
Alma Mater Studiorum - Università di Bologna

Dipartimento di Ingegneria dell’Energia Elettrica e
dell’Informazione “Guglielmo Marconi”

Dottorato di Ricerca in
Ingegneria Biomedica, Elettrica e dei Sistemi

Ciclo XXXI
Settore Concorsuale: 01/A6 - RICERCA OPERATIVA

Settore Scientifico Disciplinare: MAT/09 - RICERCA OPERATIVA

Algorithms for Variants of
Routing Problems

Presentata da Carlos Emilio Contreras Bolton

Coordinatore Dottorato:
Prof. Daniele Vigo

Supervisori:
Prof. Daniele Vigo
Prof. Paolo Toth
Dr. Valentina Cacchiani

Esame finale anno 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Dottorato

https://core.ac.uk/display/223242382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract
In this thesis, we propose mathematical optimization models and algorithms for
variants of routing problems. The first contribution consists of models and algo-
rithms for the Traveling Salesman Problem with Time-dependent Service times
(TSP-TS). We propose a new Mixed Integer Programming model and develop a
multi-operator genetic algorithm and two Branch-and-Cut methods, based on the
proposed model. The algorithms are tested on benchmark symmetric and asym-
metric instances from the literature, and compared with an existing approach,
showing the effectiveness of the proposed algorithms. The second work concerns
the Pollution Traveling Salesman Problem (PTSP). We present a Mixed Integer
Programming model for the PTSP and two mataheuristic algorithms: an Iterated
Local Search algorithm and a Multi-operator Genetic algorithm. We performed
extensive computational experiments on benchmark instances. The last contribu-
tion considers a rich version of the Waste Collection Problem (WCP) with multiple
depots and stochastic demands using Horizontal Cooperation strategies. We de-
veloped a hybrid algorithm combining metaheuristics with simulation. We tested
the proposed algorithm on a set of large-sized WCP instances in non-cooperative
scenarios and cooperative scenarios.

ii

Acknowledgements
I would like to thank my supervisors Prof. Paolo Toth, Dr. Valentina Cacchiani
and Prof. Daniele Vigo, for the help and guidance they provided during my three
years of Ph.D. studies.

I want to thank all the colleagues of the group of Operations Research of the
DEI, for their help and good shared moments. I would like also to thank all of my
family and friends, specially my parents and my brother for their unconditional
support and love.

Finally, I would like also to thank the support of the Chilean Council of
Scientic and Technological Research, CONICYT, through the grant CONICYT
PFCHA/DOCTORADO BECAS CHILE/2015-72160389.

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

List of Algorithms vii

1 Introduction 1

2 Models and Algorithms for the Traveling Salesman Problem with
Time-Dependent Service Times 5
2.1 Introduction . 5

2.1.1 Contribution . 7
2.2 Problem Definition . 7
2.3 Mathematical Models and Bounds from the Literature 8

2.3.1 Basic Model . 8
2.3.2 Gavish and Graves Model 9
2.3.3 Lower and Upper Bounds 10

2.4 Improvements to Models and Bounds 11
2.4.1 Improved Bounds (IBs) and M 11
2.4.2 Subtour Elimination Constraints (SECs) 12
2.4.3 New Model (NM) . 13

2.5 Solution Methods . 16
2.5.1 Genetic Algorithm . 16
2.5.2 Branch-and-Cut and Dynamic Branch-and-Cut Algorithms . 18

2.6 Computational Results . 19
2.6.1 Genetic Algorithm . 19
2.6.2 Comparison with TGJL16 20

Lower Bounds . 20
Integer Solutions . 25

2.6.3 Additional Instances . 28
Larger Symmetric Instances 28
Asymmetric Instances . 34

2.7 Conclusions and Future Research 34

iv

3 Algorithms for the Pollution Traveling Salesman Problem 36
3.1 Introduction . 36
3.2 Problem Description and Formulation 37
3.3 Iterated Local Search Algorithm . 39
3.4 Multi-operator Genetic Algorithm 40

3.4.1 Representation and fitness function 41
3.4.2 Initial population . 42
3.4.3 Crossover operators . 43
3.4.4 Mutation operators . 43
3.4.5 Genetic parameters . 44

3.5 Computational Experiments . 44
3.6 Conclusions . 46

4 An algorithm to solve the Multi-depot Waste Collection Problem
with Stochastic Demands 48
4.1 Introduction . 48
4.2 Related studies . 50

4.2.1 Combining simulation with metaheuristics 50
4.2.2 The waste collection problem 50
4.2.3 Multi-depot VRPs . 51
4.2.4 Horizontal cooperation . 51

4.3 Overview of our simulation-optimization algorithm 53
4.3.1 Simheuristics to consider WCP uncertainty 53
4.3.2 Combination of simulation with oriented randomization and

ILS . 54
4.4 Computational experiments . 56
4.5 Discussion of results . 58
4.6 Conclusions . 58

Bibliography 60

v

List of Figures

4.1 Example of a WCP solution with 2 routes. 49
4.2 Scenarios in waste management. 52
4.3 Comparison of total costs between cooperative and non-cooperative

scenarios. 58

vi

List of Tables

2.1 Probabilities of using each crossover or mutation operator. 18
2.2 GA on instances from Taş et al. (2016) with small and medium

service times. 21
2.3 GA on instances from Taş et al. (2016) with large and quadratic

service times. 22
2.4 Comparison of Lower Bounds with small service times on instances

from Taş et al. (2016). 24
2.5 Comparison of Lower Bounds with medium service times on in-

stances from Taş et al. (2016). 24
2.6 Comparison of Lower Bounds with large service times on instances

from Taş et al. (2016). 25
2.7 Comparison of Lower Bounds with quadratic service times on in-

stances from Taş et al. (2016). 25
2.8 Comparison of Upper Bounds with small service times on instances

from Taş et al. (2016). 29
2.9 Comparison of Upper Bounds with medium service times on in-

stances from Taş et al. (2016). 30
2.10 Comparison of Upper Bounds with large service times on instances

from Taş et al. (2016). 31
2.11 Comparison of Upper Bounds with quadratic service times on in-

stances from Taş et al. (2016). 32
2.12 Comparison of Lower and Upper Bounds with small service times

on larger symmetric instances. 33
2.13 Comparison of Lower and Upper Bounds with small service times

on asymmetric instances. 35

3.1 Parameters used in the PTSP model. 37
3.2 Comparison among the Cut-and-Branch, ILS and MGA. 45
3.3 Comparison between MGA + ILS and ILS + MGA. 45

4.1 Table of results. 57

vii

List of Algorithms

3.1 Iterated Local Search . 40
3.2 Genetic Algorithm . 41
3.3 LP-based-heuristic . 42
4.1 Generation of solutions . 53
4.2 Multi-depot simheuristic approach 55

1

Chapter 1

Introduction

In today’s competitive world, transport and logistics companies which want to
reduce their expenses have to consider various costs. These costs often represent
a large percentage of the total budget and involve crucial decisions, such as: the
location of depots (strategic problem), the definition of vehicle routes, and also
how to distribute the load of each truck to make optimal use of the available
space (operational problems). Especially for distributors of goods, many of the
above mentioned problems are combinatorial optimization problems. Combinato-
rial optimization is a branch of optimization in applied mathematics and computer
science, and is related to operations research, theory of algorithms and computa-
tional complexity theory and also to other fields such as artificial intelligence and
software engineering (Papadimitriou & Steiglitz, 1998).

Many complex combinatorial optimization problems cannot be solved efficiently
and remain a challenge for the scientific community. This computational in-
tractability arises because many combinatorial problems are NP-hard (Garey &
Johnson, 1979). Up to date, there are still no existing algorithms to solve in
polynomial time the problems previously mentioned.

One of the most studied combinatorial optimization problems is the problem
of distributing products from some depots to their clients, known as the Vehi-
cle Routing Problem (VRP). Due to its great relevance in real-life applications
and also to its intrinsic difficulty, the VRP quickly attracted the attention of ex-
perts and scholars, working in operations research, management science, computer
science, graph theory, and proved to be widely used in transportation systems,
logistics distribution systems and express delivery system. In fact, year after year,
an exorbitant amount of money is being spent daily on fuel, vehicle operation,
maintenance of vehicles and labor. Therefore, it is essential to try to reduce the
amount of money spent on routing and its related activities. A small improvement
in routing problems can lead to huge logistics savings in absolute terms (Anbuu-
dayasankar et al., 2014).

The aim of the VRP is to find routes for a vehicle fleet to serve a set of
customers, while typically minimizing the total transportation time (Toth & Vigo,
2014). The VRP was first introduced by Dantzig & Ramser (1959), who proposed
to solve the transport route optimization problem for a refinery. Since there,
over the years, several variants have been studied. These variants are based on
distinctions such as: service type to customers, fleet size, fleet type, demand type,
and many others. These problems have many real life applications including urban
waste collection (Beliën et al., 2014), vehicle routing in snow plowing operations
(Perrier et al., 2008), college bus routing (Christodoulou, 2010), public-transport

Chapter 1. Introduction 2

vehicle routing (Ceder, 2011) or emergency vehicle dispatching systems during
electrical breakdowns (Weintraub et al., 1999), just to name a few. Furthermore,
there are many different techniques for solving the VRP, including exact methods,
heuristics, metaheuristics, etc. (Toth & Vigo, 2014; Laporte et al., 2014; Kim
et al., 2015).

The VRP is a generalization of another well-known problem: the Traveling
Salesman Problem (TSP) which consists of finding a minimum cost route that goes
exactly once through a given set of cities that the salesman must visit returning
to the starting city (Hamiltonian tour). Therefore, in the TSP, only one vehicle
is considered with infinite capacity and no additional constraints are imposed.
Just like the VRP, the TSP has been extensively researched since the early 19th
century. However, the origin of the name is not clear, as there is no documentation
concerning a specific author. What the scientific community seems to agree on is
that the name was minted in the 1930s at the Princeton University (Applegate
et al., 2007).

One of the first important works on the TSP, which is also considered one of
the most important milestones in the history of combinatorial optimization, was
made by Dantzig et al. (1954) from the RAND Corporation’s, who showed that a
route of 49 cities, through each of the 48 US states and Washington DC, had the
shortest route distance. The work was carried out using an ingenious combination
of linear programming, graph theory and map reading. Another important result
has been obtained by Karp (1972), who showed that the problem of determining if
at least one Hamilton tour exists in a sparse graph is NP-complete, which implies
the NP-hardness of the TSP. Therefore, as the VRP is a generalization of the TSP,
the VRP is NP-hard as well (Papadimitriou & Steiglitz, 1998).

TSP has several applications such as planning, logistics, manufacture of mi-
crochips. With slight modifications, is found as a sub-problem in many areas,
such as DNA sequencing (Applegate et al., 2007). In these applications, the cities
represent, customers, soldering points, or DNA fragments, and the distances rep-
resent traveling times, cost, or a similarity measures between DNA fragments. The
TSP also appears in Aerospace problems, such as the active space debris removal
missions (Izzo et al., 2015). In many applications, additional constraints, such
as limited resources or time windows, may be imposed. Furthermore, several dif-
ferent approaches have emerged for solving the TSP, including exact algorithms,
heuristics, metaheuristics and even the Hybridization of them (Applegate et al.,
2007; Anbuudayasankar et al., 2014).

As mentioned above, the TSP has several variations, one of them is the time-
dependent Traveling Salesman Problem (TDTSP), which is a generalization of the
TSP where the cost of any given arc depends on its position in the tour (Gouveia
& Voß, 1995). In the literature (Picard & Queyranne, 1978; Vander Wiel & Sahini-
dis, 1996; Bigras et al., 2008), the time-dependency has been addressed in terms of
travel times, associated with the visiting order of the customers, not with the ar-
rival time or the departure time. However, this way of modeling the problem does
not sound pretty realistic because the time-dependency usually varies according to
the factors which naturally occur on the time of day (e.g., availability of parking
spaces, traffic congestion, and so on). Recently, Taş et al. (2016) have introduced
the TSP with time-dependent service times (TSP-TS) where the time-dependency

Chapter 1. Introduction 3

considers the service times instead of the travel times. Indeed, the service duration
depends on a continuous function of the time at which service starts. Taş et al.
(2016) proved some important properties and proposed a Mixed Integer Linear
Programming (MILP) model, additional strengthening constraints, strengthening
lower and upper bounds and also benchmark instances. In Chapter 2, we propose a
new Mixed Integer Programming model for TSP-TS, incorporating exponentially
many subtour elimination constraints, that are separated in a dynamic way. The
proposed model is enhanced by lower and upper bounds, that improve previous
bounds from the literature. In addition, we develop a multi-operator genetic al-
gorithm and two Branch-and-Cut methods, based on the proposed model. The
algorithms are tested on benchmark symmetric instances from the literature, and
compared with an existing approach. The computational results show that the
proposed exact methods are able to prove the optimality of the solutions found for
a larger set of instances in shorter computing times. We also tested the genetic
and the Branch-and-Cut algorithms on larger size symmetric instances with up to
58 nodes and on asymmetric instances with up to 45 nodes, demonstrating the
effectiveness of the proposed algorithms.

It is very likely that global warming is related with human-made CO2 emissions
and the transport activities have produced around 24% of these emissions, and
17% of them are produced in highways (European Environment Agency, 2011).
Hence, the trend is that more and more countries have started to adopt emission-
reducing actions. This has been reflected also in the recent years with a growing
number of works on the VRP which started to incorporate “green” aspects such
as pollution and alternative fuels, among others. These types of works are called
Green Vehicle Routing Problems (GVRP) and aim to design a route that takes into
account environmental factors such as fuel consumption and CO2 emissions (Lin
et al., 2014; Eglese & Bektaş, 2014). A subcategory of the GVRP is the Pollution
Routing Problem (PRP), which considers the speed as the most important factor
to estimate the CO2 emissions; minimizing at the same time the traveled distance,
and also other relevant factors such as load weight and distribution, vehicle engine,
vehicle design, driving style, engine size and road gradient (Eglese & Black, 2015).
Thus, Bektaş & Laporte (2011) took those ideas and introduced the PRP, an
extension of the VRP with time windows, whose objective is to minimize the
greenhouse gases emission costs plus the labor costs. In chapter 3, motivated by
these recent works on the PRP, we study the Pollution Traveling Salesman Problem
(PTSP), i.e. the problem of determining a Hamiltonian tour that minimizes a
function of fuel consumption (dependent on vehicle speed and load) and driver
costs. We present a MILP model for the PTSP, enhanced with sub-tour elimination
constraints, and two mataheuristic algorithms: an Iterated Local Search algorithm
(ILS) and a Multi-operator Genetic algorithm (MGA). Extensive computational
experiments on PVRP benchmark instances adapted for the PTSP, with up to 50
customers are reported.

One of the most critical logistics activities in modern cities is the waste col-
lection, due to the considerable impact on the quality of life, urban environment,
traffic flows and municipal budgets. In fact, waste management has annual per
capita costs of up to 200e only for the collection of urban waste in European

Chapter 1. Introduction 4

cities (Hoornweg & Bhada-Tata, 2012). An attempt to optimize urban waste col-
lection is the Waste Collection Problem (WCP) which can be formulated as a
special instance of the VRP, in which a vehicle fleet located at a central depot
has to serve a set of containers (Beliën et al., 2014; Ghiani et al., 2014). However,
most existing works (Kim et al., 2006; Benjamin & Beasley, 2010; Buhrkal et al.,
2012; Inghels et al., 2016) address simplified versions where the container loads are
considered to be known in advance and served by a single vehicle depot, without
taking into account rich and realistic WCP environments, e.g. scenarios with a
large number of containers, multiple vehicle depots and uncertainty in waste levels
or demands. A more realistic way is to consider the waste levels of the garbage
containers stochasticly, leading to more reliable routing solutions in waste manage-
ment. In Chapter 4, we propose a rich version of the WCP with multiple depots
and stochastic demands. We present a hybrid algorithm combining metaheuris-
tics with simulation. Furthermore, the Simheuristic approach allows us to study
the effects of cooperation among different depots, thus quantifying the potential
savings this cooperation could provide to city governments and waste collection
companies.

5

Chapter 2

Models and Algorithms for the
Traveling Salesman Problem with
Time-Dependent Service Times

2.1 Introduction
The Traveling Salesman Problem with Time-dependent Service times (TSP-TS)
has been recently introduced in Taş et al. (2016), where Mixed Integer Program-
ming (MIP) models and lower and upper bounds were proposed. In the TSP-TS,
the time to serve a customer is not assumed to be constant, but, as it happens in
some real-life applications, is defined by a function of the start time of service at
the customer. Before work Taş et al. (2016), service times were considered as fixed
values and directly included in the travel times. However, in practice, service times
are not always constant: for example, the availability of parking lots can be differ-
ent at different times of the day, or some areas can be limited to traffic in certain
time periods. Therefore, the vehicle can get closer to or farther from the customers
to be visited, thus requiring shorter or longer service times. Another example is
the personnel availability for loading or unloading goods at customers, that can
vary over time. Similarly, the amount of goods in the customer warehouses can be
smaller at the beginning of the day and increase later on, thus making the service
times needed to store the goods at the customers variable during the day.

In the TSP literature, most of the works that take time dependency into ac-
count consider the variability of the travel times, i.e., study the so-called Time-
Dependent TSP (TDTSP). In several papers, the arc cost is dependent on the
position of the arc in the TSP tour. This problem is related to single machine
scheduling, in which a set of jobs needs to be scheduled, and the transition cost
cijt depends on the two consecutive jobs i and j and on the position t at which
job i is processed. In addition, set-up and cooling costs are considered, respec-
tively, for the initial and final state of the machine. The goal is to determine
the minimum cost sequence of jobs. In Picard & Queyranne (1978), three Integer
Programming formulations are proposed, one of which is a quadratic model. A
Branch-and-Bound algorithm based on a subgradient optimization procedure is

This chapter is based on the contents of: Cacchiani, Contreras-Bolton, & Toth, Models and
Algorithms for the Traveling Salesman Problem with Time-Dependent Service Times. Submitted
to the European Journal of Operational Research, pages 1–30, 2018.

Chapter 2. Models and Algorithms for the TSP-TS 6

developed. In addition, the objective of minimizing the tardiness costs is consid-
ered. In Vander Wiel & Sahinidis (1996), a Benders decomposition approach is
applied to a MIP model, which is a linearization of the quadratic formulation pre-
sented in Picard & Queyranne (1978), and combined with Pareto-optimal Benders
cuts. In Bigras et al. (2008), the two linear formulations proposed in Picard &
Queyranne (1978) are considered, and strengthened by applying Dantzig–Wolfe
decomposition and cuts for the classical TSP and the node packing problem. A
Branch-and-Cut-and-Price algorithm, based on these formulations, is developed.
In Abeledo et al. (2013), the polytope corresponding to a TDTSP linear formula-
tion proposed in Picard & Queyranne (1978) is studied, and facets are identified.
A Branch-and-Cut-and-Price algorithm, that includes the proposed cuts, is de-
veloped. In Miranda-Bront et al. (2014), two formulations presented in Picard
& Queyranne (1978) and Vander Wiel & Sahinidis (1996) are studied and com-
pared. Additional valid inequalities and facets are proposed, and embedded in a
Branch-and-Cut approach. We refer the reader to Gouveia & Voß (1995) for a
classification of the formulations of the TDTSP.

The time dependency related to the travel times is also taken into account
by another group of works that, instead of considering that the arc costs depend
on the position of the arc in the tour, consider that the cost (or travel time)
τij(t) of arc (i, j) depends on the time t at which the vehicle leaves node i. In
Cordeau et al. (2012), the time horizon is partitioned into intervals, and the average
speed value in each interval is assumed to be known. The travel time τij(t) is
then computed according to the function proposed in Ichoua et al. (2003), that
considers the speed to be constant during an interval, and allows it to change when
moving to the following interval, i.e., the travel speeds are constant piecewise.
The travel speed along an arc and during an interval is defined in Cordeau et al.
(2012) as dependent on the maximum arc travel speed, the lightest congestion
factor (i.e., the best congestion during the interval) and the degradation of the
congestion factor w.r.t the least congested arc. In Cordeau et al. (2012), an Integer
Linear Programming (ILP) model, including subtour elimination constraints, is
proposed for this problem, and valid inequalities are derived. A Branch-and-Cut
algorithm is developed and tested on a set of instances having different traffic
patterns. In Arigliano et al. (2018), a Branch-and-Bound algorithm is proposed
for the same problem, and tested on the same instances and on larger size ones (up
to 50 customers). The reported computational results show that this algorithm
outperforms the approach proposed in Cordeau et al. (2012).

Finally, more recently, the problem studied in Cordeau et al. (2012) has been
extended to include time window constraints. This extension was first proposed in
Arigliano et al. (2015), where an ILP model and valid inequalities were proposed.
In addition, a Branch-and-Cut algorithm was developed and tested on instances
adapted from those considered in Cordeau et al. (2012). In Montero et al. (2017),
an alternative formulation, based on the model proposed in Sun et al. (2018)
for the Profitable Time-Dependent TSP with Time Windows and Pickup and
Delivery, was presented, and a Branch-and-Cut algorithm was developed. The
computational results show that this algorithm obtains many additional optimal
solutions compared to the approach presented in Arigliano et al. (2015). The recent
work Vu et al. (2018) also studies the time-dependent TSP with time windows. A

Chapter 2. Models and Algorithms for the TSP-TS 7

solution method, based on the representation of the problem on a time-expanded
network, is proposed. The method relies on the Dynamic Discretization Discovery
framework, proposed in Boland et al. (2017), that works on a partially time-
expanded network, and iteratively refines it until optimality is guaranteed. This
new approach is also tested on the benchmark instances considered in Arigliano
et al. (2015) and obtains the optimal solution for all the instances in shorter
computing times.

2.1.1 Contribution
To the best of our knowledge, the only work studying the TSP-TS is Taş et al.
(2016), where compact Mixed Integer Programming (MIP) models, i.e. formula-
tions having a polynomial number of constraints, have been proposed, together
with lower and upper bounds aimed at improving the solution process. In Section
2.3, we report the main outcomes of Taş et al. (2016). In this chapter, we propose
a new MIP model for the TSP-TS, that can be used with linear or quadratic ser-
vice time functions, and that embeds novel improved lower and upper bounds. In
this model, we consider exponentially many subtour elimination constraints, that
are separated dynamically. In addition, we developed a multi-operator Genetic
Algorithm (GA), that includes many crossover and mutation operators from the
literature, and inserts, in the initial population, solutions generated by using the
solution of the continuous relaxation of the proposed MIP model. The main con-
tribution of this work is the development of Branch-and-Cut (B&C) algorithms,
based on the presented model: in particular, we propose a B&C algorithm that
includes all the improved bounds and the subtour elimination constraints separa-
tion, and a Dynamic B&C algorithm, in which the lower and upper bounds are
dynamically updated at each node of the decision tree. The GA, B&C and Dy-
namic B&C algorithms are tested on symmetric benchmark instances from Taş
et al. (2016), and on asymmetric and larger size symmetric instances from the
TSPLIB library (Reinelt (1991)).

Section 2.2 presents the problem definition and introduces the used notation.
In Section 2.3 we report the mathematical models and the lower and upper bounds
proposed in Taş et al. (2016). Section 2.4 describes the new mathematical model
and the improvements to the lower and upper bounds from the literature. Section
2.5 is devoted to the description of the solution methods, i.e. the GA, B&C
and Dynamic B&C algorithms, and in Section 3.5 we report the obtained results
and the comparison with the method presented in Taş et al. (2016). Finally, we
conclude our chapter with some remarks in Section 3.6.

2.2 Problem Definition
TSP-TS is defined on a complete directed graph G = (N,A). The set of nodes
N = {0, 1, . . . , n, n+ 1} contains the set of customers N \ {0, n+ 1} and the depot
represented by nodes 0 and n + 1 (the depot is duplicated for convenience). The
set of arcs A contains one arc (i, j) for each pair of nodes and has an associated
travel time tij, as in the classical Asymmetric TSP (ATSP) (Öncan et al. (2009),
Roberti & Toth (2012)). In addition, each customer i ∈ N \ {0, n + 1} requires a

Chapter 2. Models and Algorithms for the TSP-TS 8

service time, defined as a continuous function si(bi), where bi represents the start
time of service at node i. We set b0, s0(b0), and sn+1(bn+1) to 0, since the depot
does not require any delivery of goods.

In TSP-TS, we have to determine the Hamiltonian path (i.e., the path visiting
each node exactly once) from node 0 to node n+ 1 that minimizes the total path
duration, given by the sum of the total travel and service times. In the following,
we will use the terms “path” or “route” as synonyms, since nodes 0 and n+ 1 are
two copies of the same depot. Since TSP-TS generalizes ATSP, that occurs when
si(bi) = 0 (i ∈ N \ {0, n + 1}), it is NP-hard. In addition, as observed in Taş
et al. (2016), an optimal ATSP solution is not always optimal for TSP-TS. We
next report three important properties proven in Taş et al. (2016) that are used
for the definition of the mathematical models and of the lower and upper bounds.

Property 1. First-In-First-Out property (FIFO): If the service at customer i
starts at a time bi, any service starting at a later time at that customer cannot be
completed earlier than bi + si(bi). In addition, in Taş et al. (2016), the authors
proved that si(bi) satisfies the FIFO property if and only if dsi(bi)

dbi
≥ −1.

Property 2. Waiting property: If the salesman arrives at customer i before b′i
(the earliest time at which the FIFO property starts holding at that customer),
waiting at that customer to begin service at time b′i is then beneficial.

Property 3. Arrival time property: If all customers have the same service time
function, then the waiting time required to satisfy the FIFO property can be spent
at the depot.

As in Taş et al. (2016), we will consider service time functions that satisfy
the FIFO property for any value of the arrival time, and we will assume that the
arrival time property holds, i.e., the start time of service at a customer coincides
with the arrival time at that customer.

2.3 Mathematical Models and Bounds from the
Literature

In this section, we report the MIP models and the lower and upper bounds pro-
posed in Taş et al. (2016). The best method proposed in that chapter will be used
for comparison in Section 3.5.

