE compliant devices) and results are based on a custom BLE
Link Layer simulator.
Given that also legacy procedures are analyzed, an additional, and particularly rel-
evant result of this chapter, is the analysis of the effectiveness of the collision avoid-
ance technique implemented in the BLE standard (i.e. based on partial randomiza-
tion of transmission time). The presented results will allow to draw conclusions on
the scalability of the BLE standard, to give some rule for properly set the BLE ad-
vertising parameters and to provide guidelines on the integration of WuRs in such
protocol stack in the context of dense IoT applications.

The reminder of this chapter is organized as follows: Section 5.2 will present the
related work and Section 5.3 will describe the application scenario and the methods
used for the analysis. Sections 5.4 and 5.5 will report results respectively for the
BLE and for the Enhanced BLE+WuR scenarios, while Section 5.6 will discuss such
results. Finally, Sections 5.7 will conclude the chapter.

5.2 Related work

The research community is very active in exploring solutions for the asynchronous
wake up of wireless sensor nodes and a detailed survey on WuR hardware and pro-
tocols can be found in [94, 80, 35]. A notable approach is the use of out of band
(OOB) communications exploiting non-RF medium, such as light [51] or sound [68].
For some applications this can be a very effective solution, but the type of environ-
ment and noise can limit its applicability. A further approach is the use of WuR in
RF, but in a different dedicated band with respect to the main radio [28]. It is still
considered OOB and this approach limits environmental problems. The main dis-
advantage of using RF OOB communication as the wake up signal is the need of
additional hardware. Hence, there have been developed in-band solutions sharing
as much as possible the main radio’s hardware and focusing on small and efficient
IoT devices [95, 100].

It must be noted that a great effort has been spent on WuRs for Body Area Net-
works (BANs) [39, 20], due to the small distances involved in BAN communications
(few meters) that permit a reliable and effective use of the WuRs [82, 77, 6, 100, 110].

The only documented attempt to integrate WuR capabilities in BLE is reported
in [99] and it focuses on the hardware design. The approach proposes to use back-
channel modulation to make it possible for BLE compliant devices to generate the
proper wake up signal the wake up radio can decode. This modulation encodes
the wake up message into the advertising interval and duration (i.e. the accesses
to the channel), which can be controlled through standard BLE API. Upon sig-
nal detection, the information is fed into a baseband processor that correlates the

1 The Link Layer of Bluetooth can be seen as the equivalent to the MAC layer of 802.15.4 standard
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FIGURE 5.1: A graphical representation of the BLE Link Layer simulation.
Tx events of each advertiser are shown, when no collision occur the packet
is considered reliably sent (the behavior of the physical layer is not included
in the simulator), while if events overlap the transmission is considered cor-
rupted. The experiment is considered concluded once that at least one packet
for each advertiser is sent with no collisions. The plot is only demonstrative,

parameters used for the plot are not those of BLE.

energy levels with a time-based template that matches the sequence of BLE adver-
tising packets to determine the presence of a wake up message. This CMOS based
prototype achieves sensitivity of -56.5 dBm while consuming only 236 nW. Even
though this implementation targets directly the BLE protocol, it will hardly work in
crowded scenario, in fact, given the low symbol rate (∼ 2 Hz), it is very likely that
wake up message mixes in the wake up receiver with regular advertising packets
sent by third node, corrupting the wake up message. Nevertheless, this solution is
suitable for silent RF environment, where all the nodes are sleeping and suddenly
we want to wake up a subset with a single wake up message.

The design of a low power receiver needs to be coupled with a specialized pro-
tocol to exploit all the potential of the WuR [50, 6, 59]. Unfortunately, at the time of
writing there is no established standard protocol for the use of WuRs, nor support is
provided for this new class of receiving devices in widely used standards such as the
BLE. There have been some studies to improve existing wireless standards integrat-
ing WuR capabilities [77, 116]. In most of these cases, the wake up signal, regardless
of its nature, is used as a trigger for turning on the device, hence implementing a
basic low power remote trigger.

In this chapter I try to go deeper, trying to use the WuR in a more sophisticated
way since it does not only turn on the nodes, instead it triggers a configuration
change that optimizes the communication based on the application needs. From
this point of view this is the first attempt to quantify the performance gain that a
WuR can bring if strictly embedded into the BLE standard.

5.3 Scenario and methods

In this chapter I focus on the BLE beacon use case, where the BLE devices broadcast
beacons providing location-based services based on the proximity to the device and
enabling sensing of the environment in their proximity. Particular attention will
be driven on crowded situations with hundreds of beacons within communication
range. This is a typical IoT scenario where the scalability plays a fundamental role.
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For the analysis, I expanded the BLE Link Layer simulator used and validated in
Chapter 3.5. The simulator can emulate the BLE radio activity such as advertising
events, connection requests and connection events, and it detects collisions among
all the generated events. Usually BLE events are composed by multiple TX and/or
RX phases on different channels, however we only consider the TX/RX phases on
one advertising channel. This does not affect the simulation results, since a receiver
scans only one channel at a time. Moreover, the connection packets cannot be cor-
rupted by advertising packets since they are transmitted on different channels. Since
only one connection is active at a time, collisions between two connection events are
not possible. A graphical representation of the simulation is depicted in Figure 5.1,
where a green ’v’ marks a successful packet transmission, while a red ’x’ highlights
the collisions. The simulator configured in this way outputs the time to send at least
one non-corrupted packet from each of the nodes, which is 40.8 ms in this specific
simulation. To extract a general trend from this tool, the same simulation is repeated
several times (in this chapter 200) randomizing the initial conditions.

The simulator instantiates the N beacons and assigns them the desired advertis-
ing interval TADV . Each beacon has a random initial offset in the range [0; TADV ],
after which it starts broadcasting its advertising packet. Each subsequent packet
is sent after TADV + δ, where δ is a random delay imposed by BLE and uniformly
distributed in the [0; 10ms] interval.

For all the experiments the simulated setup consists of N beacons (N = 5 ÷
1000) and all of them are supposed to run the same configuration; then they use
the same advertising interval (TADV) and they always full fill the application data
payload. BLE packets involved are: advertising packets that are 47 bytes long (with
31 bytes of application data), connection packets 41 bytes long (20 bytes of application
data) and connection requests 44 bytes long (they carry only configuration data for
the connection). I remark that the Bluetooth 4.2 uses 1 Mbps modulation, then, for
instance a 47 bytes advertising packet is 376 µs. Moreover, I consider only one BLE
central device with the receiver always on (no duty cycle is applied). The central
device can perform beacon discovery (i.e. getting one advertising packet containing
some minimal information about the beacon) or it can connect the beacon (one at
the time) and exchange packets taking the advantages of the BLE connection. The
upper layers of the protocol stack are not simulated and hence they are considered
ideal without processing or memory limitations.

The central device starts the node discovery and as it receives a non-colliding
advertising packet from a beacon, it marks that beacon node as discovered. If any
packets are overlapped, a collision occurs, and the packet is discarded by the cen-
tral device that restarts scanning for other beacons. If a connection must be estab-
lished, as soon the beacon is discovered, the central device requests the connection
to the beacon. Since advertising packets and connection requests are sent on the
same channels, if they collide, the connection request is dropped because the beacon
receives it corrupted. Note that, as per specification, the central device takes 6 con-
nection intervals to realize that the connection has not been set up, then, since the
minimum value for the connection interval is 7.5 ms, in the best case it takes 45 ms
to discard a connection and return to scanning.

Given the number of beacons (N) and their advertising interval TADV , the simu-
lations provide the total time needed for complete the requested operation on all the
beacons.
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FIGURE 5.2: The average time to complete the discovery of N beacon nodes.
Every trace represent the performance with different N as function of the ad-
vertise interval. N increases in the direction of the arrow and it is respectively

5, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 beacons.

FIGURE 5.3: The optimal TADV that minimizes the time to complete the dis-
covery of all the beacons in communication range. It represent the position of
the minimum of Figure 5.2 as function of the amount of beacons N. The best

fit line is also plotted.

5.4 Bluetooth analysis

Firstly, I consider standard BLE devices with Bluetooth 4.2 configured as broadcast-
ing beacons and I evaluate their behaviour in IoT applications with a high number
of nodes. Given the number of beacons and their advertising interval, I used the
proposed simulator to evaluate the time needed to (1) discover all the beacons, (2)
discover the beacons and exchange one data packet with each of them.

Discovery time

The simulation result for the discovery time is depicted in Figure 5.2, where the hor-
izontal axis is the advertising interval TADV (i.e. the time between two advertising
packet transmissions) and the vertical axis is the time to discover all the beacons.
The simulation is repeated for increasing number of beacons (N = 5÷ 1000).

We can observe that there are two distinct effects influencing the discovery time:
the advertising interval and the packet collisions. When the collisions are few (i.e.
with long TADV) the discovery time is roughly proportional with TADV and with N.
That is because, if for any reason a packet is lost, the same beacon will wait one
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(A) Connectable advertising. (B) Non connectable advertising.

FIGURE 5.4: Difference between connectable and non-connectable advertis-
ing in terms of current profiles. The three big spikes are the transmissions on
three BLE advertising channels. In connectable advertising a small receiving
window ’listen’ for incoming connection requests after the transmission on

each channel. The device under test is the Nordic nRF52832.

TADV before sending it again, so the longer the interval the longer the time to wait
to receive the packet. Moreover, if N is high there will be more collisions, then the
central device will take more time to discover all the beacons. Instead, in extremely
crowded situations (i.e. with short TADV) the packets collision effect dominates. In
this case, reducing TADV leads to more collisions and then the central device has less
chance to receive a non-corrupted packet. This effect is the saturation of the channel.

Because of these two competing trends there is an optimal point that minimizes
the discovery time, providing a guideline for setting TADV given the number of bea-
cons. It is interesting to see that, even with 1000 beacons, this optimal point is about
TADV = 1 s, and for these settings we have about 53% of the packets colliding. I
found that the relation between N and the optimal TADV keeps constant over the
whole test range. The optimal interval is TADV = N [ms]. Using this rule of thumb
for setting TADV always leads to 53% of corrupted packets. This is further illustrated
in Figure 5.3, where the optimal points and their best fit is plotted.

Data exchange

To reduce the maintenance efforts by extending the battery life, the beacons use ag-
gressive duty cycling technique: in fact, since the beacons normal operation consists
of transmitting a small packet at a predefined time interval, they turn on the trans-
mitter only for the strict amount of time needed to transmit the packet, then they
return in sleep mode till the next transmission. This leads to a low duty cycle, from
1% down to 0.01% obtaining an average current consumption smaller than 10 µA.

Because of this high efficiency needs, the beacons are never listening for incom-
ing data packets. But in almost all applications, beacons’ data sometimes needs
to be updated with new values. To allow this, the beacon has to be configured as
connectable and it will listen for incoming connection requests during a small time
window (see Figure 5.4-(a)). Once connected, a dedicated and reliable communica-
tion channel exists between the beacon node and the central device, and data can
be uploaded using the connection. To be more specific, up to 20 bytes of data can
be sent using two connection events (one for sending data, the other for receiving
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the ACK - this is called characteristic write operation) plus one connection event for
sending the disconnection request: the procedure is represented in Figure 5.5-(a).

