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Abstract

Change point analysis is the process of detecting model changes within time-ordered

observations. Research on change point problems started in Page (1955, 1957) and

have flourished especially since the 1980s. The change point analysis has been ex-

tensively applied in quality control, finance, epidemiology, electrocardiograms and

meteorology, etc.. The reason that why change point analysis is very important is

that if there exists a change point, it is harmful to make a statistical analysis without

any consideration of the existence of this change point and the results derived from

such an analysis may be misleading.

In the first part of the dissertation, we propose two tests with the purpose of

detecting change point in a sequence of independent random variables. Both the

consistency and rate of convergence of the estimated change point are established.

We then extend the application of the proposed test in the field of multiple change

points detection problem. Simulation studies and real data analysis are given to

examine the performance of our proposed methods.
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In the second part of the dissertation, we propose a procedure for detecting multi-

ple change points in a mean-shift model. We firstly convert the change point problem

into a variable selection problem by partitioning the data sequence into several seg-

ments. Then, we apply a modified variance inflation factor regression algorithm to

each segment in sequential order. When a segment that is suspected of containing

a change point is found, we use a weighted cumulative sum to test if there is in-

deed a change-point in this segment. The proposed procedure is implemented in an

algorithm which, compared to two popular methods via simulation studies, demon-

strates satisfactory performance in terms of accuracy, stability and computational

complexity. Finally, we apply our new algorithm to analyze two real data examples.

In the third part of the dissertation, our research is motivated by HIV viral

dynamic studies, which have been popular in AIDS research in recent years. We

jointly model HIV viral dynamics, CD4 process with measurement errors and change

point model, and estimate the model parameters simultaneously via the Monte Carlo

EM (MCEM) approach and hierarchical likelihood approximation approach. These

approaches are illustrated in a real data example. Simulation results show that both

of these two methods perform well and are much better than the commonly used

naive method.
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1 Introduction

1.1 Change point

1.1.1 Definition of a Change Point

A change point refers to a location before and after which the observations follow

two different models. The change point problem was originally stated by Page (1955,

1957) with the following test hypothesis:

• H0 : Sample x1, · · · , xn have the same distribution function F (x|θ).

• H1 : x1, · · · , xk0 come from F (x|θ) and xk0+1, · · · , xn come from F (x|θ′),

where θ′ 6= θ and k0 is an unknown change point. For example, θ represents the

mean or variance of a distribution.

Since a statistical model is not homogeneous when there is a change point, de-

tecting all change points is very important in statistical applications. If there exists a

change point, it is misleading to make a statistical analysis without any consideration
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of the existence of this change point and the results derived from such an analysis

may be incorrect. Change point analysis is widely used in the field of quality control,

medicine, finance, environmetrics, geographics, etc.

Different change point models should be implemented for various datasets. In

the literature, two types of change point models are quite popular: on one hand

so called changes in distribution, referring to a genetic change of the distribution

of observations before and after the change point, on the other hand changes in

regression coefficient which includes the change points in mean as its special case.

As commented in Qian et al. (2014), the essential difference between the model

with change points and the piecewise model is that the points of changes in the latter

are specified while in the former they are unknown and need to be estimated. In

addition, when fitting a data sequence by a change point model, it is even unknown

whether or not change points exist, and how many there are when they exist. This

uncertainty increases the difficulty and complexity in analyzing a change point model.

Therefore, how to detect all of the change points has become an important task.

In Figure 1.1(a), the distribution of the observations changes from N(0, 1) to

χ2
3 at the location 100. We can find that the structure of observations before and

after the change point are different. In Figure 1.1(b), there exist a change point

at the location of 100, while observations in the left and right sides follow N(0, 1)

2



and N(1.5, 1), respectively. The mean of each segment is denoted by the real line.

Obviously, there exists a mean shift at the location 100.

0 50 100 150 200

0
5

10

N(0,1) v.s. χ3
2

(a)

0 50 100 150 200
−2

0
2

4

N(0,1) v.s. N(1.5,1)

(b)

Figure 1.1: Examples of data sequence with change point. Data sequence in the left

panel contains a change in distribution while the right one contains a change point

in mean. The dotted lines denote the location of change points and the real lines

represent the mean of the segment.

1.1.2 A Review of Some Relevant Literature

From the literature, the process of studying a change point problem is summarized

as follows:

• propose a hypothesis test to test the existence of a change point while the null
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hypothesis is there is no change point and the alternative hypothesis depends

on the problem;

• propose a test statistic;

• explore the asymptotic distribution of the test statistic under null hypothesis

and then determine the critical value;

• determine whether or not there exist a change point by comparing the value of

test statistic and the critical value.

Also it is important to study the asymptotic behaviour of a change point esti-

mator, which includes its consistency, its convergence rate as well as its asymptotic

distribution.

There are quite a few methods that could be used in change point detection

tests. Least-square test, Bayesian analysis test, maximum likelihood ratio test, and

nonparametric test are the most widely used among them.

In Page (1957), it was assumed that the samples were generated from same dis-

tribution but with different parameters. The estimated location of change point is

the one that maximizes the likelihood function of the hypothesis. And Page (1957)

firstly introduced the CUSUM algorithm in change point detection problem. Bas-

seville (1981) proposed filtered derivative algorithm and the idea behind the algo-

4



rithm is sample: if there is no noise, then changes in the mean translate into sharp

jumps in the absolute value of the discrete derivatives of the signal.

Fisher (1958) is the first to apply the least-squares criterion for a change point

problem to the best of our knowledge note that his approach does not come from

likelihood maximization but rather from variance minimization. Yao and Au (1989)

prove that estimated change point is consistent in probability under mild assumptions

namely the continuity of the cumulative distribution function of the observations and

a moment hypothesis. These assumptions are weakened further in Bai and Perron

(1998) and the minimax convergence rate of 1/n is obtained, here n is the sample

size. The least-squares estimation procedure was also shown to be consistent in the

case of dependent processes (ARMA) with a single change point in Bai (1994), a

work later extended for weak dependent disturbance processes (mixingales) by Bai

and Perron (1998). Regarding multiple change points, Lavielle (1999); Lavielle and

Moulines (2000) show the consistency of the least-squares estimate when the number

of change points is known for a large class of dependent processes.

Chernoff and Zacks (1964) estimated the current mean of a normal distribution

which was subjected to changes in time. The technique of using Bayesian inference

was applied as a technical device to yield insight leading to simple robust procedures.

A quadratic loss function was used to derive a Bayesian estimator of the current mean

5



for a priori probability distribution on the entire real line.

Besides the mentioned classical methods for change point detection, the wide

variety of applications of change point analysis gives rise to the need of multifarious

approaches to the change point problems. In industrial and health care applications,

for example, the analysis usually proceeds sequentially, typically using control charts

or stopping rules to perform real-time monitoring. Lai (2001) gave a review of

problems in sequential analysis and its their applications to biomedicie, economics

and engineering. Lai (2001) mentioned that the sequential analysis is still a vibrant

subject after decades of continual development, with new ideas brought in from

various fields of application.

To deal with the practical problems, different change point models were proposed

and various tests were built to determine the existence of change point. For the single

change point detection problem, Hinkley (1970) firstly proposed a likelihood ratio

statistic to detect a change point and explored the asymptotic properties of the test

statistic. The likelihood based approach was extended to the model with a change in

variance within normally distributed observations by Gupta and Tang (1987). Bai

(1994) and Shi et al. (2009) considered the mean shift problem and studied the

convergence rate of the change point estimator. Dong et al. (2015) studied the

change point in variance of measurement error and explored its convergence rate.

6



For the change in distributions, Hušková and Meintanis (2006a) considered a test

statistic based on empirical characteristic function, and investigated the probability

of type I error and the power of the test by some simulation studies. Zou et al.