2.3.1 Basic Model
We present the basic model that is a natural formulation for the TSP-TS. For every
arc (i, j) ∈ A, we introduce a binary variable xij (i ∈ N, j ∈ N) assuming value
1 if node j is served immediately after node i (and 0 otherwise). In addition, for
every node i ∈ N , we introduce a non-negative variable bi representing the arrival
time at node i. According to the arrival time property, bi also corresponds to the
start time of service at i. The basic model reads as follows:

Chapter 2. Models and Algorithms for the TSP-TS 9

min
∑
i∈N

∑
j∈N

tijxij +
∑

i∈N\{0,n+1}
si(bi) (2.1)

∑
j∈N\{i}

xij = 1, i ∈ N \ {n+ 1}, (2.2)
∑

i∈N\{j}
xij = 1, j ∈ N \ {0}, (2.3)

bi + si(bi) + tij −M(1− xij) ≤ bj, i ∈ N, j ∈ N, (2.4)
bi ≥ 0, i ∈ N, (2.5)
xij ∈ {0, 1}, i ∈ N, j ∈ N. (2.6)

The objective function (2.1) is to minimize the total duration of the Hamil-
tonian path from node 0 to node n + 1, where the duration is given by the sum
of the total travel times (first summation) and of the total service times (second
summation). As in the classical ATSP, we impose, by constraints (2.2) and (2.3)
respectively, to have exactly one outgoing arc from each node except for the de-
pot n + 1, and one ingoing arc to each node, except for the depot 0. The novel
constraints (2.4) are specific for the TSP-TS and require that, if node j is visited
immediately after node i, the start time of service bj at node j must be at least the
start time of service bi at node i plus the service time si(bi) at node i plus the travel
time from i to j. To deactivate these constraints when the corresponding arc (i, j)
is not selected, a large positive constantM is used, whose value is determined by a
lower bounding procedure described in the following. Note that these constraints
guarantee that subtours will not be selected, thus making model (2.1)-(2.6) valid
without explicit subtour elimination constraints. Finally, (2.5) and (2.6) define
the domain of the variables.

The lower bounding procedure proposed in Taş et al. (2016) for determining
the value of M is proven to be valid when all customers have the same (quadratic
or linear) service time function, and works as follows. The first n + 1 largest
travel times are selected and taken in descending order. Let L(1), . . . , L(n+ 1) be
the ordered list of the selected travel times. Then, the “path” consisting of the
sequence of these travel times is considered, and the arrival (bi) and departure (di)
times at each node i in the path are computed:

• b1 = L(1); di = bi + si(bi), i = 1, . . . , n

• bi = di−1 + L(i), i = 2, . . . , n+ 1.

The M value is set equal to bn+1, i.e., it corresponds to the arrival time at the
depot. This value is sufficient to deactivate constraints (2.4) for arcs (i, j) ∈ A
having xij = 0.

2.3.2 Gavish and Graves Model
In Taş et al. (2016), in order to strengthen model (2.1)-(2.6), the Gavish and Graves
(GG) subtour elimination constraints (Gavish & Graves (1978)) were added. Let
gij (i ∈ N \ {0, n + 1}, j ∈ N \ {0}) be a non-negative variable denoting the

Chapter 2. Models and Algorithms for the TSP-TS 10

number of arcs in a path from depot 0 to arc (i, j) ∈ A. The GG constraints read
as follows:

∑
j∈N\{0}

gij −
∑

j∈N\{0,n+1}
gji = 1, i = 1, . . . , n, (2.7)

0 ≤ gij ≤ nxij, i = 1, . . . , n, j = 1, . . . , n+ 1. (2.8)

Constraints (2.7) require that the number of arcs in a path from depot 0 to node
i (whatever successor node is selected from i), must be one unit larger than the
number of arcs in a path from depot 0 to the predecessor of node i (whatever node
it is). Constraints (2.8) require the gij variables to be non-negative and restrict
their value to be 0, if arc (i, j) is not selected, and at most n, if it is selected, since
the length of the full Hamiltonian path is n+ 1.

2.3.3 Lower and Upper Bounds
In Taş et al. (2016), three bounds were proposed:

• upper bound on the total route duration (B1),

• lower bound on the total service time (B2),

• lower and upper bounds on the arrival time at each customer (B3).

The upper bound B1 on the total route duration of the optimal solution is
presented for the case in which all customers have the same service time function.
It consists of applying the Nearest Neighbor Heuristic (NNH) algorithm for the
ATSP. The obtained sequence of nodes (0, a(1), a(2), . . . , a(n), a(n + 1) = n + 1)
is used to define the list of travel times L(1), L(2), . . . , L(n + 1): in particular,
L(1) = t0,a(1) and L(k) = ta(k−1),a(k) (k = 2, . . . , n + 1). Then, arrival (bi) and
departure (di) times at each node i in the path are computed, as described for the
computation of M . The value of the upper bound B1 is set equal to the arrival
time bn+1 at the depot.

The lower bound B2 on the total service time is proposed for the case in which
all customers have the same linear service time function si(bi) = βbi + γ, where
β, γ > 0, and si(bi) > 0 (i ∈ N \ {0, n+ 1}). The value of B2 is computed by con-
sidering the first n smallest travel times. More precisely, let L(1), L(2), . . . , L(n)
be the ascending ordered list of the first n smallest travel times, consider the path
(0, 1, 2, . . . , n) whose arcs have the selected travel times, and compute the arrival
(bi) and departure (di) times at each node i in the path, as for the computation of
M . The value of B2 is given by dn −

∑n
i=1 L(i), i.e., it is obtained by considering

the departure time from the last visited customer n and subtracting the total route
travel time.

Finally, the upper and lower bounds B3 on the arrival time at each customer
i ∈ N \ {0, n + 1} are set, respectively, as: bi ≤ M and bi ≥ LB3(i) = earliest
time at which the FIFO property starts holding for customer i, which is 0 for the
considered benchmark instances.

Chapter 2. Models and Algorithms for the TSP-TS 11

The best method proposed in Taş et al. (2016) consists of the basic model
(2.1)-(2.6) (where the value of M is computed as described in Section 2.3.1), with
the additional GG (polynomial) subtour elimination constraints (2.7)-(2.8) and
the lower and upper bounds B1, B2 and B3. We identify this method as TGJL16.

2.4 Improvements to Models and Bounds
In Section 2.4.1, we propose improved lower and upper bounds, and an improved
value for M . In addition, in Section 2.4.2, we enhance the basic model by using
exponentially many subtour elimination constraints (SECs). Furthermore, in Sec-
tion 2.4.3, we propose a new model for the TSP-TS, which can also embed the
improved bounds and the SECs.

2.4.1 Improved Bounds (IBs) and M

As described in Section 2.3, in Taş et al. (2016), three bounds were proposed
to strengthen the basic model. We improve these three bounds, under the same
assumptions, by proposing:

• an improved upper bound on the total route duration (IB1),

• an improved lower bound on the total service time (IB2),

• improved lower and upper bounds on the arrival time at each customer (IB3).

To compute an upper bound IB1 on the total route duration, instead of apply-
ing the NNH algorithm, we developed a multi-operator Genetic Algorithm (GA),
that provides high quality solutions to the TSP-TS. GA is based on the calibration
of the probabilities to be used for executing the considered crossover and mutation
operators, performed according to the algorithm proposed in Contreras-Bolton &
Parada (2015) for the TSP, but it also relies on the solution of the continuous
relaxation of the basic model. In particular, as it will be shown in the computa-
tional results (Section 2.6.1), the GA obtains better solutions when the SECs are
included in the model. The GA will be described in Section 2.5.1. It provides the
sequence of nodes of the Hamiltonian path, that is used to compute the arrival
and departure times at each node, and IB1 is set equal to bn+1.

The improved lower bound on the total service time IB2 is proposed under
the same assumptions considered for B1, i.e., all customers have the same linear
service time function si(bi) = βbi + γ, where β, γ > 0, and si(bi) > 0 (i ∈
N \ {0, n + 1}). The value of IB2 is computed as the maximum of two lower
bounds IBL2 and IBE2, obtained as follows. In IBL2, instead of considering the
first n smallest travel times as done in Taş et al. (2016), we compute, for each node
i (i = 0, 1, . . . , n) the minimum travel time τi of the arcs leaving node i (avoiding to
use arc (j, i) if arc (i, j) is used). Then, we let L(1), L(2), . . . , L(n) be the ascending
ordered list of the smallest n values τi, and proceed as in the computation of B2,
i.e., we compute the arrival (bi) and departure (di) times at each node i and set
IBL2 = dn −

∑n
i=1 L(i). For IBE2, in a similar way, we compute, for each node i

(i = 1, 2, . . . , n) the minimum travel time τi of the arcs entering node i (avoiding to

Chapter 2. Models and Algorithms for the TSP-TS 12

use arc (j, i) if arc (i, j) is used), and proceed as for the computation of IBL2. The
improved lower bound IB2 is then set as max{IBL2, IBE2}. The validity of IB2
relies on the fact that, in any Hamiltonian path, every node (but the depot) must
be visited exactly once. Therefore, we need to reach each node by selecting only
one of its leaving (entering, resp.) arcs. Since the linear service time function is
non-decreasing, arriving at a node earlier gives a smaller service time than arriving
there later. For this reason, we can consider the smallest travel time arc leaving
(entering, resp.) every node.

Improved lower and upper bounds IB3 on the service start time at each cus-
tomer i (i = 1, 2, . . . , n) can be computed by considering that every node must
be reached starting from the depot 0 and must reach depot n + 1. Therefore, for
every customer i, the start time of service (which corresponds to the arrival time
at the customer thanks to the FIFO property) cannot be smaller than the time
corresponding to the shortest path from the depot 0 to i. In other words, bi ≥ sp0,i,
where sp0,i is the value of the shortest path from depot 0 to customer i, which
also includes in the computation the service times at the visited nodes, except for
the service time at i. In addition, in order to determine a solution not worse than
that obtained by the GA algorithm, the start time of service at each customer i
cannot be larger than the total route duration found by GA, i.e., bi ≤ IB1. The
latter upper bound can be further improved, by considering that the vehicle must
go back to the depot, i.e., the depot n + 1 must be reached from every customer
i. This gives the following upper bound on the service start time of customer i:
bi ≤ IB1−spi,n+1, where spi,n+1 gives the value of the shortest path from i to n+1,
by taking into account the service times at the visited nodes, including the service
time at i. Note that, for the quadratic service time function, in the computation
of the shortest path spi,n+1 we only consider the travel times.

Finally, when all customers have the same (quadratic or linear) service time
function, as assumed in Taş et al. (2016), we propose an improvement of the value
of M . Recall that, in constraints (2.4), the value of M is used to deactivate the
constraint, when arc (i, j) is not selected. The value of M must be such that
bj ≥ −M + bi + si(bi) + tij, when arc (i, j) is not in the solution, i.e., M ≥
bi + si(bi) + tij− bj. We consider the value IB1 of the feasible solution obtained by
the GA algorithm, which represents the total route duration, i.e., the arrival time
at n + 1. However, this value is not necessarily enough to deactivate constraints
(2.4), since arc (i, j) might not be selected in the GA solution and might be an arc
with a “long” travel time tij. Therefore, the value of M is chosen as dependent
on the specific arc (i, j), i.e., we use Mij instead of M . We set M0j = t0j for
j = 1, . . . , n, and Mij = IB1 + tij for i = 1, . . . , n, j = 1, . . . , n+ 1. Note that the
replacement ofM with the valuesMij for each arc (i, j) is correct: indeed, for arcs
(0, j) (j = 1, . . . , n), M0j = t0j ≥ b0 + s0(b0) + t0j − bj, since b0 = s0(b0) = 0; for
arcs (i, j) (i = 1, . . . , n, j = 1, . . . , n + 1), Mij = IB1 + tij ≥ bi + si(bi) + tij − bj,
since bi + si(bi) ≤ IB1 (as IB1 is an upper bound on the total route duration).

2.4.2 Subtour Elimination Constraints (SECs)
In Taş et al. (2016), additional subtour elimination constraints, namely GG con-
straints, were used to improve the basic model performance. The authors also tried

Chapter 2. Models and Algorithms for the TSP-TS 13

other compact ATSP formulations with a polynomial number of subtour elimina-
tion constraints: the Miller, Tucker and Zemlin (MTZ) (Miller et al. (1960)) and
the Desrochers and Laporte (DL) (Desrochers & Laporte (1991)) formulations.
However, the best performance was achieved by considering the GG constraints.
In this chapter, we propose to replace the GG constraints (2.7)-(2.8) with the ex-
plicit subtour elimination constraints (SECs) proposed in Dantzig et al. (1954) for
the ATSP: ∑

i∈S

∑
j∈N\S

xij ≥ 1, S ⊆ N \ {n+ 1}, 0 ∈ S, |S| ≥ 2. (2.9)

These constraints, imposed for every subset S of nodes that contains at least two
nodes, the depot 0, and does not contain depot n+ 1, require to select at least one
arc going from S to N \ S. Since the number of constraints (2.9) is exponential
in the number of nodes, we adopt a constraint separation procedure proposed in
Padberg & Rinaldi (1990).

2.4.3 New Model (NM)
The new model (NM) described in this section is based on the formulation proposed
in Maffioli & Sciomachen (1997) for the ATSP with Time Windows (ATSP-TW).
For sake of clarity, we start by presenting this model, and then we show how to
modify it to include the service time component.

For every arc (i, j) ∈ A, let xij be a binary variable assuming value 1 if arc
(i, j) is selected in the optimal route (and 0 otherwise). For every customer i ∈ N ,
let [ri, di] be the corresponding time window. Moreover, for i ∈ N \ {0, n+ 1} and
j ∈ N \ {0}, i 6= j, let yij be an additional variable with the following meaning:

• if xij = 0 then yij = 0;

• if xij = 1 then yij denotes the arrival time at node i when node j is visited
immediately after node i.

The ATSP-TW model presented in Maffioli & Sciomachen (1997) reads as follows:

min
∑
i∈N

∑
j∈N

tijxij (2.10)
∑

j∈N\{i}
xij = 1, i ∈ N \ {n+ 1}, (2.11)

∑
i∈N\{j}

xij = 1, j ∈ N \ {0}, (2.12)

rixij ≤ yij ≤ dixij, i ∈ N \ {0, n+ 1}, j ∈ N \ {0}, i 6= j, (2.13)∑
i∈N\{0,n+1},i 6=j

yij +
∑

i∈N\{n+1},i 6=j

tijxij ≤
∑

k∈N\{0},k 6=j

yjk, j ∈ N \ {0, n+ 1},

(2.14)
xij ∈ {0, 1}, i ∈ N, j ∈ N, (2.15)
yij ≥ 0, i ∈ N \ {0, n+ 1}, j ∈ N \ {0}, i 6= j. (2.16)

Chapter 2. Models and Algorithms for the TSP-TS 14

The objective function (2.10) calls for minimizing the total travel times. Con-
straints (2.11) and (2.12) require, respectively, to have an outgoing arc from every
node except for the depot n+ 1, and an ingoing arc for every node except for the
depot 0. Time window constraints are imposed by (2.13), where the arrival time
yij at node i (when j is visited immediately after i) is required to be within the
time window [ri, di]. These constraints are also used to set yij to 0 when the arc
(i, j) is not selected in the optimal route. Constraints (2.14) are used to specify
the arrival time yij at every customer j ∈ N \ {0, n + 1}: when node j is visited
immediately after node i, the arrival time yjk at customer j, no matter which node
k is visited afterwards (including depot n + 1), must be at least the arrival time
yij at node i, i.e., any predecessor of customer j (except for the depot), plus the
travel time tij from node i to node j. Finally, constraints (2.15) and (2.16) define
the variable domains.

The new model (NM) that we propose uses, in addition to the xij and yij

variables, the bi variables defined in model (2.1)-(2.6), representing the start time
of service at node i ∈ N . We first present NM for the case of linear service time
function si(bi) = βbi + γ, where β, γ > 0, and si(bi) > 0 (i ∈ N \ {0, n + 1}),
and then extend it to a quadratic service time function. Model (2.10)-(2.16) is
modified to deal with time-dependent service times, as follows:

min
∑
i∈N

∑
j∈N

tijxij +
∑

i∈N\{0,n+1}
si(bi) (2.17)

∑
j∈N\{i}

xij = 1, i ∈ N \ {n+ 1}, (2.18)
∑

i∈N\{j}
xij = 1, j ∈ N \ {0}, (2.19)

bi =
∑

k∈N\{0},k 6=i

yik, i ∈ N \ {0, n+ 1}, (2.20)

yij ≥ LB3(i)xij, i ∈ N \ {0, n+ 1}, j ∈ N \ {0}, i 6= j, (2.21)
yij + βyij + γxij ≤Mxij i ∈ N \ {0, n+ 1}, j ∈ N \ {0}, i 6= j, (2.22)∑
i∈N\{0,n+1},i 6=j

yij+
∑

i∈N\{0,n+1},i 6=j

βyij +
∑

i∈N\{n+1},i 6=j

γxij+
∑

i∈N\{n+1},i 6=j

tijxij ≤
∑

k∈N\{0},k 6=j

yjk, j ∈ N \ {0, n+ 1}, (2.23)

bi ≥ 0, i ∈ N, (2.24)
xij ∈ {0, 1}, i ∈ N, j ∈ N, (2.25)
yij ≥ 0, i ∈ N \ {0, n+ 1}, j ∈ N \ {0}, i 6= j. (2.26)

The objective function (2.17) is the same as (2.1), and minimizes the total
route duration given by the sum of the total travel and service times. As in the
previous models, constraints (2.18) and (2.19) impose to select an outgoing arc
from every node except for the depot n + 1 and an ingoing arc for every node
except for the depot 0. Constraints (2.20) are used to define the values of the

Chapter 2. Models and Algorithms for the TSP-TS 15

bi variables: the arrival time bi at i can be expressed as the arrival time yik, no
matter which successor node k is chosen. Constraints (2.21) and (2.22), in which
lower and upper bounds on the arrival times at the customers are used, replace the
time window constraints (2.13). In particular, we use the bounds B3 proposed in
Taş et al. (2016). Note that constraints (2.21) and (2.22) ensure that yij is set to 0
if xij is also 0. Constraints (2.23) correspond to (2.14) but also include the service
time at the customers: for every customer j, when node j is visited immediately
after node i, the arrival time yjk at j (no matter which successor k is selected)
must be at least the arrival time yij at its predecessor i (no matter which it is)
plus the service time at i (given by βbi + γ), plus the travel time tij between i and
j. Constraints (2.24)-(2.26) restrict the variable domain.

In order to improve NM, we can insert the improved bounds IB3 in constraints
(2.21) and (2.22) as follows:

yij ≥ sp0,ixij, i ∈ N \ {0, n+ 1}, j ∈ N \ {0}, i 6= j, (2.27)
yij + βyij + γxij ≤ (IB1 − spi,n+1)xij i ∈ N \ {0, n+ 1}, j ∈ N \ {0}, i 6= j.

(2.28)

In particular, the arrival time yij at node i, when j is its successor, must be at
least the value of the shortest path from the depot 0 to i, if arc (i, j) is selected.
In addition, the arrival time yij at node i, when j is its successor, plus the service
time si(bi), which corresponds to βbi + γ, must be at most the improved upper
bound IB1 on the total route duration minus the value of the shortest path from
i to the depot n+ 1, when arc (i, j) is selected.

If we consider a quadratic service time function defined as si(bi) = αb2
i−βbi+γ,

as done in Taş et al. (2016), constraints (2.22) and (2.23) are changed as follows.

yij + αy2
ij − βyij + γxij ≤Mxij i ∈ N \ {0, n+ 1}, j ∈ N \ {0}, i 6= j,

(2.29)∑
i∈N\{0,n+1},i 6=j

yij+
∑

i∈N\{0,n+1},i 6=j

αy2
ij −

∑
i∈N\{0,n+1},i 6=j

βyij +
∑

i∈N\{n+1},i 6=j

γxij+
∑

i∈N\{n+1},i 6=j

tijxij ≤
∑

k∈N\{0},k 6=j

yjk, j ∈ N \ {0, n+ 1}. (2.30)

A similar improvement as in the case of the linear service time functions can
be applied for the quadratic case by replacing constraints (2.29) with the following
ones:

yij +αy2
ij−βyij +γxij ≤ (IB1−spi,n+1)xij i ∈ N \{0, n+1}, j ∈ N \{0}, i 6= j.

(2.31)
In the following, we will call NMB the model corresponding to (2.17)-(2.26), for

the linear service time functions, and to (2.17)-(2.21), (2.24)-(2.26), (2.29)-(2.30),
for the quadratic service time function. We will call NMI the improved model
corresponding to (2.17)-(2.20), (2.23)-(2.26), (2.27)-(2.28), for the linear service

Chapter 2. Models and Algorithms for the TSP-TS 16

time functions, and to (2.17)-(2.20), (2.24)-(2.26), (2.27), (2.30)-(2.31), for the
quadratic service time function.

2.5 Solution Methods
To solve the TSP-TS we propose the metaheuristic algorithm GA, presented in
Section 2.5.1, that provides high quality solutions in very short computing times
(see Section 2.6.1), and two exact B&C algorithms, described in Section 2.5.2, that
use all the improved bounds (for the quadratic service times, IB2 is not used), the
improved value of M and the SECs separation. The B&C algorithms are applied
using the new model NMI and, for comparison, the basic model.

2.5.1 Genetic Algorithm
Genetic algorithms are effective metaheuristic algorithms, that belong to the class
of evolutionary algorithms, and are based on the evolution of a population of
individuals, corresponding to solutions of the considered problem. In the proposed
GA, each individual corresponds to a Hamiltonian path from depot 0 to depot n+1,
and we represent it as a permutation of nodes in {1, . . . , n}.

An initial population is computed by applying three algorithms, each one gen-
erating a given percentage of the population: (i) an algorithm that generates a
random route (25% of the initial population): in particular, starting from the de-
pot 0, we choose a random node, and then, from the selected node, we select the
next node in a random way among the non-visited ones, and so on, until a Hamilto-
nian path is built; (ii) the NNH algorithm with each individual generated starting
from a different randomly chosen node in N (50% of the initial population); (iii)
a continuous relaxation based algorithm, that uses the optimal continuous relax-
ation solution x of the basic model to build a feasible Hamiltonian path (25% of
the initial population). In particular, one individual of the population is obtained
in a deterministic way as follows: we define the depot 0 as the starting node h, and
iteratively select the node j such that xhj + xjh has the highest value; arc (h, j)
is added to the route, and j becomes the new starting node h. If, for all nodes
j connected to h, xhj + xjh = 0, then we choose the arc with the smallest thj.
The procedure is repeated until a complete feasible Hamiltonian path has been
obtained. Then, the remaining individuals are obtained by adding randomness in
the construction of the route: we start from the depot 0, defined as node h, and
select the next node j according to a probability given by xhj + xjh ∈ [0, 2]. The
selected node j becomes the new starting node h, and the procedure is repeated
until a Hamiltonian path has been built. We propose two variants for the continu-
ous relaxation based algorithm, which either consider or not the SECs separation
during the solution of the relaxed model. A comparison of the two variants is
reported in Section 2.6.1.

We consider many crossover and mutation operators, listed in the following.
We omit their description and refer the interested reader to the corresponding
reference: Order Based Crossover (OX2) (Syswerda (1991)), Distance Preserving
Crossover (DPX)(Reisleben et al. (1996)), Maximal Preservative Crossover (MPX)

Chapter 2. Models and Algorithms for the TSP-TS 17

(Mühlenbein (1991)), Heuristic Crossover (HX) (Grefenstette et al. (1985)), Mod-
ified Inver-over Operator (MIO) (Wang et al. (2012)), Uniform Nearest Neighbor
(UNN) (Buriol et al. (2004)), Exchange Mutation (EM) (Banzhaf (1990)), Scram-
ble mutation (SM) (Syswerda (1991)), Inversion mutation (IVM) (Fogel (1993)),
Insertion Mutation (ISM) (Fogel (1988)), Greedy Sub-Tour Mutation (GSTM) (Al-
bayrak & Allahverdi (2011)) and 3-opt (we use a simplified 3-opt version, which
considers all pairs of arcs and selects the third arc randomly out of ten arcs).

We performed a calibration of the probabilities to use for each crossover and
mutation operator, by using the algorithm proposed in Contreras-Bolton & Parada
(2015), which considers many alternative operators and finds a good combination
of them. In Contreras-Bolton & Parada (2015), the authors studied how to select
appropriate combinations of crossover and mutation operators, typically used for
the TSP, and applied evolutionary computing to determine the best probability for
each operator. The algorithm proposed in Contreras-Bolton & Parada (2015) was
calibrated on a subset of the TSP-TS instances considered in Section 3.5 (three
symmetric ones and three asymmetric ones) and by considering the small linear
service time function si = 5(10−3)bi + 3(10−2) (i ∈ N \{0, n+ 1}). Then, the same
probabilities are used in all the computational experiments.

We consider an initial population of 150 individuals, that can contain dupli-
cated individuals. Each individual is evaluated (by starting from depot 0), ac-
cording to the objective function (2.1), that represents the total route duration.
An iterative loop is then executed to evolve the population, until a terminating
condition is met (in our computational experiments, 200 iterations are performed).
At each iteration, the following steps are executed:

1. Selection is used to select an individual in the population. It is a tournament
selection based on three individuals. In particular, three individuals are
randomly chosen from the current population and the best one is selected.

2. Crossover is used to combine two individuals of the population. Once that
two individuals have been selected (according to the tournament selection),
one of the crossover operators, according to the probabilities reported in
Table 2.1, is applied. The crossover operator is applied on the two individuals
(parents) with 85% probability.

3. Mutation is used to modify an individual in order to add diversity to the
population and to ensure the exploration of a large solution space. It is
applied on the offspring generated at step 2, with 20% probability. One of
the mutation operators, according to the probabilities shown in Table 2.1, is
selected and applied to obtain a new individual.

4. Evaluation is applied to compute the quality of the obtained solutions: the
offspring generated by crossover and mutation are evaluated, according to
the objective function (2.1).

5. Elitism is applied as a last step: the offspring population created by se-
lection, crossover and mutation replaces the original parental population,
but the 10% worst offspring are replaced by the best parents in the current
population.

Chapter 2. Models and Algorithms for the TSP-TS 18

Despite its simplicity, GA is able to find, in very short computing times, solu-
tions of the TSP-TS with small percentage gaps with respect to the best known
solution values, as shown in Section 2.6.1.

i Crossover Prob. Mutation Prob.
1 OX2 0.010 EM 0.100
2 DPX 0.400 SM 0.009
3 MPX 0.076 IVM 0.008
4 HX 0.214 ISM 0.018
5 MIO 0.100 GSTM 0.425
6 UNN 0.200 3-opt 0.440

Table 2.1: Probabilities of using each crossover or mutation operator.