The simulation result for the data exchange operation is reported in Figure 5.6-
(a) where it is clear that the general trend is similar to the previous case, but now
the values for the optimal settings of TADV are slightly different. This means that, if
the beacons needs to be connected, a longer TADV should be used to avoid conflicts
due to connection requests. In this case the rule of thumb to calculate the optimal
advertising interval is: TADV = 3N [ms].

5.5 BLE with WuR

As already described, in many beacon applications there is the need of uploading
new data to the beacons themselves. The BLE standard permits this by connecting
them (see Section 5.4), but this has two implications:

• On the beacons, the BLE standard provides for an activation of the receiver on
a time window to receive connection requests (see Figure 5.4(a)).

• If the same data has to be uploaded to all beacons, doing this individually for
all beacons is inefficient in particular for dense scenarios.

Here I propose the use of WuR to overcome these two implications and to improve
the data uploading process to BLE beacons.

In the following the WuR is considered as a piece of hardware, mounted on all
beacons, capable to generate a trigger for the BLE system-on-chip when the central
device sends a specific message, such as a particular pattern in OOK modulation.
The application does not require the WuR to be capable of accurate addressing (the
BLE standard itself defines a reliable addressing); however since there are several
WuR implementation, not all correspond to what we are looking for, in fact:

• The presence of other devices sharing the same WuR band (regardless to the
approach: in band or out of band) can cause a lot of false wake-ups that frus-
trate the improvements brought by the WuR

• I will define two different concepts of data exchange (connection oriented and
broadcast oriented) with different behaviors in response to the wake-up re-
quests. If the beacons cannot understand the difference between the two types
of request the flexibility of these solutions is low

To solve this, the wake up radio has to be smart enough to avoid false wake-ups and
to distinguish between at least two different types of wake-ups requests. Anyway
the design of the WuR itself is outside the scope of this chapter, and the exposed
concepts can be applied regardless the type of WuR.

5.5.1 Connection oriented data exchange

In this case, the requested operation consists of uploading specialized data on spe-
cific beacons and because of the addressing need of this scenario the use of the BLE
connection is mandatory. However, by equipping the beacon with a WuR, we can
improve its efficiency and the time needed for the operation. In fact, as shown in
Figure 5.4, making the beacon node connectable leads to slightly higher current con-
sumption (30% more than non-connectable configuration) due to the receiving time
window needed to receive the connection requests from the central device.
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(A) Procedure to upload data on three beacons using the BLE connection. This solution is used on
commercial beacons where only the BLE radio is available.

(B) Proposed procedure to upload data on three beacons equipped with a wake up radio (connection
oriented data exchange).

(C) Proposed procedure to upload the same data on all three beacons equipped with a wake up radio
(broadcast oriented data exchange).

FIGURE 5.5: Description of the procedures to upload data on beacons: (a) if
the beacons are not equipped with the WUR, (b) and (c) if the beacons are

equipped with WUR
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(A) Only BLE.

(B) BLE with WuR.

FIGURE 5.6: The average time to establish the BLE connection and to send
one data packet to all N beacon. Every trace represent the performance with
different N as function of the advertise interval. N increases in the direction
of the arrow and it is respectively 5, 100, 200, 300, 400, 500, 600, 700, 800, 900,

1000 beacons.
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The proposed solution is to configure the beacons to broadcast non-connectable
advertising for the regular operation. Then, the trigger from the WuR is used to re-
vert them to connectable with a different interval TADV . Once they are connectable,
the central device can connect them and send the data with characteristic write op-
erations as already explained in Section 5.4; this is depicted in Figure 5.5-(b). As
soon the beacon is updated and disconnected, it stops advertising for a predefined
interval (from 10 s to 2 ′, depending on N). In this way as the percentage of updated
beacons grows, the level of channel congestion shrinks because less beacons keep
advertising.

A feasible configuration can be to use non-connectable advertising and set TADV
following the indications in 5.4 for the normal operation. Then once the beacons
receive the trigger from the WuR they change to connectable advertising and set
TADV following the indications in 5.4. In this way the TADV will be optimized during
both phases: the normal beacon operation and the data upload process. The use of
WuR reduces the energy consumption by 30% due to the use of non-connectable
advertising during normal operation.

The overall results for this scenario are reported in Figure 5.6-(b), where the trend
is still very similar to the cases described in the previous sections. Note that the
position of minimums in Figure 5.6-(a) are very similar to the position of minimums
in Figure 5.6-(b), but their values are reduced by 40%.

5.5.2 Broadcast oriented data exchange

If the same packet has to be uploaded on all the beacons, the WuR can help by
doing it simultaneously, without the need of connecting all the beacons, leading to
an important reduction in the time needed to complete the process, in particular
with high number of beacons.

In this case, the solution implies a temporary inversion of each device role: the
beacons become observers (i.e. BLE broadcast receivers) and the central device be-
comes an advertiser (i.e. a BLE broadcast transmitter). This permits all the beacons
to receive the same broadcast packet sent by the maintenance device, without the
need of establishing a connection or sending multiple identical packets; see Figure
5.5-(c).

For ensuring that all beacons received the data, as soon as the broadcast packet
transmission is over, the central device starts the beacons discovery: the beacons will
send the acknowledgment for instance including, in their advertising packets, a field
that indicates the packet number of the last update. If the acknowledgment is not
needed the whole process is shortened since the beacons discovery is not performed.
Anyway, in this chapter I focus on acknowledged data transfers. Since the broadcast
packet transmission last less than 1 ms, the total duration for the broadcast oriented
data exchange is predominated by the discovery time needed for the acknowledg-
ments and the transmission time can be discarded. Therefore the time needed for
sending one broadcast packet and receiving all the acknowledgments is equal to the
time for discovering all the beacons, as it has been already reported in Figure 5.2.

The energy efficiency gain is still 30% if non-connectable advertising are used on
the beacons, while the time to complete the upload is reduced by more than 60%
with respect to data exchange through the BLE connection as described in Section
5.4. This is also reflected in an efficiency gain of 60% on the central device (its con-
sumption is roughly linear with the time it remains active). However, the focus of
this chapter is the gain at beacons since the central device is supposed to have less
energy constraints.



5.6. Discussion 63

5.6 Discussion

In the last couple of years, the BLE standard is becoming very popular and in the
context of the IoT the scalability is one of the key factors to consider. There are sev-
eral applications requiring huge number of nodes such as goods management in big
production plants, museum beacon assisted interactive guides or crowd monitoring.
If this is performed with the BLE in advertising mode, the channel saturates only for
collision rates over 80%. At such conditions the efficiency of the transmissions is
low, only a fraction of the packets is actually received, but all the beacons are still
visible.

The simulations show that there is an optimal setting for the advertise interval
TADV and it depends on the number of beacons within the communication range.
As rule of thumb, to achieve the shortest expected discovery latency, I measured
that the value of TADV in millisecond should follow the number of beacons. Instead,
if a connection has to be established, then TADV in millisecond equal to three times
the number of beacons. This is caused by the transmission of the connection re-
quests that are sent on the same channels of the advertise packets, increasing the
collision rate. These rules are applicable only for rather large number of beacons
(more than 100), in fact the minimum value for TADV admitted by the BLE standard
in the general case is 100 ms. For reduced amounts (less than 100) a designer can
freely choose the TADV without the fear of going into a saturated condition where
the communication becomes impossible.

The use of the proposed WuR helps during the data upload process, while it
does not affect the regular beacon operations. Since every data update is intended
to happen only through the proposed protocol, the beacons can always use non-
connectable advertising to save energy. I calculated the maximum gain in energy
efficiency due to the use of non-connectable advertising to be 30% (based on the
analysis of two widely used BLE SoCs: Nordic nRF52832 and TI CC2650). Consid-
ering the average current consumption there is a crossing point where the improve-
ment in energy efficiency is cancelled by the consumption of the WuR. Considering
500nA for WuR and the nRF52832 as BLE SoC the crossing point is reached when
the advertising interval is in the order of 20s: 10.24s is the maximum interval for a
BLE compliant device. Then the integration of the WuR together with the proposed
protocol always leads a power consumption reduction.

Nevertheless, the WuR permits to reduce the time to complete data download
operations. I calculated this to decrease by 40% in the case of connection oriented
communication and by 60% in the case of broadcast oriented communication. It
must be highlighted that this is true only for large amount of beacons (more than
100), while in the case of few beacons the traditional approach is still preferable.

The reported design considerations come from simulations using accurate mod-
els, anyway the results needs to be confirmed by experimental tests using real hard-
ware.

5.7 Conclusion

In this chapter I analyzed the BLE standard in advertising mode in extremely crowded
environments where packet loss is remarkable because of collisions. I found that BLE
is more scalable than expected; in fact, the channel saturates only with extremely
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crowded situations. I gave two elementary rules that can help for setting the adver-
tising interval of the beacons to achieve the minimum latency knowing the amount
of beacons.

I also proposed the integration of a wake up receiver in the system that can help
both for reducing the time to contact all the beacons and also for reducing the current
consumption.

The energy saving brought by using non-connectable advertising is up to 30%
and it does not reduce the BLE features, because the trigger from the wake up radio
can be used to change to connectable advertising when the beacon needs to be con-
nected. In terms of latency my technique is always better than the regular BLE in
crowded situations or broadcast data dissemination.

Unfortunately, at the time of writing such WuR does not exist on the market,
there are examples of discrete implementation but sensitivity and hence range is to
low to be effectively applied in crowded BLE scenarios.
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Chapter 6

Improving ranging accuracy with
ToF over BLE

6.1 Introduction

Localization accuracy obtained using RSSI data was not satisfying (Chapter 4) in
particular when the beacons are worn close to the body and out of the controlled
testbed where orientations are known and nodes are fixed. This is mainly due to
the scarce accuracy in the range estimation using the RSSI. However, the distance
between two BLE nodes can be extracted not only from RSSI but also from Time-of-
Flight (ToF). In fact, since radio signals travel with known speed through the air, if
the propagation time (Time-of-Flight) is measured, the distance between the trans-
mitter and the receiver can be estimated.
In existing BLE implementations the ToF measure is not provided and therefore
a custom solution must be developed. Being based on a different physical phe-
nomenon with respect to RSSI, it can be an alternative or a companion to RSSI as
input for a localization algorithm.
Measuring ToF for distances in the order of tens of meters on BLE-like platforms
can be challenging due to the clock resolution that would be required. To partially
overcome this issue, the approach already proposed in literature [108, 67, 75] is to
oversample the signal and than using low pass filtering (and eventually downsam-
pling) to reduce the high measurement noise due to low clock resolution. In this
work I will describe how these techniques can be efficiently ported on BLE commer-
cial hardware, providing a general method to embed ToF measurement into BLE
communication and the corresponding open source library to be used on the nordic
nRF52 platform. It worth highlight that the proposed solution works in parallel with
the BLE stack and does not affect the regular BLE communication.