(2014) proposed a nonparametric maximum likelihood approach to detect multiple

change points without any parametric assumption on the underlying distributions of

the dataset. Thus, it is suitable for detection of any changes in the distributions.

With the increased size of dataset, there is a growing need to efficiently and

accurately estimate the locations of multiple change points. Scott and Knott (1974)

firstly proposed the binary segmentation which is one of the most widely used change

point detection method. Another popular approach is the segment neighborhood

algorithm (Auger and Lawrence, 1989), which was further explored by Bai and Perron

(1998), Rigaill (2010), Hocking et al. (2017). Among these approachs, Rigaill (2010)

proposeded a functional technique with O(n log n) average time complexity to prune

the set of candidate change points. Here, n is the number of observations. Killick

et al. (2012) developed an inequality pruning technique, which results in an efficient

PELT algorithm which could reach the speed of O(n). Maidstone et al. (2016)

provided a clear discussion on the differences between the two pruning techniques.

Moreover, many of the change point detection algorithms have their own R package

publicly available.

7



For the change in regression function, recent works related to change point anal-

ysis include Muller (1992) and Loader (1996), who used kernel smoothers. Wang

(1995) and Raimondo (1998) used empirical wavelet coefficients. Also, parameter

change in an autoregressive model was considered by Davis et al. (1995) and Huskova

et al. (2007). In addition, Bayesian method can also be used to estimate the number

of change points (see Lee (1998)).

1.1.3 List of Problems About Change Point Analysis

There are mainly two challenges in detecting change points. Firstly, it is dif-

ficult to find the asymptotic distribution of the test statistics proposed in the lit-

erature (Shao and Zhang (2010), Hušková and Meintanis (2006a)) because it often

involves the use of extreme-value type distributions or Brownian bridges (Csörgő

and Horváth(1997)). Some other methods were developed to determine the critical

value, such as bootstrap (Hušková and Meintanis (2006a)), simulation study (Dug-

gins 2010), block permutation (Kirch 2007) and so on. Another challenge is that the

inadequate approximation in the asymptotic distribution of the statistics is likely to

result in large and uncontrolled difference between the actual type I error probability

and the nominal one.

Also, some of the current existing change point detection methods fail to handle

8



the abnormal time series. Even though there are rich literature on how to detect a

change point in a time series, these time series are usually assumed in a standard

form with white noise. In practice, a time series may have a complicated structure

and can not be modeled well by a standard time series model. It is then difficult to

use the existing methods to detect a change point directly in such a time series. To

detect a change point in such time series becomes a challenge problem.It is common

that there may contains outliers in the data sequence. Some of the proposed test

statistics are sensitive to outliers and perform badly when dealing with datasets

which contain irregular observations.

1.2 Application of Change Pionts Analysis in Longitudinal

Data

Longitudinal studies are increasingly common in many areas of research includ-

ing medicine, public health, and the social sciences. Data are longitudinal if they

track the same type of information on the same subjects at multiple time points.

For example, HIV patients may be followed over time and monthly measures, such

as CD4 cell counts and viral load, are collected to characterize immune status and

disease burden, respectively. Longitudinal data include two types of variation: the

intra-individual and the inter-individual variation. Exploring the intra-individual

9



variation allows one to study the change over time in longitudinal studies, while

modelling the inter-individual variation helps one to understand the difference be-

tween individuals. In many longitudinal studies, the inter-individual variation may

be partially explained by time-varying covariates. However, some covariates may be

measured with errors and may contain missing data as well. Ignoring the measure-

ment errors and missing data in covariates may lead to bias results. For example, in

HIV studies, the CD4 cell count is a very important factor to reflect the efficacy of

the anti-HIV therapy, and it is measured repeatedly on the same patient in a study.

It is well known that CD4 cell count is often measured with substantial errors.

Moreover, it is quite common that the viral load of some patients may rebound

during the treatment. Such rebound part in one patient’s trajectory may be an

important indicator to help quantify treatment effect and improve management of

patient care, and the model may become a challenge if the response contains re-

bound part. To overcome this challenge, change point models should be introduced

and simultaneously addressed for the response model. Thus, it is important to simul-

taneously address measurement errors, missing data in covariates and change points

in longitudinal studies. One can refer Chapter 4 for more details.

10



1.3 Objective and Outline of the Dissertation

The primary objective of this dissertation is to develop new methods for detecting

the potential change points in univariate data sequence. We implement the use of

change point in the HIV viral dynamic studies. We will conduct simulation studies

to illustrate the performance of our proposed methods. To explain how to implement

our methods in applications, we will give some examples which include analyzing the

financial data, genetic data, longitudinal data as well as image de-noising.

In Chapter 2, we aim to test the change point in distribution and estimate its

location if the change point exists. Two tests with test statistics based on empirical

characteristic function are proposed to detect a change point in a data sequence.

Then we extend our methods to multiple change point problems by using iterated

cumulative sums of squares (ICSS) algorithm. The consistency and the rate of con-

vergence for the estimated change point are established. Some simulation studies as

well as real data analysis are given to illustrate the effective and efficiency of these

methods.

In Chapter 3, we propose a procedure for detecting multiple change points in a

mean-shift model, where the number of change points is allowed to increase with

the sample size. A theoretic justification for our new method is also given. We first

convert the change point problem into a variable selection problem by partitioning
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the data sequence into several segments. Then, we apply a modified variance inflation

factor regression algorithm to each segment in sequential order. When a segment that

is suspected of containing a change point is found, we use a weighted cumulative sum

to test if there is indeed a change point in this segment. The proposed procedure is

implemented in an algorithm which, compared to two popular methods via simulation

studies, demonstrates satisfactory performance in terms of accuracy, stability and

computation time. Finally, we apply our new algorithm to analyze two real data

examples.

In Chapter 4, we propose a semiparametric nonlinear mixed-effects response

model incorporating measurement errors and missing data in time-varying covari-

ates and change points. The covariate measurement error models and models for

the times of change points on response trajectories are introduced for joint likeliood

inference. We propose two approaches to obtain approximate maximum likelihood

estimates of the joint model parameters simultaneously. We illustrate the proposed

approaches to analyze a real dataset. A simulation study is conducted to evaluate

these proposed approaches.

In Chapter 5, we summarize this dissertation and discuss future research.

12



2 Change Point Detection Based on Empirical

Characteristic Function

2.1 Introduction

Detection of possible change points is of interest in many fields, such as signal

recognition, graphics analysis, finance and so on. In graphical analysis, each image

contain a great deal of pixels and can be transformed to be a matrix. We can regard

that each row be a series on which the change point detection method based. It is

necessary to develop an effective and efficient detection method to solve this kind of

problem because even a small sized image can be transformed to a matrix of high

dimension.

Empirical characteristic functions (ECF) have been proved to be a useful tool

in statistical inference. Some works on the ECF include, among others, Jiménez-

Gamero et al.(2016), Henze et al.(2014), Tenreiro (2011), Hušková and Meintanis

13



(2009), etc. One can refer to Csörgő (1984) and Ushakov (1999) for review arti-

cles. Actually, empirical characteristic function can also be used in detecting change

points. Hušková and Meintanis (2006a) presented the procedure to detect single

change point in a sequence of independent observations based on empirical charac-

teristic functions. For more related literature, one can refer to Hušková and Meintanis

(2006b), Hušková and Meintanis (2008) and Hlávka et. al (2012).