2.5.2 Branch-and-Cut and Dynamic Branch-and-Cut Al-
gorithms

We propose a B&C algorithm, in which the SECs are separated at every node of
the decision tree by using the separation procedure proposed in Padberg & Rinaldi
(1990) until no violated constraints exist. The B&C is based on the new model
NMI, in which all the improved bounds IB1, IB2 and IB3, as well as the improved
value of M , are used. Note that, since IB2 is only valid for linear service time
functions, as explained in Section 2.4.1, we do not apply it on instances with a
quadratic service time function. The GA algorithm is used to define the value of
IB1, and for the upper bound on the start time of service in IB3. In the B&C
algorithm, we apply the branching rules chosen by default in the CPLEX solver,
and use the callback functions to separate the SECs.

Beside the B&C algorithm, we also propose a Dynamic B&C algorithm, in
which the improved bounds IB2 and IB3 are dynamically updated during the so-
lution process in order to take into account the branching decisions. More precisely,
the two bounds are recomputed at every node of the decision tree, by considering
that some arcs (i, j) have been selected in the solution (xij = 1) and must be
chosen in the bound computation, and other arcs have been discarded (xij = 0)
and must not be used in the bound computation. In this way, better bounds can
be obtained during the exploration of the decision tree. The improved bound IB1
is not updated, since the starting value computed at the root node is already close
to the value of the best known solution, and the computing time of GA, although
small, is not negligible. In IB2, the smallest leaving (entering, resp.) arc for every
node i is selected only among the allowed ones: there is no choice if variable xij

is fixed to 1, and the arc is chosen only among those not set to 0. In IB3, the
shortest path computation for sp0,i and spi,n+1 takes into account the available
arcs.

The B&C and the Dynamic B&C algorithms can also be applied on the basic
model (2.1)-(2.6), whose continuous relaxation is strengthened by the SECs, by
including all the improved bounds and the improved value of M . This alternative
method will be considered in the computational experiments for comparison.

Chapter 2. Models and Algorithms for the TSP-TS 19

2.6 Computational Results
All the models and algorithms were implemented in C++. All the experiments
were executed on an Intel(R) Core(TM) i7-6900K with 3.20 GHz and 64 GB of
RAM (with a single thread), using GNU/Linux Ubuntu 16.04, and CPLEX 12.7.1
was used as solver of the MIP models and of their continuous relaxations. In the
computational experiments, we considered the 22 symmetric instances introduced
in Taş et al. (2016), adapted from the TSPLIB (Reinelt (1991)), and new asym-
metric and larger size symmetric instances, also adapted from the TSPLIB. The
22 symmetric instances contain up to 45 nodes (and an additional node for the
ending depot). In Taş et al. (2016), the original travel times were modified in order
to have the same average travel time per arc in each instance. The new instances
correspond to all the symmetric (resp. asymmetric) instances contained in the
TSPLIB with up to 58 (resp. 45) nodes. The travel times are adjusted according
to the same rule used in Taş et al. (2016).

For comparison with Taş et al. (2016) we consider the same linear and quadratic
service time functions, defined as follows:

• small service times: si = 5(10−3)bi + 3(10−2) (i ∈ N \ {0, n+ 1});

• medium service times: si = 10−2bi + 6(10−2) (i ∈ N \ {0, n+ 1});

• large service times: si = 2(10−2)bi + 1.2(10−1) (i ∈ N \ {0, n+ 1});

• quadratic service times: si = 4(10−5)b2
i −4(10−3)bi +3(10−1) (i ∈ N \{0, n+

1}).

We first report, in Section 2.6.1, the computational results of the GA algorithm
on the 22 symmetric instances introduced in Taş et al. (2016). Then, in Section
2.6.2, we report the comparison, in terms of the lower bounds of the continuous
relaxation (Section 2.6.2) and of the integer solutions (Section 2.6.2), of the pro-
posed methods with the best method (TGJL16) presented in Taş et al. (2016), by
considering the 22 symmetric instances from Taş et al. (2016). Finally, in Section
2.6.3, we report the results obtained on the larger size symmetric instances and
on the asymmetric instances.

For the B&C and Dynamic B&C algorithms, as well as for TGJL16, we set a
time limit of 7200 seconds for the 22 symmetric instances from Taş et al. (2016),
and of 50000 seconds for the new instances. To have a fair comparison with
TGJL16, we implemented the corresponding model (which includes the GG con-
straints and the bounds B1, B2 and B3) and run the CPLEX solver on the same
computer.

2.6.1 Genetic Algorithm
We report the results obtained by the GA algorithm on the 22 symmetric instances
from Taş et al. (2016) with small and medium service times in Table 2.2, and with
large and quadratic service times in Table 2.3. The GA algorithm was run 10 times
on each instance. In each table, we show the instance name, in which the number
indicates the number of nodes (i.e., n+1) in the corresponding graph, and the best

Chapter 2. Models and Algorithms for the TSP-TS 20

known solution value (obtained by TGJL16 or by the proposed B&C and Dynamic
B&C algorithms). Then, we report for the considered service time function (small
and medium in Table 2.2, large and quadratic in Table 2.3), the results obtained by
the GA algorithm in two variants: the first one does not consider the separation of
the SECs in the solution of the continuous relaxation, used to generate a subset of
the initial population, while the second one includes it. For each variant, we show,
for each instance, the average and the minimum percentage gaps (computed w.r.t.
the best solution value), obtained over the 10 runs, and the average computing
time (expressed in seconds) over the 10 runs. Note that the computing time to
obtain the minimum percentage gap is ten times the average computing time. In
the last two rows, we show the averages over all instances, of the values in the
corresponding columns, and the number of best known solutions found.

As we can observe, the GA algorithm finds the best known solution for all
instances except one (when the large service time function is considered). The
computing time is very short in all cases, being at most 1.7 seconds, on average,
for the quadratic service time function with SECs. The average percentage gap
over 10 runs when the SECs separation is included is always not worse than when it
is neglected. The minimum percentage gap over 10 runs when the SECs separation
is taken into account is not worse than when it is neglected, with the exception of
one instance in the case of the small service time function. We can also observe
that the largest gap among all instances w.r.t. the best known solution value is
0.966% (for instance dantzig42 and medium service time). In the computation of
IB1 and IB3 we decided to use the minimum cost solutions obtained out of 5 runs
to limit the computing times.

2.6.2 Comparison with TGJL16
This section is devoted to the comparison of the results obtained by the proposed
exact algorithms with the results obtained by the best method (TGJL16) presented
in Taş et al. (2016). We show in Section 2.6.2 the comparison of the lower bounds
obtained by solving the continuous relaxation of the best model proposed in Taş
et al. (2016) with those obtained by solving the continuous relaxation of the new
model NMI, enhanced with improved bounds and SECs separation. In addition,
we show in Section 2.6.2 the comparison of the upper bounds obtained by TGJL16
and by the proposed B&C and Dynamic B&C algorithms. The times required for
computingM , and the lower and upper bounds are included in the total computing
times shown in the following tables, both for TGJL16 and the proposed methods.

Lower Bounds

We present, in Tables 2.4, 2.5, 2.6 and 2.7, the comparison of the lower bounds
obtained by TGJL16 and by the proposed model with or without the improvements
of the lower and upper bounds and the SECs separation, by considering small,
medium, large or quadratic service time functions. In particular, in each table, we
report the results obtained by the following models:

• TGJL16: continuous relaxation of the basic model (2.1)-(2.6), enhanced with
the GG constraints (2.7)-(2.8), with the computation of the M value, and

Chapter 2. Models and Algorithms for the TSP-TS 21

Ta
bl
e
2.
2:

G
A

on
in
st
an

ce
s
fro

m
Ta

ş
et

al
.(

20
16
)
w
ith

sm
al
la

nd
m
ed
iu
m

se
rv
ic
e
tim

es
.

#
in
st

Sm
al
ls

er
vi
ce

tim
es

M
ed
iu
m

se
rv
ic
e
tim

es

Be
st

w
ith

ou
t
SE

C
s

w
ith

SE
C
s

Be
st

w
ith

ou
t
SE

C
s

w
ith

SE
C
s

Av
g%

M
in
%

T
im

e
Av

g%
M
in
%

T
im

e
Av

g%
M
in
%

T
im

e
Av

g%
M
in
%

T
im

e
bu

rm
a1
4

22
8.
83

0.
00
0

0.
00
0

0.
12
9

0.
00
0

0.
00
0

0.
13
3

23
6.
44

0.
00
0

0.
00
0

0.
10
3

0.
00
0

0.
00
0

0.
10
5

ul
ys
se
s1
6

27
1.
74

0.
00
0

0.
00
0

0.
12
8

0.
06
4

0.
00
0

0.
13
1

27
9.
57

0.
00
0

0.
00
0

0.
13
0

0.
02
3

0.
00
0

0.
12
9

gr
17

23
8.
39

0.
00
0

0.
00
0

0.
14
9

0.
00
0

0.
00
0

0.
15
4

24
5.
40

0.
00
0

0.
00
0

0.
14
9

0.
00
0

0.
00
0

0.
15
4

gr
21

23
7.
11

0.
00
0

0.
00
0

0.
21
2

0.
00
0

0.
00
0

0.
21
8

24
9.
32

0.
00
0

0.
00
0

0.
21
4

0.
00
0

0.
00
0

0.
21
6

ul
ys
se
s2
2

30
6.
44

0.
00
5

0.
00
0

0.
22
9

0.
00
4

0.
00
0

0.
23
4

31
8.
06

0.
16
4

0.
00
0

0.
22
3

0.
38
2

0.
00
0

0.
23
2

gr
24

26
9.
09

0.
00
0

0.
00
0

0.
27
4

0.
00
0

0.
00
0

0.
29
7

28
4.
93

0.
00
0

0.
00
0

0.
27
2

0.
00
0

0.
00
0

0.
28
8

fri
26

24
7.
99

0.
00
0

0.
00
0

0.
33
3

0.
00
0

0.
00
0

0.
33
4

26
3.
01

0.
00
0

0.
00
0

0.
32
6

0.
00
0

0.
00
0

0.
33
8

ba
yg

29
34
5.
49

0.
30
3

0.
00
0

0.
41
3

0.
05
0

0.
00
0

0.
42
8

37
1.
22

0.
22
5

0.
00
0

0.
41
1

0.
00
0

0.
00
0

0.
43
1

ba
ys
29

30
9.
27

0.
25
6

0.
00
0

0.
41
2

0.
15
8

0.
00
0

0.
42
2

33
1.
90

0.
19
8

0.
00
0

0.
41
2

0.
15
2

0.
00
0

0.
42
1

at
t3
0

25
3.
85

0.
00
0

0.
00
0

0.
44
0

0.
00
0

0.
00
0

0.
45
8

27
3.
10

0.
00
0

0.
00
0

0.
43
9

0.
00
0

0.
00
0

0.
45
4

da
nt
zi
g3
0

32
4.
21

0.
53
7

0.
00
0

0.
43
4

0.
21
2

0.
00
0

0.
44
9

34
9.
60

0.
30
1

0.
30
1

0.
43
0

0.
09
1

0.
00
0

0.
44
9

ei
l3
0

32
3.
40

0.
38
4

0.
00
0

0.
44
5

0.
24
7

0.
00
0

0.
45
6

34
9.
16

0.
33
8

0.
00
0

0.
44
3

0.
16
9

0.
00
0

0.
45
4

gr
30

28
3.
91

0.
00
0

0.
00
0

0.
45
9

0.
00
0

0.
00
0

0.
47
6

30
5.
23

0.
10
6

0.
00
0

0.
44
8

0.
00
0

0.
00
0

0.
46
3

hk
30

32
4.
20

0.
50
3

0.
00
0

0.
45
7

0.
00
0

0.
00
0

0.
47
8

34
7.
35

0.
62
5

0.
00
0

0.
45
4

0.
00
0

0.
00
0

0.
47
0

sw
iss

30
34
2.
50

0.
00
0

0.
00
0

0.
46
3

0.
00
0

0.
00
0

0.
46
9

36
6.
78

0.
00
0

0.
00
0

0.
46
0

0.
00
0

0.
00
0

0.
46
9

ei
l3
5

36
3.
39

0.
34
0

0.
00
0

0.
65
4

0.
11
2

0.
00
0

0.
68
4

39
7.
42

0.
33
7

0.
00
0

0.
64
1

0.
15
5

0.
00
0

0.
68
0

gr
35

28
1.
82

0.
00
0

0.
00
0

0.
68
0

0.
00
0

0.
00
0

0.
74
0

30
6.
91

0.
00
0

0.
00
0

0.
67
8

0.
00
0

0.
00
0

0.
75
2

sw
iss

35
37
3.
60

0.
00
0

0.
00
0

0.
70
9

0.
00
0

0.
00
0

0.
72
7

40
6.
92

0.
00
0

0.
00
0

0.
69
9

0.
00
0

0.
00
0

0.
72
5

ei
l4
0

41
0.
35

0.
18
3

0.
00
0

0.
91
1

0.
02
3

0.
00
0

0.
96
3

45
2.
89

0.
32
7

0.
00
0

0.
89
6

0.
16
4

0.
00
0

0.
94
7

da
nt
zi
g4
2

25
7.
37

0.
32
6

0.
00
0

1.
02
1

0.
59
0

0.
00
0

1.
07
8

28
5.
07

0.
72
2

0.
00
0

0.
99
5

0.
96
6

0.
00
0

1.
06
3

sw
iss

42
35
1.
15

0.
02
9

0.
00
0

1.
04
4

0.
02
7

0.
00
0

1.
06
6

38
8.
64

0.
58
9

0.
00
0

0.
99
3

0.
07
4

0.
00
0

1.
05
2

ei
l4
5

44
8.
11

0.
03
4

0.
00
0

1.
24
1

0.
06
9

0.
03
6

1.
29
9

50
2.
52

0.
15
6

0.
00
0

1.
21
8

0.
24
8

0.
00
0

1.
29
6

Av
g.

30
8.
74

0.
13
2

0.
00
0

0.
51
1

0.
07
1

0.
00
2

0.
53
2

33
2.
34

0.
18
6

0.
01
4

0.
50
1

0.
11
0

0.
00
0

0.
52
7

#
Be

st
11

22
11

21
10

21
12

22

Chapter 2. Models and Algorithms for the TSP-TS 22

Ta
bl
e
2.
3:

G
A

on
in
st
an

ce
s
fro

m
Ta

ş
et

al
.(

20
16
)
w
ith

la
rg
e
an

d
qu

ad
ra
tic

se
rv
ic
e
tim

es
.

#
in
st

La
rg
e
se
rv
ic
e
tim

es
Q
ua

dr
at
ic

se
rv
ic
e
tim

es

Be
st

w
ith

ou
t
SE

C
s

w
ith

SE
C
s

Be
st

w
ith

ou
t
SE

C
s

w
ith

SE
C
s

Av
g%

M
in
%

T
im

e
Av

g%
M
in
%

T
im

e
Av

g%
M
in
%

T
im

e
Av

g%
M
in
%

T
im

e
bu

rm
a1
4

25
2.
62

0.
00
0

0.
00
0

0.
10
2

0.
00
0

0.
00
0

0.
10
5

22
4.
83

0.
00
0

0.
00
0

0.
12
6

0.
00
0

0.
00
0

0.
18
7

ul
ys
se
s1
6

29
6.
28

0.
00
0

0.
00
0

0.
12
7

0.
00
0

0.
00
0

0.
12
9

26
8.
14

0.
02
5

0.
00
0

0.
15
3

0.
02
5

0.
00
0

0.
30
3

gr
17

26
0.
34

0.
00
0

0.
00
0

0.
14
9

0.
00
0

0.
00
0

0.
15
4

23
4.
82

0.
00
0

0.
00
0

0.
17
8

0.
00
0

0.
00
0

0.
36
7

gr
21

27
5.
96

0.
00
0

0.
00
0

0.
21
3

0.
00
0

0.
00
0

0.
21
7

23
2.
77

0.
00
0

0.
00
0

0.
26
9

0.
00
0

0.
00
0

0.
47
1

ul
ys
se
s2
2

34
3.
58

0.
00
0

0.
00
0

0.
22
7

0.
00
0

0.
00
0

0.
22
7

30
1.
58

0.
00
0

0.
00
0

0.
27
7

0.
17
4

0.
00
0

0.
71
4

gr
24

32
0.
42

0.
03
4

0.
00
0

0.
27
3

0.
00
0

0.
00
0

0.
29
0

26
3.
04

0.
00
0

0.
00
0

0.
35
4

0.
00
0

0.
00
0

1.
01
4

fri
26

29
7.
39

0.
00
0

0.
00
0

0.
32
4

0.
00
0

0.
00
0

0.
33
8

23
9.
08

0.
00
0

0.
00
0

0.
41
2

0.
00
0

0.
00
0

0.
89
8

ba
yg

29
43
0.
35

0.
13
6

0.
00
0

0.
40
4

0.
05
4

0.
00
0

0.
42
8

34
5.
11

0.
00
0

0.
00
0

0.
51
1

0.
00
0

0.
00
0

1.
38
6

ba
ys
29

38
3.
78

0.
16
1

0.
00
0

0.
41
3

0.
16
1

0.
00
0

0.
42
6

30
5.
46

0.
23
6

0.
00
0

0.
51
7

0.
23
5

0.
00
0

1.
24
1

at
t3
0

31
6.
51

0.
00
0

0.
00
0

0.
43
1

0.
00
0

0.
00
0

0.
45
0

24
6.
98

0.
00
0

0.
00
0

0.
55
7

0.
00
0

0.
00
0

1.
64
8

da
nt
zi
g3
0

40
4.
54

0.
72
7

0.
69
2

0.
41
2

0.
56
6

0.
00
0

0.
44
0

32
1.
89

0.
55
4

0.
55
4

0.
56
5

0.
21
8

0.
00
0

1.
95
5

ei
l3
0

40
8.
23

0.
21
1

0.
00
0

0.
44
0

0.
14
5

0.
00
0

0.
43
8

32
0.
74

0.
40
3

0.
00
0

0.
55
0

0.
29
3

0.
00
0

1.
33
4

gr
30

35
3.
89

0.
00
0

0.
00
0

0.
44
7

0.
00
0

0.
00
0

0.
47
1

27
9.
94

0.
00
0

0.
00
0

0.
57
9

0.
00
0

0.
00
0

1.
34
9

hk
30

40
0.
88

0.
74
6

0.
00
0

0.
43
0

0.
00
0

0.
00
0

0.
44
1

31
8.
63

0.
66
7

0.
00
0

0.
58
0

0.
00
0

0.
00
0

1.
83
5

sw
iss

30
42
2.
54

0.
00
0

0.
00
0

0.
46
1

0.
00
0

0.
00
0

0.
46
6

34
0.
42

0.
00
0

0.
00
0

0.
57
7

0.
00
0

0.
00
0

1.
24
7

ei
l3
5

47
4.
90

0.
21
8

0.
00
0

0.
52
7

0.
23
8

0.
19
7

0.
58
9

36
5.
34

0.
31
9

0.
00
0

0.
79
9

0.
08
9

0.
00
0

2.
15
3

gr
35

36
5.
75

0.
00
0

0.
00
0

0.
66
9

0.
00
0

0.
00
0

0.
70
0

27
6.
18

0.
00
0

0.
00
0

0.
84
6

0.
00
0

0.
00
0

2.
28
1

sw
iss

35
48
5.
44

0.
00
0

0.
00
0

0.
69
4

0.
00
0

0.
00
0

0.
72
1

37
8.
36

0.
00
0

0.
00
0

0.
87
6

0.
00
0

0.
00
0

2.
15
0

ei
l4
0

55
6.
10

0.
07
3

0.
00
0

0.
74
5

0.
06
9

0.
00
0

0.
80
0

42
1.
10

0.
07
3

0.
00
0

1.
12
2

0.
10
3

0.
00
0

3.
03
0

da
nt
zi
g4
2

35
2.
36

0.
41
8

0.
00
0

0.
92
6

0.
00
0

0.
00
0

1.
02
8

24
7.
25

0.
09
0

0.
00
0

1.
24
8

0.
66
8

0.
00
0

4.
53
8

sw
iss

42
48
0.
30

0.
11
7

0.
00
0

0.
90
4

0.
05
1

0.
00
0

1.
03
5

35
0.
45

0.
26
3

0.
00
0

1.
27
0

0.
03
0

0.
00
0

3.
50
1

ei
l4
5

63
8.
13

0.
09
0

0.
00
0

1.
18
8

0.
07
3

0.
00
0

1.
28
0

47
4.
44

0.
11
7

0.
00
0

1.
47
3

0.
27
1

0.
00
0

4.
08
9

Av
g.

38
7.
29

0.
13
3

0.
03
1

0.
47
8

0.
06
2

0.
00
9

0.
50
8

30
7.
12

0.
12
5

0.
02
5

0.
62
9

0.
09
6

0.
00
0

1.
71
3

#
Be

st
11

21
14

21
12

21
12

22

Chapter 2. Models and Algorithms for the TSP-TS 23

of the bounds B1, B2 (only for the linear service time functions) and B3,
described in Section 2.3.1;

• NMB+Bs: continuous relaxation of the model (2.17)-(2.26), for the linear
service time functions, and of the model (2.17)-(2.21), (2.24)-(2.26), (2.29)-
(2.30), for the quadratic service time function, with the computation of the
M value, and of the bounds B1, B2 (only for the linear service time functions)
and B3, described in Section 2.3.1;

• NMI+IBs: continuous relaxation of the model NMI (corresponding to the
model (2.17)-(2.20), (2.23)-(2.26), (2.27)-(2.28), for the linear service time
functions, and to the model (2.17)-(2.20), (2.24)-(2.26), (2.27), (2.30)-(2.31),
for the quadratic service time function) including in the model the improved
bounds IB1, IB2 (only for linear service time functions) and IB3, described
in Section 2.4.1;

• NMI+IBs+SECs: NMI+IBs, combined with the separation of the SECs (de-
scribed in Section 2.4.2);

• basic+IBs+SECs: continuous relaxation of model (2.1)-(2.6), with the com-
putation of the improved M value described in Section 2.4.1, including in
the model the improved bounds IB1, IB2 (only for linear service time func-
tions) and IB3, described in Section 2.4.1, and the separation of the SECs
(described in Section 2.4.2).

In each table, we report, for each instance, the instance name and the best
known solution value. Then, for each considered model, we report the lower bound
and the corresponding computing time (expressed in seconds). In the last row, we
display the averages of the values in the corresponding columns.

By looking at the results, we can see that the lower bounds obtained by
NMB+Bs are worse than those obtained by TGJL16, since the model NMB is
used without any enhancement. When the improved bounds are inserted, the lower
bounds increase significantly and become, on average, better than those of TGJL16
for all the service time functions. It is evident that using the exponentially many
SECs, which are dynamically separated at the root node, gives another consider-
able improvement, although it comes at the expenses of larger computing times.
However, the computing times are still short, with the exception of the quadratic
service time function, which makes the TSP-TS problem harder to solve. We can
also observe that if we use the basic model instead of NMI, and include all the
proposed improvements, the obtained lower bounds are slightly worse, although
the computing times are larger for NMI than for the basic model. However, as it
will be shown in Section 2.6.2, both the B&C and the Dynamic B&C algorithms
have a better performance when model NMI is used. Finally, we can also see that
the lower bounds obtained by NMI+IBs+SECs are rather close to the best known
solution values. The case of quadratic service time function shows the largest gap
between the best known solution values and the lower bounds, especially because
IB2 cannot be applied in this case. We can conclude that both the improved
bounds and the separation of the exponentially many SECs help to find better
lower bounds in all cases.