Therefore, the contribution of this chapter is manifold: I first show how to mea-
sure ToF using a commercial out-of-the-box BLE hardware and how to embed this
measurement without interfering with the existing BLE stack. Then, I collect and
present measurements performed with both ToF and RSSI approach for ranging
in various scenarios (i.e. indoor/outdoor and in line-of-sight/non-line-of-sight). I
evaluate performance and repeatability of measurements. In section VI, I outline
in particular the different behaviors of RSSI and ToF when line of sight (LoS) is oc-
cluded by the body carrying the BLE node, which is very frequent in real life group
monitoring.
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6.2 Background

As mentioned in the introduction, Bluetooth has been exploited both commercially
[37] and in research as a suitable technology for localization.

One frequent approach is based on proximity, which requires the presence of
several beacon in the surrounding. To this purpose, a building (e.g. the Gatwick
airport in London in [86]) can be equipped with several Bluetooth beacons, which
periodically broadcast their IDs and some other information about their status (bat-
tery level, sensor data). A smartphone application can exploit the beacons signals
by activating the Bluetooth scanner; in this way, it will receive the packets sent by
all the beacons that are in the proximity of the user. The packets are then decoded
and used, for example, to grant the access to a location-based service to the user. The
proximity is typically based on the RSSI, which can be easily recovered through the
BLE API. It is measured in dBm and represents the amount of power detected by the
receiver during the reception of the packet. Since the power density decreases with
a known law (namely the Friis equation [102]) as the distance from the transmitter
increases, it is possible to estimate if the smartphone is close to the beacon or far,
just by knowing the RSSI value [54]. Therefore, by knowing the beacons’ location,
also the user’s location can be estimated. This technique belongs to the family of
techniques known as model-based-localization.
Under ideal conditions (line of sight, absence of reflections, accurate RSSI sampling)
the RSSI-model-based-localization provides in general good results. However, in in-
door environments the radio propagation is strongly affected by reflections on walls,
ceiling and furnitures. This leads to achieve poor distance estimation performance
[54, 10, 105] when one tries to predict the distance between the smartphone and the
beacon relying only on the RSSI data and using the physical models. Moreover, since
the model has a logarithmic nature, all kinds of noise/error that affect the RSSI val-
ues are reflected in the estimation error that grows linearly as the distance between
devices increases.

To overcome the effects of reflections and the non-idealities of indoor propaga-
tion, data-based (or RSSI-fingerprinting-based) techniques can be applied [38, 37, 61,
55]. Instead of using a physical model for converting the RSSI to a distance and then
estimate the location, these techniques rely on an off-line phase, where a number
of RSSI values are collected at known positions using a scanning device (i.e. the
device to be localized). Once the labelled data is collected, a machine learning algo-
rithm is trained to output the most probable position given the previously acquired
RSSI readings that acts as a fingerprint for the propagation in the environment un-
der observation. One positive aspect of this strategy is that the reference nodes (i.e.
the beacons) do not need to be at known position since the machine learning based
model just requires the measure to be deterministic. Therefore, the only constraints
on the beacon is that it must be at fixed position. This technique is more precise with
respect to the use of a propagation model, since the trained algorithm inherently
considers the effects of reflections that rarely are modelled in the physical models.

Coupled with this, there are also tracking algorithms that exploit models rep-
resenting physical constraint (i.e. a human target cannot jump from one side of the
room to the other in few millisecond) for filtering out bad estimations or compensate
for artifacts based on the history of the positions [31, 60].

Even if the RSSI fingerprinting is widely used also in commercial products [37,
56] there are some drawbacks that limit its applicability and reliability:
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• The RSSI values are strongly affected by the antenna radiation, which is poten-
tially different on each smartphone model, and by non-line-of-sight conditions
[10]

• The off-line phase for collecting RSSI at known positions requires time and is
ad hoc for that place

• The off-line phase needs to be repeated if the building structure is changed
(furniture, mobile walls) because also reflections change

• It cannot be applied to the class of application that rely on mobile networks
[45]

• Sometime large and hard to predict errors can rise [109].

On the other side there are techniques to measure the distance travelled by a
radio signal by means of the propagation time between the sender and the receiver.
They are called Time-of-Fight (ToF) techniques.
Since radio signals travel at a known speed (i.e. the speed of light, approximatively
30 cm every 1 ns) it is possible to calculate the travelled distance having the travel
time. As a drawback, making a time measurement in the nanosecond scale is a
critical task; moreover, the clock drifts on the two sides of the link impose additional
limits. For these and other reasons the main technology that is used to perform these
measurements is the Ultra Wide Band (UWB) radio.

The UWB radios send information using very short burst (called chip) of elec-
tromagnetic perturbation. Because of the short duration of these chips, the reflec-
tions on walls or ceiling are received as echoes, and not as a reverberation overlaid
to the direct signal, making it possible to increase the reliability of the localization
through echo cancellation techniques [64]. The drawback is the need of dedicated
UWB hardware that is unavailable on today’s smartphones, and since market fore-
casts envision the Bluetooth technology to become even more pervasive than now
[1] in few years, it is worth investigating the use of ToF approach as an alternative
or in conjunction with RSSI methods.
It has already been shown that ToF can be exploited for ranging also on technolo-
gies similar to Bluetooth. In [108] authors use a commercial 802.15.4 compliant radio
to asses two way ranging (or round trip time) performance in outdoor and indoor.
When 1000 ToF measurement are averaged in outdoor the authors obtained an RMS
error RMSE = 6.7 m in line-of-sight condition, that doubles (RMSE = 15.8 m) when
the line-of-sight is not guaranteed. They also noted that the error remains pretty
constant over the whole remarkable testing range of 250 m (performance degrade
only when the maximum communication range is approached). Another similar ap-
proach is described in [3], where slightly more powerful (yet commercial) hardware
with 72 MHz clock shows good performance (3 m of accuracy1 on a test range of
150 m) employing a median filter, unfortunately, the RMSE value is not provided for
this work.
Another notable work in this field is reported in [67] where ToF and RSSI are com-
pared in the context of ranging. In indoor scenario, ToF based ranging achieved
better than 1 m accuracy 50 % of the time, while for RSSI based ranging 50 % of the
time the error was less than 8 m. However, authors employ a custom radio (software
designed radio), while our target is commercial off-the-shelf devices (COTS).

1 The description of how accuracy is calculated is not given in the paper.
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It is worth to highlight that, in this chapter, the aim is not to provide a final
solution for indoor localization. I am instead focusing on ranging between two BLE
standard nodes, measured with the approach of ToF. Today’s indoor localization
systems, based on BLE are in fact ignoring ToF as input to determine proximity,
losing a powerful source of data for localization. This data is of course affected
by noise, anyway it still provides consistent information because the environment
impacts in a different manner on ToF with respect to what usually experienced with
RSSI.

6.3 Time of Flight on BLE

In general, the Time-of-Flight technique can be applied to localization because the
time taken by the electromagnetic wave to propagate from the transmitter to the
receiver is proportional to the distance between them. In a localization scenario, once
the distance between the target node and at least three reference nodes (anchors)
is known, the target node can be localized with respect to the anchors on a two
dimensional plane. If the target needs to be localized in a three-dimensional space
one additional anchor is necessary [115].

One of the main challenges of measuring the Time-of-Flight is the needed time
resolution; in fact, the propagation speed of RF signals is approximately 300000 km/s.
This means that, in the ideal case, to achieve 30 cm of resolution in a single mea-
surement, the BLE radio and the timer employed for measuring the ToF should be
clocked at 1 GHz, which is almost two orders of magnitude more than what avail-
able on the typical BLE SoC. Moreover, to correctly measure the propagation time, a
common clock reference should be shared between the transmitter and the receiver,
otherwise at the receiver side the trigger for starting the timer would be missing.
The synchronization via wireless of a common clock reference in the GHz range is
unfeasible on today’s low cost SoC. Moreover, the need of being compliant with the
BLE further complicates it.

To face these constraints, I applied two techniques:

• Averaging: A distance estimation is obtained by means of averaging N consec-
utive ToF measurements. This helps in increasing the measurement resolution
even if the reference timer used for measurement is clocked well below the
GHz

• Two-Way ToF: I will focus on the Two-Way propagation time. It implies a
bidirectional communication and it represents the time taken by the signal to
propagate from node A to node B, plus the processing time on node B, plus the
propagating time in the opposite direction, from B to A.

The first technique does not require a sophisticated analysis, it only needs a
buffer on the SoC memory able to store N timer values. Once the values are collected
they are averaged and then the distance is calculated based on the mean value.

Instead, the Two-Way Time-of-Flight measurement implies to have a deep look
into how BLE standard works. As per specification, every time two BLE devices
communicate over the same RF channel, the radio activity of the two nodes is co-
ordinated to leave a non-overlapping interval of 150 us between the transmission
phases of the two radios. This interval is called Inter Frame Space (IFS or TIFS) [18]2

and it applies to all the Bluetooth versions starting from 4.0. Since this IFS is fixed

2Vol6.B.4.1
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FIGURE 6.1: Connection event representation. The One-Way propagation
time tOW_ToF is exaggerated to highlight the details of the measurement. Fig-

ure not to scale.

by the specification, by measuring the delay between the end of transmission to the
actual start of reception, it is possible to extract the information regarding the Two-
Way ToF (Fig. 6.1). By halving it I calculate the One-Way ToF, which is denoted with
tOW_ToF in Fig. 6.1.

The IFS has to be respected every time the communication is bidirectional and
coordinated by a central device. In the BLE world there are two main cases where
this sort of coordinated communication takes place:

• at every connection event after two devices have established a BLE connection

• when a scanner device sends a scan request to an advertiser (or a beacon).

I focus on the first one, since it relies on a BLE connection and, therefore, data collec-
tion will be faster, more reliable and, since the connection data is exchanged using
channel hopping over 37 BLE channels, it is more complete. The second one, instead,
exploits the advertising mode of BLE, therefore it will happen only on the 3 adver-
tising channels [18]3. Its occurrence is less frequent and less controllable, therefore,
the data collection will be slower.

6.4 Setup

6.4.1 Requirements

First, I want to test off-the-shelf hardware with its limitations. Since one of the aims
of Bluetooth is to be low cost, my solution cannot rely on high-end clocks nor ex-
pensive hardware. I also want a solution that does not require the redefinition of the
specifications of Bluetooth, therefore the measure will be performed on regular BLE
packets, without adding any kind of proprietary transmission.

6.4.2 Hardware

I will use two nodes, one will be referred as local the other will be referred as remote.
The local one will perform the measurement and will estimate its distance from the
remote one, while the remote will not do anything else but behaving like any BLE

3Vol6.B.1.4
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device (working as a BLE beacon). For the Bluetooth terminology the local nodes
will take the Central role, while the remote nodes will take the Peripheral role.