In this section, we will follow the similar model setting as Hušková and Meintanis

(2006a). Let X1, · · · , Xn be independent random variables following the distribution

of Fi, i = 1, 2, · · · , n, respectively. We want to test the following null hypothesis

H0 : F1 = · · · = Fn (2.1)

against

H1 : F1 = · · · = Fk∗ 6= Fk∗+1 = · · · = Fn (2.2)

where k∗, F1 and Fn are unknown. k∗ is called the change point and for the sake of

convenience, we assume that there exist τ1, τ2 satisfying 1 < nτ1 < k∗ < nτ2 < n

(Csörgő and Horváth, 1997). We denote τ0 = k∗/n. Our aim in this chapter is to

propose tests to determine the existence of a change point in the sequence and then

estimate its location if it exists.

In Hušková and Meintanis (2006a), the following test statistic was proposed:

14



Tn,γ(ω) = max
1≤k<n

(k(n− k)

n2

)γ k(n− k)

n

∫ ∞
−∞
|φk(t)− φ0

k(t)|2ω(t)dt (2.3)

where ω(·) is a nonnegative weight function, φk(t) and φ0
k(t) are empirical character-

istic functions based on X1, · · · , Xk and Xk+1, · · · , Xn, respectively, i.e.

φk(t) =
1

k

k∑
j=1

exp{itXj}, k = 1, · · · , n, (2.4)

φ0
k(t) =

1

n− k

n∑
j=k+1

exp{itXj}, k = 1, · · · , n− 1. (2.5)

We rename this test statistic and its related testing method by “ECF” in the current

chapter.

The choice of the weight function ω and tuning parameter γ will influence the

limit behavior of this test statistic. For ω, we follow the choice of Hušková and

Meintanis (2006a) and set ω(t; a) = 1
2a

exp{−a|t|}, where t ∈ R1, a > 0. Here the

role of the weighted parameter a is to control the rate of decay of the weight function.

Hušková and Meintanis (2006a) presented some simulation studies for different γ and

simulation results are quite similar among chosen γ. We choose γ = 1 in this chapter.

The limit distribution of this test statistic is neither exactly nor asymptotically

distribution free under H0. This is an unpleasant property. The calculation of this

test statistic is also time-consuming and not sufficient enough. We will propose new

test statistics to overcome the mentioned disadvantages.

15



The rest of this chapter is organized as follows. In Section 2.2, we introduce the

details of the two proposed statistics as well as its asymptotic properties. In Section

2.3, we implement our proposed tests to detect multiple change points in a data

sequence. In Section 2.4, we present the performance of our proposed procedures by

simulation studies and the real data analysis. We conclude this chapter in Section

2.5.

2.2 The Change Point Estimator Based on Empirical Char-

acteristic Function

2.2.1 COS Method and its Asymptotic Properties

To achive a fast method for change point detection, we firstly propose the fol-

lowing statistic that is based on the real part of empirical characteristic function

combining with the traditional cumulative sum chart (CUSUM) method.

C1k(t) =

√
k(n− k)

n

(1

k

k∑
j=1

cos(tXj)−
1

n− k

n∑
j=k+1

cos(tXj)
)

(2.6)

here t is unknown and may be different for different dataset. By simple calculation,

the value of |C1k(t)| should be the largest at the location of k∗ (refer Lemma 2.2.1).

We give an example to illustrate the property of |C1k(t)| while the plot of |C1k(t)|

is given in Figure 2.1, here we set t = 0.4. Figure 2.1(a) shows a series of N(0, 1)
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Figure 2.1: Example of |C1k(t)| plot. (a) and (b) are scatter plots of two datasets

that without change point and with one change point, respectively. (c) and (d) are

corresponding plots of |C1k(t)|.

white noise with no change point; Figure 2.1(b) present the same length series with

one change in mean at the place of 200 while the left part follows N(0, 1) and the

right part follows N(1, 1). Figure 2.1(c) and 2.1(d) illustrate the function of |C1k(t)|

respectively. From Figure 2.1(c), when there is no change point in the sequence,

we can find there is no much difference in the values of |C1k(t)| because its range

is about 0.2. What is more, there is no clear pattern for the curve of |C1k(t)|. To
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the contrary, when there exists a change point in the sequence, the values of |C1k(t)|

firstly increase to the maximum and then decrease. The corresponding curve is given

in Figure 2.1(d).

We follow the idea of Shao and Zhang (2010) and employ the self-normarlization

(SN) method (Lobato 2001; Shao 2010) to the change point testing problem. In Shao

and Zhang (2010), they aimed to test a change point in the mean of a univariate

time series and under appropriate conditions,
√
n(X̄n − µ) converges to N(0, σ2)

in distribution. To construct a confidence interval for µ, the traditional approach

replaces the unknown variance σ2 by its consistent estimate σ̂2
n. A commonly used

estimate for σ2 is as following

σ̂2
n =

ln∑
k=−ln

γ̂(k)K(k/ln),

where γ̂(k) = n−1
∑n−|k|

j=1 (Xj−X̄n)(Xj+|k|−X̄n
) is the sample autocovariance estimate

at lag k, K(·) is a kernel function and l = ln is a bandwidth parameter. Then,

the confidence interval for µ is constructed by using critical values from the χ2(1)

distribution because n(X̄n− µ)2/σ̂2
n converges to χ2(1) in distribution. However, for

the traditional approach, the major difficulty is the choice of ln. To avoid the the

selection of ln, Lobato (2001) proposed the SN approach as a good alternative to the

traditional approach. Let D2
n = n−2

∑n
t=1{

∑t
j=1(Xj − X̄n)}2, then the continuous
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mapping theorem implies that

n(X̄n − µ)2/D2
n →

B(1)2∫ 1

0
{B(r)− rB(1)}2dr

.

The corresponding critical values have been tabulated by Lobato (2011).

Following the idea of Shao and Zhang (2010), we propose the following test statis-

tic and the related testing method is named “COS”.

T1k(t) =
C1k(t)

D1k(t)
(2.7)

One example of D1k ( formula 1.4.25, Csörgő and Horváth 1997) is given in the

following way

D2
1k(t) =

1

n

{ k∑
i=1

(
cos(tXi)−

1

k

k∑
j=1

cos(tXj)
)2

+
n∑

i=k+1

(
cos(tXi)−

1

n− k

n∑
j=k+1

cos(tXj)
)2}

(2.8)

An illustration of D1k(t) and T1k is plotted in Figure 2.2. Here the data is the

same as that of in Figure 2.1. From Figure 2.2(b) , it is easy to find out that D1k(t)

reaches its minimum value at the location of the true change point. Thus, comparing

with C1k, T1k(t) is more effective in determining the change point.

For the test statistic T1k, we have the following proposition that is useful for our

hypothesis testing.
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Figure 2.2: Plots of D1k(t) and |T1k| for two datasets without change point and with

change point, respectively.

Proposition 2.2.1 If X1, X2, · · · , Xn are independent identically distributed ran-

dom variables, then under the null hypothesis, we have for any 0 < t <∞

lim
n→∞

P{A(log n) max
1≤k≤n

|T1k(t)| ≤ u+B(log n)} = exp(−2e−u) (2.9)

where A(x) = (2 log x)1/2 and B(x) = 2 log x+ 1
2

log log x− 1
2

log π.

Remark 2.2.1 It is easy to prove the proposition referring to Csörgő M, Horváth L

(1997) (Theorem 1.4.1).

Before presenting our theorems to illustrate the consistency properties and con-
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vergence rate, we need to state the following lemmas. For convenience, we de-

note cos(tX1), · · · , cos(tXn) by Y1, · · · , Yn and rename sin(tX1), · · · , sin(tXn) by

Z1, · · · , Zn, then

C1k(t) =

√
k(n− k)

n

(
1

k

k∑
i=1

Yi −
1

n− k

n∑
i=k+1

Yi

)
,

D2
1k(t) =

1

n

{
k∑
i=1

(
Yi −

1

k

k∑
j=1

Yi

)2

+
n∑

i=k+1

(
Yi −

1

n− k

n∑
j=k+1

Yi

)2
}
,

C3k(t) ,

√
k(n− k)

n

(
1

k

k∑
i=1

Zi −
1

n− k

n∑
i=k+1

Zi

)
,

D2
3k(t) ,

1

n

{
k∑
i=1

(
Zi −

1

k

k∑
j=1

Zi

)2

+
n∑

i=k+1

(
Zi −

1

n− k

n∑
j=k+1

Zi

)2
}
.