Chapter 2. Models and Algorithms for the TSP-TS 24

Table 2.4: Comparison of Lower Bounds with small service times on instances
from Taş et al. (2016).

inst Best TGJL16 NMB+Bs NMI+IBs NMI+IBs+SECs basic+IBs+SECs
LB Time LB Time LB Time LB Time LB Time

burma14 228.83 204.04 0.07 190.25 0.01 206.02 0.05 226.28 0.05 225.65 0.04
ulysses16 271.74 235.39 0.00 221.70 0.01 237.97 0.05 268.66 0.05 267.83 0.04
gr17 238.39 198.86 0.00 189.73 0.01 207.35 0.04 237.29 0.05 236.27 0.03
gr21 237.11 213.89 0.01 208.98 0.01 216.81 0.07 233.48 0.06 232.75 0.04
ulysses22 306.44 247.10 0.00 227.90 0.02 251.49 0.05 299.86 0.07 297.53 0.04
gr24 269.09 234.59 0.01 222.27 0.02 235.55 0.08 265.12 0.20 265.12 0.04
fri26 247.99 220.17 0.01 216.87 0.02 221.74 0.12 244.59 0.18 244.59 0.05
bayg29 345.49 315.78 0.02 307.47 0.02 314.93 0.14 339.71 0.23 339.71 0.05
bays29 309.27 277.44 0.02 268.42 0.02 276.65 0.15 302.66 0.21 302.66 0.06
att30 253.85 194.16 0.01 178.06 0.02 191.55 0.12 246.30 0.16 245.95 0.06
dantzig30 324.21 271.53 0.01 232.61 0.02 271.68 0.16 316.13 0.13 313.39 0.06
eil30 323.40 295.20 0.02 291.92 0.02 295.30 0.16 317.34 0.31 317.34 0.06
gr30 283.91 238.55 0.02 231.10 0.02 240.07 0.20 276.92 0.19 276.44 0.06
hk30 324.20 272.37 0.01 258.26 0.02 269.43 0.14 317.09 0.19 316.70 0.06
swiss30 342.50 308.29 0.02 302.84 0.02 309.66 0.16 335.10 0.18 334.52 0.06
eil35 363.39 329.39 0.04 325.34 0.03 329.16 0.23 352.72 0.70 352.72 0.09
gr35 281.82 229.32 0.03 219.34 0.03 229.53 0.20 273.48 0.31 273.07 0.09
swiss35 373.60 318.26 0.04 314.53 0.03 319.18 0.23 363.35 0.35 363.17 0.08
eil40 410.35 365.76 0.05 359.75 0.06 365.11 0.30 398.99 0.97 398.99 0.11
dantzig42 257.37 213.92 0.03 193.50 0.05 214.08 0.41 248.58 0.50 248.06 0.12
swiss42 351.15 280.76 0.03 273.90 0.05 282.84 0.33 340.61 0.92 340.61 0.13
eil45 448.11 397.54 0.06 389.35 0.09 396.72 0.45 435.40 1.81 435.40 0.15
Avg. 308.74 266.47 0.02 255.64 0.03 267.40 0.17 301.80 0.36 301.29 0.07

Table 2.5: Comparison of Lower Bounds with medium service times on instances
from Taş et al. (2016).

inst Best TGJL16 NMB+Bs NMI+IBs NMI+IBs+SECs basic+IBs+SECs
LB Time LB Time LB Time LB Time LB Time

burma14 236.44 207.89 0.01 193.98 0.01 210.33 0.05 231.08 0.05 229.91 0.04
ulysses16 279.57 239.02 0.01 225.21 0.01 242.11 0.04 272.98 0.05 272.00 0.03
gr17 245.40 202.78 0.01 193.55 0.01 212.76 0.04 242.89 0.05 241.07 0.03
gr21 249.32 220.70 0.01 215.73 0.01 223.48 0.06 240.92 0.06 240.33 0.04
ulysses22 318.06 252.18 0.01 232.83 0.02 257.26 0.05 305.53 0.07 303.14 0.04
gr24 284.93 245.19 0.02 232.77 0.02 246.72 0.09 276.64 0.13 276.64 0.04
fri26 263.01 229.06 0.02 225.74 0.02 232.89 0.10 255.83 0.17 255.83 0.05
bayg29 371.22 335.54 0.02 327.16 0.03 334.48 0.13 359.48 0.21 359.48 0.05
bays29 331.90 293.82 0.02 284.71 0.02 292.77 0.15 319.04 0.18 319.04 0.06
att30 273.10 204.06 0.01 187.90 0.02 201.68 0.15 256.90 0.17 256.66 0.06
dantzig30 349.60 285.16 0.01 246.05 0.01 284.92 0.16 330.72 0.14 327.90 0.06
eil30 349.16 316.39 0.02 313.07 0.02 316.31 0.13 338.53 0.26 338.53 0.06
gr30 305.23 250.89 0.02 243.37 0.02 252.78 0.13 289.96 0.20 289.56 0.06
hk30 347.35 286.35 0.02 272.15 0.02 283.90 0.15 331.72 0.17 331.46 0.06
swiss30 366.78 321.90 0.01 316.40 0.01 324.80 0.13 350.37 0.18 349.89 0.06
eil35 397.42 356.91 0.03 352.82 0.04 356.56 0.21 380.26 0.71 380.26 0.09
gr35 306.91 244.39 0.03 234.33 0.03 244.20 0.20 288.72 0.41 288.39 0.09
swiss35 406.92 337.99 0.03 334.23 0.03 340.45 0.24 384.76 0.38 384.67 0.08
eil40 452.89 400.83 0.05 394.77 0.06 400.00 0.38 434.06 0.81 434.06 0.10
dantzig42 285.07 230.60 0.03 210.07 0.05 230.67 0.45 266.17 0.51 265.77 0.12
swiss42 388.64 304.39 0.03 297.46 0.04 307.74 0.32 366.10 0.96 366.10 0.12
eil45 502.52 441.73 0.06 433.45 0.10 440.49 0.44 479.59 1.59 479.59 0.15
Avg. 332.34 282.17 0.02 271.26 0.03 283.51 0.17 318.28 0.34 317.74 0.07

Chapter 2. Models and Algorithms for the TSP-TS 25

Table 2.6: Comparison of Lower Bounds with large service times on instances from
Taş et al. (2016).

inst Best TGJL16 NMB+Bs NMI+IBs NMI+IBs+SECs basic+IBs+SECs
LB Time LB Time LB Time LB Time LB Time

burma14 252.62 216.01 0.01 201.89 0.00 218.56 0.05 240.11 0.05 238.86 0.04
ulysses16 296.28 246.74 0.01 232.71 0.00 250.69 0.04 281.55 0.05 280.82 0.03
gr17 260.34 211.21 0.01 201.81 0.00 223.01 0.04 253.88 0.05 251.31 0.03
gr21 275.96 235.57 0.01 230.53 0.01 239.67 0.06 257.23 0.06 256.78 0.04
ulysses22 343.58 263.27 0.01 243.66 0.01 268.09 0.05 317.25 0.08 315.30 0.04
gr24 320.42 268.84 0.01 256.22 0.01 271.69 0.09 302.38 0.13 302.38 0.05
fri26 297.39 248.99 0.01 245.62 0.01 258.26 0.11 281.36 0.17 281.36 0.05
bayg29 430.35 380.70 0.02 372.16 0.02 379.12 0.14 404.63 0.22 404.63 0.05
bays29 383.78 331.23 0.02 321.95 0.02 329.66 0.14 356.44 0.23 356.44 0.06
att30 316.51 226.76 0.01 210.46 0.01 225.01 0.14 281.20 0.18 281.09 0.06
dantzig30 404.54 316.18 0.01 276.68 0.02 313.91 0.13 362.62 0.14 360.77 0.06
eil30 408.23 365.14 0.02 361.74 0.02 364.70 0.14 387.28 0.30 387.28 0.06
gr30 353.89 279.03 0.02 271.39 0.02 281.24 0.12 319.57 0.23 319.29 0.05
hk30 400.88 318.33 0.02 303.98 0.02 317.08 0.14 365.34 0.16 365.22 0.06
swiss30 422.54 352.92 0.01 347.34 0.01 359.11 0.12 384.96 0.17 384.66 0.06
eil35 474.90 421.85 0.04 417.68 0.03 421.23 0.25 445.25 0.54 445.25 0.09
gr35 365.75 279.71 0.03 269.49 0.02 278.94 0.21 324.30 0.48 324.09 0.08
swiss35 485.44 384.08 0.03 380.27 0.02 389.97 0.30 434.59 0.39 434.59 0.09
eil40 556.10 485.75 0.07 479.58 0.06 484.57 0.37 518.99 0.97 518.99 0.12
dantzig42 352.36 271.00 0.03 250.27 0.04 271.20 0.36 308.58 0.46 308.41 0.11
swiss42 480.30 361.62 0.04 354.55 0.04 368.08 0.38 427.52 0.96 427.52 0.12
eil45 638.13 551.55 0.07 543.11 0.07 549.56 0.44 589.41 1.74 589.41 0.15
Avg. 387.29 318.93 0.02 307.87 0.02 321.06 0.17 356.57 0.35 356.11 0.07

Table 2.7: Comparison of Lower Bounds with quadratic service times on instances
from Taş et al. (2016).

inst Best TGJL16 NMB+Bs NMI+IBs NMI+IBs+SECs basic+IBs+SECs
LB Time LB Time LB Time LB Time LB Time

burma14 224.83 200.33 0.04 186.20 0.05 201.89 0.12 221.93 0.55 221.54 0.49
ulysses16 268.14 231.91 0.05 217.68 0.05 233.41 0.13 264.50 1.39 263.87 0.81
gr17 234.82 195.12 0.04 185.64 0.05 201.74 0.13 232.14 1.94 231.68 0.99
gr21 232.77 207.48 0.06 202.47 0.13 210.05 0.35 226.50 2.36 225.58 1.76
ulysses22 301.58 242.31 0.07 221.60 0.14 245.49 0.33 293.87 5.80 292.29 2.54
gr24 263.04 224.71 0.08 211.55 0.20 224.12 0.42 255.55 6.24 254.40 4.56
fri26 239.08 211.92 0.10 208.46 0.25 211.75 0.50 235.09 8.58 234.25 4.38
bayg29 345.11 297.66 0.12 288.43 0.32 297.52 0.59 322.72 15.62 321.60 7.46
bays29 305.46 262.43 0.12 252.48 0.35 261.74 0.71 288.22 11.25 287.64 6.61
att30 246.98 185.09 0.15 168.01 0.41 181.79 0.56 236.94 16.63 236.12 10.68
dantzig30 321.89 259.00 0.15 216.58 0.41 257.48 0.60 303.84 17.85 300.34 12.84
eil30 320.74 275.86 0.12 272.25 0.39 276.50 0.59 299.43 10.25 298.00 7.64
gr30 279.94 227.24 0.14 219.08 0.37 229.37 0.56 267.25 16.17 264.36 7.19
hk30 318.63 259.56 0.13 244.35 0.37 256.74 0.53 306.28 17.21 303.18 11.84
swiss30 340.42 295.79 0.14 289.72 0.39 296.40 0.64 323.65 11.17 320.35 6.97
eil35 365.34 304.68 0.22 300.03 0.68 304.80 0.88 328.98 30.96 328.00 17.04
gr35 276.18 215.71 0.24 204.69 0.61 216.45 1.20 261.99 34.68 259.20 15.55
swiss35 378.36 300.50 0.27 296.40 0.72 300.73 1.04 346.96 23.35 343.68 16.10
eil40 421.10 335.17 0.34 328.11 0.96 334.69 1.44 369.47 50.31 368.00 28.89
dantzig42 247.25 199.25 0.42 177.45 1.08 197.93 1.19 233.94 61.28 232.35 47.28
swiss42 350.45 259.97 0.39 252.34 1.28 260.23 1.09 319.94 59.89 318.00 34.79
eil45 474.44 360.15 0.46 350.78 1.42 358.26 1.31 398.72 27.68 397.00 44.77
Avg. 307.12 252.36 0.18 240.65 0.48 252.69 0.68 288.09 19.60 286.43 13.24

Integer Solutions

Tables 2.8, 2.9, 2.10 and 2.11 contain the comparison of the solutions obtained
by TGJL16 and by the B&C and Dynamic B&C algorithms, with small, medium,

Chapter 2. Models and Algorithms for the TSP-TS 26

large or quadratic service time functions. The results obtained by the Dynamic
B&C algorithm are shown in the cases of applying the algorithm to both the NMI
and the basic models. We consider the following algorithms:

• TGJL16: the basic model (2.1)-(2.6), enhanced with the GG constraints
(2.7)-(2.8), with the computation of the M value and the bounds B1, B2
(only for the linear service time functions) and B3, solved by CPLEX;

• NMI B&C: the model (2.17)-(2.20), (2.23)-(2.26), (2.27)-(2.28), for the linear
service time functions, and the model (2.17)-(2.20), (2.24)-(2.26), (2.27),
(2.30)-(2.31), for the quadratic service time function, with the computation
of the improved M value and of the improved bounds IB1, IB2 (only for
the linear service time functions) and IB3 (described in Section 2.4.1), and
with the separation of the SECs (described in Section 2.4.2), solved by using
the CPLEX callback functions for separating the SECs at every node of the
decision tree;

• NMI Dyn. B&C: the method NMI B&C in which, at every node of the
decision tree, IB2 (only for the linear service time functions) and the shortest
path computations for IB3 are dynamically updated by considering the x
variables fixed by the branching;

• basic Dyn. B&C: as in the NMI Dyn. B&C algorithm, but using the basic
model (2.1)-(2.6).

In each table, we report, for each instance, the instance name and the best
known solution value. Then we show, for each method, the integer solution value
obtained at the end of the solving process, the optimality percentage gap (i.e., the
percentage gap between the best upper bound and the best lower bound found at
the end of the solving process), and the corresponding computing time (expressed
in seconds). At the bottom of each table, we report the averages of the values
shown in the corresponding columns, except for the computing time: indeed, not all
methods solve the same subset of instances. Therefore, to have a fair comparison,
we show the average computing time by considering only the instances solved
by a subset of methods. More precisely, we call: (i) Avg. TGJL16 the average
computing time over the subset of instances solved by TGJL16; (ii) Avg. NMI
B&C the average computing time over the subset of instances solved by the NMI
B&C algorithm; (iii) Avg. basic Dyn. B&C the average computing time over
the subset of instances solved by the basic Dyn. B&C algorithm. Note that not
all these averages are reported in every table, since, in some cases, the subset of
instances solved by the various methods coincides. In addition, we show at the
bottom of each table, the number of instances solved, by each method, to proven
optimality. For the case of the quadratic service time function (Table 2.11), we
show an additional row, called Avg. Feas., since TGJL16 is not able to find a
feasible solution for a subset of instances.

In Table 2.8, in which the small service times are considered, we can see that
all methods find the optimal solution for all the 22 instances, and the computing
times of the proposed B&C and Dynamic B&C algorithms are about one order of
magnitude shorter than those of TGJL16.

Chapter 2. Models and Algorithms for the TSP-TS 27

When the medium service times are considered (Table 2.9), not all the instances
can be solved to optimality, and the Dynamic B&C algorithm based on NMI ob-
tains the largest number of optimal solutions (20 out of 22), while TGJL16 can
solve only 14 instances to proven optimality. In addition, the average percentage
gaps of the proposed algorithms are always very small. By looking at the average
computing times, we can see that, on the subset of 14 instances solved by all meth-
ods, the fastest one is the Dynamic B&C algorithm based on the basic model. On
the contrary, if we consider the subset of instances solved by NMI B&C, the fastest
algorithm turns out to be the Dynamic B&C based on the NMI formulation. The
same happens if we consider the subset of instances solved by the basic Dynamic
B&C algorithm.

In the case of the large service times (Table 2.10), the TSP-TS instances become
harder for all methods: TGJL16 can solve to proven optimality only 6 instances,
and the largest number of instances solved to proven optimality is 11 (obtained by
the Dynamic B&C algorithm based on the model NMI). As for the medium service
times, also in this case, the fastest algorithm on the subset of instances solved by
all methods is the Dynamic B&C algorithm based on the basic model, while, when
we consider the subsets of instances solved by the NMI B&C and by the basic Dyn.
B&C algorithms, the Dynamic B&C algorithm based on the NMI formulation is
the fastest one. In the latter cases, we can observe that the computing times are
significantly reduced by using the NMI Dyn. B&C algorithm. Note that, since the
9 instances solved by the NMI B&C algorithm and the 9 instances solved by the
basic Dyn. B&C algorithm are not the same, we do not have the corresponding
average computing time values. In addition, we can observe that the average
percentage gap obtained by the NMI Dyn. B&C algorithm is 2.59%, and is the
smallest one.

Finally, in Table 2.11, we report the results obtained for the quadratic service
time function. This case turns out to be the most difficult one for the TGJL16
method: indeed, for the last four instances, no feasible solution is obtained within
the time limit of two hours. Both the B&C and the Dynamic B&C algorithms
based on the NMI formulation are able to determine the same subset of 18 instances
solved to proven optimality in similar computing times. TGJL16 solves 9 instance
to proven optimality in an average computing time that is significantly larger than
that of the other algorithms. If we consider the subset of instances solved by the
Dynamic B&C algorithm based on the basic model and its computing time, we
can see that the computing times of both the NMI B&C and the NMI Dyn. B&C
algorithms are considerably shorter.

We can conclude that the proposed algorithms outperform TGJL16 in terms of
number of instances solved to proven optimality and computing times. Among the
proposed algorithms, the Dynamic B&C algorithm based on the NMI formulation
has globally the best performance. In particular, with respect to the NMI B&C
algorithm, that does not include the dynamic update of the improved bounds, the
NMI Dyn. B&C algorithm is always able to solve a larger (or equal) number of
instances to proven optimality (in shorter or comparable computing times). This
highlights that the dynamic update of the bounds is effective. By comparing the
Dynamic B&C algorithm based on the model NMI with that based on the basic
model, we can see that again the former solves a larger number of instances to

Chapter 2. Models and Algorithms for the TSP-TS 28

proven optimality, and the computing times of the former are significantly shorter
than those of the latter, thus showing the usefulness of the NMI formulation.

2.6.3 Additional Instances
In Section 2.6.3 we report the results obtained on 13 larger size symmetric instances
(Table 2.12), corresponding to all the symmetric instances with up to 58 nodes
contained in the TSPLIB (except the instances already considered in Taş et al.
(2016)). In Section 2.6.3 we show the results obtained on all the 27 asymmetric
instances (Table 2.13) with up to 45 nodes contained in the TSPLIB. In both cases,
we consider small service times, and report the results of the following methods:
GA+SECs, i.e., the GA in which the continuous relaxation of the basic model,
combined with the SECs separation, is used for building a subset of the initial
population; TGJL16 and NMI Dyn.B&C (defined as in Section 2.6.2). For the
additional instances, we consider a time limit of 50000 seconds. For the GA+SECs,
we consider 10 runs for each instance.

In each table, we report the instance name and the best solution value found by
the three considered algorithms. Then, for GA+SECs, we show the average, over
the 10 runs, percentage gap w.r.t. the best solution value, the minimum percentage
gap found over the 10 runs and the average computing time over the 10 runs. In
addition, we show, for the TGJL16 and the NMI Dyn. B&C algorithms, the lower
bound value of the continuous relaxation at the root node and the corresponding
computing time, the integer solution value obtained at the end of the solving
process, the optimality percentage gap (i.e., the percentage gap between the best
upper bound and the best lower bound found at the end of the solving process),
and the corresponding computing time. All the computing times are expressed in
seconds. At the bottom of each table, we display the averages of the values in
the corresponding columns, except for the average computing time that is shown
separately for comparison on the instances solved to proven optimality by both
exact methods. In addition, we report, for each exact method, the number of
instances solved to proven optimality.

Larger Symmetric Instances

From Table 2.12 we can observe that the GA algorithm is able to obtain the
best solution for all instances but one, when the best solution over 10 runs is
considered. On average, the gap is only 0.19%, and the computing time 1.26
seconds, thus confirming the effectiveness of the GA algorithm. As it was noted
for the 22 instances, the lower bound obtained at the root node for the NMI
Dyn.B&C algorithm is much larger than that of TGJL16, even though it requires
longer computing times. As regard as the integer solutions found, TGJL16 solves
to proven optimality only 6 instances, while the Dynamic B&C algorithm based on
the NMI formulation solves 12 (out of 13) instances. In addition, the computing
time of the latter is much shorter than that of the former.

Chapter 2. Models and Algorithms for the TSP-TS 29

Ta
bl
e
2.
8:

C
om

pa
ris

on
of

U
pp

er
Bo

un
ds

w
ith

sm
al
ls

er
vi
ce

tim
es

on
in
st
an

ce
s
fro

m
Ta

ş
et

al
.(
20
16
).

#
in
st

Be
st

T
G
JL

16
N
M
IB

&
C

N
M
ID

yn
.
B&

C
ba

sic
D
yn

.
B&

C
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
bu

rm
a1

4
22

8.
83

22
8.
83

0.
00

0.
32

22
8.
83

0.
00

0.
31

22
8.
83

0.
00

0.
37

22
8.
83

0.
00

0.
19

ul
ys
se
s1
6

27
1.
74

27
1.
74

0.
00

2.
18

27
1.
74

0.
00

0.
41

27
1.
74

0.
00

0.
33

27
1.
74

0.
00

0.
30

gr
17

23
8.
39

23
8.
39

0.
00

1.
44

23
8.
39

0.
00

0.
25

23
8.
39

0.
00

0.
33

23
8.
39

0.
00

0.
19

gr
21

23
7.
11

23
7.
11

0.
00

0.
38

23
7.
11

0.
00

0.
43

23
7.
11

0.
00

0.
33

23
7.
11

0.
00

0.
37

ul
ys
se
s2
2

30
6.
43

30
6.
43

0.
00

19
.8
4

30
6.
43

0.
00

1.
29

30
6.
43

0.
00

1.
29

30
6.
43

0.
00

1.
93

gr
24

26
9.
09

26
9.
09

0.
00

1.
99

26
9.
09

0.
00

0.
91

26
9.
09

0.
00

0.
96

26
9.
09

0.
00

0.
67

fri
26

24
7.
99

24
7.
99

0.
00

2.
62

24
7.
99

0.
00

0.
83

24
7.
99

0.
00

0.
83

24
7.
99

0.
00

0.
56

ba
yg

29
34

5.
49

34
5.
49

0.
00

8.
33

34
5.
49

0.
00

2.
15

34
5.
49

0.
00

2.
42

34
5.
49

0.
00

1.
70

ba
ys
29

30
9.
27

30
9.
27

0.
00

18
.8
5

30
9.
27

0.
00

3.
64

30
9.
27

0.
00

4.
49

30
9.
27

0.
00

4.
51

at
t3
0

25
3.
85

25
3.
85

0.
00

22
3.
61

25
3.
85

0.
00

2.
50

25
3.
85

0.
00

3.
37

25
3.
85

0.
00

9.
95

da
nt
zi
g3

0
32

4.
21

32
4.
21

0.
00

16
5.
18

32
4.
21

0.
00

2.
04

32
4.
21

0.
00

2.
34

32
4.
21

0.
00

6.
11

ei
l3
0

32
3.
40

32
3.
40

0.
00

3.
42

32
3.
40

0.
00

1.
94

32
3.
40

0.
00

2.
02

32
3.
40

0.
00

1.
22

gr
30

28
3.
91

28
3.
91

0.
00

14
.0
0

28
3.
91

0.
00

1.
30

28
3.
91

0.
00

1.
37

28
3.
91

0.
00

1.
89

hk
30

32
4.
20

32
4.
20

0.
00

16
8.
18

32
4.
20

0.
00

2.
30

32
4.
20

0.
00

2.
46

32
4.
20

0.
00

11
.2
5

sw
iss

30
34

2.
50

34
2.
50

0.
00

7.
65

34
2.
50

0.
00

1.
36

34
2.
50

0.
00

1.
41

34
2.
50

0.
00

1.
20

ei
l3
5

36
3.
38

36
3.
38

0.
00

44
.1
9

36
3.
38

0.
00

29
.5
7

36
3.
38

0.
00

32
.3
9

36
3.
38

0.
00

11
.3
1

gr
35

28
1.
82

28
1.
82

0.
00

14
9.
94

28
1.
82

0.
00

3.
30

28
1.
82

0.
00

3.
54

28
1.
82

0.
00

21
.8
3

sw
iss

35
37

3.
60

37
3.
60

0.
00

26
.1
0

37
3.
60

0.
00

2.
35

37
3.
60

0.
00

2.
67

37
3.
60

0.
00

7.
97

ei
l4
0

41
0.
35

41
0.
35

0.
00

21
7.
95

41
0.
35

0.
00

69
.5
4

41
0.
35

0.
00

82
.1
5

41
0.
35

0.
00

49
.8
7

da
nt
zi
g4

2
25

7.
37

25
7.
37

0.
00

23
02

.2
5

25
7.
37

0.
00

35
.0
6

25
7.
37

0.
00

36
.4
9

25
7.
37

0.
00

13
0.
97

sw
iss

42
35

1.
15

35
1.
15

0.
00

20
73

.2
0

35
1.
15

0.
00

14
.0
0

35
1.
15

0.
00

16
.1
0

35
1.
15

0.
00

14
0.
62

ei
l4
5

44
8.
10

44
8.
10

0.
00

20
62

.9
3

44
8.
10

0.
00

43
4.
35

44
8.
10

0.
00

58
7.
63

44
8.
10

0.
00

53
4.
56

Av
g.

30
8.
74

30
8.
74

0.
00

30
8.
74

0.
00

30
8.
74

0.
00

30
8.
74

0.
00

#
O
pt
.

22
22

22
22

Av
g.

T
G
JL

16
34

1.
57

27
.7
2

35
.7
0

42
.6
9

Chapter 2. Models and Algorithms for the TSP-TS 30
Ta

bl
e
2.
9:

C
om

pa
ris

on
of

U
pp

er
Bo

un
ds

w
ith

m
ed
iu
m

se
rv
ic
e
tim

es
on

in
st
an

ce
s
fro

m
Ta

ş
et

al
.(
20
16
).

#
in
st

Be
st

T
G
JL

16
N
M
IB

&
C

N
M
ID

yn
.
B&

C
ba

sic
D
yn

.
B&

C
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
bu

rm
a1

4
23

6.
44

23
6.
44

0.
00

1.
02

23
6.
44

0.
00

0.
35

23
6.
44

0.
00

0.
35

23
6.
44

0.
00

0.
19

ul
ys
se
s1
6

27
9.
57

27
9.
57

0.
00

5.
16

27
9.
57

0.
00

0.
42

27
9.
57

0.
00

0.
50

27
9.
57

0.
00

0.
53

gr
17

24
5.
40

24
5.
40

0.
00

1.
59

24
5.
40

0.
00

0.
24

24
5.
40

0.
00

0.
24

24
5.
40

0.
00

0.
24

gr
21

24
9.
32

24
9.
32

0.
00

1.
81

24
9.
32

0.
00

0.
49

24
9.
32

0.
00

0.
60

24
9.
32

0.
00

0.
31

ul
ys
se
s2
2

31
8.
06

31
8.
06

0.
00

26
8.
13

31
8.
06

0.
00

3.
75

31
8.
06

0.
00

4.
58

31
8.
06

0.
00

35
.2
7

gr
24

28
4.
93

28
4.
93

0.
00

33
.7
5

28
4.
93

0.
00

1.
38

28
4.
93

0.
00

1.
48

28
4.
93

0.
00

2.
18

fri
26

26
3.
01

26
3.
01

0.
00

11
0.
43

26
3.
01

0.
00

1.
32

26
3.
01

0.
00

1.
37

26
3.
01

0.
00

1.
48

ba
yg

29
37

1.
22

37
1.
22

0.
00

12
6.
62

37
1.
22

0.
00

21
.9
5

37
1.
22

0.
00

43
.8
4

37
1.
22

0.
00

31
.5
0

ba
ys
29

33
1.
90

33
1.
90

0.
00

55
1.
96

33
1.
90

0.
00

90
.1
1

33
1.
90

0.
00

82
.2
4

33
1.
90

0.
00

11
9.
10

at
t3
0

27
3.
10

27
3.
10

3.
29

72
00

.0
0

27
3.
10

0.
00

13
6.
82

27
3.
10

0.
00

13
0.
81

27
3.
10

0.
00

32
01

.0
8

da
nt
zi
g3

0
34

9.
60

34
9.
60

2.
75

72
00

.0
0

34
9.
60

0.
00

44
.9
5

34
9.
60

0.
00

60
.8
6

34
9.
60

0.
00

38
5.
31

ei
l3
0

34
9.
16

34
9.
16

0.
00

22
.0
1

34
9.
16

0.
00

11
.3
8

34
9.
16

0.
00

10
.8
6

34
9.
16

0.
00

6.
10

gr
30

30
5.
23

30
5.
23

0.
00

32
4.
07

30
5.
23

0.
00

5.
11

30
5.
23

0.
00

5.
52

30
5.
23

0.
00

34
.0
0

hk
30

34
7.
35

34
7.
35

1.
05

72
00

.0
0

34
7.
35

0.
00

21
.6
4

34
7.
35

0.
00

24
.3
4

34
7.
35

0.
00

82
3.
23

sw
iss

30
36

6.
78

36
6.
78

0.
00

35
0.
44

36
6.
78

0.
00

6.
37

36
6.
78

0.
00

6.
95

36
6.
78

0.
00

9.
95

ei
l3
5

39
7.
42

39
7.
42

0.
00

21
39

.2
2

39
7.
42

0.
00

42
41

.0
0

39
7.
42

0.
00

13
10

.7
3

39
7.
42

0.
00

28
0.
15

gr
35

30
6.
91

30
6.
91

2.
77

72
00

.0
0

30
6.
91

0.
00

81
.3
5

30
6.
91

0.
00

81
.4
6

30
6.
91

0.
00

24
14

.1
1

sw
iss

35
40

6.
92

40
6.
92

0.
00

36
80

.0
1

40
6.
92

0.
00

67
.3
7

40
6.
92

0.
00

52
.1
9

40
6.
92

0.
00

34
8.
97

ei
l4
0

45
2.
89

45
2.
89

1.
24

72
00

.0
0

45
2.
89

1.
19

72
00

.0
0

45
2.
89

0.
00

60
87

.8
0

45
2.
89

0.
00

19
13

.4
0

da
nt
zi
g4

2
28

5.
07

28
5.
07

5.
81

72
00

.0
0

28
5.
07

1.
77

72
00

.0
0

28
5.
07

0.
80

72
00

.0
0

28
5.
07

3.
37

72
00

.0
0

sw
iss

42
38

8.
64

38
8.
64

5.
26

72
00

.0
0

38
8.
64

1.
88

72
00

.0
0

38
8.
64

0.
00

68
25

.7
7

38
8.
64

3.
48

72
00

.0
0

ei
l4
5

50
2.
52

50
2.
52

3.
09

72
00

.0
0

50
2.
52

2.
77

72
00

.0
0

50
2.
52

2.
13

72
00

.0
0

50
2.
52

2.
40

72
00

.0
0

Av
g.