As BLE radio I choose the nRF52840 by Nordic Semiconductor, which is a low
cost Bluetooth compatible system on chip (SoC). It includes the radio, the processing
unit (MCU) and all the typical peripherals of today’s microcontrollers (timer, ADC,
UART, etc). Even if the hardware and the libraries used are Bluetooth 5.0 compliant,
for this chapter, I used only the features already available on the version 4.0 of the
specifications.

6.4.3 Implementation

The local node will estimate its distance from the remote one by exploiting the Inter
Frame Space, as explained in Sec. 6.3. Therefore, it will measure the actual time inter-
val between the end of its transmission (denoted by in Fig. 6.1) and the reception
of the first symbol transmitted by the remote node (denoted by in Fig. 6.1). The
resulting time can be described with:

tTW_ToF_BLE = TIFS + Tnbit + TD + 2 tOW_ToF (6.1)

Where TW in tTW_ToF_BLE stands for Two-Way. The firsts three terms of the sum are
fixed and they are: TIFS = 150 µs, TD = 10.25 µs, Tnbit = n µs, while 2 tOW_ToF
is the back and forth propagation time. Tnbit is the on-air time for the first n bits
of the packet, and this fixed delay is because the actual reception can be detected
by the hardware only after some bit are received. Since Bluetooth 4.0 uses 1 Mbps
modulation, each bit is transmitted in 1 us. In this case, n = 40 because the MCU in
use generates an event to stop the timer only after the reception of the preamble and
the access address (40 bits in total). Instead, TD is a further delay, which is due to the
electronics (symbol detection delay, timer start delay), this value is retrieved from
the datasheet of the component. For details on the BLE packet format the reader can
refer to the specification document [18]4.

The time counting task is carried out using one of the digital timers included in
the SoC. This timer is configured to increment the counter with a 16 MHz cadence
and it is automatically started and stopped by the radio peripheral without the in-
tervention of the MCU (this connection exploits the PPI - Programmable Peripheral
Interconnect of the nRF52840). This ensures the minimum processing delay on the
timer management since the radio and the timer are connected by hardware. The
source code of the developed software module used for measuring the ToF can be
found in [33].

For the measurement I make use of one timer that is active just for the time nec-
essary for collecting one single ToF measurement (tTW_ToF_BLE ≈ 200 µs). Since its
maximum current consumption is 120 µA and the maximum duty cycle is 0.0275,
the measure adds, in the worst case, 3.2 µA to the average current consumption.
This value is comparable with the current consumption of the SoC when it is in
sleep mode. Nevertheless, the measure can be carried out only when the device is
active and connected to another BLE device: in this state the average current con-
sumption of a BLE central (again at the maximum duty cycle) is lower than 1 mA
[87]. Therefore, ToF measure is negligible in terms of consumption compared to the

4Vol6.B.2.1.2
5This value comes from: 200 µs

7.5 ms , where 200 µs is the time the timer is used and 7.5 ms is the minimum
connection interval of the BLE standard [18, Vol6.B.4.5.1].
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average current for maintaining a BLE connection, being three orders of magnitude
lower.

In other words, we are piggybacking the distance measurement on a regular BLE
communication, with very low overhead. Of course, if no communication is taking
place between the BLE devices, the connection must be established first and some
hundreds of packets have to be exchanged before having some ToF result. The aver-
age current for his procedure may consistently vary because, before establishing the
connection, the device is requested to go in scanning to discover the remote node.
Excluding extreme cases with very unfavourable settings, the overall average con-
sumption will be below 1.5 mA, with a duration that depends on the number of
packets to be collected.

6.5 Experimental procedure

For each connection event, which includes one Tx phase and one Rx phase happen-
ing on the same RF channel (Fig. 6.1), the node stores the tTW_ToF_BLE, the RSSI and
the carrier frequency. In fact, the Bluetooth frequency hopping scheme requires a
channel change (channel hop) at every connection event.

During the tests the nodes where fixed on a stand at 40 cm above the ground
and the distance between the two nodes has been varied to investigate how the ToF
compares to RSSI for estimating the distance. I collected data from 1000 connection
events at: 20 cm, 50 cm, 1 m, 2 m and so on with 1 m step up to 20 m.

The tests were repeated indoor and outdoor and, for both environments, I tested
the Line-of-Sight (LoS) and the Non-Line-of-Sight (NLoS) conditions. The non-line-
of-sight condition is created interrupting the line-of-sight between the two nodes
using a man standing with its torso near (30 cm) the local node. This is for simulating
the situation where the smartphone’s owner stands in between the smartphone itself
and the anchor.

Therefore, I collected a dataset that represents four cases: Outdoor LoS, Indoor
LoS, Outdoor NLoS, Indoor NLoS. Moreover, the whole dataset has been collected
twice, one is for tuning the algorithm parameters (training set) and the other is for
testing the performance (test set).

Each test data, which consists of the triplet (ToF, RSSI, Frequency), is collected for
the same 1000 connection events. If a connection events contains CRC errors, its
triplet is replaced by the following one. At the end of the test, data is transferred to
a PC as text file for the analysis.

6.6 Results & Discussion

6.6.1 Physical Model

Once the data has been collected and stored in the PC, I used Matlab for visualizing
the results and numerically compare ToF and RSSI performance.

First, I plotted the mean and the standard deviation with respect to the distance
(Fig. 6.2 shows the RSSI and ToF data for the outdoor line-of-sight test). Then, I used
the mean values at each distance to estimate the range based on the acquired data,
therefore I trained two physical models that are supposed to represent the behaviour
of the two quantities. The models are necessary if I want to compare test data since
the RSSI and ToF data is in two different measurement units (respectively dBm and
ns) then I cannot directly compare the two results, thus I convert both in meters
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using the aforementioned models. In this chapter I do not want to focus on the
model itself, instead the purpose is to evaluate the quality of the acquired data in a
fair way (that is the reason why I collected the RSSI and ToF for the same packets).
In fact, regardless the used technique (fingerprinting or model-based), it is quite
oblivious that the less noisy and more repeatable is the algorithm’s input data, the
more accurate will be the localization.

I used the log-normal model for the RSSI and a linear model for the ToF [114, 54,
75], which are described by the two equations:

dRSSI = dRSSI
0 10

RSSI0−rssi
10αRSSI (6.2)

dToF = dToF
0 + cToFToF (6.3)

Eq: 6.2 describes the mapping from the RSSI sample to distance, and Eq: 6.3 equiva-
lently from ToF data to distance. The models parameters (dRSSI

0 , RSSI0, αRSSI for Eq:
6.2 and cToF, dToF

0 for Eq: 6.3) are trained with linear regression on the training set
and the trained models are visible in Fig. 6.2 as red traces. The objective of the train-
ing is to minimize the sum of the squared error over the training set, therefore I will
carry on the analysis comparing results using the RMSE (Root Mean Squared Error).
In this regard I want to highlight that the RMSE value tend to be larger than the
mean error value. In fact, positive and negative errors will compensate each other
when the mean is calculated, while they won’t compensate in the RMSE calculation.
For this I believe the RMSE is more relevant than mean error for evaluating ranging
performance.

From Fig. 6.2 it is clear that the ToF measurements have a large standard devia-
tion; this was expected and it is because the timer runs at 16 MHz, which means that
for every clock cycle the radio waves travels approximately for 18.8 m. Since I am
measuring the Two-Way ToF the distance to travel is doubled (back and forth) then
every timer tick represent 9.4 m of distance travelled by the radio waves. This 9.4 m
is hence the granularity of the distance estimation based on a single ToF sample.
Anyway, since the two devices are not clock-cycle synchronized, the drift and the
phase noise of the clocks adds a measurement noise that can be considered uncorre-
lated among different ToF samples. Therefore, the clock noise act as dithering noise,
which permits to increase the resolution of result over 9.4 m if multiple samples are
averaged.

Another important observation is that the slope of linear model used for ToF
(red line in Fig. 6.2-(b)) should be the inverse of the speed-of-light per definition, but
actually it is the inverse of a smaller value (approximately 180000 km

s ). I still miss a
satisfactory and complete explanation for this, but I believe it is a second order effect
of reflections.

6.6.2 Models performance

With the purpose of investigating how the training condition impacts on the es-
timation error, I trained a different model for each training set (indoor/outdoor,
LoS/NLoS) and then I tested them all on all test sets (note that the training and test
sets have been collected on different days). Moreover, I created an outdoor generic
model, which is trained with the merge of the outdoor LoS and the outdoor NLoS
datasets, and I did the same also for the indoor condition. Recapping, I trained six
different models (outdoor LoS, indoor LoS, outdoor NLoS, indoor NLoS, outdoor
generic, indoor generic) and I tested them in the four cases (outdoor LoS, indoor
LoS, outdoor NLoS, indoor NLoS). The resulting test error are reported in Table 6.1



6.6. Results & Discussion 73

(A) RSSI data.

(B) ToF data.

FIGURE 6.2: Acquired data: RSSI values (a) and Time of flight (b), plotted
with respect to nodes distance in the Outdoor LoS condition. The mean value
over 1000 ToF samples is reported, error bars are one standard deviation high.

The two colors depict the train and test dataset. The fitted model is in red.
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TABLE 6.1: Mean and RMSE (root mean squared error) values obtained train-
ing and testing the models with various combinations of the data sets. The
minimum Mean and RMSE of RSSI and ToF in each column is highlighted in

bold. Unit is m.

where the mean error and RMSE (Root Mean Squared Error) is reported for all com-
binations of train and test.

The error values in this chapter must be considered in the context of ranging and
not of localization. In fact, for localizing a target on a plane, the distances from at
least three known points are needed. If the noise in the three distance estimations
is not correlated, the localization error will be reduced with respect to the ranging
error from one single beacon.

There are some other important observations regarding Table 6.1:

• (almost) all models have their minimum error when the test data has been
collected in the same conditions of train data; this was expected, and it means
that different datasets collected with the same conditions are similar (i.e. the
experiment is repeatable)

• the RMS error obtained using ToF is always less than the one obtained with
RSSI. This is highlighted also by the mean values (bottom line of Table 6.1)
that represent how a specific model behaves in the general case

• the impact of the LoS or NLoS condition is more severe on the RSSI data

• in some cases, the RSSI error tends to diverge (almost up to 60 m) while the
ToF error remains under control

Very similar considerations can be derived from the CDF (Cumulative Distribution
Function) of the (absolute) ranging error that is show in Figure 6.3. In favorable
situations the CDF error shows similar behaviour for ToF and RSSI (the error remains
below 2 m in the 50 % of the cases), while in unfavorable conditions both ranging
techniques degrade in accuracy, however the RSSI is almost 4 meters less accurate
than ToF.