After simple calculation, we have C2k(t) = C1k(t) + iC3k(t) and D2
2k(t) = D2

1k(t) +

D2
3k(t). We assume that Y1, Yn, Z1 and Zn have the mean µ1, µ2, µ3 and µ4 and

variance σ2
1, σ

2
2, σ

2
3 and σ2

4, respectively.

For convenience, we use Ck(t) to denote C1k(t) or C3k(t), and similarly denote

D2
k(t) as D2

1k(t) or D2
3k(t). First we give the following lemmas that are needed to

prove our theorems.

Lemma 2.2.1 |ECk(t)| obtains its maximum and ED2
k(t) obtains its minimum at

the location of the true change point k∗.
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Proof of Lemma 2.2.1 After simple calculation, we have,

|ECk(t)| =


√

(n−k)
nk
· k∗|µ1 − µ2|, 1 < k∗ ≤ k < n√

k
n(n−k)

· (n− k∗)|µ1 − µ2|, 1 < k < k∗ < n

and

E(D2
k(t)) =


k∗(k−1)
nk

(σ2
1 − σ2

2) + n−2
n
σ2

2 + k∗(k−k∗)
nk

(µ1 − µ2)2, k ≥ k∗,

(n−k∗)(n−k−1)
n(n−k)

(σ2
2 − σ2

1) + n−2
n
σ2

1 + (n−k∗)(k∗−k)
n(n−k)

(µ1 − µ2)2, k < k∗.

(2.10)

As |ECk(t)| is increasing for k < k∗ and decreasing for k > k∗, it is easy to

conclude that it obtains its maximum when k = k∗.

For |E(D2
k(t))|,

E(D2
k+1(t))− E(D2

k(t))

=


k∗

nk(k+1)
[(σ2

1 − σ2
2) + k∗(µ1 − µ2)2] , k > k∗,

− n−k∗
n(n−k)(n−k−1)

[(σ2
1 − σ2

2) + (n− k∗)(µ1 − µ2)2] , k < k∗.

As k∗ and n−k∗ are in the order of O(n), it is easy to show that [(σ2
1−σ2

2)+k∗(µ1

− µ2)2] > 0 and [(σ2
1 − σ2

2) + (n− k∗)(µ1 − µ2)2] > 0. Thus we can conclude that

E(Dk(t)) is decreasing when k < k∗ and increasing when k > k∗ and obtains its

minimum [(k∗ − 1)σ2
1 + (n− k∗ − 1)σ2

2]/n when k = k∗.

22



Lemma 2.2.2 We denote Uk =
(
k(n−k)

n

)1−α
(

1
k

k∑
i=1

Yi − 1
n−k

n∑
i=k+1

Yi

)
and 0 ≤ α <

1, then we have nα−1 max
1≤k<n

|Uk − EUk| → 0, a.s., as n→ +∞

Remark 2.2.2 One can refer to Shi et al. (2008) for the proof of the above lemma.

Lemma 2.2.3 For C1k(t), D2
1k and C3k(t), D2

3k, the following formulas exist.

nD2
1k + C2

1k =
n∑
i=1

(Yi − Ȳ )2, (2.11)

nD2
3k + C2

3k =
n∑
i=1

(Zi − Z̄)2, (2.12)

where Ȳ = 1
n

n∑
i=1

Yi and Z̄ = 1
n

n∑
i=1

Zi.

Proof of Lemma 2.2.3 We only need to prove formula (2.11), and then obtain

formula (2.12) similarly. Firstly, we denote Ȳk = 1
k

k∑
i=1

Yi and Ȳn−k = 1
n−kYi.

nD2
1k(t) + C2

1k(t) =
n∑
i=1

Y 2
i − kȲ 2

k − (n− k)Ȳ 2
n−k +

k(n− k)

n
(Ȳk − Ȳn−k)2

=
n∑
i=1

Y 2
i − kȲ 2

k − (n− k)Ȳ 2
n−k +

k(n− k)

n
(Ȳ 2

k − 2ȲkȲn−k + Ȳ 2
n−k )

=
n∑
i=1

Y 2
i −

1

n

(
kȲk + (n− k)Ȳn−k

)2

=
n∑
i=1

Y 2
i −

1

n

( n∑
i=1

Yi
)2

=
n∑
i=1

(
Yi − Ȳ

)2
. ]
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Next, we will establish the theorems to illustrate the asymptotic results of our

proposed test statistic. For convenience, we denote τ̂1(t) = k̂1(t)/n, where k̂1(t) =

arg max
1<k<n

|T1k(t)|. And we can establish the consistency, the rate of convergence of

τ̂1(t) in the following two theorems.

Theorem 2.2.1 Under alternative hypothesis, we assume that there exists a t0 ∈

(0,∞) such that E{cos(t0X1)} 6= E{cos(t0Xn)} and then we have

τ̂1(t0)− τ0 → 0, a.s.

Remark 2.2.3 The theorem shows that the estimated location of change point by

“COS” method is consistent for τ0.

Proof of Theorem 2.2.1 We denote T1k(t) = C1k(t)
D1k(t)

and T̄1k(t) = C1k(t)√
ED2

1k(t)
. We

just consider the case that 1 < k∗ < k < n. For the situation that 1 < k < k∗ we

can prove in the same way.

|ET̄1k∗(t)| − |ET̄1k(t)| = |ET̄1k∗(t)|
(

1−
∣∣∣√ED2

1k∗(t)√
ED2

1k(t)

∣∣∣∣∣∣ EC1k(t)

EC1k∗(t)

∣∣∣)
≥ |ET̄1k∗(t)|

(
1−

∣∣∣ EC1k(t)

EC1k∗(t)

∣∣∣)
≥ |ET̄1k∗(t)|

[
1−

(
EC1k(t)

EC1k∗(t)

)2
]/

2. (2.13)

The second inequality holds because for any x, we have 1− x2 < 2(1− |x|).
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For those two terms in formula (2.13), we have

|ET̄1k∗(t)| =
|µ1 − µ2|√

1
n
[(k∗ − 1)σ2

1 + (n− k∗ − 1)σ2
2]

√
k∗(n− k∗)

n

≥ |µ1 − µ2|√
σ2

1 + σ2
2

√
k∗(n− k∗)

n

and

1−
(
EC1k(t)

EC1k∗(t)

)2

= 1− (n− k)k∗

(n− k∗)k
=
n(k − k∗)
(n− k∗)k

≥ k − k∗

n− k∗
,

thus, it is easy to know

|ET̄k∗(t)| − |ET̄k(t)| ≥
|µ1 − µ2|

2
√
σ2

1 + σ2
2

√
k∗

n(n− k∗)
· (k − k∗)

It is the assumption that there exist τ ′ and τ ′′ satisfying 0 < τ ′ < τ ′′ < 1, s.t.

nτ ′ < k∗ < nτ ′′, so k∗/(n− k∗) > τ ′/(1− τ ′′) . We obtain the conclusion that there

exist a constant M1 = |µ1−µ2|
2
√
σ2
1+σ2

2

·
√

τ ′

1−τ ′′ , s.t.

|ET̄1k∗(t)| − |ET̄1k(t)| > M1|k − k∗|/
√
n. (2.14)