33
2.
34

33
2.
34

1.
15

33
2.
34

0.
35

33
2.
34

0.
13

33
2.
34

0.
42

#
O
pt
.

14
18

20
19

Av
g.

T
G
JL

16
54

4.
02

31
7.
95

10
8.
68

62
.1
4

Av
g.

N
M

B&
C

26
3.
11

10
1.
05

42
7.
43

Av
g.

ba
sic

D
yn

.
B&

C
41

6.
14

50
5.
64

Chapter 2. Models and Algorithms for the TSP-TS 31
Ta

bl
e
2.
10
:
C
om

pa
ris

on
of

U
pp

er
Bo

un
ds

w
ith

la
rg
e
se
rv
ic
e
tim

es
on

in
st
an

ce
s
fro

m
Ta

ş
et

al
.(
20
16
).

#
in
st

Be
st

T
G
JL

16
N
M
IB

&
C

N
M
ID

yn
.
B&

C
ba

sic
D
yn

.
B&

C
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
bu

rm
a1

4
25

2.
62

25
2.
62

0.
00

2.
66

25
2.
62

0.
00

0.
45

25
2.
62

0.
00

0.
48

25
2.
62

0.
00

0.
52

ul
ys
se
s1
6

29
6.
28

29
6.
28

0.
00

45
.8
6

29
6.
28

0.
00

1.
11

29
6.
28

0.
00

1.
36

29
6.
28

0.
00

3.
40

gr
17

26
0.
34

26
0.
34

0.
00

7.
26

26
0.
34

0.
00

0.
49

26
0.
34

0.
00

0.
49

26
0.
34

0.
00

0.
52

gr
21

27
5.
96

27
5.
96

0.
00

13
.8
2

27
5.
96

0.
00

1.
88

27
5.
96

0.
00

1.
83

27
5.
96

0.
00

1.
08

ul
ys
se
s2
2

34
3.
58

34
3.
57

4.
83

72
00

.0
0

34
3.
57

0.
00

58
.2
9

34
3.
57

0.
00

46
.5
9

34
3.
57

0.
00

17
76

.9
1

gr
24

32
0.
42

32
0.
42

0.
00

12
85

.7
9

32
0.
42

0.
00

35
.3
6

32
0.
42

0.
00

26
.2
7

32
0.
42

0.
00

70
.3
8

fri
26

29
7.
39

29
7.
39

4.
03

72
00

.0
0

29
7.
39

0.
00

20
.7
4

29
7.
39

0.
00

21
.9
3

29
7.
39

0.
00

62
.8
4

ba
yg

29
43

0.
35

43
0.
35

2.
82

72
00

.0
0

43
0.
35

1.
94

72
00

.0
0

43
0.
35

0.
00

69
26

.7
7

43
0.
35

0.
80

72
00

.0
0

ba
ys
29

38
3.
78

38
3.
78

4.
72

72
00

.0
0

38
3.
78

4.
04

72
00

.0
0

38
3.
78

3.
01

72
00

.0
0

38
3.
78

4.
03

72
00

.0
0

at
t3
0

31
6.
51

31
6.
51

10
.4
2

72
00

.0
0

31
6.
51

6.
78

72
00

.0
0

31
6.
51

5.
35

72
00

.0
0

31
6.
51

7.
68

72
00

.0
0

da
nt
zi
g3

0
40

4.
54

40
4.
54

9.
67

72
00

.0
0

40
4.
54

4.
24

72
00

.0
0

40
4.
54

3.
29

72
00

.0
0

40
4.
54

7.
06

72
00

.0
0

ei
l3
0

40
8.
23

40
8.
23

0.
00

24
37

.0
2

40
8.
23

0.
00

54
55

.4
0

40
8.
23

0.
00

79
8.
22

40
8.
23

0.
00

30
1.
15

gr
30

35
3.
89

35
3.
89

6.
82

72
00

.0
0

35
3.
89

0.
00

57
85

.6
1

35
3.
89

0.
00

19
78

.3
2

35
3.
89

2.
19

72
00

.0
0

hk
30

40
0.
88

40
0.
88

8.
29

72
00

.0
0

40
0.
88

3.
20

72
00

.0
0

40
0.
88

2.
62

72
00

.0
0

40
0.
88

5.
99

72
00

.0
0

sw
iss

30
42

2.
54

42
2.
54

6.
77

72
00

.0
0

42
2.
54

1.
74

72
00

.0
0

42
2.
54

0.
00

16
16

.2
0

42
2.
54

0.
00

64
08

.2
0

ei
l3
5

47
4.
90

47
4.
90

3.
87

72
00

.0
0

47
4.
90

4.
14

72
00

.0
0

47
4.
90

3.
19

72
00

.0
0

47
4.
90

3.
19

72
00

.0
0

gr
35

36
5.
75

36
5.
75

10
.4
5

72
00

.0
0

36
5.
75

7.
06

72
00

.0
0

36
5.
75

5.
37

72
00

.0
0

36
5.
75

9.
02

72
00

.0
0

sw
iss

35
48

5.
44

48
5.
44

9.
84

72
00

.0
0

48
5.
44

6.
95

72
00

.0
0

48
5.
44

5.
33

72
00

.0
0

48
5.
44

7.
31

72
00

.0
0

ei
l4
0

55
6.
10

55
6.
10

5.
19

72
00

.0
0

55
6.
10

5.
32

72
00

.0
0

55
6.
10

4.
68

72
00

.0
0

55
6.
10

4.
62

72
00

.0
0

da
nt
zi
g4

2
35

2.
36

35
2.
36

12
.5
5

72
00

.0
0

35
2.
36

10
.6
1

72
00

.0
0

35
2.
36

9.
43

72
00

.0
0

35
2.
36

10
.6
1

72
00

.0
0

sw
iss

42
48

0.
30

48
0.
29

11
.7
7

72
00

.0
0

48
0.
29

9.
18

72
00

.0
0

48
0.
29

8.
31

72
00

.0
0

48
0.
29

9.
14

72
00

.0
0

ei
l4
5

63
8.
13

63
8.
13

6.
81

72
00

.0
0

63
8.
13

6.
68

72
00

.0
0

63
8.
13

6.
41

72
00

.0
0

63
8.
13

6.
00

72
00

.0
0

Av
g.

38
7.
29

38
7.
29

5.
40

38
7.
29

3.
27

38
7.
29

2.
59

38
7.
29

3.
53

#
O
pt
.

6
9

11
9

Av
g.

T
G
JL

16
63

2.
07

91
5.
78

13
8.
11

62
.8
4

Av
g.

N
M

B&
C

12
62

.1
5

31
9.
50

Av
g.

ba
sic

D
yn

.
B&

C
27

9.
26

95
8.
33

Chapter 2. Models and Algorithms for the TSP-TS 32
Ta

bl
e
2.
11
:
C
om

pa
ris

on
of

U
pp

er
Bo

un
ds

w
ith

qu
ad

ra
tic

se
rv
ic
e
tim

es
on

in
st
an

ce
s
fro

m
Ta

ş
et

al
.(
20
16
).

#
in
st

Be
st

T
G
JL

16
N
M
IB

&
C

N
M
ID

yn
.
B&

C
ba

sic
D
yn

.
B&

C
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
U
B

G
ap

%
T
im

e
bu

rm
a1

4
22

4.
83

22
4.
83

0.
00

2.
79

22
4.
83

0.
00

3.
64

22
4.
83

0.
00

3.
65

22
4.
83

0.
00

1.
09

ul
ys
se
s1
6

26
8.
14

26
8.
14

0.
00

9.
94

26
8.
14

0.
00

4.
25

26
8.
14

0.
00

4.
11

26
8.
14

0.
00

1.
95

gr
17

23
4.
82

23
4.
82

0.
00

10
.2
6

23
4.
82

0.
00

5.
83

23
4.
82

0.
00

5.
88

23
4.
82

0.
00

1.
89

gr
21

23
2.
77

23
2.
77

0.
00

6.
58

23
2.
77

0.
00

8.
18

23
2.
77

0.
00

8.
00

23
2.
77

0.
00

4.
29

ul
ys
se
s2
2

30
1.
58

30
1.
58

0.
00

66
6.
92

30
1.
58

0.
00

18
.8
9

30
1.
58

0.
00

19
.7
1

30
1.
58

0.
00

14
.4
1

gr
24

26
3.
04

26
3.
04

0.
00

45
.2
1

26
3.
04

0.
00

17
.9
0

26
3.
04

0.
00

18
.0
4

26
3.
04

0.
00

19
.7
5

fri
26

23
9.
08

23
9.
08

0.
00

28
.3
6

23
9.
08

0.
00

21
.9
3

23
9.
08

0.
00

21
.9
2

23
9.
08

0.
00

25
.2
4

ba
yg

29
34

5.
11

34
5.
11

4.
06

72
00

.0
0

34
5.
11

0.
00

29
2.
44

34
5.
11

0.
00

44
1.
98

34
5.
11

1.
06

72
00

.0
0

ba
ys
29

30
5.
46

30
5.
46

2.
12

72
00

.0
0

30
5.
46

0.
00

14
5.
85

30
5.
46

0.
00

17
9.
04

30
5.
46

0.
00

64
09

.0
8

at
t3
0

24
6.
98

24
6.
98

1.
15

72
00

.0
0

24
6.
98

0.
00

40
.6
4

24
6.
98

0.
00

43
.6
3

24
6.
98

0.
00

42
8.
38

da
nt
zi
g3

0
32

1.
89

32
1.
89

3.
94

72
00

.0
0

32
1.
89

0.
00

15
3.
15

32
1.
89

0.
00

24
0.
26

32
1.
89

0.
00

25
94

.8
9

ei
l3
0

32
0.
74

32
0.
74

2.
39

72
00

.0
0

32
0.
74

0.
00

39
8.
16

32
0.
74

0.
00

49
9.
42

32
0.
74

0.
00

53
81

.8
8

gr
30

27
9.
94

27
9.
94

0.
00

29
13

.0
2

27
9.
94

0.
00

42
.2
5

27
9.
94

0.
00

44
.0
7

27
9.
94

0.
00

90
.9
1

hk
30

31
8.
63

31
8.
63

3.
16

72
00

.0
0

31
8.
63

0.
00

49
.7
1

31
8.
63

0.
00

52
.4
9

31
8.
63

0.
00

26
26

.1
9

sw
iss

30
34

0.
42

34
0.
42

0.
00

18
19

.4
8

34
0.
42

0.
00

40
.8
3

34
0.
42

0.
00

41
.5
8

34
0.
42

0.
00

22
6.
65

ei
l3
5

36
5.
34

36
5.
34

8.
14

72
00

.0
0

36
5.
34

4.
85

72
00

.0
0

36
5.
34

4.
61

72
00

.0
0

36
5.
34

7.
64

72
00

.0
0

gr
35

27
6.
18

27
6.
18

8.
93

72
00

.0
0

27
6.
18

0.
00

11
3.
79

27
6.
18

0.
00

12
9.
96

27
6.
18

3.
14

72
00

.0
0

sw
iss

35
37

8.
36

38
7.
31

12
.8
6

72
00

.0
0

37
8.
36

0.
00

18
39

.1
6

37
8.
36

0.
00

21
74

.1
0

37
8.
36

3.
79

72
00

.0
0

ei
l4
0

42
1.
10

-
-

72
00

.0
0

42
1.
10

8.
41

72
00

.0
0

42
1.
10

8.
52

72
00

.0
0

42
1.
64

10
.7
2

72
00

.0
0

da
nt
zi
g4

2
24

7.
25

-
-

72
00

.0
0

24
7.
25

0.
00

67
6.
00

24
7.
25

0.
00

99
9.
18

24
7.
25

3.
99

72
00

.0
0

sw
iss

42
35

0.
45

-
-

72
00

.0
0

35
0.
45

3.
81

72
00

.0
0

35
0.
45

3.
95

72
00

.0
0

35
0.
45

7.
62

72
00

.0
0

ei
l4
5

47
4.
44

-
-

72
00

.0
0

47
4.
44

13
.2
4

72
00

.0
0

47
6.
22

13
.2
7

72
00

.0
0

47
6.
22

16
.7
6

72
00

.0
0

Av
g.

30
7.
12

-
-

30
7.
12

1.
38

30
7.
20

1.
38

30
7.
22

2.
49

Av
g.

Fe
as
.

29
2.
90

2.
60

29
2.
41

0.
27

29
2.
41

0.
26

29
2.
41

0.
87

#
O
pt
.

9
18

18
14

Av
g.

T
G
JL

16
61

1.
40

18
.1
9

18
.5
5

42
.9
1

Av
g.

N
M

B&
C

21
5.
15

27
3.
72

Av
g.

ba
sic

D
yn

.
B&

C
84

.4
1

67
.9
4

12
73

.3
3

Chapter 2. Models and Algorithms for the TSP-TS 33

Ta
bl
e
2.
12
:
C
om

pa
ris

on
of

Lo
we

r
an

d
U
pp

er
Bo

un
ds

w
ith

sm
al
ls

er
vi
ce

tim
es

on
la
rg
er

sy
m
m
et
ric

in
st
an

ce
s.

#
in
st

Be
st

G
A
+
SE

C
s

T
G
JL

16
N
M
ID

yn
.B
&
C

Av
g%

M
in
%

T
im

e
LB

T
im

e
U
B

G
ap

%
T
im

e
LB

T
im

e
U
B

G
ap

%
T
im

e
at
t3
5

27
1.
36

0.
00

0.
00

0.
74

23
8.
07

0.
02

27
1.
36

0.
00

76
.8
9

26
4.
96

0.
73

27
1.
36

0.
00

3.
05

da
nt
zi
g3
5

29
6.
02

0.
14

0.
00

0.
66

24
2.
80

0.
03

29
6.
02

0.
00

41
9.
88

28
5.
84

0.
56

29
6.
02

0.
00

10
.4
2

hk
35

34
7.
51

0.
00

0.
00

0.
64

30
3.
97

0.
04

34
7.
51

0.
00

11
2.
29

33
7.
31

0.
65

34
7.
51

0.
00

6.
13

at
t4
0

29
6.
33

0.
00

0.
00

0.
90

24
7.
62

0.
04

29
6.
33

0.
00

52
93
.4
1

28
8.
89

0.
88

29
6.
33

0.
00

9.
26

hk
40

35
6.
28

0.
00

0.
00

0.
93

30
4.
76

0.
04

35
6.
28

0.
00

14
04
.3
2

34
3.
39

0.
90

35
6.
28

0.
00

31
.0
4

at
t4
5

31
8.
94

0.
06

0.
00

1.
24

25
8.
23

0.
04

31
8.
94

2.
09

50
00
0.
00

30
9.
84

0.
95

31
8.
94

0.
00

47
3.
42

hk
45

36
5.
41

0.
00

0.
00

1.
27

30
1.
77

0.
04

36
5.
41

0.
00

30
91
6.
40

35
3.
13

1.
63

36
5.
41

0.
00

48
7.
68

at
t4
8

33
6.
75

0.
89

0.
00

1.
42

27
1.
45

0.
04

33
8.
97

5.
58

50
00
0.
00

32
6.
51

1.
93

33
6.
75

0.
00

33
11
.9
3

gr
48

38
3.
13

0.
62

0.
00

1.
44

31
1.
41

0.
05

38
3.
13

3.
70

50
00
0.
00

36
2.
01

2.
40

38
3.
13

0.
00

13
73
2.
86

hk
48

37
1.
86

0.
01

0.
00

1.
57

32
0.
20

0.
05

37
1.
86

1.
25

50
00
0.
00

35
8.
56

1.
93

37
1.
86

0.
00

36
21
.1
0

ei
l5
1

44
2.
53

0.
70

0.
17

1.
70

39
2.
49

0.
17

44
2.
53

0.
25

50
00
0.
00

42
9.
21

4.
25

44
2.
53

0.
00

24
12
2.
59

be
rli
n5

2
43
9.
76

0.
00

0.
00

1.
95

35
6.
02

0.
03

43
9.
76

6.
31

50
00
0.
00

41
6.
05

2.
05

43
9.
76

1.
30

50
00
0.
00

br
az
il5

8
38
6.
48

0.
05

0.
00

1.
95

27
3.
53

0.
07

38
6.
48

5.
18

50
00
0.
00

36
9.
57

2.
13

38
6.
48

0.
00

43
57
9.
73

Av
g.

35
4.
80

0.
19

0.
01

1.
26

29
4.
02

0.
05

35
4.
97

1.
87

34
1.
94

1.
62

35
4.
80

0.
10

#
O
pt
.

6
12

Av
g.

T
G
JL

16
63
70
.5
3

91
.2
6

Chapter 2. Models and Algorithms for the TSP-TS 34

Asymmetric Instances

A similar behavior as that observed in Table 2.12 can also be found in Table
2.13. The GA algorithm finds several best solutions in short computing time
(0.42 seconds on average). The solution found is proved to be optimal for 26
instances (out of 27) by the Dynamic B&C algorithm, while TGJL16 can prove
the optimality of only 16 solutions. In addition, the computing time to prove the
optimality of the solutions is much shorter for the NMI Dyn.B&C algorithm (on
average about 37 seconds versus 4935 seconds). Therefore, we can conclude that
the proposed algorithm turns out to be very effective on the asymmetric instances
as well.

2.7 Conclusions and Future Research
We studied the Traveling Salesman Problem with Time-dependent Service times
(TSP-TS), which considers the service time at each customer as a continuous func-
tion of the start time of service. We proposed a new formulation for the problem
and included explicit subtour elimination constraints, dynamically separated. In
addition, we proposed an upper bound on the total route duration, obtained by
a multi-operator Genetic Algorithm, an improved lower bound on the total ser-
vice time, and new lower and upper bounds on the start time of service at each
customer. These ingredients are included in Branch-and-Cut algorithms, one of
which exploits the dynamic update of the bounds during the solving process. The
proposed algorithms are tested on benchmark instances from the literature and
compared to an existing method. The results show that the optimality of the
solutions found can be proved for a larger set of instances in shorter computing
times. Additional computational experiments on larger size symmetric instances
with up to 58 nodes and on asymmetric instances with up to 45 nodes show the
effectiveness of the proposed algorithm.

Future research will focus on extending the proposed methods to other variants
of the TSP that embed the time-dependency. In addition, the problem with time-
dependent service times could be generalized to deal with other features, such as
more vehicles or time window constraints.

Chapter 2. Models and Algorithms for the TSP-TS 35
Ta

bl
e
2.
13
:
C
om

pa
ris

on
of

Lo
we

r
an

d
U
pp

er
Bo

un
ds

w
ith

sm
al
ls

er
vi
ce

tim
es

on
as
ym

m
et
ric

in
st
an

ce
s.

#
in
st

Be
st

G
A
+
SE

C
s

T
G
JL

16
N
M
ID

yn
.B
&
C

Av
g%

M
in
%

T
im

e
LB

T
im

e
U
B

G
ap

%
T
im

e
LB

T
im

e
U
B

G
ap

%
T
im

e
br
17

88
.6
0

0.
00

0.
00

0.
16

27
.0
1

0.
00

88
.6
0

0.
00

2.
00

87
.1
8

0.
09

88
.6
0

0.
00

1.
53

ft3
0

33
8.
54

0.
40

0.
00

0.
23

27
8.
97

0.
02

33
8.
54

0.
00

10
05

.6
8

32
3.
87

0.
15

33
8.
54

0.
00

14
.1
2

ftv
30

a
29

8.
60

0.
14

0.
00

0.
28

26
8.
60

0.
02

29
8.
60

0.
00

11
.0
3

28
9.
10

0.
11

29
8.
60

0.
00

1.
12

ftv
30

b
32

6.
36

0.
34

0.
00

0.
34

30
3.
34

0.
02

32
6.
36

0.
00

12
.9
5

31
6.
91

0.
14

32
6.
36

0.
00

1.
05

ftv
30

c
30

5.
95

0.
00

0.
00

0.
30

26
8.
66

0.
02

30
5.
95

0.
00

10
1.
96

29
1.
18

0.
22

30
5.
95

0.
00

1.
96

p3
0

20
1.
96

0.
01

0.
00

0.
27

14
4.
48

0.
01

20
1.
96

2.
51

50
00

0.
00

19
6.
18

0.
21

20
1.
96

0.
00

46
.8
2

ry
30

p
30

3.
02

0.
46

0.
00

0.
33

24
7.
13

0.
02

30
3.
02

0.
00

99
3.
95

29
1.
65

0.
18

30
3.
02

0.
00

11
.0
4

ftv
33

32
8.
01

0.
00

0.
00

0.
44

29
2.
87

0.
02

32
8.
01

0.
00

21
.8
8

31
9.
75

0.
33

32
8.
01

0.
00

1.
92

ft3
5

39
4.
62

1.
55

0.
00

0.
30

33
7.
02

0.
02

39
4.
62

0.
00

46
23

0.
96

37
6.
45

0.
25

39
4.
62

0.
00

27
0.
68

ftv
35

35
8.
07

1.
41

0.
56

0.
43

32
2.
67

0.
03

35
8.
07

0.
00

24
52

.2
4

34
2.
86

0.
42

35
8.
07

0.
00

35
.3
3

ftv
35

a
34

1.
12

0.
94

0.
00

0.
40

30
6.
64

0.
02

34
1.
12

0.
00

38
4.
90

32
5.
36

0.
29

34
1.
12

0.
00

11
.7
8

ftv
35

b
35

1.
27

1.
61

1.
36

0.
42

32
0.
41

0.
03

35
1.
27

0.
00

64
7.
08

33
5.
42

0.
37

35
1.
27

0.
00

7.
50

ftv
35

c
34

3.
30

0.
00

0.
00

0.
52

30
8.
72

0.
03

34
3.
30

0.
00

66
7.
67

33
0.
51

0.
38

34
3.
30

0.
00

16
.1
2

p3
5

22
9.
24

0.
38

0.
00

0.
39

16
0.
62

0.
01

23
8.
05

9.
19

50
00

0.
00

22
2.
10

0.
39

22
9.
24

0.
00

46
.6
3

ry
35

p
32

6.
29

0.
00

0.
00

0.
43

29
7.
81

0.
03

32
6.
29

0.
00

10
8.
50

32
0.
52

0.
37

32
6.
29

0.
00

2.
28

ftv
38

38
0.
31

0.
84

0.
40

0.
51

34
2.
64

0.
04

38
0.
31

0.
00

20
78

9.
05

36
3.
64

0.
44

38
0.
31

0.
00

12
7.
61

ft4
0

43
6.
93

0.
76

0.
00

0.
36

37
4.
07

0.
03

43
6.
93

2.
82

50
00

0.
00

41
6.
86

0.
45

43
6.
93

0.
00

35
93

.7
2

ftv
40

a
36

5.
59

0.
00

0.
00

0.
54

32
9.
82

0.
03

36
5.
59

0.
00

25
99

.5
5

35
0.
24

0.
60

36
5.
59

0.
00

53
.5
8

ftv
40

b
37

2.
98

0.
00

0.
00

0.
54

34
1.
56

0.
04

37
2.
98

0.
00

29
39

.5
9

35
8.
27

0.
48

37
2.
98

0.
00

40
.3
1

ftv
40

c
37

7.
38

1.
22

0.
53

0.
53

33
7.
17

0.
03

37
7.
38

1.
95

50
00

0.
00

35
8.
50

0.
45

37
7.
38

0.
00

95
3.
51

ry
40

p
36

5.
59

0.
07

0.
02

0.
61

32
0.
17

0.
03

36
5.
59

0.
77

50
00
0.
00

35
2.
77

0.
68

36
5.
59

0.
00

58
.4
4

p4
3

28
8.
45

0.
16

0.
00

0.
44

43
.4
0

0.
02

28
8.
45

0.
67

50
00

0.
00

28
7.
52

0.
50

28
8.
45

0.
22

50
00

0.
00

ftv
44

39
5.
91

1.
99

0.
56

0.
53

35
4.
54

0.
06

39
5.
91

3.
25

50
00

0.
00

37
0.
78

0.
45

39
5.
91

0.
00

89
36

.0
1

ft4
5

47
3.
37

1.
30

0.
00

0.
45

40
2.
27

0.
04

47
3.
37

3.
88

50
00

0.
00

45
0.
34

0.
58

47
3.
37

0.
00

75
37

.4
2

ftv
45

b
40

8.
17

2.
55

0.
60

0.
55

35
9.
25

0.
06

40
8.
17

3.
65

50
00

0.
00

38
5.
63

1.
17

40
8.
17

0.
00

30
05
2.
82

ftv
45

c
37

1.
13

0.
88

0.
86

0.
91

32
6.
22

0.
05

37
1.
13

3.
20

50
00

0.
00

35
1.
23

0.
90

37
1.
13

0.
00

20
81

.3
2

ry
45

p
39

4.
23

1.
37

0.
00

0.
68

33
8.
33

0.
03

39
4.
23

2.
34

50
00
0.
00

37
9.
70

0.
93

39
4.
23

0.
00

38
3.
69

Av
g.