6.6.3 Dependency on the number of packets

As already mentioned, the resolution is increased by the means of averaging data
over 1000 ToF samples, but this implies that an application would have a response
latency that is at least the time needed to collect all the samples. Since the node
collects one sample per connection event and since, as per BLE specification, the
minimum time between connection events is 7.5 ms, the minimum expected latency
is 7.5 s, which may be too high for some application. There are workarounds for
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(A) Outdoor LoS model tested on Outdoor LoS test set

(B) Indoor NLoS model tested on Indoor NLoS test set

(C) Indoor LoS model tested on Indoor NLoS test set

FIGURE 6.3: Cumulative Distribution Function of absolute ranging error for
three conbinations of train/test set.
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(A) Outdoor LoS (B) Outdoor NLoS

FIGURE 6.4: RMSE (Root mean squared error) in function of the number of
packets averaged for the outdoor LoS (a) and NLoS (b). Note that X axis is

log scale.

reducing the overall latency without violating the 7.5 ms. Anyway, it is important to
analyze how the error changes as the number of samples for the average is reduced.

For doing this I repeated the model testing, using the average of only the first N
samples at each position for calculating the distance. The models are the same as
previous experiments, then there is no need to train them again. I used this tech-
nique instead of random sampling over the 1000 samples for obtaining coherent
results, since the frequency hopping pattern built in the BLE cannot be random-
ized. Two representative results are reported in Fig. 6.4, which shows how the error
changes with respect to the number of averaged samples. Both the errors for ToF
and RSSI are reported; the data of the two figures refers to Outdoor LoS and NLoS
conditions.

I repeated this analysis for all the cases I collected (the 24 combinations in Ta-
ble 6.1) and the behaviour is not uniform. In the majority of the cases (roughly 70 %)
I obtained a benefit of at least 1 m on the RMSE after averaging, anyway for some
case like outdoor NLoS condition reported in Fig. 6.4-(b), the RMSE is pretty con-
stant after the average, no matter how many packets are considered. For the test
cases where the average is effective, I did not have relevant decrease of the error
over 100 samples averaged. In an optimal, and yet realistic, configuration (which is
sampling period of 7.5 ms, see above) it takes 0.75 s to fill the average window. This
data latency can be considered more than acceptable for most of human navigation
and localization applications.

Moreover, the RSSI performance is almost unaffected by the amount of samples
to average; this is explained by the measurement granularity. As said the single
measurement of the ToF has a granularity of 1

16 MHz = 62.5 ns, which is converted
in 9.4 m. While the RSSI granularity is 1 dB; this is less straight forward to convert
to meters, but using the model described by Eq.6.3, within the testing range (0.2 m-
20 m), the estimation granularity spans approximatively from 7.5 cm to 1.7 m. Now
it is clear that, even in the worst case, the single sample granularity of RSSI is smaller
than ToF; therefore, adding samples to average is an effective technique for ToF data,
while it is less effective for the RSSI data. These considerations can be taken into
account when the localization latency is a critical aspect of the application.
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(A) RSSI (B) ToF

FIGURE 6.5: Effect of channel hopping on raw (not averaged) RSSI and ToF
data. Each figure contains 1000 data points, then each circle may represent

multiple overlapped points.

6.6.4 Dependency on the channel

The last observation I want to bring to the reader is the effect of the channel hopping
on the acquired data. In Fig. 6.5 the raw samples collected with the two nodes at 20 m
of distance in outdoor LoS conditions are plotted with respect to the used channel.
It is immediate to see (Fig. 6.5-(a)) that the RSSI data is strongly affected by the
channel. These results where expected from the two-ray model of propagation [43,
105], since during the outdoor test I had the reflections of the ground and also of a
neighboring building. The reported figure has been chosen as representative but at
the other distances the channel effect has a different behaviour, which is dependent
on the surrounding environment. At the same time the ToF shows more constant
results (Fig. 6.5-(b)).

From this result, it is clear that using the RSSI for calculating the distance be-
tween two nodes without considering which channel each sample refers to is lim-
iting. Modelling the effects of reflections at different frequencies and in the gen-
eral case (without prior information on the environment) is a complex task. In con-
trast, including the channel information in a machine learning algorithm that au-
tomatically takes it into account does not add a relevant overhead. In particular,
for the fingerprinting techniques giving more data to the algorithm is likely to give
better estimation result. Unfortunately, the channel number information is not ex-
posed through the standard Bluetooth API of the most popular mobile devices (An-
droid/iOs smartphones) and on many embedded platforms, then it is much more
challenging for the developer to get that information6.

6.6.5 Repeatability of the test

Although it is clear from the results that the collected ToF data, even if noisy, can
be used as an indicator of distance even for narrow band protocols such as BLE, its
usefulness may be questionable if the measure isn’t repeatable over different beacon

6 These BLE technologies are continuously evolving, and recently (1 year after the study reported in
this chapter) major BLE device manufacturers started coupling the channel index information to each
RSSI sample acquired. This further confirms the observation just discussed.
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models or over different specimens of the same beacon. With this regard I did a pre-
liminary evaluation testing both the nRF52840 and the nRF52832 with two different
SDK (respectively softdevice 140 v5.0.0-2alpha and softdevice 132 v5.0.0) and also
another SoC (Texas Instruments cc2650, with BLE stack v2.2) used as BLE beacon,
the test has been repeated on multiple specimens of the selected SoC.

What I found is that choosing a different BLE SoC manufacturer has potentially
the same impact to changing the SDK, and the effect is a small change in the offset
of the measure. This offset should be nominally TIFS + Tnbit + TD = 199.65 us that is
Eq: 6.1 when the distance between the two devices is zero. As visible from the fig-
ures, obtained results are slightly different (the measured offset is few hundreds of
nanosecond longer) and I justify this with the hardware/software implementation
of the BLE stack. In fact, we are dealing with time resolutions that are in the same
order of magnitude of clock interval of the SoC, therefore the hardware/software ar-
chitecture plays a fundamental role for this kind of measure. Unfortunately, this can
hardly be calculated analytically since most of the BLE SoC manufacturers give part
of the SDK as pre-compiled binaries, then source code cannot be analyzed. Never-
theless the results are stable among specimens of the same device/SDK configura-
tion, then it is reasonable to speculate that the offset can be a constant value statically
associated with a specific configuration of SDK-SoC model and broadcasted as part
of advertising packet payload, similarly to what already happen for the calibrated Tx
power field in the Eddystone UID packet [36].

This evaluation is preliminary and is only qualitative, anyway it has been useful
to verify that the experiment can be brought in the real world outside the small,
controlled and homogeneous testbed I used.

6.7 Conclusion

In this work, I investigated if RSSI is the only indicator that can be used for localiza-
tion based on Bluetooth Low Energy or if ToF can be a viable additional one. Using
low-cost off-the-self hardware, I have shown that with BLE the ToF can be measured
if a sufficient number of packets is averaged. Obtained results are satisfying, first
of all because this seems to be one of the first attempt to measure the ToF over the
BLE at low level (i.e. excluding any overhead due to the stack processing), more-
over results are in line with similar works employing less constrained hardware and
particularly less constrained protocols. Even though the communication range in
my experiments is relatively short (0.2 m to 20 m)7, [108] argued that error on ToF
remains constant in most of the communication range. Then the ToF ranging error
reported in this chapter are similar to what found in [108], for instance in outdoor
LoS scenario they obtained RMSE = 6.7 m while in this chapter, with very similar
conditions, I halved it obtaining RMSE = 3.02 m. When the LoS is occluded, the
RMSE roughly doubles in both cases.
My results are instead worse (approximately by a factor of two) than the other sim-
ilar work [67]: the reason is probably due to the limitation and constraints imposed
by the hardware (this work employs commercial hardware, the other a custom soft-
ware defined radio) and by the BLE standard. Nevertheless, the proposed approach,
being based on BLE, has much more potential. In fact, at the time of writing, the
pervasiveness of Bluetooth connectivity in commercial products is several orders of
magnitude higher than any other standard for short range low power communica-
tion such as Zigbee, Thread or anything else based on 802.15.4 MAC.

7 This choice was made to keep the same range for indoor and outdoor scenarios.
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I calculated the energy overhead due to the ToF measurement finding that in
case the BLE connection is already established (e.g. for data transfer) the overhead
for measuring the ToF is negligible. While, if the connection has to be established
for the purpose of localization the average current consumption is higher (1 mA to
1.5 mA), which corresponds to the consumption of a BLE central device sending and
receiving empty packets.

Experiments showed that ToF and RSSI have comparable performance for dis-
tance estimation in the range 0− 20 m; however, ToF is slightly better in terms of
RMSE. ToF performance starts to degrade when the average is calculated on win-
dows below 100 samples. While for RSSI, averaging over multiple samples does not
have a particular effect, making it a good choice when the latency is a key point.

As expected, LoS/NLoS condition had an impact on distance estimation with
RSSI; this should be considered when the device estimating its position is a Smart-
phone. In such case, the possible proximity to owner’s body makes difficult to pre-
dict if beacons and smartphone are in LoS. At the same time, the LoS/NLoS has a
lighter effect on distance estimation when the ToF is used for ranging.

Another kind of data that is often discarded for the RSSI based localization is
the channel (or the career frequency). The Bluetooth standard is based on chan-
nel hopping for mitigating the effects of interference and fading, and in this work I
have shown the high impact of channels on raw RSSI values. Therefore, to increase
algorithms accuracy RSSI data should be always coupled with the channel where
available. This observation may be considered by Bluetooth radio manufacturers or
by Bluetooth SIG when defining APIs used for controlling the radio.

Results reported in this chapter show that ToF alone is not fully reliable for lo-
calization; however, it furnishes valuable data at low price, useful to increase the
accuracy of a model-based or fingerprint-based algorithm.

Recently, the new version of Bluetooth specification has been released. Version
5.0 includes some interesting features, such as the long range support (up to 1 km in
LoS), which is achieved using coded modulations. With such a kind of long range
wireless communication, the RSSI based localization will lose reliability because it is
well known that the ranging accuracy of RSSI degrades as the range increases [96]
(refer also to Section 4.3, in particular to Figure 4.1), therefore I expect ToF measure-
ment on Bluetooth 5.0 to gain interest soon.
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Chapter 7

From raw data to position tracking

7.1 Introduction

Previously in this thesis, the Time-of-Flight (ToF) measurement technique has been
applied to the ranging problem on Bluetooth Low Energy showing that RSSI is not
the only metric that can be exploited for localization in a BLE network. Because of
hardware constraints, ToF data is very noisy, then some filtering technique must be
applied before using it. In the previous chapter, a simple average window has been
applied with the purpose of comparing RSSI and ToF performance. Now that we
know that ToF and RSSI on BLE have similar performance in the context of ranging,
I want to do a step forward providing a localization framework that exploits both
sources of data.