On the other hand,

|ET̄1k∗(t)| − |ET̄1k(t)| ≤ |ET̄1k∗(t)− T̄1k∗(t)|+ |T̄1k∗(t)− T1k∗(t)|+ |T1k∗(t)|

−|T1k(t)|+ |ET̄1k(t)− T̄1k(t)|+ |T̄1k(t)− T1k(t)|

≤ 2 max
k
|T̄1k(t)− ET̄1k(t)|+ 2 max

k
|T1k(t)− T̄1k(t)|

+|T1k∗(t)| − |T1k(t)| (2.15)
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From formula (2.14) and (2.15), we have

|k − k∗|/n ≤ 1√
nC1

(|ET̄1k∗(t)| − |ET̄1k(t)|)

≤ 2√
nM1

(
max
k
|T̄1k(t)− ET̄1k(t)|+ max

k
|T1k(t)− T̄1k(t)|

+|T1k∗(t)| − |T1k(t)|
)

Because k̂1 is defined as arg maxk |T1k(t)|, we can obtain the following formula

after replacing k by k̂1

|k̂1 − k∗|/n ≤ 2√
nM1

(
max
k
|T̄1k(t)− ET̄1k(t)|+ max

k
|T1k(t)− T̄1k(t)|

)
, I + II

We can finish the proof if we can show that I and II converge to zero almost

surely. For I, we have

I =
2√
nM1

max
k
|T̄1k(t)− ET̄1k(t)|

=
2√
nM1

max
k

∣∣∣∣∣C1k(t)− ECk(t)√
ED2

1k(t)

∣∣∣∣∣
≤ 2√

nM1

1√
[(k∗ − 1)σ2

1 + (n− k∗ − 1)σ2
2]/n

max
k
|C1k(t)− EC1k(t)|.(2.16)

Thus, by Lemma 2.2.2, we know I → 0 almost surely.
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Secondly, for II, we have

II =
2√
nM1

max
k
|T̄1k(t)− T̄1k(t)|

=
2√
nM1

max
k

∣∣C1k(t)

D1k(t)
− C1k(t)√

ED2
1k(t)

∣∣
≤ 2√

nM1

max
k
|C1k(t)| ·max

k

∣∣∣∣∣ 1

D1k(t)
− 1√

ED2
1k(t)

∣∣∣∣∣ . (2.17)

For the first part of formula (2.17), the following inequation exists:

2√
nM1

max
k
|C1k(t)| ≤

2√
nM1

max
k
|C1k(t)− EC1k(t)|+

2√
nM1

max
k
|EC1k(t)|.

By Lemma 2.2.2, it is easy to know 2√
nM1

maxk |C1k(t) − EC1k(t)| → 0, a.s. and we

can obtain

2√
nM1

max
k
|EC1k(t)| =

2√
nM1

√
(n− k∗)k∗

n
|µ1 − µ2|

≤ 2

M1

· 1

2
|µ1 − µ2| =

|µ1 − µ2|
M1

,

thus, we know 2√
nM1

maxk |C1k(t)| ≤ |µ1−µ2|
M1

, a.s.

For the second part of formula (2.17),

max
k

∣∣∣ 1

D1k(t)
− 1√

ED2
1k(t)

∣∣∣
= max

k

∣∣∣ D2
1k(t)− ED2

1k(t)

D1k(t)
√
ED2

1k(t)
(
D1k(t) +

√
ED2

1k(t)
)∣∣∣ (2.18)

≤ maxk |D2
1k(t)− ED2

1k(t)|

min
k

√
ED2

1k(t) ·min
k

[
D1k(t)

(
D1k(t) +

√
ED2

1k(t)
) ] (2.19)
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Denote Ȳk =
∑k

j=1 Yj

/
k and Ȳn−k =

∑n
j=k+1 Yj

/
(n− k). Then

max
k
|D2

1k(t)− ED2
1k(t)| =

1

n
max
k

∣∣∣ n∑
j=1

(Y 2
i − EY 2

j )− k(Ȳk
2 − EȲ 2

k )

−(n− k)(Ȳ 2
n−k − EȲ 2

n−k)
∣∣∣

≤
∣∣ 1
n

n∑
j=1

(Y 2
j − EY 2

j )
∣∣+ max

k

∣∣k
n

(Ȳk
2 − EȲ 2

k )
∣∣

+ max
k

∣∣n− k
n

(Ȳ 2
n−k − EȲ 2

n−k)
∣∣

, III + IV + V.

It is obviously that III = | 1
n

∑n
j=1(Y 2

j − EY 2
j )| → 0, a.s. by Lemma 2.2.2. For IV,

we have

IV = max
k

∣∣∣∣kn(Ȳk
2 − EȲ 2

k )

∣∣∣∣
=

1

n
max
k
k|(Ȳk − EȲk)2 + 2EȲk(Ȳk − EȲk)− varȲk|

≤ 1

n
max
k

1

k

{ k∑
j=1

(Yj − EYj)
}2

+
2

n
max
k
|

k∑
j=1

(Yj − EYj)| ·max
k
|EȲk|

+
1

n
max
k
k · varȲk

≤
{ 1√

n
max
k
| 1√
k

k∑
j=1

(Yj − EYj)|
}2

+
2

n
max
k

∣∣∣∣∣
k∑
j=1

(Yj − EYj)

∣∣∣∣∣ ·max(|µ1|, |µ2|)

+
1

n
max(σ2

1, σ
2
2). (2.20)

As 1√
n

maxk | 1√
k

∑k
j=1(Yj − EYj)| → 0, a.s. and maxk |

∑k
j=1(Yj − EYj)| → 0, a.s., it

is straightforward to obtain IV → 0, a.s.. Similarly, we have V → 0, a.s.. Then, we
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can conclude that

max
k
|D2

1k(t)− ED2
1k(t)| → 0, a.s. (2.21)

Next, we will prove mink{D1k(t)[D1k(t)+
√
ED2

1k(t) ]} is lower bounded. By Lemma

(2.2.1), we know that there exists a constant M2, s.t. ED2
1k(t) > M2, thus we have

(
D1k(t)[D1k(t) +

√
ED2

1k(t) ]
)2

= D2
1k(t)

(
D1k(t) +

√
ED2

1k(t)
)2

≥ (ED2
1k(t)−max

k
|D2

1k(t)− ED2
1k(t)|)

(√
ED2

1k(t)−max
k
|D2

1k(t)− ED2
1k(t)|

+
√
ED2

1k(t)
)2

≥ (M2 − o(1))(
√
M2 − o(1) +M2).

It means that there exists M3, s.t.

min
k
{D1k(t)[D1k(t) +

√
ED2

1k(t) ]} > M3. (2.22)

From (2.19), (2.21) and (2.22), we have max
k

∣∣∣ 1
D1k(t)

− 1√
ED2

1k(t)

∣∣∣→ 0, a.s. Then II →

0, a.s. and we finish the proof of Theorem 2.2.1

Theorem 2.2.2 Under the alternative hypothesis, we assume that there exists a

t0 ∈ (0,∞) such that E{cos(t0X1)} 6= E{cos(t0Xn)} and then we have

τ̂1(t0)− τ0 = Op

(
1

n

)
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Proof of Theorem 2.2.2 By model setting, there exist τ1, τ2 satisfing 0 < τ1 <

τ0 < τ2 < 1. Therefore, there is a δ > 0 such that τ0 ∈ (δ, 1 − δ). Since k̂1/n is

consistent for τ0, for every ε > 0, P (k̂1/n 6∈ (δ, 1− δ)) < ε when n is large. To prove

Theorem 2.2.2, we will prove P (|τ̂1(t0) − τ0| > M/n) is small when n and M are

both large. For every M > 0, define Wn,M = {k;nδ ≤ k ≤ n(1− δ), |k − k0| > M}.