33
9.
44

0.
63

0.
17

0.
42

28
7.
20

0.
03

33
9.
77

1.
27

32
5.
72

0.
43

33
9.
44

0.
01

#
O
pt
.

16
26

Av
g.

T
G
JL

16
49

35
.5
6

37
.3
7

36

Chapter 3

Algorithms for the Pollution
Traveling Salesman Problem

3.1 Introduction
Nowadays, environmental issues are becoming more important. Emissions from
vehicles traveling on roads are one of the main causes of pollution. Therefore,
reducing carbon emissions is one of the most important goals that have to be taken
into account in vehicle routing problems (Bektaş & Laporte, 2011; Lin et al., 2014).
In Bektaş & Laporte (2011), the Pollution Routing Problem (PRP) was introduced:
it is a variant of the Vehicle Routing Problem (VRP) in which the goal is not only
to minimize the travel distance, but also the amount of green-house emissions,
fuel, travel times and their costs. The authors proposed a Mixed Integer Linear
Programming (MILP) model, and analyzed trade-offs between various performance
measures of vehicle routing, such as distance, load, emissions and costs. In Demir
et al. (2012), the MILP model was extended to allow for low travel speeds, and
an effective adaptive large neighborhood search heuristic was proposed for the
PRP. A matheuristic approach was proposed in Kramer et al. (2015) for PRP and
other green VRP variants. The matheuristic approach combines local search-based
metaheuristic with MILP for the PRP and obtains better performance than the
previously proposed algorithms.

Motivated by these recent works on the PRP, we study the Pollution Traveling
Salesman Problem (PTSP), i.e. the problem of determining a Hamiltonian tour
that minimizes a function of fuel consumption (dependent on vehicle speed and
load) and driver costs. More precisely, we refer to the PRP as modelled in Demir
et al. (2012) and consider the single vehicle case. The PTSP is formally described
in Section 3.2, where we also present a MILP model, enhanced with explicit sub-
tour elimination constrains, for its exact solution. The main contributions of this
work are two mataheuristic algorithms: an Iterated Local Search (ILS) algorithm
(Lourenço et al., 2010) and a Multi-operator Genetic Algorithm (MGA), presented
in Sections 3.3 and 3.4, respectively. Both algorithms are able to find good solu-
tions for PTSP instances in very short computing times. In Section 3.5, we report
computational experiments on instances, with up to 50 customers, proposed in

This chapter is based on the contents of: Cacchiani, Contreras-Bolton, Escobar, Escobar-
Falcon, Linfati, & Toth, An iterated local search algorithm for the pollution traveling salesman
problem. In P. Daniele, & L. Scrimali (Eds.) New Trends in Emerging Complex Real Life Prob-
lems: ODS, Taormina, Italy, September 10–13, 2018 , (pp. 83–91). Cham: Springer International
Publishing, 2018.

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 37

Demir et al. (2012) and adapted here for the single vehicle case: in particular, we
compare the results obtained by the ILS and MGA algorithms with those found
by a Cut-and-Branch algorithm, based on the enhanced MILP model presented in
Section 3.2. Finally, we draw some conclusions in Section 3.6.

3.2 Problem Description and Formulation
The PTSP is defined on a complete directed graph G = (N ,A) where N =
{0, . . . , n} is the set of nodes, 0 is a depot and A is the set of arcs. The distance
from node i to node j is denoted by dij. The set N0 = N \{0} is the customer set.
Each customer i ∈ N0 has a non-negative demand qi, and a service time ti. We
define D = ∑

i∈N0 qi as the capacity of the vehicle, and fd as the driver wage per
unit time. We consider a discretized speed function defined by |R| non-decreasing
speed levels v̄r (r ∈ R), where each r ∈ R corresponds to a speed interval in the
range [vl, vu] (where vl and vu are, respectively, the lower and upper speed limits).

Table 3.1: Parameters used in the PTSP model.

Notation Description Typical Values
w Curb-weight (kilogram) 6350
ξ Fuel-to-air mass ratio 1
k Engine friction factor (kilojoule/rev/liter) 0.2
N Engine speed (rev/second) 33
V Engine displacement (liters) 5
g Gravitational constant (meter/second2) 9.81
Cd Coefficient of aerodynamic drag 0.7
ρ Air density (kilogram/meter3) 1.2041
A Frontal surface area (meter2) 3.912
Cr Coefficient of rolling resistance 0.01
ηtf Vehicle drive train efficiency 0.4
η Efficiency parameter for diesel engines 0.9
fd Driver wage per (£/second) 0.0022
κ Heating value of a typical diesel fuel (kilojoule/gram) 44
ψ Conversion factor (gram/second to liter/second) 737
vl Lower speed limit (meter/second) 5.5 (or 20 kilometer/hour)
vu Upper speed limit (meter/second) 25 (or 90 kilometer/hour)

We adopt the fuel consumption expression proposed in Demir et al. (2012),
which extends the one presented in Bektaş & Laporte (2011) to allow for speeds
lower than 40 kilometer/hour, and refer the interested reader to these papers for
explanations of how this expression is derived. For a given arc (i, j) ∈ A of length
dij, traversed at speed v by a vehicle carrying load M = w + fij, where w is the
weight of the empty vehicle (curb weight) and fij is the load carried by the vehicle
on this arc, the fuel consumption can be expressed as:

F (v) = λkNV dij/v + λβγdijv
2 + λwγαijdij + λγαijfijdij (3.1)

where λ = ξ/κψ and γ = 1/1000ηtfη are constants, β = 0.5CdρA is a vehicle
specific constant, αij = τ+g sin θij+gCr cos θij is an arc specific constant depending
on the road angle θij, the acceleration τ (meter/second2), and all other parameters

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 38

and values, taken from Demir et al. (2012), are reported in Table 3.1. In particular,
the first two terms of (3.1) represent the speed-induced energy requirements, while
the last two terms represent the load-induced energy requirements.

The PTSP calls for determining the minimum cost Hamiltonian tour that de-
parts from the depot and visits each customer exactly once by serving its demand,
where the cost is given by the sum of fuel consumption and driver wage. We in-
troduce the following decisional variables: (i) binary variables xij assuming value
1 if arc (i, j) ∈ A is traversed; non-negative variables fij representing the amount
of flow (i.e. the load on the vehicle) on arc (i, j) ∈ A; (iii) binary variables zr

ij

assuming value 1 if arc (i, j) ∈ A is traversed at speed level r ∈ R. The MILP
model for the PTSP reads as follows:

Min ∑
(i,j)∈A

λkNV dij
∑

r∈R
zr

ij/v̄
r + ∑

(i,j)∈A
λβγdij

∑
r∈R

zr
ij(v̄r)2 (3.2)

+ ∑
(i,j)∈A

λwγαijdijxij + ∑
(i,j)∈A

λγαijdijfij (3.3)

+ fd(∑
(i,j)∈A

∑
r∈R

(dij/v̄
r)zr

ij + ∑
i∈N0

ti) (3.4)

subject to (3.5)∑
j∈N0

f0j = D (3.6)
∑

j∈N0
fj0 = 0 (3.7)

∑
j∈N

xij = 1, ∀i ∈ N (3.8)
∑

i∈N
xij = 1, ∀j ∈ N (3.9)∑

j∈N
fji −

∑
j∈N

fij = qi, ∀i ∈ N0 (3.10)

qjxij ≤ fij ≤ (D − qi)xij,∀ (i, j) ∈ A (3.11)∑
r∈R

zr
ij = xij, ∀ (i, j) ∈ A (3.12)

xij ∈ {0, 1}, ∀ (i, j) ∈ A (3.13)
fij ≥ 0, ∀ (i, j) ∈ A (3.14)

zr
ij ∈ {0, 1}, ∀ (i, j) ∈ A,∀r ∈ R (3.15)

The objective function consists of three main components to be minimized:
(3.2) and (3.3) represent the fuel consumption, as defined in (3.1), by taking into
account, respectively, the energy required by speed variations and the energy used
to curry the curb weight and the load on the vehicle, while (3.4) corresponds to
the driver wage, where the term in the external brackets is the total tour dura-
tion which depends on the speeds on the used arcs and on the service times at
the customers. Constraints (3.6) and (3.7) ensure, respectively, that the vehicle
leaves full and returns empty at the depot. Constraints (3.8) and (3.9) guarantee
that each node is visited exactly once. Constraints (3.10) and (3.11) define the
load of the vehicle on each visited arc (and implicitly forbid subtours). Finally,
constraints (3.12) link the x and z variables by imposing that exactly one speed
level is chosen for each used arc (i, j) ∈ A, and constraints (3.13)-(3.15) define the

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 39

variable domains.
We add to the model (3.2)-(3.15) the explicit subtour elimination constraints

(SECs), as proposed in Dantzig et al. (1954) for the Asymmetric TSP:∑
i∈S

∑
j∈N\S

xij ≥ 1, S ⊂ N , S 6= ∅. (3.16)

Model (3.2)-(3.16) is used as benchmark in the computational experiments to
evaluate the performance of the proposed ILS and MGA algorithms. In particular,
we solve model (3.2)-(3.16) by a Cut-and-Branch algorithm, in which the SECs
are separated, at the root node, by using the separation procedure proposed in
Padberg & Rinaldi (1990), and the MILP solver CPLEX is used to obtain integer
solutions.

3.3 Iterated Local Search Algorithm
The pseudo-code of the ILS algorithm is reported in Algorithm 3.1. The first step
(lines 1–7) consists of iteratively solving the Linear Programming (LP) relaxation
of model (3.2)-(3.16), by applying the separation procedure proposed in Padberg
& Rinaldi (1990) to derive a set S containing a sub-tour: if one exists, then the
corresponding cut (3.16) is added to the model and the LP-relaxation is solved
again. Once the optimal solution x of the LP-relaxation has been derived, it is
used to build a feasible tour, as follows. Initially, we define the depot 0 as the
starting node h. Then, iteratively, we select the node j such that xhj +xjh has the
highest value: arc (h, j) is added to the tour, and j becomes the new starting node
h. If, for all nodes j connected to h, xhj + xjh = 0, then we choose the arc with
the smallest dhj. The procedure is repeated until we obtain a complete feasible
tour. We call s∗ the locally optimal solution and s∗∗ the current best solution.
The following loop (lines 9–29) is made of three phases: perturbation, local search
and acceptance criterion.

To perturb the current best solution s∗∗ (lines 10–14) we apply, with probability
80% a double-bridge move, and a scramble tour move otherwise. The former
move consists of randomly removing four edges (A, B), (C, D), (E,F), (G, H) and
reconnecting them as (A, F), (G, D), (E, B), (C, H). The latter move corresponds
to randomly choose a path of the tour and randomly mixing its nodes. After
perturbation, we obtain solution s′.

The following phase (lines 15–24) is a local search procedure that is applied
to the locally optimal solution s∗: with probability 80% we apply a 2-opt move,
otherwise we perform an exchange improvement. The former move consists of
executing the 2-opt procedure by using as arc costs only dij (i, j) ∈ A, and the
procedure is stopped at the first improvement. The latter move requires exchang-
ing two nodes of the tour: if an improvement is obtained, then the exchange is
performed, otherwise the original tour is kept. This procedure is executed |N |
times. After applying the local search procedure, we obtain solution s′′. Then, we
choose to store in s∗ the best solution between s′ and s′′, by considering function
φ that gives the value of the PTSP objective function (3.2)-(3.4).

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 40

The last phase (lines 25–27) is the acceptance criterion (check-history): if s∗∗
has not been improved for 10 iterations, then we apply an additional local search
step to s∗∗ by executing the 2-opt procedure. It uses as arc costs dij (i, j) ∈ A,
but each time an improvement is possible, it checks if the PTSP objective function
value improves too, and accepts the change only in this case.

Finally, the best solution between s∗ and s∗∗ is stored in s∗∗. The termination
condition is reached when I iterations are performed (I = 5000 in our computa-
tional experiments).

Algorithm 3.1 Iterated Local Search
1: repeat
2: x← solve LP-relaxation of (3.2)-(3.16)
3: S ← separation-procedure(x)
4: if S 6= ∅ then
5: LP-relaxation of (3.2)-(3.16) ← add-cut(S)
6: end if
7: until S = ∅
8: s∗, s∗∗ ← build-feasible-tour(x)
9: repeat

10: if rnd(0, 1) < 0.8 then
11: s′ ← double-bridge-move(s∗∗)
12: else
13: s′ ← scramble-subtour(s∗∗)
14: end if
15: if rnd(0, 1) < 0.8 then
16: s′′ ← 2-opt-move(s∗)
17: else
18: s′′ ← exchange-improvement(s∗)
19: end if
20: if φ(s′) < φ(s′′) then
21: s∗ ← s′

22: else
23: s∗ ← s′′

24: end if
25: if check-history(φ(s∗∗)) then
26: s∗ ← 2-opt-improvement(s∗∗)
27: end if
28: s∗∗ ← store if φ(s∗) < φ(s∗∗)
29: until termination condition

3.4 Multi-operator Genetic Algorithm
Genetic Algorithms are effective metaheuristic algorithms and have been success-
fully applied to solve ATSP and several its variants (Potvin, 1996; Larrañaga et al.,
1999; Moon et al., 2002; Snyder & Daskin, 2006; Yuan et al., 2013; Groba et al.,
2015). Generally, these algorithms use only single operators for crossover and

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 41

mutation, disregarding the potential synergy of multi-operators. However, the
crossover and mutation operators can complement each other, generating a syn-
ergy which provides better results than those obtained by using single operators
(Li et al., 2014; Contreras-Bolton & Parada, 2015). Taking the advantage of the
multi-operators, we use an approach based on a Multi-operator Genetic Algorithm
(MGA).

In this section, we describe MGA in Algorithm 3.2 and its components: the
representation, the generation of the initial population, the evaluation function,
the crossover and mutation genetic operators, and the genetic parameters, are
presented in the subsections 3.4.1, 3.4.2, 3.4.3, 3.4.4 and 3.4.5.

In the initial step, a population of individuals is generated and evaluated us-
ing the instructions in lines 1–11, note that each initialization method has equal
probability to occur. Subsequently, the main loop of the algorithm, presented in
lines 12–21, is responsible for generating a new population from the current one
via a selection of several crossover and mutation operators, as described in lines
15, 16 and 17. The selection is made in a tournament of three individuals (Eiben &
Smith, 2015). Elitism is also implemented, where the best current parents replace
10% of the worst individuals generated in each generation (line 20).

Algorithm 3.2 Genetic Algorithm
Ensure: best individual
1: for t← 0 to numbers of individuals do
2: if rnd(0, 1) < 0.33 then
3: It ← random()
4: else if 0.33 ≥ rnd(0, 1) < 0.66 then
5: It ← nearest-neighbor-heuristic()
6: else
7: It ← LP-based-heuristic()
8: end if
9: It ← 2-opt-improvement(It)

10: evaluation of individual It

11: end for
12: for g ← 1 to ≤ maximum number of generations do
13: for t← 1 to numbers of individuals - 1 do
14: (j, k)← selection()
15: (I ′t, I ′t+1)← crossover(Ij, Ik, OX2 or DPX or HX or UNN)
16: I ′t ← mutation(I ′t, EM or GSTM or 2opt or 3opt)
17: I ′t+1 ← mutation(I ′t+1, EM or GSTM or 2opt or 3opt)
18: evaluation of individual I ′t and I ′t+1
19: end for
20: generate new population g with elitism(I, I ′)
21: end for

3.4.1 Representation and fitness function
A permutation representation is used, where each individual corresponds to a
Hamiltonian tour. As fitness function is used the objective function (3.2, 3.3, 3.4),

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 42

but we compute the objective function for each speed level r ∈ R taking as fitness
value the smallest of their computed values.

3.4.2 Initial population
An initial population is computed by using three different ways which will be
described in the following. Each one has the same probability to occur. Then we
apply the 2-opt procedure (described in Section 3.3) to generate individuals and
to try to improved them.

• Random: The tour is generated randomly.

• Nearest-Neighbor-Heuristic: The tour is generated by applying the Nearest
Neighbor Heuristic (NNH) (Flood, 1956), that randomly starts from one of
the nodes in N .

• LP-based-heuristic: The heuristic is described in Algorithm 3.3. The first
step (lines 2–8) is the procedure described in the lines 1–7 of Algorithm 3.2.
Then, the second step (lines 11–24) generates a feasible solution by using a
randomized NNH, where the randomization occurs at line 14.

Algorithm 3.3 LP-based-heuristic
1: T ← ∅
2: repeat
3: x← solve LP-relaxation of (3.2)-(3.16)
4: S ← separation-procedure(x)
5: if S 6= ∅ then
6: LP-relaxation of (3.2)-(3.16) ← add-cut(S)
7: end if
8: until S = ∅
9: h = 0

10: T ← {h}
11: repeat
12: max← 0
13: for k ∈ N\T do
14: if xhk + xkh > max and rnd(0, 1) < 0.5 then
15: max← xhk + xkh

16: j ← k
17: end if
18: end for
19: if max = 0 then
20: j ← node corresponding to the smallest dhj.
21: end if
22: T ← T ∪ {j}
23: h← j
24: until obtains a complete feasible tour

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 43

3.4.3 Crossover operators
Four different crossover operators are used: Order Based Crossover (OX2) (Syswerda,
1991), Distance Preserving Crossover (DPX) (Reisleben et al., 1996), Heuristic
Crossover (HX) (Grefenstette et al., 1985) and Uniform Nearest Neighbor (UNN)
(Buriol et al., 2004), with probability of 10%, 45%, 20% and 25%, respectively.

• OX2: Randomly select a set of nodes from a parent and according to the
order of the nodes in the selected positions of this parent impose the set on
the other parent.

• DPX: the nodes contained in the first parent are copied into the offspring
and all the arcs not in common with the second parent are deleted, leading
to a set of disconnected paths. These paths are then reconnected without
using any of the arcs that are contained in only one of the parents. In
particular, given a path that ends at node i, the nearest available neighbor
node k among the initial nodes of the remaining paths is taken and arc (i, k)
is added to the tour, unless (i, k) was contained in one of the two parents.
The procedure is repeated until all paths have been reconnected in a tour.

• HX: first, a random node is selected to be the current node of the offspring.
Then, the cheapest one of the at most four (undirected) edges connecting the
current node to an unvisited node from the parent tours is chosen. If none
of the parental edges leads to an unvisited node a random edge is selected.
This is repeated until a complete tour has been constructed.

• UNN: initially, all arcs in common between both parents are copied into
the offspring. The remaining arcs are inserted as follows: for each node i
a true or false value is generated randomly with the same probability. If
the generated value is true (resp. false), then the arc which links i to the
next node in parent A (resp. parent B) is copied into the offspring, if no
restriction is violated. If a violation occurs in any of the two cases, then
the arc of the other parent is considered. The resulting tour fragments are
patched using the NNH algorithm.

3.4.4 Mutation operators
Four different mutation operators are used: exchange mutation (EM), Greedy Sub
Tour Mutation (GSTM), 2-opt and 3-opt, with probability of 10%, 35%, 20% and
35%, respectively. EM is based on the operator proposed in Banzhaf (1990), which
was described at line 18 of Algorithm 3.1. GSTM combines classical operators
(such as “simple inversion mutation” and “scramble mutation”) and greedy tech-
niques by using different parameters. The parametrical structure of the operator
prevents a stuck of the local solutions and reaches local solutions faster by greedy
search methods and making random perturbation on these solutions like classi-
cal mutation operators and then applies them again a greedy method, for more
details see (Albayrak & Allahverdi, 2011). The 3-opt operator was implemented
by considering all the pairs of edges, and by selecting the third edge by randomly
attempting only ten edges, instead of considering all the remaining edges.

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 44

3.4.5 Genetic parameters
The parameters involved in MGA are population size, maximum number of gener-
ation runs, and crossover and mutation probabilities. The adequate definition of
the parameters is directly related to the computational performance of the evolu-
tionary algorithms. Based on the existing literature (Eiben et al., 1999, 2007) and
preliminary computational experiments, we set the following parameters: the size
of the population was set at 150 individuals, the number of generations at 150, the
crossover probability at 0.9, and the mutation probability at 0.2.

3.5 Computational Experiments
We used the sets od benchmark instances with 10, 15, 20, 25 and 50 customers,
proposed in Demir et al. (2012) for the PRP, and adapted them to the PTSP.
In particular, to make the instances feasible for a single vehicle, we removed the
time window constraints for every customer, and used a vehicle with capacity
D = ∑

i∈N0 qi. In addition, we generated new sets of instances with 30, 35, 40
and 45 customers, obtained from the benchmark instances with 50 customers by
considering, respectively, the first 30, 35, 40 and 45 customers. Each set of in-
stances contains 20 instances. The algorithms were implemented in C++, and all
experiments were executed on an Intel Core i7-6900K with 16-Core 3.20GHz and
66 GB RAM (single thread). We used CPLEX 12.7.1 as LP and MILP solver, and
set a time limit of two hours for the Cut-and-Branch algorithm.

In Table 3.2, we report the computational results obtained on instances with up
to 50 customers by the exact Cut-and-Branch (C&B) algorithm and by the ILS and
MGA algorithms. We wish to mention that we also solved model (3.2)-(3.15) by
applying directly CPLEX, but the C&B algorithm is able to find some additional
optimal solutions and has smaller average gaps and computing times. Therefore,
we only report the results obtained by the C&B algorithm. Each row of Table 3.2
corresponds to a set of instances and shows average results over the 20 instances
in the set. For the C&B algorithm, we report the integer solution value (UB)
and the lower bound (LB) obtained at the end of the C&B solution process, the
final percentage gap (gap) between UB and LB, the number of obtained optimal
solutions (#opt), and the computing time (time) expressed in seconds. For the
ILS and MGA algorithms, we executed 10 runs for each instance in every set, and
we report the average and the minimum results obtained over the 10 runs. In
particular, we show the solution value (val), the percentage gap (gap) with respect
to UB (if negative, then an improvement has been obtained by ILS or MGA),
the number of best solutions (#B) found (i.e. solutions having the same value
or a smaller value than that of the solutions found by the C&B algorithm), and
the computing time (time) in seconds. It is to note that the computing time for
obtaining the “minimum” result over the 10 runs is ten times the value reported in
column time for the corresponding “average” result. Finally, the last row reports,
for each column, the average value over all the sets of instances.

We observe that the C&B algorithm is capable to obtain the optimal solution
for all the instances with up to 25 customers in very short computing times (on
average about 22 seconds). All but one instance with 30 customers are solved,

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 45

Ta
bl
e
3.
2:

C
om

pa
ris

on
am

on
g
th
e
C
ut
-a
nd

-B
ra
nc
h,

IL
S
an

d
M
G
A
.

C
&
B

M
G
A

IL
S

C
us
t.

BK
S

U
B

LB
ga

p
#
op

t
tim

e
m
in
im

um
av
er
ag

e
m
in
im

um
av
er
ag

e
va
l

#
B

ga
p

va
l

#
B

ga
p

tim
e

va
l

#
B

ga
p

va
l

#
B

ga
p

tim
e

10
15

0.
64

15
0.
64

15
0.
64

0.
00

20
0.
29

15
0.
64

20
0.
00

15
0.
65

19
0.
01

0.
07

15
0.
64

20
0.
00

15
0.
64

19
0.
00

0.
02

15
21

5.
69

21
5.
69

21
5.
69

0.
00

20
0.
58

21
5.
69

20
0.
00

21
5.
69

19
0.
00

0.
13

21
5.
69

20
0.
00

21
5.
69

18
0.
00

0.
06

20
28

8.
56

28
8.
56

28
8.
56

0.
00

20
2.
61

28
8.
56

20
0.
00

28
8.
56

19
0.
00

0.
21

28
8.
56

20
0.
00

28
8.
60

17
0.
02

0.
11

25
31

1.
45

31
1.
45

31
1.
45

0.
00

20
22
.1
9

31
1.
45

20
0.
00

31
1.
61

18
0.
04

0.
37

31
1.
45

20
0.
00

31
1.
92

14
0.
12

0.
21

30
41

7.
52

41
7.
52

41
7.
23

0.
05

19
91

1.
08

41
7.
52

20
0.
00

41
7.
57

17
0.
01

0.
63

41
7.
52

20
0.
00

41
7.
85

10
0.
08

0.
42

35
49

3.
21

49
3.
21

48
8.
17

1.
00

12
42

26
.3
4

49
3.
21

20
0.
00

49
3.
33

13
0.
02

0.
89

49
3.
31

19
0.
02

49
3.
76

10
0.
11

0.
58

40
56

3.
13

56
3.
13

54
8.
05

2.
67

3
64

95
.8
8

56
3.
01

20
-0
.0
2

56
3.
19

12
0.
01

1.
20

56
3.
01

20
-0
.0
2

56
3.
48

6
0.
06

0.
79

45
64

4.
00

64
4.
22

61
5.
61

4.
40

0
72

00
.0
0

64
3.
89

19
-0
.0
1

64
4.
62

9
0.
10

1.
51

64
4.
05

19
0.
01

64
5.
47

6
0.
23

0.
99

50
72

0.
13

72
0.
66

68
0.
46

5.
55

0
72

00
.0
0

71
9.
80

19
-0
.0
4

72
0.
38

10
0.
04

1.
97

71
9.
77

20
-0
.0
4

72
1.
05

5
0.
14

1.
28

Av
g.

42
2.
70

42
2.
79

41
2.
87

1.
51

8
12

.6
7

28
95

.4
4

42
2.
64

19
.7
8

-0
.0
08

42
2.
84

15
.1
1

0.
02

6
0.
78

42
2.
67

19
.7
8

-0
.0
04

42
3.
16

11
.6
7

0.
08

3
0.
50

Ta
bl
e
3.
3:

C
om

pa
ris

on
be

tw
ee
n
M
G
A

+
IL
S
an

d
IL
S

+
M
G
A
.