The technique proposed in this chapter stems from the general idea described
in [75] and [40] (i.e. RSSI and Time-of-Flight (ToF) data fusion), but it relies on BLE
technology and on a different methodology. Various examples of data fusion al-
gorithms for indoor localization based on a Bayesian approach already exist [41].
However, the solution proposed in this chapter is computationally simple and it is
tailored for BLE implementation. In general, unlike the case of Ultra-Wide Band
(UWB) where ToF can be generally measured with high accuracy [4], the ToF mea-
surement of BLE messages (as well as of other narrow-band wireless protocols) is
subject to large fluctuations due to: the jitter affecting message detection on the re-
ceiver side, the limited resolution of the available clocks to measure time intervals,
or a combination thereof. However, such uncertainty contributions exhibit approx-
imately a white spectral power density. Therefore, they can be effectively reduced
through averaging [75, 40, 44]. Moreover, their relative impact on range measure-
ments tends to decrease with distance, whereas, on the contrary, the uncertainty of
RSSI measurements tends to grow with distance. This observation suggests that
RSSI and ToF data may play a complementary role for wireless positioning, which
justifies the approach described in this chapter.

In the following, first, in Section 7.2, the ranging and positioning steps of the
proposed localization algorithm are explained. Some meaningful experimental re-
sults of both ranging and planar positioning are presented in Section 7.3. Finally,
Section 7.4 draws the conclusions and propose future directions.

7.2 Localization Algorithm

In contrast to fingerprint techniques, which strongly rely on acquired data, there are
model-based techniques that are more related to radio signal propagation models.
Regardless of the quantity to be measured (e.g., RSSI, ToF or time difference of ar-
rival), model-based localization is typically a twofold process consisting of a ranging
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step followed by a positioning step. In the ranging step, the target node to be localized
performs some measurements to obtain the estimates of its distance from a number
of reference nodes (anchors), while the positioning step transforms the distance es-
timates into coordinates in a given reference frame. In the following sections, the
algorithm developed to implement both steps is described.

7.2.1 Ranging Step

In general, the ranging step requires to measure a physical quantity that is a mono-
tonic function of the distance from one of the anchors. Given the wireless nature of
the problem, the most popular quantities to be measured are: signal power and prop-
agation time. As already widely discussed in the thesis, the former quantity (that is
natively measured by the RSSI circuitry available in any wireless chip) tends to de-
crease with the inverse of the square of the distance from the transmitter. However,
in indoor environments it may exhibit a non-monotonic behavior as well as a path
loss no longer proportional to the square of the distance, due to both multi-path fad-
ing phenomena and the presence of obstacles. On the other hand, the propagation
time grows linearly with the distance between transmitter and receiver, as the signal
propagation speed is constant and depends on the type of signal employed (e.g. ra-
dio or acoustic signals). Of course, in the case of radio (e.g. BLE) signals, the signal
propagation speed coincides with the speed of light. The main problem of propaga-
tion time measurements is that typically the time intervals to be measured over short
distances are very small (i.e. in the order of tens of nanoseconds). Therefore, high-
resolution time interval measurements are needed. Moreover, the propagation time
intervals are inherently subject to large fluctuations caused by the circuitry used to
send and to receive the radio messages. A solution to mitigate this problem is to
use acoustic signals, since their propagation speed is much smaller. However, this
approach as well as other ranging techniques requiring dedicated hardware (e.g. for
Doppler shift measurements) are not suitable if standard commercial off-the-shelf
(COTS) BLE components have to be employed. For this reason, the ranging ap-
proach adopted in this chapter relies on the fusion of the distance values obtained
from both RSSI data and the ToF of BLE messages, since such quantities can be mea-
sured using standard Bluetooth platforms without additional hardware.

As known, the distance values based on RSSI result simply from [92]

dRSSI(s) = d010
s0−s
10α , (7.1)

where s is the RSSI value, s0 is the RSSI at a reference distance d0 and α is referred
to as the path loss coefficient. In ideal conditions α = 2, whereas in indoor environ-
ments it depends on the surrounding ambient and hence should be experimentally
evaluated. For what concerns the distance based on the propagation time of BLE
messages, in this work it is estimated from the round trip time (RTT) of a pair of
messages, i.e.

dRTT(tRTT) = c
tRTT − to f f

2
, (7.2)

where c is the speed of light, tRTT is the measured round-trip-time and to f f is an off-
set including the processing latency on the responding node (namely the anchor) as
well as the timestamping delays on both the transmitter and the receiver side. The
ranging data given by (7.1) and (7.2) are both used in the update step of a Kalman
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Filter (KF), which is described in details below. In particular, the distance measure-
ment value rm,i(k) from anchor i at time k∆t (where ∆t is the constant sampling time)
are based on (7.2) and result from

rm,i(k) = dRTT(k) = ri(k) + ξr(k), (7.3)

where ξr(k) ∼ N (0, σ2
r (k)) is the ranging measurement uncertainty. The noise pro-

cess is assumed to be non-stationary, with variance approximated with the sample
variance in the time instants k− iv, . . . , k, with iv being the sample window.

Even though the RSSI distance measurements (7.1) could be injected directly in
the update step of the KF, in this here they will be used to estimate the target’s ve-
locity vi(k) = ṙi(k) in the direction towards anchor i at time k∆t, i.e.

vm,i(k) =
dRSSI(k)− dRSSI(k− 1)

∆t
= vi(k) + ξv(k), (7.4)

where ξv(k) ∼ N (0, σ2
v (k)) is the velocity measurement noise. As for ranging, the

noise process is not stationary and it is given by

σ2
v (k) = 2

(
∂dRSSI(s)

∂s

∣∣∣∣
s=sm

σRSSI

∆t

)2

(7.5)

with σRSSI is the standard deviation of (7.1) obtained from experimental data and sm
is the measured RSSI. The rationale of this choice is that the accuracy of the KF using
velocity data is globally better, which we argue is related to the system observabil-
ity. In fact, using ranging data only leads to a dynamic observability of the system,
whereas using both distance and velocity values leads to a static observable system:
the presence of a relatively high measurement noise is indeed the responsible of the
loss of performance in the former case.

It worth noticing that the derivative in the equation 7.5 makes the KF to weight
more the velocity data when the range between devices is short, which is the wanted
behaviour since it is known that RSSI based estimations are more reliable when the
communication distance is short [75].

The adopted KF relies on a second-order discrete-time, linear and time-invariant
dynamic model excited by a random walk, as briefly explained below.

• In the prediction stage the predicted state results from

x̂i(k + 1)− = Ax̂i(k) + Bε(k), (7.6)

where x̂i(k) = [r̂i(k), ˙̂ri(k)]T ∈ R≥0 ×R is the estimated state vector, the su-
perscript ·− denotes the predicted quantities, ε(k) ∼ N (0, σ2

ε ) is the unknown
velocity increment, and

A =

[
1 ∆t
0 1

]
, and B =

[
∆t
1

]
,

are the dynamic matrix and the velocity increment input matrix, respectively.
It turns then out that the prediction covariance matrix at time (k + 1)∆t results
from

Pi(k + 1)− = APi(k)AT + σ2
ε BBT.
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• In the update stage both the raging and velocity measures given by (7.3) and (7.4)
are used. As a consequence, the Kalman gain is given by

K(k + 1) = Pi(k + 1)−HTS(k + 1)−1,

where H is a bi-dimensional identity matrix, i.e. H = I2,

S(k + 1) = HPi(k + 1)−HT + R(k + 1)

is the innovation covariance and R(k+ 1) = diag(σr(k+ 1)2, σv(k+ 1)2). There-
fore, the estimated state and its covariance matrix at time (k + 1)∆t result re-
spectively from

x̂i(k + 1) =x̂i(k + 1)−+
+ K(k + 1)

(
z(k + 1)− x̂i(k + 1)−

)
,

Pi(k + 1) = (I2 − K(k + 1)) Pi(k + 1)−,

where z(k + 1) = [rm,i(k + 1), vm,i(k + 1)]T.

From a computational view-point the proposed solution is very light. Indeed, the
highest complexity comes from the update stage, where a matrix inversion is present.
However, being the system bi-dimensional, a closed-form solution can be used,
hence reducing to a trivial computation of some additions and multiplications. It
is worth noticing that ξv(k) in (7.4) is not white by definition. Therefore, formally
the KF is not optimal. Nevertheless, the noise introduced by the derivative oper-
ator in (7.4) is so relevant in practice, that the correlation between noise samples
has just a second-order effect. The dynamic model underlying the prediction step of
the KF together with the model noise power σ2

ε is crucial for the filtering capabili-
ties of the algorithm. By lowering σ2

ε , a superior filtering effect is obtained, to the
detriment of the actual ranging dynamic that is only approximately modeled by the
matrix A. Indeed when the target is close to an anchor, its dynamic changes rapidly
(i.e., the velocity changes sign, but not amplitude, within few samples). Hence, a
higher value of σ2

ε is needed. However, in such a case the relevant noise variance of
measurements comes into play and the estimation accuracy decreases. To account
for this trade-off, an experiment-based tuning has been performed, as described in
Section 7.3.

As a last remark, the constraint r̂i(k) ≥ 0 should be always guaranteed. In fact,
r̂i(k) can occasionally become negative due to the measurement uncertainties. To
enforce this condition, the estimate projection with inequality constraints presented
in [104] can be applied. More precisely, after each prediction step, the condition

Cx̂i(k) ≥ rmin ≥ 0,

with C = [1, 0], is checked. If it is violated, then the estimated quantity is modified
according to a Weighted Least Squares (WLS) approach as follows:

x̂c
i (k) = x̂i(k) + Wi(k)CT

(
CWi(k)CT

)−1
(rmin − Cx̂i(k)) , (7.7)

where the superscript c in x̂c
i means constrained and the weighting matrix

Wi(k) =
[

wi,1 wi,2
wi,2 wi,3

]
(7.8)
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is positive definite. As a result, (7.7) becomes simply

x̂c
i (k) = x̂i(k) +

[
rmin

˙̂ri(k) +
wi,2
wi,1

(rmin − r̂i(k))

]
. (7.9)

It has to be noted that after the constrained solution is obtained, the prediction stage
for the estimated states (7.6) modifies to

x̂i(k + 1)− = Ax̂c
i (k) + Bε(k).

Furthermore, if Wi(k) = Pi(k), the constrained solution has minimum variance,
while if Wi(k) = I2, the constrained solution is closer (in norm-2 sense) to the actual
value [104]. Both solutions have been implemented and compared in Section 7.3.2.