From Lemma 2.2.3, we have nD2
1k + C2

1k =
n∑
i=1

(Yi − Ȳ )2 , Λ1. Then

P (|τ̂1 − τ0| > M/n)

≤ P (τ̂1(t0) 6∈ (δ, 1− δ)) + P (|τ̂1(t0)− τ0| > M/n, τ̂ ∈ (δ, 1− δ)))

≤ ε+ P ( max
k∈Wn,M

|T1k| ≥ |T1k∗|)

= ε+ P ( max
k∈Wn,M

T 2
1k ≥ T 2

1k∗)

≤ ε+ P ( max
k∈Wn,M

T 2
1k − T 2

1k∗ ≥ 0)

= ε+ P ( max
k∈Wn,M

C2
1k

D2
1k

− C2
1k∗

D2
1k∗
≥ 0)

= ε+ P ( max
k∈Wn,M

[C2
1kD

2
1k∗ − C2

1k∗D
2
1k] ≥ 0)

= ε+ P

(
max

k∈Wn,M

[
C2

1k(Λ1 − C2
1k∗)− C2

1k∗(Λ1 − C2
1k)
]
≥ 0

)
= ε+ P

(
max

k∈Wn,M

Λ1(C2
1k − C2

1k∗) ≥ 0

)
= ε+ P

(
max

k∈Wn,M

C2
1k − C2

1k∗ ≥ 0

)
, ε+ P1.

By Bai(1993), P1 converges to zero as n tends to infinity which concludes the proof.

Remark 2.2.4 We derive the asymptotic properies of test statistic T1k in Proposi-
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tion 2.2.1, Theorem 2.2.1 and Theorem 2.2.2. We can derive the critical value for

test by Proposition 2.2.1. By Theorem 2.2.1, change point estimates convergent to

the true change point with convergence rate O(n), as shown in Theorem 2.2.2.

2.2.2 EXP Method and its Asymptotic Properties

In this section, we will estiablish another test with test statistic based on the

empirical characteristic function. Similar as the statistic in section 2.2.1, we denote

the numerator as C2k(t) and denominator as D2k(t) with the expression as follows:

C2k(t) =

√
k(n− k)

n

(1

k

k∑
j=1

exp(itXj)−
1

n− k

n∑
j=k+1

exp(itXj)
)

D2
2k(t) =

1

n

{ k∑
j=1

∣∣∣ exp(itXj)−
1

k

k∑
m=1

exp(itXm)
∣∣∣2 +

n∑
j=k+1

∣∣ exp(itXj)−
1

n− k

n∑
m=k+1

exp(itXm)
∣∣2}.

The plots of C2k(t) and D2k(t) are shown in Figure 2.3, where the data is the

same as that of in Figure (2.1). We define T2k = C2k/D2k as the statistic we focus

on in this section. From the plot, we find that the proposed test can detect the

true change point when the value of |T2k| approaches its maximum. We regard this

method as “EXP” method in the current dissertation.

For the statistic T2k, we have the similar proposition as Prop.(2.2.1) that could

be used to determine the critical value when testing the hypothesis.
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Figure 2.3: Example of |C2k(t)| plot. (a) and (b) are scatter plots of two datasets

that without change point and with one change point, respectively. (c) and (d) are

corresponding plots of |C2k(t)|.

Proposition 2.2.2 If X1, X2, · · · , Xn are independent and identically distributed

random variables, then under the null hypothesis, we have

lim
n→∞

P{A(log n) max
1≤k≤n

|T2k| ≤ u+B(log n)} = exp(−2e−u), (2.23)

where A(x) = (2 log x)1/2 and B(x) = 2 log x+ 1
2

log log x− 1
2

log π.

Remark 2.2.5 Similarly, we can prove the proposition referring to Csörgő and

Horváth (1997) (Theorem 1.4.1).

Define τ̂2(t) = k̂2(t)/n and k̂2(t) = arg max
1<k<n

|T2k(t)|. We have the following
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theorems regarding the consistency and rate of convergence of τ̂2(t).

Theorem 2.2.3 Under the alternative hypothesis, we assume that there exists a

t0 ∈ (0,∞) such that E{exp(it0X1)} 6= E{exp(it0Xn)} and then we have

τ̂2(t0)− τ0 → 0, a.s.

Proof of Theorem 2.2.3 Actually, the proof of Theorem 2.2.3 is similar to the

proof of Theorem 2.2.1. Denote T̄2k(t) = C2k(t)√
ED2

2k(t)
. We only consider the case that

1 < k∗ < k < n while for the situation that 1 < k < k∗ < n, we can obtain the same

conclusion in the similar way.

Similar to formula (2.13), we have

|ET̄2k∗(t)| − |ET̄2k(t)| ≥ |ET̄2k∗(t)|

[
1−

(
EC2k(t)

EC2k∗(t)

)2
]/

2. (2.24)

After simple calculation, we have

|ET̄2k∗(t)| =

∣∣∣∣∣ EC1k∗(t) + iEC3k∗(t)√
ED2

1k∗(t) + ED2
3k∗(t)

∣∣∣∣∣
=

√
(µ1 − µ2)2 + (µ3 − µ4)2√

1
n

[(k∗ − 1)(σ2
1 + σ2

3) + (n− k∗ − 1)(σ2
2 + σ2

4)]

√
k∗(n− k∗)

n
,

and

1−
(
EC2k(t)

EC2k∗(t)

)2

≥ k − k∗

n− k∗
. (2.25)
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We can then conclude that there exists a constant M4, s.t.

|ET̄2k∗(t)| − |ET̄2k(t)| > M4|k − k∗|
√
n. (2.26)

Similar to formula (2.15), we have

|k − k∗|
√
n ≤ 2√

nM3

(
max
k
|T̄2k(t)− ET̄2k(t)|+ max

k
|T2k(t)− T̄2k(t)|

+|T2k∗(t)| − |T2k(t)|
)
. (2.27)

As k̂2 = arg maxk |T2k(t)|, we obtain the following formula after replacing k by

k̂2,

|k̂ − k∗|/n ≤ 2√
nM4

(
max
k
|T̄2k(t)− ET̄2k(t)|+ max

k
|T2k(t)− T̄2k(t)|

)
, VI + VII.

We can finish the proof if we can prove that both VI and VII converge to 0 a.s.

Firstly,

VI =
2√
nM4

max
k
|T̄2k(t)− ET̄2k(t)|

=
2√
nM4

max
k

∣∣∣∣∣C1k(t)− EC1k(t) + i(C3k(t)− EC3k(t))√
ED2

1k(t) + ED2
3k(t)

∣∣∣∣∣
≤ 2√

nM4

maxk |C1k(t)− EC1k(t) + i(C3k(t)− EC3k(t))|√
[(k∗ − 1)(σ2

1 + σ2
3) + (n− k∗ − 1)(σ2

2 + σ2
4)]/n

. (2.28)

By Lemma 2.2.2, we know that V I → 0 almost surely.
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Secondly, for formula VII, we have

VII =
2√
nM4

max
k
|T̄2k(t)− T̄2k(t)|

=
2√
nM4

max
k

∣∣∣∣∣C2k(t)

D2k(t)
− C2k(t)√

ED2
2k(t)

∣∣∣∣∣
≤ 2√

nM4

max
k
|C2k(t)| ·max

k

∣∣∣∣∣ 1

D2k(t)
− 1√

ED2
2k(t)

∣∣∣∣∣ . (2.29)

As we know 2√
n

maxk |C1k(t)| ≤ |µ1 − µ2| and 2√
n

maxk |C3k(t)| ≤ |µ3 − µ4|, thus

2√
nM4

max
k
|C2k(t)| =

2√
nM3

max
k
|C1k(t) + iC3k|

≤ 2√
nM4

(
max
k
|C1k(t)|+ max

k
|C3k(t)|

)
≤ |µ1 − µ2|+ |µ3 − µ4|

M4

.