M
G
A

+
IL
S

IL
S

+
M
G
A

C
us
t.

BK
S

m
in
im

um
av
er
ag

e
m
in
im

um
av
er
ag

e
va
l

#
B

ga
p

va
l

#
B

ga
p

tim
e

va
l

#
B

ga
p

va
l

#
B

ga
p

tim
e

10
15

0.
64

3
15

0.
64

20
0.
00

15
0.
64

20
0.
00

0.
07

15
0.
64

20
0.
00

15
0.
64

20
0.
00

0.
07

15
21

5.
68

7
21

5.
69

20
0.
00

21
5.
69

20
0.
00

0.
11

21
5.
69

20
0.
00

21
5.
69

19
0.
00

0.
12

20
28

8.
55

7
28

8.
56

20
0.
00

28
8.
56

19
0.
00

0.
18

28
8.
56

20
0.
00

28
8.
58

19
0.
01

0.
20

25
31

1.
45

1
31

1.
45

20
0.
00

31
1.
47

19
0.
01

0.
27

31
1.
45

20
0.
00

31
1.
56

16
0.
03

0.
30

30
41

7.
51

6
41

7.
55

19
0.
01

41
7.
66

16
0.
04

0.
39

41
7.
52

20
0.
00

41
7.
62

16
0.
03

0.
40

35
49

3.
21

2
49

3.
21

20
0.
00

49
3.
36

14
0.
03

0.
53

49
3.
23

19
0.
00

49
3.
44

12
0.
05

0.
51

40
56

3.
12

5
56

3.
01

20
-0
.0
2

56
3.
08

17
-0
.0
1

0.
69

56
3.
01

20
-0
.0
2

56
3.
30

12
0.
03

0.
69

45
64

4.
00

2
64

3.
86

20
-0
.0
2

64
4.
27

11
0.
05

0.
85

64
3.
86

20
-0
.0
2

64
4.
57

8
0.
09

0.
87

50
72

0.
13

1
71

9.
77

20
-0
.0
4

72
0.
41

11
0.
04

1.
06

71
9.
80

19
-0
.0
4

72
0.
98

5
0.
12

1.
09

Av
g.

42
2.
70

42
2.
64

19
.8
9

-0
.0
08

42
2.
79

16
.3
3

0.
01

7
0.
46

42
2.
64

19
.7
8

-0
.0
08

42
2.
93

14
.1
1

0.
03

9
0.
47

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 46

even if the computing time increases (on average about 911 seconds). As expected,
instances that contain more customers are more difficult: in particular, no instance
with 45 or more customers can be solved to optimality within the time limit of
two hours. The average percentage gap is rather small for instances with up to 40
customers, while it increases up to 5.55% for instances with 50 customers.

When we consider the average results obtained, for each instance, by the ILS
algorithm over the 10 runs, we can see that several best solutions can be found (for
more than half of the instances on average), and that the average gap from UB
is very small: only 0.083% on average. The computing time is very short, being
0.50 seconds on average. Given the very short computing time, the ILS algorithm
can be executed 10 times for every instance to select the solution found in the
best of the 10 runs. In this case, the best solutions can be found, on average,
for 19.78 (over 20) instances in 5 seconds, i.e., the ILS algorithm obtains the best
solution for 98.9% of the instances, and the global average gap is slightly negative
(−0.004%). In addition, we notice that for instances with 40 and 50 customers, the
average gap is negative, meaning that the ILS algorithm is able to obtain better
solutions than those obtained by the C&B algorithm in much larger computing
times. As for the performance of the MGA algorithm, by considering the average
results obtained over 10 runs, we can see that the number of best solutions found
and the average gap from UB are slightly greater (15.11) and smaller (0.026%),
respectively, than those of ILS. The computing time is slightly greater than that
of ILS, being 0.78 seconds on average. In the case of the minimum results, the
best solutions can be found, on average, for 19.78 instances in around 8 seconds,
and the gap is slightly smaller than that of ILS (−0.008%).

In Table 3.3, we report additional computational results obtained by a new
algorithm (called MGA + ILS) which combines MGA and ILS: in particular, we
remove the part that iteratively solves the LP-relaxation of model (3.2)-(3.16), that
takes more or less half of the spent computing times, and we solve only one LP-
relaxation. Once the optimal solution x of the LP-relaxation has been obtained,
it is used to build a feasible solution as described in the ILS algorithm. Then, the
feasible tour is given to MGA, and the best solution found by MGA is improved
by the second phase of ILS. The additional algorithm ILS + MGA is analogous to
algorithm MGA + ILS, but the two phases (initialization and improvement) are
taken, respectively from ILS and MGA. We observe that the performance of ILS +
MGA is in general very similar to that of the best previously presented algorithm
(i.e. MGA): the average gap (0.039%) is slightly greater and the number of best
solutions found is slightly smaller, but the computing time is a bit shorter (0.47
seconds on average). Finally, MGA + ILS is in all the aspects slightly better than
all the considered algorithms, being more robust (the average gap is 0.017%) and
faster (the computing time is 0.46 seconds).

3.6 Conclusions
We proposed two mataheuristic algorithms to solve the PTSP: ILS and MGA. The
ILS algorithm starts by building a feasible tour: it is computed by using the Lin-
ear Programming (LP) solution of a Mixed Integer Linear Programming (MILP)

Chapter 3. Algorithms for the Pollution Traveling Salesman Problem 47

model for the PTSP, that contains exponentially many sub-tour elimination con-
straints. Then, the ILS algorithm loops between three phases: perturbation, local
search and acceptance criterion. The MGA is implemented with four crossover
and mutation operators, that allow the generation of good solutions within short
computing times. In addition, its multi-operator nature can avoid local optima
traps in the search of the global optimum.

We tested both algorithms on instances with up to 50 customers adapted from
those proposed in Demir et al. (2012) for the Pollution Routing Problem. To
evaluate the performance of ILS and MGA we developed a Cut-and-Branch al-
gorithm, in which subtour elimination constraints are added at the root node.
The obtained results show that the Cut-and-Branch algorithm is able to obtain
the optimal solution for instances with up to 30 customers. However, no instance
with 45 or more customers can be solved to optimality within two hours of time
limit. The MGA and ILS algorithms are very effective, as they are able to obtain
(on average in 8 and 5 seconds, respectively) the best solution for about 99% of
the instances. In addition, we combined MGA and ILS into a new mataheuris-
tic algorithm (called MGA + ILS) that obtains the best performance among the
considered algorithms. Future work will be devoted to develop exact methods
that combine ILS or MGA with the Cut-and-Branch algorithm in order to solve
instances with a larger number of customers. In addition, our algorithms could be
embedded into the algorithms proposed for the solution of the PRP.

48

Chapter 4

An algorithm to solve the
Multi-depot Waste Collection
Problem with Stochastic
Demands

4.1 Introduction
Uncollected garbage, pollution and traffic jams through extensive vehicle usage
as well as high operative costs are some of the main problems arising through
sub-optimal waste collection. For this reason, waste management is among the
most important municipal services, especially in urban areas facing increasing
waste production and growing population numbers (United Nations Population
Fund, 2011; Malakahmad et al., 2014; Son, 2014). In an attempt to optimize
urban waste collection, the waste collection problem (WCP) as essential part of
managing the garbage supply chain has been addressed by different researchers in
the past as special instance of the well-known vehicle routing problem (VRP) in
which a vehicle fleet located at a central depot has to serve a number of customers
(Beliën et al., 2014; Ghiani et al., 2014).

The VRP is one of the most studied combinatorial optimization problems.
Given a fleet of capacitated vehicles located at a central depot n0, a set of n
customers I = {n1, n2, . . . , nn} with a given demand di ≥ 0 at each customer i ∈ I
that has to be served. The travel cost between any two nodes in V = I∪{n0} (e.g.
distance, time, etc.) is known and represented by cij(i, j ∈ V). While the objective
function is to minimize costs, problem constraints include that every customer is
served by only one vehicle, all routes start and end at the central depot and that
no vehicle can stop twice at the same customer (Toth & Vigo, 2014). Instead of
delivering demand (i.e. waste levels), the aim of the WCP is to empty its clients
(i.e. waste containers) according to a specific routing plan. As can be seen in
Figure 4.1, collection vehicles need to empty themselves before returning to the
depot (Route 1), or once the vehicle capacity is reached (Route 2). Note that
multiple garbage disposal trips on a single route are possible. The collected waste
is disposed at one of m landfills, included in the original node-set V by adding the

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 49

sub-set L = {n(n+1), n(n+2), . . . , n(n+m)} to the original number of nodes.

Figure 4.1: Example of a WCP solution with 2 routes.

Despite the importance of managing garbage and different approaches to opti-
mize waste collection route planning, there is a lack of scientific publications con-
sidering rich and realistic WCP environments, e.g.: scenarios with a large number
of clients, multiple vehicle depots, and uncertainty in waste levels or demands. In
order to tackle the WCP with stochastic demands (WCPSD), this chapter proposes
a hybrid algorithm based on the simheuristic framework described in Grasas et al.
(2016), which has proven to be an effective simulation-optimization approach for
different kinds of stochastic combinatorial optimization problems. In this chapter,
Monte Carlo simulation is integrated into a metaheuristic framework in order to
estimate the expected cost and cost variability of promising routing plans initially
generated for the deterministic version of the problem. Our simheuristic algorithm
also makes use of biased (oriented) randomization techniques, similar to those pro-
posed in Faulin et al. (2008), in order to guide the random process that generates
new solutions. As discussed in Juan et al. (2013b), biased-randomized algorithms
are easily parallelizable and able to provide real-time solutions to complex vehicle
routing problems with stochastic demands.

As far as we know, the algorithm introduced here is the first one addressing the
multi-depot WCP with stochastic demands (MDWCPSD), which is closely related
to real-life waste collection activity. Additionally, our approach allows managers

This chapter is based on the contents of: Gruler, Fikar, Juan, Hirsch, & Contreras-Bolton,
Supporting multi-depot and stochastic waste collection management in clustered urban areas via
simulation–optimization. Journal of Simulation, 11 (1), 11–19, 2017.

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 50

to quantify the potential cost savings derived from using horizontal cooperation
(HC) strategies, i.e. the sharing of information and resources among different
waste management service providers.

This chapter is structured as follows: Section 4.2 provides an overview on
related works regarding simulation-optimization, waste collection, and horizontal
cooperation. The algorithm to solve the MDWCPSD is introduced in Section 4.3,
while Section 4.4 describes the computational experiments used to validate our
findings. The obtained results are discussed in Section 4.5. Finally, Section 4.6
summarizes the highlights of this work.

4.2 Related studies

4.2.1 Combining simulation with metaheuristics
The need for advanced optimization methods to solve real-life problem settings,
characterized by stochastic inputs and probability constraints, in combination with
enhanced computational possibilities, has led to the development of different hy-
brid simulation-optimization approaches. In this context, the combination of sim-
ulation techniques with optimization methods in which simulation acts as an eval-
uation function for the optimization-outputs has proven to be a fast, reliable, and
easy-to use approach in the solution of large sized optimization problems under
uncertainty (Andradóttir, 2006).

A general methodology combining metaheuristics and simulation, so called
simheuristics, is discussed in detail by (Juan et al., 2015a,b). A particular adapta-
tion in the case of the iterated local search (ILS) metaheuristic is given in Grasas
et al. (2016). Through a close integration between simulation and optimization,
this approach has been successfully applied to different problem settings. Related
to transportation and logistics, Juan et al. (2011) test the effects on safety stocks
for VRPs under uncertainty. A simheuristic approach to solve the complex inven-
tory routing problem combining routing and inventory management decisions is
suggested and analysed in Juan et al. (2014). Also, regarding other application
fields, the combination of metaheuristics with simulation has been implemented,
for example, in production planning (Figueira et al., 2013), stochastic scheduling
(Juan et al., 2014), or in the improvement of internet computing services (Cabrera
et al., 2014).

4.2.2 The waste collection problem
The WCP formulated as optimization problem has been widely discussed in the
scientific literature. In an extensive literature review on nearly 80 publications
on garbage collection since 1970, Beliën et al. (2014) summarize theoretical and
practical research work on the WCP as location and routing problems, classified
according to different dimensions (e.g. type of waste or solution methodologies).
Concerning the WCP as routing problem in the collection of household waste, an
insertion metaheuristic for large sized (deterministic) WCP settings with a single
depot and multiple landfills is presented by Kim et al. (2006), while Benjamin &

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 51

Beasley (2010) combine tabu with variable neighbourhood search. Further con-
cerning the solution of deterministic WCPs, Buhrkal et al. (2012) suggest an adap-
tive large neighbourhood search metaheuristic with destroy and repair techniques.

The WCP with stochastic demands with small customer sets based on a case
study in Malaysia is addressed by Ismail & Loh (2009) by applying an ant colony
optimization metaheuristic. In this study, waste levels are using a discrete proba-
bility distribution and revealed once collection vehicles reach the designated pick-
up points defined as a priori solution, which is then undergoing recourse actions
when necessary. A similar approach to the same problem (with up to 50 customers)
is solved by (Ismail & Irhamah, 2008) using a hybrid approach based on a genetic
algorithm and tabu search.

4.2.3 Multi-depot VRPs
VRPs with multiple depots (MDVRP) have been subject to research for many
decades. Hereby, customers are allocated to different depots in a combinatorial
assignment problem, before each depot-node assignment combination is solved as
VRP. Pisinger & Ropke (2007) propose an adaptive large neighbourhood search
metaheuristic which they test on variance instance obtaining promising results,
while requiring the fine-tuning of as much as 14 parameters. Vidal et al. (2012)
use a hybrid genetic algorithm to solve different VRP variants, among them the
MDVRP. The integration of biased (oriented) randomization techniques inside an
ILS framework designed to solve routing problems with multiple depots is discussed
in Juan et al. (2015b). For more general overviews over solution methods to the
MDVRP, the reader is addressed to Kumar & Panneerselvam (2012) and Karakatič
& Podgorelec (2015).

While the MDVRP is a widely studied problem, the literature is scarce for the
special case of waste collection routing, even non-existent for the MDWCPSD. A
closely related problem setting to the MDWCP is discussed by Crevier et al. (2007),
who apply an adaptive memory principle combined with integer programming and
tabu search metaheuristics to consider the MDVRP with inner-route replenishment
points. Hemmelmayr et al. (2013) consider multiple depots and landfills in a case
study for node routing for the collection of waste from public waste delivery points
to landfills by applying a hybrid approach. Combining variable neighbourhood
search and dynamic programming, the authors solve small problem instances with
up to 75 collection points. Additionally, Ramos et al. (2014) improve the economic
and environmental impact of recyclable waste collection by solving the WCP with
multiple depots as a mixed integer-linear programming model.

4.2.4 Horizontal cooperation
In many supply chains from different sectors, Horizontal Cooperation (HC) is being
discovered as a tool to reduce overall transportation costs, vehicle usage and the en-
vironmental impact of transportation activities. HC is defined by Bahinipati et al.
(2009) as “business agreement between two or more companies at the same level in
the supply chain or network in order to allow ease of work and co-operation towards
achieving a common objective”. By sharing information and facilities, companies

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 52

hope for the effects of economies of scale through better resource usage. In this
context, HC yields several potential applications concerning the development of
sustainable logistics networks in different sectors, e.g., by public service providers
(Ballot & Fontane, 2010; Joyce & Drumaux, 2014; Pérez-Bernabeu et al., 2015).

A simple example of the benefits of HC in waste collection can be seen in
Figure 4.2. In the non-cooperative scenario shown on (a), waste management
service providers (each represented by a single depot) do not share information
about waste containers to be emptied and plan their respective collection routes
individually. It can be intuitively observed that the cooperative scenario (b) in
which containers, landfills, and depots are shared leads to lower routing costs, less
traffic, higher service levels and a lower environmental impact through the waste
transportation activities. Applications of HC in waste collection can be thought of
especially in large clustered cities with various waste management service providers
responsible for different areas of a municipality and highly clustered metropolitan
areas (e.g. the Ruhr-area in Germany or greater Barcelona).

(a) Non-cooperative

(b) Cooperative

Figure 4.2: Scenarios in waste management.

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 53

4.3 Overview of our simulation-optimization al-
gorithm

Our methodology to tackle the complex MDWCPSD is based on the SimILS gen-
eral framework described in Grasas et al. (2016). This is a simheuristic framework
combining biased (oriented) randomization, the ILS metaheuristic, and Monte
Carlo simulation. Thus, at different stages of the algorithm, Monte Carlo simu-
lation is hereby applied to consider the performance of a predefined deterministic
solution in a stochastic environment, as will be explained below in more detail.
The rest of this section provides additional details of our approach and on the
particular simheuristic algorithm proposed.

4.3.1 Simheuristics to consider WCP uncertainty
In contrast to a deterministic WCP setting in which input variables are considered
to be known during the route planning phase, actual garbage loads to collect are
only revealed once a collection vehicle reaches a pick up point in reality. Given a
WCPSD, the first step of the simheuristic procedure is to transform the stochastic
problem setting into its deterministic counterpart. That is, the expected waste
levels of each container on a waste collection route are used as deterministic input
variables. This deterministic WCP is then solved using an efficient optimization
approach. Therefore, we apply a randomized version of the well-known Clarke-
and-Wright savings (CWS) heuristic (Clarke & Wright, 1964), as discussed in
Juan et al. (2013a). By adapting this multi-start routing algorithm to the WCP,
a number of predefined (a priori) solutions are constructed during detSolTime
seconds. This procedure is shown in Algorithm 4.1.

Algorithm 4.1 Generation of solutions
1: procedure generateEliteSolutions(Map)
2: S ← {∅} . set of elite solutions
3: while terminate(nDetSol, detSolTime) = false do
4: sol← solveBiasedRandomizedCWS()
5: if isEliteSolution(sol, d) = true then . scriptsize save d best deterministic sol
6: S ← S ∪ sol
7: end if
8: end while
9: for i← 1 to d do . run short simulation on promising sol

10: evaluateReliability(Si, Var, nIterShort)
11: end for
12: S ← resortSolutions(S)
13: return S . return elite solutions
14: end procedure

After the generation of multiple solutions, a set of d deterministic solutions is
tested for its behaviour in a stochastic environment by repeatedly sampling random
waste levels using Monte Carlo simulation (Raychaudhuri, 2008). Note that not all
deterministic solutions are tested at this point to keep the computational efforts
reasonable, i.e., only the most ‘promising’ deterministic solutions are sent to the

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 54

simulation stage. Hereby, the waste levels of each container to be served are
modelled using a log-normal distribution with waste level variance Var and the
expected waste level at each container as mean. During nIterSim (usually several
hundred/thousands) simulation runs, a tested predefined solution is completed
considering the uncertainty of pick-up amounts by only revealing the actual waste
level at a container once a collection vehicle reaches it. Note hereby that the
order of containers to visit is not changed. However, limited vehicle capacities will
lead to route failures when collected garbage exceeds the initially planned amount,
making additional landfill trips necessary. Our solution algorithm penalizes route
failures with an additional round trip to the closest landfill, before the planned
route is continued.

By summing total route failure costs in all simulation runs and dividing them
by nIterSim an unbiased estimation of expected route failures can be obtained. At
this stage, it often happens that the most promising deterministic WCP solutions
turn out to be less competitive in a stochastic environment due to high expected
additional routing costs. Beside expected route failure costs as quality indicator
of the predefined route under uncertainty, the described procedure allows for an
estimation of the solution reliability by considering the proportion of routes in
which a route failure occurs during the simulation runs. Finally, the solutions
are re-ranked according to the total of routing and expected route failure costs. If
necessary at this point, a longer simulation run can be run with the most promising
stochastic solutions to get more reliable results of a number of stochastic elite
solutions.

4.3.2 Combination of simulation with oriented randomiza-
tion and ILS

In order to consider multiple depots in the planning of waste collection routes with
stochastic waste levels, we integrate oriented randomization (Faulin et al., 2008)
and ILS at different stages of the simulation-optimization approach, as shown in
Algorithm 4.2. Consider a WCP with multiple depots (Vd), the first step in the
solution process is to solve the node-depot assignment problem, defining which
waste container is emptied from which depot. For this purpose, a priority list of
containers for each depot is constructed according to a distance based criterion.
After calculating the distance of each waste container to each depot k ∈ Vd, a
priority list based on the marginal savings µk

i of emptying container i from depot
k compared to serving it from the best alternative depot k∗, such that µk

i = ck∗
i −ck

i

is build. Next, the nodes are randomly assigned to the depots according to a round-
robin criterion. That is, the depots iteratively ‘choose’ an (unassigned) container
to serve.

As suggested in Juan et al. (2015b), the process of assigning nodes to a depot is
randomized but using a skewed distribution instead of a uniform one. After sorting
the priority list of containers, a skewed geometric distribution is applied in such
a way that containers with a higher position in the priority list are more likely to
be selected by the respected depot (thus making the randomized selection process
‘biased’ or ‘oriented’). The exact probabilities of each container to be included in
a specific node-depot collection map are defined through a distribution parameter

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 55

p (0 < p < 1). This randomized process allows the construction of nMaps different
node-depot allocation maps. We evaluate the competitiveness of each map by
solving the deterministic WCP setting for depot and its assigned nodes, before the
WCP costs for each depot are summed to obtain a preliminary MDWCP solution.
After all maps have been constructed the d most promising node-depot allocations
are defined.

Algorithm 4.2 Multi-depot simheuristic approach
Require: Vd, I, L; . depots, customers and landfills
1: S ← {∅} . set of elite solutions
2: D ← {∅} . set of depot-node allocation maps
3: D ← generateInitialMaps(nMaps) . generate node-depot maps
4: D ← generateEliteSolutions(D) . run simheuristic on each map
5: while time() < maxTImeILS do
6: D′ ← perturbate(D′) . perturbate elite maps
7: S′ ← generateEliteSolutons(D′)
8: if acceptNewSolution(S, S′)) = true then
9: D ← D′ . update current map

10: S ← S′ . update elite solutions
11: end if
12: end while
13: for i← 1 to d do . run extensive simulation on promising sol
14: evaluateReliability(Si, Var, nIterShort)
15: end for
16: S ← resortSolutions(S)
17: return S . return elite solutions

With each promising solution, a short simulation run with nIterShort it-
erations is started to evaluate the performance of the predefined routing plan
in a stochastic environment. Based on the deterministic routing and route fail-
ure costs, a stochastic initial solution is defined and used as initial upper limit
(currentBest) in the ILS process started in the following. Based on the work
of Grasas et al. (2016), the node-depot allocation maps are hereby perturbed by
applying a destroy-and-repair method to the current best solution during a time
based termination criteria (maxTimeILS). That is, during each perturbation, p∗
percent of containers are exchanged between different node-depot allocations be-
fore it is re-simulated in a short simulation to assess the quality of the newly
constructed map and compare it to the current best.

Whenever a new best solution considering total costs is found, the new solution
is listed as promising (in promisingSolsStoch) and replaces the current best. In
order to escape local minima in the solution search, an acceptance criterion is im-
plemented allowing a solution worsening if the last iteration from x to x′ (such that
f(x′) < f(x)) was an improvement and difference between the current best and new
solution is not greater than the latest improvement (|f(x′′)−f(x′)| < f(x)−f(x′)).
Once the ILS is finished, the m best solutions in promisingSolsStoch undergo
a long simulation run to define the expected route failure costs and the solution
reliabilities more closely. Finally, a list of elite MDWCPSD with the respective
total costs and solution reliabilities are returned by the process.

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 56

4.4 Computational experiments
In order to test our approach, we adopted the benchmarks provided by Kim et al.
(2006). The original set of instances consider different sized (102-2100 nodes)
deterministic WCPs with a single depot, multiple landfills and capacitated vehicles.
To make them suitable for the MDWCPSD, we use the deterministic load levels at
each container as expected waste levels and mean of the log-normal distribution
from which waste levels are modelled during the simulation process. Furthermore,
we consider that each landfill is a disposal site and vehicle depot at the same time,
leading to different MDWCP instances. In order to limit depot capacities, not
more than maxDemand percent of total waste to be collected is assigned to a single
depot, in order to keep the workload balanced and limit the vehicles per depot.
It has to be noted here that time windows for the waste containers and vehicle
depots are not considered in this work.

The MDWCP can be seen as cooperative scenario in which different waste
management service providers apply HC in which containers, depots and landfills
are shared to reduce garbage collection costs. We quantify the benefits of HC by
comparing the MDWCPSD costs to a non-cooperative scenario in which each depot
serves its own customers and no resources are shared. For each depot of a problem
instance, nodes are assigned through a greedy round-robin criterion to create a
number of single-depot WCPs. That is, a priority list of nodes based on marginal
savings (as described earlier) is established. At each assignment iteration however,
the current depot chooses the node with the highest savings potential to include
on the planned collection route, leading to a single-depot WCP in which waste
containers are assigned to vehicle depots according to a distance-based criterion.
In essence, this leads to one possible node-depot allocation map with multiple
depots, whereby the routing costs are estimated through the procedure described
in Algorithm 4.1. However, as the node-depot assignment problem is redundant
in the non-cooperative scenario without HC, it is not possible to consider different
container allocations and their respective routing costs.

The algorithm is implemented as Java application on a personal computer
with an Intel BYT-M 4 Core processor with 2.66 GHz and 4GB RAM, using the
following parameters:

• nMaps: 100 (initial node-depot assignment maps created)

• Var: 0.05 (waste level variance)

• d: 5 (promising deterministic solutions)

• m: 5 (promising stochastic solutions)

• nIterSimShort: 500 runs

• nIterSimLong: 5,000 runs

• detSolTime: 5 seconds

• maxTimeILS: 300 seconds

• p∗: 0.3% (nodes exchanged during perturbation)

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 57

• p: 0.4 (distribution parameter for biased randomization)

• maxDemand: 60%

In Table 4.1, the best found solutions for the cooperative and non-cooperative
scenario of each instance (and one row with the total over all tested problem
settings) are listed. The first two columns of the table correspond to problem
name and scenario. The remaining columns correspond to the the number of
vehicles used vehicles, opened depots, fixed costs, variable (route-failure) costs,
and total costs, respectively. Furthermore, the percentage difference of total costs
for each scenario is outlined.

Table 4.1: Table of results.