7.2.2 Positioning Step

Once the distance values from different anchors are estimated by the KFs described
in Section 7.2.1, in the positioning step the location p(k) ∈ R2 of the target on a plane
at time k∆t (for the sake of brevity the time index k will be omitted in the rest of
the description) results from the minimization of a cost function fcost(p, r̂i) ∀i ∈ A,
where A is the set of anchor nodes from which the distance of the target is esti-
mated. Even though such a cost function can be defined in a variety of ways, in the
rest of this chapter a point-spring parallel model will be used to this purpose [92].
According to this model, all nodes are regarded as points and the links between the
target node and each anchor i ∈ A are modeled as springs, whose resting length is
a function of r̂i. Since the estimated target’s position corresponds to the equilibrium
point of the mass-point system [48], the cost function to minimize is the total elastic
energy, i.e.

fcost(p, r̂i) = ∑
i∈A

1
2

qi(r̂i − ri(p))2, (7.10)

where ri(p) = ‖p− ai‖ is the actual distance between the target and the i−th anchor
located at a known position ai in the reference frame considered and qi is the elastic
constant of the spring associated to the i−th link. In the case considered, two options
are viable, i.e.

qi = 1, ∀i ∈ A, or (7.11)

qi =
1
r̂2

i
, ∀i ∈ A. (7.12)

If (7.11) is used, the strength of all the springs is constant and this is a good choice
when the noise level is constant over the measurement range. Conversely, (7.12) is
more suitable when the noise level grows with the distance, e.g. when just RSSI data
are used [75]. The solution to this problem is obtained using a standard solver for
unconstrained minimization problems.

However, the problem can be regarded as a classic nonlinear regression problem
(also known as nonlinear WLS). In fact, (7.10) can be equivalently rewritten as

fcost(p, r̂i) =
1
2
(r̂− r(p))T Q (r̂− r(p)) , (7.13)
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where r̂ = [r̂1, r̂2, . . . , r̂n]T, r(p) = [r1(p), r2(p), . . . , rn(p)]T and n = #A. Therefore,
an approximate solution to the problem can be computed through the following
algorithm:

1. Initialize pj to a dummy value, with j = 0;

2. Compute the Jacobian Hj =
dr(p)

dp

∣∣∣
p=pj

and r(pj);

3. Compute the residuals Gj = HT
j Q−1Hj;

4. Update pj+1 = pj + G−1
j HT

j Q−1 (r̂− r(pj)
)

and increment j, j = j + 1;

5. If j = jmax, pj is the wanted solution, otherwise the algorithm should restart
from step 2).

In the depicted problem, it is sufficient to have jmax = 3 to reach a stable solution.
The algorithm is extremely fast, not only because the number of iterations is very
small, but also because Gj and G−1

j can be computed in a closed form, since p ∈ R2.
Therefore, no specific solvers are needed. Notice that if Q = In (i.e. the weighting
in (7.11) is adopted) a nonlinear Least Squares (LS) solution is obtained. However,
such a solution tends to be approximated, as shown in Table 7.2 of Section 7.3.2.

7.3 Experimental Results

In this section the experimental setup and the results obtained for the ranging step
and the positioning step are summarized and discussed.

7.3.1 Experimental Setup

Experiments have been conducted in the hall of the third FBK pavilion, Trento, Italy,
over an area of about 15× 50 m2. The hall is higher than 10 m and the walls of the
building are made of concrete, metal and glass. Therefore, the indoor environment
considered is similar to a train station hall or a shopping mall. Six SensorTag devices
based on the wireless module Texas Instruments CC2650 were used as anchor nodes
at known positions. The anchors were placed onto some internal walls, along the
perimeter of the building at about 1.2 m off the floor, while the target node collecting
RSSI and ToF data was connected to a laptop via a USB link. During the experiments
the laptop with the target was carried by a single user as shown in Fig. 7.1 and held
approximately at the same height as the anchors. Even though the testing area was
almost free of obstacles, no pure LOS conditions could be guaranteed, since some
of the anchors were temporarily, but unavoidably concealed by the moving user’s
body.

I performed two types of repeated experiments. First, the accuracy of the ranging
step of the algorithm was analyzed in the best possible (i.e. LOS) conditions. To this
end, the value of the path loss coefficient α in (7.1) has been tuned measuring the
RSSI between the target node and each one of the six anchors at different known
reference distances d0, i.e. 5 m, 10 m, 20 m, 30 m. Afterwards, the root mean square
ranging errors (RMSE) were computed by changing the value of α in a range con-
sistent with the characteristics of radio propagation in indoor environments and in
LOS conditions [16]. Fig. 7.2 shows clearly that the minimum RMSE is achieved
when α = 1.6, which is in line with other results found in the literature [16]. The
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FIGURE 7.1: Experimental setup: a CC2650 sensorTag (reference node) is in-
stalled on an internal wall. The PCA10056 development board equipped with
the nRF52840 module (target node) is connected via USB to a laptop PC that

is used to collect and log data.

RSSI-only ranging is then compared with those achieved with the KF described in
Section 7.2.1.

In the second group of experiments, the positioning accuracy of the algorithm
described in Section 7.2.2 was evaluated. To this purpose, the ground truth posi-
tions were determined by dividing the trajectories into segments over which the
user walked approximately at a constant speed. Start and end of each segment were
tagged by timestamps set by the user himself. Once the length of each segment is
known, the average user’s speed and his position can be reconstructed. I evaluated
the accuracy of this method to be approximately 20 cm, that is one order of magni-
tude smaller than the expected localization error and, hence, negligible.

7.3.2 Description of results

In the following, the results of the experiments related to the ranging step and posi-
tioning step of the proposed algorithm are shortly described.

Ranging step

The outcomes of the first type of experiments confirm that the data fusion algorithm
based on the KF described in Section 7.2.1 improves the ranging accuracy with re-
spect to the case when just the RSSI distance values are considered. This is clearly
visible in Fig. 7.3(a)-(b), where the distances between the user moving along straight
paths and six different anchors are estimated by (7.1) (i.e. using RSSI data only)
and the KF described in Section 7.2.1, respectively. In both cases, the mean distance
values (blue lines) and the corresponding (gray) uncertainty band (centered in such
mean values ± the sample standard deviations) are plotted as a function of the ac-
tual distance.

Observe that, over short distances (i.e. below 10 m), the ranging based only on
RSSI data clearly returns overestimated results. This is probably due to the fact that
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FIGURE 7.2: RSSI ranging RMSE as a function of the tuning parameter α.

(A) (a) (B) (b)

FIGURE 7.3: Ranging performance comparison between the RSSI-only ap-
proach (a) and the proposed KF (b). The blue lines refer to the estimated
mean distance values, while the gray uncertainty band is given by the mean

values ± the corresponding sample standard deviations.

the impact of multipath is less significant in the short-range. Therefore, even if the
path loss coefficient α = 1.6 minimizes the overall RMSE, it is too low in the short
range. However, such overestimation almost disappears when the KF is used. In
both cases, the range of variability due to random contributions is comparable. No-
tice that, over longer distances, not only the RSSI-based ranging uncertainty tends
to grow, but larger deviations from the ideal behavior are also quite evident. Both
phenomena are strongly mitigated by the KF.

Tab. 7.1 reports the mean and the RMSE of the distances of the experiments
shown in Fig. 7.3. The corresponding grand mean values are also shown, for the
sake of comparison. From Tab. 7.1, it results that the average mean ranging error as-
sociated with the KF is slightly larger than the value obtained using RSSI data only.
However, the mean RMSE value (that is more important as it includes the effect of
both systematic and random contributions) decreases by about 50%.

The good performance of the KF is confirmed also in the case of random (i.e.
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TABLE 7.1: Mean and RMS ranging errors between the target and six anchors
over straight-line paths, when the RSSI-only technique and the KF are used.

Resolution is 5 cm.

RSSI-only KF
RMS [m] Mean [m] RMS [m] Mean [m]

Anchor 1 5.75 -0.55 2.16 0.42
Anchor 2 8.62 -5.02 2.05 -0.36
Anchor 3 6.14 -2.21 3.20 -1.28
Anchor 4 4.17 -1.62 4.25 1.86
Anchor 5 5.32 -2.05 2.68 1.95
Anchor 6 4.13 2.55 2.34 1.29

Grand mean 5.69 -1.48 2.78 0.64

FIGURE 7.4: Distance estimated by the KF from anchor 6, when the user fol-
lows a random trajectory in the room.
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non-straight) paths. This is visible in Fig. 7.4, which depicts the comparison, as
a function of time, between the distance estimated by the KF from anchor no. 6
and the corresponding ground truth pattern. Again, the mean RMS ranging error is
about 3.85 m, which is consistent with the results shown in Tab. 7.1.

Positioning step

As described in Section 7.2.2, the position estimation algorithm performs the fu-
sion of the distance values returned by multiple KFs (one for each anchor). Fig. 7.5
shows the positioning results when the user moved over a rectangular path (black
dotted lines) four times, starting from the position with coordinates (0,0). The black
circle markers represent the position of the anchor nodes. Observe that Fig. 7.5(a)
refers to the fusion algorithm that minimizes the cost function (7.10) by using the
Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [101]. Fig. 7.5(b)
depicts instead the path estimated by the approximated, low complexity WLS algo-
rithm described at the end of Section 7.2.2. While the former solution is slightly more
accurate, as confirmed by the empirical Cumulative Density Functions (CDFs) of
positioning errors (namely the Euclidean distances between estimated and ground
truth positions along the given path) shown in Fig. 7.6, the latter algorithm is com-
putationally lighter and can be easily implemented in a low-cost, low-power embed-
ded platform, such as the target node. It is worthwhile to note that both algorithms
are executed with equal weights, i.e. (7.11) has been selected. This implies that Q
in (7.13) is the identity matrix and, hence, the nonlinear WLS problem turns into
a nonlinear LS one. Even though, from a theoretical viewpoint, the best weights
should be given by the inverse of the ranging uncertainties estimated by the KFs in
the update stage, this is not the case in practice since the KF implementation trades
between filtering ability and model limitations, as already explained in Section 7.2.1.
Since the estimated uncertainty turns to be slightly optimistic (i.e. better than it
actually is), the choice of giving equal importance to different ranging measures is
sensible and ensures better performance.

To provide a final quantitative comparison between different solutions, Tab. 7.2
shows the average mean and the average RMS values of the positioning errors when
the user moves along the same trajectories shown in Fig. 7.5. Two different choices
for the weighting matrix Wi(k) in (7.7) are considered, i.e. Wi(k) = Pi(k) and Wi(k) =
I2. It has to be noted that the results obtained with Wi(k) = I2 are slightly more
accurate than those based on Wi(k) = Pi(k), ∀i ∈ A. Again, this is due to the
aforementioned effect on the estimated covariance matrices of the KFs. Furthermore,
it is also evident that the nonlinear LS solution is slightly less accurate than using a
numerical optimization of (7.10).

7.4 Conclusion

In this work I described a technique for indoor positioning based on Bluetooth
Low Energy, therefore able to exploit the benefits, in terms of pervasiveness, of this
energy-efficient communication standard. Obtained results (RMS value of position-
ing error in the order of 2.5 m, mean error is slightly higher than 2 m) are comparable
with other reference works such as [40] where the average positioning error is 3.8 m.
However, this reference result is based on a mix of real experiment and simulations,
while my results are based only on real measurement campaign. Nevertheless, the
authors addressed the scalability by considering the ToF ranging (that is more band-
width demanding with respect to RSSI ranging) only to a subset of the available
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TABLE 7.2: Average RMS and mean positioning errors when the target moves
repeatedly over a rectangular path. The reported results refer to different
solvers of the positioning optimization problem described in Section 7.2.2

and to different weighting matrices (7.8).