For the second part of formula (2.29),

max
k

∣∣∣ 1

D2k(t)
− 1√

ED2
2k(t)

∣∣∣
= max

k

∣∣∣ D2
2k(t)− ED2

2k(t)

D2k(t)
√
ED2

2k(t)
(
D2k(t) +

√
ED2

2k(t)
)∣∣∣

≤ maxk |D2
2k(t)− ED2

2k(t)|

min
k

√
ED2

2k(t) ·min
k

[
D2k(t)

(
D2k(t) +

√
ED2

2k(t)
) ] . (2.30)

For the numerator of formula (2.30),

max
k
|D2

2k(t)− ED2
2k(t)| = max

k
|D2

1k(t)− ED2
1k(t) +D2

3k(t)− ED2
3k(t)|

≤ max
k
|D2

1k(t)− ED2
1k(t)|+ max

k
|D2

3k(t)− ED2
3k(t)|

→ 0. a.s.
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It is easy to prove there exists a constant M5, s.t. ED2
2k(t) > M5,(

D2k(t)

[
D2k(t) +

√
ED2

2k(t)

])2

= D2
2k(t)

(
D2k(t) +

√
ED2

2k(t)
)2

≥ (ED2
2k(t)−max

k
|D2

2k(t)− ED2
2k(t)|)

(√
ED2

2k(t)−max
k
|D2

2k(t)− ED2
2k(t)|

+
√
ED2

2k(t)
)2

≥ (M5 − o(1))(
√
M5 − o(1) +M5).

So there exists a constant M6, s.t. mink{D2k(t)[D2k(t) +
√
ED2

2k(t)]} > M6, a.s.

From the above formulas, we can conclude that maxk

∣∣∣ 1
D2k(t)

− 1√
ED2

2k(t)

∣∣∣→ 0, a.s.

Then V II → 0, a.s. and we finish the proof of Theorem 2.2.3

Theorem 2.2.4 Under alternative hypothesis, we assume that there exists a t0 ∈

(0,∞) such that E{exp(it0X1)} 6= E{exp(it0Xn)} and then we have

τ̂2(t0)− τ0 = Op

(
1

n

)
.

Proof of Theorem 2.2.4 From the model setting, we know that there exist τ1, τ2

satisfing 0 < τ1 < τ0 < τ2 < 1, thus a δ exists and satisfies two conditions: larger

than 0 and τ0 ∈ (δ, 1− δ). Since k̂2/n is consistent for τ0, for every ε > 0, P (k̂2/n 6∈

(δ, 1− δ)) < ε when n is large. In order to prove Theorem 2.2.4, we will prove that

P (|τ̂2(t) − τ0| > M ′/n) is small when n and M ′ are both large. For every M ′ > 0,

define Wn,M ′ = {k;nδ ≤ k ≤ n(1− δ), |k − k∗| > M ′}. From Lemma 2.2.3, we have

nD2
1k + C2

1k =
n∑
i=1

(Yi − Ȳ )2 , Λ1 and nD2
3k + C2

3k =
n∑
i=1

(Zi − Z̄)2 , Λ2. Then
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P (|τ̂2(t)− τ0| > M ′/n)

≤ P (τ̂2(t) 6∈ (δ, 1− δ)) + P (|τ̂2(t)− τ0| > M ′/n, τ̂2(t) ∈ (δ, 1− δ)))

≤ ε+ P ( max
k∈Wn,M′

|T2k| ≥ |T2k∗ |)

= ε+ P ( max
k∈Wn,M′

|T2k|2 ≥ |T2k∗|2)

≤ ε+ P ( max
k∈Wn,M′

|T2k|2 − |T2k∗|2 ≥ 0)

= ε+ P ( max
k∈Wn,M′

|C2k|2

D2
2k

− |C2k∗|2

D2
2k∗
≥ 0)

= ε+ P ( max
k∈Wn,M′

[|C2k|2D2
2k∗ − |C2k∗|2D2

2k] ≥ 0)

= ε+ P ( max
k∈Wn,M′

[
(C2

1k + C2
3k)(Λ1 + Λ2 − C2

1k∗ − C2
3k∗)

−(C2
1k∗ + C2

3k∗)(Λ1 + Λ2 − C2
1k − C2

3k)
]
≥ 0)

= ε+ P

(
max

k∈Wn,M′
(Λ1 + Λ2)(C2

1k − C2
1k∗ + C2

3k − C2
3k∗) ≥ 0

)
= ε+ P

(
max

k∈Wn,M′

(
C2

1k − C2
1k∗ + C2

3k − C2
3k∗

)
≥ 0

)
Because C2

1k − C1k∗ and C2
3k − C2

3k∗ have the same sign, formula (2.31) equals

to ε + P
(

maxk∈Wn,M′
(C2

1k − C2
1k∗) ≥ 0

)
and will converge to 0 (Bai,1993). Thus we

finish the proof of Theorem 2.2.4.

Remark 2.2.6 Similar as the COS method in previous section, we estabished the

asymptotic properies of test statistic T2k in Proposition 2.2.2, Theorem 2.2.3 and

Theorem 2.2.4. We can derive the critical value for test by Proposition 2.2.2. By
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Theorem 2.2.3, change point estimates convergent to the true change point with con-

vergence rate O(n), as shown in Theorem 2.2.4.

2.2.3 CESCP algorithm

We present a CESCP algorithm to detect a single change point in sampleX1, · · · , Xn.

Let Tk(t) be the test statistic of the proposed test. For COS method, Tk(t) = T1k(t)

while for EXP method, Tk(t) = T2k(t). The algorithm is given as follows

1. Choose equally spaced values from a prechosen interval [a, b].

2. Set t0 = arg max
t∈[a,b];k

|Tk(t)|.

3. Calculate Tk(t0) based on the sample X1, · · · , Xn.

4. Determine the critical value by Propositions 2.2.1 and 2.2.2.

5. If max
k
|Tk(t0)| is smaller than the critical value, there is no change point exist-

ing, otherwise, there exists a change point in the sample and the change point

estimate is given by k̂ = arg max
k
|Tk(t0)|.

2.2.3.1 Type I Error and Power of Tests

In order to finite sample performance of the test, we perform the following sim-

ulation studies. We generate 500 samples with sample size n = 100, 200 and 300 for
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n 100 200 300

method COS EXP ECF COS EXP ECF COS EXP ECF

N(1,1) 0.064 0.016 0.052 0.056 0.004 0.062 0.046 0.014 0.076

Γ(3,2) 0.072 0.024 0.066 0.053 0.040 0.056 0.508 0.048 0.050

Table 2.1: Rejection rates under the null hypothesis corresponding to 5% significant

level for COS, EXP and ECF methods.

analysis. Firstly the test statistics for COS, EXP methods are calculated based on

the original sample X1, X2, · · · , Xn. Then the critical value of the test is approxi-

mated by Proposition 2.2.1 and 2.2.2, respectively. We also include the results of

ECF method for comparison. For ECF method, we randomly choose B permutations

of (1, 2, · · · , n) from all n! total number of permutations. For each permutation, the

test statistic is calculated based on the permuted data and the critical value is de-

termined by (1− α)100% quantile of the permutation distribution. Here, we choose

B = 100.

We perform the simulation study to calculate the type I error. We choose N(1, 1)

and Γ(3, 2) and set α = 0.05. The corresponding results are given in Table 2.1.