Instances Scenarios Vehicles Depots Fixed Costs Variable Costs Total Costs

Kim102
Cooperative 4 3 154.46 0.00 154.46
Non-Cooperative 3 3 190.99 0.28 191.27
%-Difference -0.19

Kim277
Cooperative 2 2 495.47 17.59 513.06
Non-Cooperative 2 2 503.52 12.54 516.06
%-Difference -0.01

Kim335
Cooperative 6 3 194.99 1.38 196.37
Non-Cooperative 8 5 304.88 1.77 306.65
%-Difference -0.36

Kim444
Cooperative 11 2 74.61 0.85 75.45
Non-Cooperative 11 2 79.00 0.91 79.91
%-Difference -0.06

Kim804
Cooperative 9 9 925.02 5.57 930.59
Non-Cooperative 20 20 1579.69 3.66 1583.35
%-Difference -0.41

Kim1051
Cooperative 17 2 2133.22 55.36 2188.58
Non-Cooperative 18 3 226.68 46.74 2273.42
%-Difference -0.04

Kim1351
Cooperative 9 4 902.00 12.80 914.80
Non-Cooperative 9 4 909.28 27.61 936.89
%-Difference -0.02

Kim1599
Cooperative 12 3 1098.30 21.57 1119.87
Non-Cooperative 13 3 1307.04 19.53 1326.57
%-Difference -0.16

Kim1932
Cooperative 9 5 1105.75 14.28 1120.03
Non-Cooperative 9 5 1119.67 17.21 1136.88
%-Difference -0.01

Kim2100
Cooperative 12 8 1560.26 9.00 1569.26
Non-Cooperative 12 8 1573.71 10.08 1583.79
%-Difference -0.01

Total
Cooperative 91 41 8644.08 138.40 8782.47
Non-Cooperative 105 55 9794.46 140.33 9934.79
%-Difference -0.12

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 58

4.5 Discussion of results
The obtained results concerning total costs, used vehicles, and opened depots for
the cooperative scenario (i.e. the MDWCPSD solution) and the non-cooperative
counterpart are outlined in Figure 4.3. Concerning the total expected costs, the
routing costs of each instance can be improved, with an average gap of -12% over
all instances. Next to possible route savings, HC leads to less used vehicles (91
compared to 105 in the non-cooperative scenario over all instances) and less opened
depots (41 to 55). While the objective function consider in this chapter was to
reduce total routing costs, the number of used vehicles and opened depots can
also be an important driver for HC in practice, as municipalities need to consider
acquisition- and maintenance-costs for collection vehicle. Moreover, opening costs
and running expenses of vehicle depots should not be neglected. Looking at the
results more closely, the large differences on the positive effects of HC concerning
total costs can be explained with the topology, i.e., the geographical distribution of
the containers with respect to the potential depots. Obviously, instances in which
only scattered depot-node allocation maps can be established tend to yield much
better results in cooperative scenarios.

Figure 4.3: Comparison of total costs between cooperative and non-cooperative
scenarios.

4.6 Conclusions
This chapter has presented a simulation-optimization approach to support effi-
cient waste collection management under scenarios characterized by the existence

Chapter 4. An algorithm to solve the MDWCP with Stochastic Demands 59

of multiple depots and stochastic demands (waste levels). Despite the fact that
these scenarios are common in clustered urban areas and large cities, they had
never been analysed before in the scientific literature. This is probably due to
their inherent complexity, which requires the use of hybrid simulation-optimization
methods. Thus, our approach relies on the combination of biased (oriented) ran-
domization techniques, metaheuristics, and Monte Carlo simulation. The proposed
hybrid algorithm was tested on a set of large-sized WCP instances. Furthermore,
the possible benefits of horizontal cooperation among different waste management
service providers are analysed. These benefits refer to savings in total costs, num-
ber of used vehicles, and number of opened depots. Although it is evident that
these savings are highly dependent on the specific topology and characteristics
of each instance, the computational experiments show that our algorithm is able
to quantify them for all the proposed benchmarks, thus supporting the idea that
sharing resources (i.e., containers, landfills, depots, and/or vehicles) can provide
significant savings in those cases in which depots and their assigned containers are
geographically scattered.

60

Bibliography

Abeledo, H., Fukasawa, R., Pessoa, A., & Uchoa, E. (2013). The time dependent
traveling salesman problem: polyhedra and algorithm. Mathematical Program-
ming Computation, 5 (1), 27–55.

Albayrak, M., & Allahverdi, N. (2011). Development a new mutation operator
to solve the Traveling Salesman Problem by aid of Genetic Algorithms. Expert
Systems with Applications, 38 (3), 1313–1320.

Anbuudayasankar, S. P., Ganesh, K., & Mohapatra, S. (2014). Models for Practical
Routing Problems in Logistics: Design and Practices. Springer International
Publishing.

Andradóttir, S. (2006). An overview of simulation optimization via random search.
In S. G. Henderson, & B. L. Nelson (Eds.) Simulation, vol. 13 of Handbooks in
Operations Research and Management Science, (pp. 617–631). Elsevier.

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2007). The Trav-
eling Salesman Problem: A Computational Study (Princeton Series in Applied
Mathematics). Princeton, NJ, USA: Princeton University Press.

Arigliano, A., Calogiuri, T., Ghiani, G., & Guerriero, E. (2018). A branch-and-
bound algorithm for the time-dependent travelling salesman problem. Networks,
72 , 382–392.

Arigliano, A., Ghiani, G., Grieco, A., & Guerriero, E. (2015). Time dependent
traveling salesman problem with time windows: Properties and an exact algo-
rithm. Tech. rep., Optimization Online.

Bahinipati, B. K., Kanda, A., & Deshmukh, S. (2009). Horizontal collaboration in
semiconductor manufacturing industry supply chain: An evaluation of collabo-
ration intensity index. Computers & Industrial Engineering, 57 (3), 880–895.

Ballot, E., & Fontane, F. (2010). Reducing transportation co2 emissions through
pooling of supply networks: perspectives from a case study in french retail
chains. Production Planning & Control, 21 (6), 640–650.

Banzhaf, W. (1990). The “molecular” traveling salesman. Biological Cybernetics,
64 (1), 7–14.

Bektaş, T., & Laporte, G. (2011). The pollution-routing problem. Transportation
Research Part B: Methodological, 45 (8), 1232–1250.

Beliën, J., De Boeck, L., & Van Ackere, J. (2014). Municipal solid waste collection
and management problems: A literature review. Transportation Science, 48 (1),
78–102.

BIBLIOGRAPHY 61

Benjamin, A., & Beasley, J. (2010). Metaheuristics for the waste collection vehicle
routing problem with time windows, driver rest period and multiple disposal
facilities. Computers & Operations Research, 37 (12), 2270–2280.

Bigras, L.-P., Gamache, M., & Savard, G. (2008). The time-dependent travel-
ing salesman problem and single machine scheduling problems with sequence
dependent setup times. Discrete Optimization, 5 (4), 685–699.

Boland, N., Hewitt, M., Marshall, L., & Savelsbergh, M. (2017). The continuous-
time service network design problem. Operations Research, 65 (5), 1303–1321.

Buhrkal, K., Larsen, A., & Ropke, S. (2012). The waste collection vehicle routing
problem with time windows in a city logistics context. Procedia - Social and
Behavioral Sciences, 39 , 241–254.

Buriol, L., França, P. M., & Moscato, P. (2004). A new memetic algorithm for the
asymmetric traveling salesman problem. Journal of Heuristics, 10 (5), 483–506.

Cabrera, G., Ángel Juan, Lázaro, D., Marquès, J. M., & Proskurnia, I. (2014). A
simulation-optimization approach to deploy internet services in large-scale sys-
tems with user-provided resources. SIMULATION: Transactions of The Society
for Modeling and Simulation International, 90 (6), 644–659.

Cacchiani, V., Contreras-Bolton, C., Escobar, J., Escobar-Falcon, L. M., Linfati,
R., & Toth, P. (2018a). An iterated local search algorithm for the pollution
traveling salesman problem. In P. Daniele, & L. Scrimali (Eds.) New Trends
in Emerging Complex Real Life Problems: ODS, Taormina, Italy, September
10–13, 2018 , (pp. 83–91). Cham: Springer International Publishing.

Cacchiani, V., Contreras-Bolton, C., & Toth, P. (2018b). Models and algorithms
for the traveling salesman problem with time-dependent service times. Submitted
to European Journal of Operational Research, (pp. 1–30).

Ceder, A. (2011). Public-transport vehicle scheduling with multi vehicle type.
Transportation Research Part C: Emerging Technologies, 19 (3), 485–497.

Christodoulou, S. E. (2010). Traffic modeling and college-bus routing using entropy
maximization. Journal of Transportation Engineering, 136 (2), 102–109.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot
to a number of delivery points. Operations Research, 12 (4), 568–581.

Contreras-Bolton, C., & Parada, V. (2015). Automatic combination of operators
in a genetic algorithm to solve the traveling salesman problem. PLOS ONE ,
10 (9), 1–25.

Cordeau, J.-F., Ghiani, G., & Guerriero, E. (2012). Analysis and branch-and-cut
algorithm for the time-dependent travelling salesman problem. Transportation
Science, 48 (1), 46–58.

BIBLIOGRAPHY 62

Crevier, B., Cordeau, J.-F., & Laporte, G. (2007). The multi-depot vehicle routing
problem with inter-depot routes. European Journal of Operational Research,
176 (2), 756–773.

Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale
traveling-salesman problem. Operations Research, 2 (4), 393–410.

Dantzig, G., & Ramser, J. H. (1959). The truck dispatching problem. Management
Science, 6 (1), 80–91.

Demir, E., Bektaş, T., & Laporte, G. (2012). An adaptive large neighborhood
search heuristic for the pollution-routing problem. European Journal of Opera-
tional Research, 223 (2), 346–359.

Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the miller-
tucker-zemlin subtour elimination constraints. Operations Research Letters,
10 (1), 27–36.

Eglese, R., & Bektaş, T. (2014). Green vehicle routing. In P. Toth, & D. Vigo
(Eds.) Vehicle Routing: Problems, Methods, and Applications, (pp. 437–458).
Philadelphia, PA, USA: SIAM.

Eglese, R., & Black, D. (2015). Optimizing the routing of vehicles. In A. McKin-
non, M. Browne, M. Piecyk, & A. Whiteing (Eds.) Green logistics: Improving
the Environmental Sustainability of Logistics, (pp. 229–242). Kogan Page, 3rd
ed.

Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation, 3 (2),
124–141.

Eiben, A. E., Michalewicz, Z., Schoenauer, M., & Smith, J. E. (2007). Parameter
Control in Evolutionary Algorithms. In F. Lobo, C. Lima, & Z. Michalewicz
(Eds.) Parameter Setting in Evolutionary Algorithms, vol. 54 of Studies in Com-
putational Intelligence, (pp. 19–46). Springer Berlin Heidelberg.

Eiben, A. E., & Smith, J. E. (2015). Introduction to Evolutionary Computing.
Springer Publishing Company, Incorporated, 2nd ed.

European Environment Agency (2011). Laying the foundations for greener trans-
port – TERM 2011: transport indicators tracking progress towards environ-
mental targets in Europe. Tech. rep., Office for Official Publ. of the European
Communities, Copenhagen, Denmark.

Faulin, J., Gilibert, M., Juan, A. A., Vilajosana, X., & Ruiz, R. (2008). Sr-1: A
simulation-based algorithm for the capacitated vehicle routing problem. In 2008
Winter Simulation Conference, (pp. 2708–2716).

Figueira, G., Furlan, M., & Almada-Lobo, B. (2013). Predictive production plan-
ning in an integrated pulp and paper mill. IFAC Proceedings Volumes, 46 (9),
371–376.

BIBLIOGRAPHY 63

Flood, M. M. (1956). The traveling-salesman problem. Operations Research, 4 (1),
61–75.

Fogel, D. (1988). An evolutionary approach to the traveling salesman problem.
Biological Cybernetics, 60 (2), 139–144.

Fogel, D. (1993). Applying evolutionary programming to selected traveling sales-
man problems. Cybernetics and Systems, 24 (1), 27–36.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to
the Theory of NP-completeness. New York, NY, USA: W. H. Freeman & Co., 1
ed.

Gavish, B., & Graves, S. (1978). The travelling salesman problem and related
problems. Technical Report GR-078-78, Operations Research Center, MIT .

Ghiani, G., Laganà, D., Manni, E., Musmanno, R., & Vigo, D. (2014). Operations
research in solid waste management: A survey of strategic and tactical issues.
Computers & Operations Research, 44 , 22–32.

Gouveia, L., & Voß, S. (1995). A classification of formulations for the (time-
dependent) traveling salesman problem. European Journal of Operational Re-
search, 83 (1), 69–82.

Grasas, A., Juan, A. A., & Lourenço, H. R. (2016). Simils: a simulation-based
extension of the iterated local search metaheuristic for stochastic combinatorial
optimization. Journal of Simulation, 10 (1), 69–77.

Grefenstette, J. J., Gopal, R., Rosmaita, B. J., & Gucht, D. V. (1985). Genetic
algorithms for the traveling salesman problem. In Proceedings of the 1st Inter-
national Conference on Genetic Algorithms, (pp. 160–168). Hillsdale, NJ, USA:
L. Erlbaum Associates Inc.

Groba, C., Sartal, A., & Vázquez, X. H. (2015). Solving the dynamic traveling
salesman problem using a genetic algorithm with trajectory prediction: An ap-
plication to fish aggregating devices. Computers & Operations Research, 56 ,
22–32.

Gruler, A., Fikar, C., Juan, A. A., Hirsch, P., & Contreras-Bolton, C. (2017).
Supporting multi-depot and stochastic waste collection management in clustered
urban areas via simulation–optimization. Journal of Simulation, 11 (1), 11–19.

Hemmelmayr, V., Doerner, K. F., Hartl, R. F., & Rath, S. (2013). A heuristic
solution method for node routing based solid waste collection problems. Journal
of Heuristics, 19 (2), 129–156.

Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid
waste management. Tech. rep., World Bank, Washington, DC.

Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle dispatching with time-
dependent travel times. European Journal of Operational Research, 144 (2),
379–396.

BIBLIOGRAPHY 64

Inghels, D., Dullaert, W., & Vigo, D. (2016). A service network design model for
multimodal municipal solid waste transport. European Journal of Operational
Research, 254 (1), 68–79.

Ismail, Z., & Irhamah, I. (2008). Solving the vehicle routing problem with stochas-
tic demands via hybrid genetic algorithm-tabu search. Journal of Mathematics
and Statistics, 4 (3), 161–167.

Ismail, Z., & Loh, S. (2009). Ant colony optimization for solving solid waste
collection scheduling problems. Journal of Mathematics and Statistics, 5 (3),
199–205.

Izzo, D., Getzner, I., Hennes, D., & Simões, L. F. (2015). Evolving solutions to
tsp variants for active space debris removal. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, GECCO ’15, (pp. 1207–
1214). New York, NY, USA: ACM.

Joyce, P., & Drumaux, A. (2014). Strategic management in public organizations.
New York: Routledge.

Juan, A., Faulin, J., Grasman, S., Riera, D., Marull, J., & Mendez, C. (2011).
Using safety stocks and simulation to solve the vehicle routing problem with
stochastic demands. Transportation Research Part C: Emerging Technologies,
19 (5), 751–765.

Juan, A. A., Barrios, B. B., Vallada, E., Riera, D., & Jorba, J. (2014). A simheuris-
tic algorithm for solving the permutation flow shop problem with stochastic
processing times. Simulation Modelling Practice and Theory, 46 , 101–117.

Juan, A. A., Faulin, J., Ferrer, A., Lourenço, H. R., & Barrios, B. (2013a). Mirha:
multi-start biased randomization of heuristics with adaptive local search for
solving non-smooth routing problems. TOP, 21 (1), 109–132.

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015a). A review
of simheuristics: Extending metaheuristics to deal with stochastic combinatorial
optimization problems. Operations Research Perspectives, 2 , 62–72.

Juan, A. A., Faulin, J., Jorba, J., Caceres, J., & Marquès, J. M. (2013b). Using
parallel & distributed computing for real-time solving of vehicle routing prob-
lems with stochastic demands. Annals of Operations Research, 207 (1), 43–65.

Juan, A. A., Pascual, I., Guimarans, D., & Barrios, B. (2015b). Combining bi-
ased randomization with iterated local search for solving the multidepot vehicle
routing problem. International Transactions in Operational Research, 22 (4),
647–667.

Karakatič, S., & Podgorelec, V. (2015). A survey of genetic algorithms for solving
multi depot vehicle routing problem. Applied Soft Computing, 27 , 519–532.

Karp, R. (1972). Reducibility among combinatorial problems. In R. Miller,
J. Thatcher, & J. Bohlinger (Eds.) Complexity of Computer Computations, The
IBM Research Symposia Series, (pp. 85–103). Springer US.

BIBLIOGRAPHY 65

Kim, B.-I., Kim, S., & Sahoo, S. (2006). Waste collection vehicle routing problem
with time windows. Computers & Operations Research, 33 (12), 3624–3642.

Kim, G., Ong, Y., Heng, C. K., Tan, P. S., & Zhang, N. A. (2015). City ve-
hicle routing problem (city vrp): A review. IEEE Transactions on Intelligent
Transportation Systems, 16 (4), 1654–1666.

Kramer, R., Subramanian, A., Vidal, T., & dos Anjos F. Cabral, L. (2015). A
matheuristic approach for the pollution-routing problem. European Journal of
Operational Research, 243 (2), 523–539.

Kumar, S. N., & Panneerselvam, R. (2012). A survey on the vehicle routing
problem and its variants. Intelligent Information Management, 4 (3), 66–74.

Laporte, G., Ropke, S., & Vidal, T. (2014). Heuristics for the Vehicle Routing
Problem. In P. Toth, & D. Vigo (Eds.) Vehicle Routing: Problems, Methods,
and Applications, (pp. 87–116). Philadelphia, PA, USA: SIAM.

Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., & Dizdarevic, S. (1999). Genetic
algorithms for the travelling salesman problem: A review of representations and
operators. Artificial Intelligence Review, 13 (2), 129–170.

Li, K., Fialho, A., Kwong, S., & Zhang, Q. (2014). Adaptive operator selection with
bandits for a multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation, 18 (1), 114–130.

Lin, C., Choy, K., Ho, G., Chung, S., & Lam, H. (2014). Survey of green vehicle
routing problem: Past and future trends. Expert Systems with Applications,
41 (4, Part 1), 1118–1138.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2010). Iterated local search: Frame-
work and applications. In M. Gendreau, & J.-Y. Potvin (Eds.) Handbook of
Metaheuristics, (pp. 363–397). Boston, MA: Springer US.

Maffioli, F., & Sciomachen, A. (1997). A mixed-integer model for solving ordering
problems with side constraints. Annals of Operations Research, 69 , 277–297.

Malakahmad, A., Bakri, P. M., Mokhtar, M. R. M., & Khalil, N. (2014). Solid
waste collection routes optimization via gis techniques in ipoh city, malaysia.
Procedia Engineering, 77 , 20–27.

Miller, C., Tucker, A., & Zemlin, R. (1960). Integer programming formulation of
traveling salesman problems. Journal of the ACM , 7 (4), 326–329.

Miranda-Bront, J., Méndez-Díaz, I., & Zabala, P. (2014). Facets and valid inequal-
ities for the time-dependent travelling salesman problem. European Journal of
Operational Research, 236 (3), 891–902.

Montero, A., Méndez-Díaz, I., & Miranda-Bront, J. J. (2017). An integer pro-
gramming approach for the time-dependent traveling salesman problem with
time windows. Computers & Operations Research, 88 , 280–289.

BIBLIOGRAPHY 66

Moon, C., Kim, J., Choi, G., & Seo, Y. (2002). An efficient genetic algorithm for
the traveling salesman problem with precedence constraints. European Journal
of Operational Research, 140 (3), 606–617.

Mühlenbein, H. (1991). Parallel genetic algorithms, population genetics and com-
binatorial optimization. In J. Becker, I. Eisele, & F. Mündemann (Eds.) Par-
allelism, Learning, Evolution, vol. 565 of Lecture Notes in Computer Science,
(pp. 398–406). Springer Berlin Heidelberg.

Öncan, T., Altınel, İ. K., & Laporte, G. (2009). A comparative analysis of several
asymmetric traveling salesman problem formulations. Computers & Operations
Research, 36 (3), 637–654.

Padberg, M., & Rinaldi, G. (1990). An efficient algorithm for the minimum ca-
pacity cut problem. Mathematical Programming, 47 (1), 19–36.

Papadimitriou, C., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms
and Complexity. Dover Books on Computer Science. Dover Publications.

Pérez-Bernabeu, E., Juan, A. A., Faulin, J., & Barrios, B. B. (2015). Horizontal
cooperation in road transportation: a case illustrating savings in distances and
greenhouse gas emissions. International Transactions in Operational Research,
22 (3), 585–606.

Perrier, N., Langevin, A., & Amaya, C.-A. (2008). Vehicle routing for urban snow
plowing operations. Transportation Science, 42 (1), 44–56.

Picard, J.-C., & Queyranne, M. (1978). The time-dependent traveling salesman
problem and its application to the tardiness problem in one-machine scheduling.
Operations Research, 26 (1), 86–110.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems.
Computers & Operations Research, 34 (8), 2403–2435.

Potvin, J.-Y. (1996). Genetic algorithms for the traveling salesman problem. An-
nals of Operations Research, 63 (3), 337–370.

Ramos, T. R. P., Gomes, M. I., & Barbosa-Póvoa, A. P. (2014). Economic and
environmental concerns in planning recyclable waste collection systems. Trans-
portation Research Part E: Logistics and Transportation Review, 62 , 34–54.

Raychaudhuri, S. (2008). Introduction to monte carlo simulation. In 2008 Winter
Simulation Conference, (pp. 91–100).

Reinelt, G. (1991). TSPLIB–A traveling salesman problem library. ORSA Journal
on Computing, 3 (4), 376–384.

Reisleben, B., Merz, P., & Freisleben, B. (1996). A genetic local search algorithm
for solving symmetric and asymmetric traveling salesman problems. In Evolu-
tionary Computation, 1996., Proceedings of IEEE International Conference on,
(pp. 616–621).

BIBLIOGRAPHY 67

Roberti, R., & Toth, P. (2012). Models and algorithms for the asymmetric traveling
salesman problem: an experimental comparison. EURO Journal on Transporta-
tion and Logistics, 1 (1-2), 113–133.

Snyder, L. V., & Daskin, M. S. (2006). A random-key genetic algorithm for the
generalized traveling salesman problem. European Journal of Operational Re-
search, 174 (1), 38–53.

Son, L. H. (2014). Optimizing municipal solid waste collection using chaotic parti-
cle swarm optimization in gis based environments: A case study at danang city,
vietnam. Expert Systems with Applications, 41 (18), 8062–8074.

Sun, P., Veelenturf, L., Hewitt, M., & VanWoensel, T. (2018). The time-dependent
pickup and delivery problem with time windows. Transportation Research Part
B: Methodological, 116 , 1–24.

Syswerda, G. (1991). Schedule optimization using genetic algorithms. In L. Davis
(Ed.) Handbook of Genetic Algorithms, (pp. 332–349). New York: Van Nostrand
Reinhold.

Taş, D., Gendreau, M., Jabali, O., & Laporte, G. (2016). The traveling salesman
problem with time-dependent service times. European Journal of Operational
Research, 248 (2), 372–383.

Toth, P., & Vigo, D. (2014). Vehicle Routing: Problems, Methods, and Applica-
tions. Philadelphia, PA, USA: SIAM, 2nd ed.

United Nations Population Fund (2011). State of World Population 2011 . New
York, USA: UNFPA.

Vander Wiel, R. J., & Sahinidis, N. V. (1996). An exact solution approach for the
time-dependent traveling-salesman problem. Naval Research Logistics (NRL),
43 (6), 797–820.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A
hybrid genetic algorithm for multidepot and periodic vehicle routing problems.
Operations Research, 60 (3), 611–624.

Vu, D., Hewitt, M., Boland, N., & Savelsbergh, M. (2018). Solving time depen-
dent traveling salesman problems with time windows. Tech. rep., Optimization
Online.

Wang, Y., Sun, J., Li, J., & Gao, K. (2012). A Modified Inver-over Operator
for the Traveling Salesman Problem. In D.-S. Huang, Y. Gan, P. Gupta, &
M. Gromiha (Eds.) Advanced Intelligent Computing Theories and Applications.
With Aspects of Artificial Intelligence, vol. 6839 of Lecture Notes in Computer
Science, (pp. 17–23). Springer Berlin Heidelberg.

Weintraub, A., Aboud, J., Fernandez, C., Laporte, G., & Ramirez, E. (1999). An
emergency vehicle dispatching system for an electric utility in Chile. Journal of
the Operational Research Society, 50 (7), 690–696.

BIBLIOGRAPHY 68

Yuan, S., Skinner, B., Huang, S., & Liu, D. (2013). A new crossover approach
for solving the multiple travelling salesmen problem using genetic algorithms.
European Journal of Operational Research, 228 (1), 72–82.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Models and Algorithms for the Traveling Salesman Problem with Time-Dependent Service Times
	Introduction
	Contribution

	Problem Definition
	Mathematical Models and Bounds from the Literature
	Basic Model
	Gavish and Graves Model
	Lower and Upper Bounds

	Improvements to Models and Bounds
	Improved Bounds (IBs) and M
	Subtour Elimination Constraints (SECs)
	New Model (NM)

	Solution Methods
	Genetic Algorithm
	Branch-and-Cut and Dynamic Branch-and-Cut Algorithms

	Computational Results
	Genetic Algorithm
	Comparison with TGJL16
	Lower Bounds
	Integer Solutions

	Additional Instances
	Larger Symmetric Instances
	Asymmetric Instances

	Conclusions and Future Research

	Algorithms for the Pollution Traveling Salesman Problem
	Introduction
	Problem Description and Formulation
	Iterated Local Search Algorithm
	Multi-operator Genetic Algorithm
	Representation and fitness function
	Initial population
	Crossover operators
	Mutation operators
	Genetic parameters

	Computational Experiments
	Conclusions

	An algorithm to solve the Multi-depot Waste Collection Problem with Stochastic Demands
	Introduction
	Related studies
	Combining simulation with metaheuristics
	The waste collection problem
	Multi-depot VRPs
	Horizontal cooperation

	Overview of our simulation-optimization algorithm
	Simheuristics to consider WCP uncertainty
	Combination of simulation with oriented randomization and ILS

	Computational experiments
	Discussion of results
	Conclusions

	Bibliography