W(k) = Pi(k) W(k) = I2
RMS [m] Mean [m] RMS [m] Mean [m]

Numerical
opti-
mization
of (7.10)

2.40 2.07 2.39 2.06

Nonlinear
LS solution

2.70 2.34 2.54 2.19

nodes. They propose to use the geometric dilution of precision algorithm (GDOP)
to select only the relevant links to perform the ToF measurements. This last con-
sideration is definitely relevant also in a BLE based localization system that needs
to guarantee the scalability. Results are also in line with another similar work [75],
where RSSI and ToF where fused using two independent KF, in that case ranging
uncertainty< 2 m1.

The proposed technique can be considered a proof of work for a fully mobile
network where nodes are carried by group members, and localization is only relative
to the other peers. Here I considered the case with some fixed node and one mobile
target to be easier to implement and to validate rather than directly focusing on a
completely dynamic network. Extending the solution proposed in this chapter to
the group management problem is relatively straight forward since it just requires
to change the set of links (A) used to calculate the fcost (Eq: 7.10), from:

• A = the links between the target node and each anchor

to:

• A = all the available links between peer nodes (i.e. group members)

This will turn the algorithm to be collaborative (or cooperative), because location in-
formation is obtained using distance estimations from peers rather than using only
reference nodes at known position. This positioning technique has already been ex-
ploited in Chapter 4 where it proved to work (even if the focus of that chapter was
on RSSI based ranging).

I presented results from experiments conducted in the field using six anchors
and a mobile target node. The performance comparison with or without data fusion
clearly shows the benefits of the proposed approach. The mean RMS ranging error
is indeed about 50% lower than in the case when just RSSI data are used (the same
result is obtained in [40]). From the distance values estimated by the KF between the
mobile node and different anchors the position of the target in a planar frame can be
determined. Two approaches, both based on a mass-point model and on the solution
of a nonlinear optimization problem, exhibit similar performance with a positioning
uncertainty in the order of 2.50 m, which, as already stated, is in line with state of
art. The two approaches mainly differ for the fact that one is conceived for resource-
constrained devices and, therefore, it is computationally lightweight. I showed that,
tailoring this algorithm for embedded platforms, positioning uncertainty grows by
no more than 6%.

1 RMSE value in dynamic conditions are not given in the paper, only uncertainty is reported.
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(a)

(b)

FIGURE 7.5: Planar position of the target (blue lines) estimated using a nu-
merical unconstrained optimization of (7.10) (a) and the algorithm described
at the end of Section 7.2.2 (b), when the user moved over a rectangular path
(black dotted lines) four times. The black circle markers represent the posi-

tion of the anchor nodes.
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FIGURE 7.6: Empirical cumulative distribution function (CDF) of positioning
errors.
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Chapter 8

Conclusions

8.1 Managing groups of people in smart city

Managing groups of people moving together can be considered a trivial task since,
in its basic form, it just requires to collect and maintain the list of neighbours. More-
over, standardization permits to developers to use many complex technologies with-
out the need of understanding all the technical details of the lower layers, this sub-
stantially ease the development. However, by considering such system to be a tool
of a smart city, through which services are provided to the citizens, it should be flex-
ible enough to serve as many applications as possible. If on one side IoT experts
forecast to have billions of devices connected to internet by the end of 2010’s, on the
other hand people won’t like to carry many application specific devices with com-
parable characteristics. For this reason, a new technology, optimized for the purpose
of identification and group management should be developed because those already
available (such as Bluetooth, widely discussed in this thesis) can be tuned, optimized
and employed for a specific application, but they fail in covering the needs of others.
At E3DA group of FBK we focused on the walking bus scenario, however others in-
teresting use cases can benefit from technologies here presented, therefore it is clear
that the concept of radio identification and group management can be reused many
fold in the context of smart city and communities in general. In some of the proposed
use cases, it is challenging, if not unfeasible, to provide tags to all the group mem-
bers. At least for those involving people, it might be more realistic to think about
some hardware/software module (such as the Time-of-Flight library described in
Chapter 6) in the own devices like smartphones or smartwatches that serves the pur-
pose of radio identification. Anyway, this module should not be application specific
otherwise it would require an explicit action from the user (like the installation of an
app) and then it falls in the same problem of having to tag all the people. A stan-
dardization of radio identification with the purpose of group monitoring is therefore
mandatory to make a single radio identification device usable by many applications;
and if this single solution will be found, it will be easier to make people adopt it in
place of application specific devices. The thesis mainly focuses on lower layers, how-
ever even higher ones require standardization: for instance, to resolve IDs a single
way should be developed, otherwise it will be impossible to map unknown IDs to
real objects/people.
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8.2 Summary of contributions

The results and contribution included in this thesis can be grouped in two main top-
ics: Bluetooth (Low Energy), and Radio based localization. For the former, main contribu-
tions are related to the analysis of the communication and its optimization. Instead,
for what regards the localization, novel contributions are mainly at the algorithm
side. More specifically they are:

• Throughput and consumption analysis of Bluetooth 4.0 Connection mode. In
Chapter 2 I have shown the promising performance of BLE in terms of energy
efficiency, the analysis also demonstrates the mid-low throughput available
over the BLE connection (compared to other standards such as wi-fi).

• The design of the first basic system based on BLE with two hops communica-
tion range is described and validated in Chapter 3.

• Analysis of the scalability constraints in BLE Advertising mode. Unexpected
scalability performance of BLE Advertising mode have been demonstrated in
Chapter 5.

• Wake-up radio (WuR) embedding into BLE standard have been described in
Chapter 5 together with expected performance: this brings new opportunities
for speeding up the maintenance of beacons and to reduce energy consump-
tion when beacons are requested to scan for neighbours.

• The innovative technique for measuring the Time-of-Flight over a Bluetooth
link is described for the first time in Chapter 6 and Chapter 7: ranging error
have been reduced by more than 50% when Time-of-Flight is used to comple-
ment the more popular RSSI.

• In Chapter 4 I tested various approaches for ranging with RSSI by exploiting
the redundancy of acquired data, also non-homogeneity of antenna radiation
is considered in the algorithms.

• Time-of-Flight measurement on narrow band radio (such as those involved in
BLE communication) has low resolution. However, since sample rate can be
higher than the actual requirement, oversampling and filtering can be effec-
tively applied to increase resolution and reduce the error. In Chapter 7 a filter-
ing technique tailored to constrained platform is described and experimentally
evaluated.

• Finally, in Chapter 7, the comparison between a high end optimizer and the
lighter Least Square algorithm shown very minor performance degradation
when the latter is preferred for the positioning step of the localization algo-
rithm.

In summary, the scientific contribution of this thesis started from the validation of
the Bluetooth Low Energy as communication standard for the IoT. The protocol has
been characterized and optimized in terms of throughput, power and scalability,
validating and stressing it even in complex networks such as mobile mesh. Stud-
ies and experiments have been carried on in the applicative scenario of the walking
bus. Within this scenario, the major contribution is in the development of an inno-
vative technique for measuring the distance between two BLE nodes, exploiting the
combined effect of two known techniques (Time-of-Flight and RSSI) that are fused
to obtain a single distance estimation that is used for locating the nodes.
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8.3 Ongoing work

8.3.1 From anchor based indoor localization to anchor free outdoor local-
ization

The description and discussions carried on in this thesis cannot be considered con-
cluded here, in fact the discussion stops after showing a localization framework,
which do not target directly the group management problem. Nonetheless a solu-
tion is not far, in fact, as briefly described in Section 7.4 expanding the positioning
algorithm to work on anchor free dynamic network only requires some changes in
the positioning step of the localization algorithm.

The results obtained with the localization solution presented in Chapter 7 will
be tailored to run in a real setting where group management is required. This is
ongoing work, as briefly described in 7.4. Expanding the positioning algorithm to
work on anchor free dynamic network only requires some changes in the positioning
step of the localization algorithm.

8.3.2 The network management

As already mentioned, the localization solution proposed in the last chapters ex-
ploits the Connection mode of the Bluetooth Low Energy standard, whose scalabil-
ity performance is quite limited (every node can handle tens of concurrent connec-
tions1) while moving groups can reach hundreds of users in some situations.
I consider this problem similar to the network formation process in self organizing
mesh networks. In general, once a mesh node boots up, it tries to join the mesh net-
work, this means that it will try to create one or more links with other nodes (let’s
call them routers), which are already part of the network. When many routers are
available, some policies will be applied to choose the ones to use. A policy may
be to connect to the router with the highest link quality, in this case RSSI may be
used to decide (the higher the RSSI the higher the link quality), but other policies for
instance based on network status (i.e. on how many connections are handled by a
single anchor) may be preferred. Alternatively, a state-of-the art algorithm such as
geometric dilution of precision employed in [40] could be used.
The topic has not been studied yet, then speculations on this are not supported by
experiments nor deep investigation, however the idea is to use the BLE scanning
process to get a raw view of the network status. This could give a snapshot that can
be used to tune the decision policy, for instance in the case where some nodes are
moving away from the main group, they should be subjected to higher priority mon-
itoring (i.e. they should maximize the number of links with the main group) so that
there is more probability of keeping the link for longer time. This decision should
be repeated periodically to account for scene change, how often and how long the
scanning should be scheduled depends on requirements.

8.4 Final remark: what if every person have an RF beacon?

Airplanes have radio beacons that permits to anybody to detect the plane if you
have a proper receiver. They transmit an ID and their GPS position, this is accepted
by all of us because of safety reasons. Autonomous cars will likely have something

1The actual limit depends on connection setting and on hardware/software constraint; it is poten-
tially different on every family of devices, and also given the same kind of BLE chip, the maximum
number of concurrent connection may vary depending on the software version being used.
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similar to be detectable by the other cars to avoid crashes: this is likely to be accepted
for safety reasons and for services that will be associated. But will people accept
to carry a personal beacon all the time? At present, possibly not, since many of
us might be worried our privacy will be violated. However, we already carry our
smartphone, which in many cases can provide our position to several services. In
fact, we probably provided our consent when installing some applications trusting
the provider and since in exchange we benefit of some valued service. Therefore, the
answer to our initial question is that: yes, people will accept to wear a beacon if the
benefit of carrying it and the level of trust is sufficient.

In conclusion, we are going towards a future where each of us will be identified
by some kind of digital signature. Such technology will be the enabler for a num-
ber of applications, not only those discussed in this thesis: it will likely be used to
check-in into protected building or in place of id card/passport, it may also be used
to localize people in case of natural disaster such as it is already done with avalanche
transceivers (also known as avalanche beacon). Localization aspects such a technol-
ogy are discussed in this thesis, however, if the aforementioned personal beacon will
take place in our daily life, security and privacy will be of primary importance at all
the stack layers to make people accept the technology.
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