From the Table 2.1, it can be seen that ECF method performs well in these two

scenarioes because it employs the permutation method to determine the critical value.
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However, it has the weakness of spending much more time to calculate the critical

value. For both COS and EXP methods, we use the asymptotic distributions of these

two test statistics to determine the critical values and it will become more accurate

with the increasing sample size. The results in Table 2.1 show that the type I errors

of COS method are close to the significant level α, especially when the sample size

n is large. For the first scenario when X1 ∼ N(1, 1), the EXP method has difficulty

in converging to α and the performance of ECF method is getting worse with the

increasing sample size. It is acceptable because none of the methods can perform

well for all the model settings. After more simulation studies, we are confident that

all of these three methods can determine the true critical value, especially when the

sample size is large. For the second scenario, all of these three methods’ rejection

rates are close to 5%.

To explore the simulation results of the powers of our proposed tests, we follow

the setting in Hušková and Meintanis (2006a) and then compare the powers of these

three methods. Similarly, we set Fn(x) = F1[(x − δ)/b] where δ = 0.7 and b = 1.1.

Here we consider two cases:

1. X1 ∼ N(1, 1), thus F1(x) is the CDF of N(1, 1) distribution;

2. X1 ∼ Γ(3, 2), thus F1(x) is the CDF of Γ(3, 2) distribution.

For both cases, the location of change point is set to be τ0 = 0.5. The simulation
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n 100 200 300

method COS EXP ECF COS EXP ECF COS EXP ECF

case 1 0.746 0.684 0.830 0.976 0.986 0.992 1 1 1

case 2 0.962 0.994 0.998 1 1 1 1 1 1

Table 2.2: Rejection rate under alternative hypothesis corresponding to 5% signifi-

cant level for COS, EXP and ECF methods.

results are presented in Table 2.2.

From Table 2.2, it can be seen that all of these three methods achieve high

powers for both cases. These results show that our proposed methods are powerful

in detecting change point, and it is consistent with the asymptotic results.

2.2.4 Simulation Study of Single Change Point Model

In this section, we will discuss the estimation of a change point and compare our

proposed methods with ECF method. The sample size is set to be n = 100, 200, 300

while the true change point τ0 = k∗/n is 0.3, 0.4, 0.5, 0.6 and 0.7, respectively. We

consider two pairs of distributions for F1 and Fn: N(1,1) against N(2,1), χ2
3 against

Γ(3, 2), in our simulation study. For ECF method, we set γ = 1 and a = 1 in

formula (2.3). For each parameter setting, we simulate 500 times and present the
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N(1,1) v.s. N(2,1)

τ0=0.3 τ0=0.4 τ0=0.5 τ0=0.6 τ0=0.7

n COS EXP ECF COS EXP ECF COS EXP ECF COS EXP ECF COS EXP ECF

100 75.8 81.4 72.2 76.8 81.0 80.2 72.6 78.0 80.4 76.4 80.8 80.0 72.6 77.8 68.0

200 90.2 93.4 84.8 88.2 92.4 88.6 90.4 92.4 92.6 88.4 91.4 88.8 85.6 91.8 82.2

400 97.6 99.6 91.6 98.4 98.2 97.2 97.6 98.6 98.6 97.8 99.2 97.6 97.4 98.8 91.8

χ2
3 v.s. Γ(3, 2)

τ0=0.3 τ0=0.4 τ0=0.5 τ0=0.6 τ0=0.7

n COS EXP ECF COS EXP ECF COS EXP ECF COS EXP ECF COS EXP ECF

100 60.2 64.0 61.8 62.4 63.2 66.0 63.0 67.2 70.4 61.2 63.8 66.0 58.8 62.8 55.6

200 73.0 85.0 71.2 81.2 83.4 82.8 71.0 81.4 83.0 69.8 79.6 77.6 73.0 84.6 72.8

400 81.8 91.0 82.0 89.8 89.2 90.2 83.4 90.8 91.2 85.6 91.6 86.4 83.0 91.2 78.4

Table 2.3: Percentage of successful dection of change point by using COS, EXP and

ECF methods based on 500 simulations for different model setting.

percentage of “success” in Table 2.3, here “success” means it can test the existence

of the change point and the estimated location of the change point is within the

interval [τ0 − n ∗ 2.5%, τ0 + n ∗ 2.5%].

From Table 2.3, we can see that by using the test statistics proposed in this

chapter, we can obtain the results that are of about the similar accuracy as that are

derived by ECF method. Comparing with ECF method, COS method has better
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performance when the true change point is away from 0.5. EXP method has satisfying

performance in detecting the location of change points in the simulation study. The

reason that ECF method does well when τ0 = 0.5 is that the weight function in

model (2.3) is symmetry and has larger value when t is close to 0.5. On the other

side, when the true location of change point τ0 is away from 0.5, our methods are

better than ECF. What is more, we can conclude that the accuracies of these three

estimators are getting better with the increasing sample size.

The test statistics proposed in this chapter have their own advantage that they

are much more efficient than ECF method. We present the elapsed time for each

method in Figure 2.4. From the graph, we can find that the time consumed by ECF

method increases in exponential rate, while for our proposed methods, it increases

linearly. Furthermore, from Figure 2.5, it is easy to find that COS method is more

efficient than EXP method.

2.3 Detection of Multiple Change Points

In this section, we focus on the multiple change points detection problems based

on sample X1, · · · , Xn, such that

Xi ∼ Fk(x), km−1 ≤ i ≤ km − 1, m = 1, · · · , K + 1; i = 1, · · · , n, (2.31)
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Figure 2.4: Solid line, dashed line and dotted line denote the time elapsed for 500

iterations of COS method, EXP method and ECF method, respectively.

where K is the true number of change points. km’s are the locations of these change

points with the convention of k0 = 1 and kK+1 = n+1, and Fk is the cumulative dis-

tribution function satisfying Fk 6= Fk+1. In the following sections, we will introduce

some existing methods to detect multiple change points in literature.

2.3.1 NMCD Method

Zou et al. (2014) proposed a nonparametric maximum likelihood approach to

detect multiple change points in the data sequence. The idea is as following: if

44



Figure 2.5: Solid line and dashed line denote the time elapsed for 500 iterations of

COS method and EXP method, respectively

we assume that X1, · · · , Xn are independently and identically distributed random

variables following the distribution F0, and let F̂n denote the empirical CDF of the

sample, then nF̂n(µ) ∼ Binomial(n, F0(µ)). Zou et al. (2014) regarded the sample as

binary data with the probability of success F̂n(µ), the corresponding nonparametric

maximum log-likelihood is

n{F̂n(u) log(F̂n(u)) + (1− F̂n(u)) log(1− F̂n(u))}. (2.32)
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In the context of model (2.31), the joint log-likelihood for a candidate set of change

points (k′1 < · · · < k′L) can be written as

Lu(k′1, · · · , k′L) =
L∑
i=0

(k′i+1 − k′i){F̂
k′i+1

k′i
(u) log(F̂

k′i+1

k′i
(u))

+(1− F̂ k′i+1

k′i
(u)) log(1− F̂ k′i+1

k′i
(u))}, (2.33)

where F̂
k′i+1

k′i
(u) is the empirical CDF of the subsample {Xk′i

, · · · , Xk′i+1
} with k′0 = 1

and k′L+1 = n + 1. To estimate the change points 1 < k′1 < · · · < k′L ≤ n, Zou et al

(2014) proposed the idea of maximizing formula (2.33) in an integrated form

Rn(k′1, · · · , k′L) =

∫ +∞

−∞
Lu(k′1, · · · , k′L)dω(u),

where ω(·) is some positive weight function so that Rn(·) is finite, and the integral

is used to combine all the information across u. Zou et al. (2014) established the

consistency of the NMCD method and propose the screening algorithm to reduce

computational complexity. The performance of NMCD method is satisfactory in the

real data analysis and the simulation studies.

2.3.2 E-Divisive Algorithm

Suppose that X and Y are d−dimensional random vectors and they follow dis-

tribution F and G, respectively. Suppose the characteristic functions of X and Y

are φx(t) and φy(t), respectively. Szśekely and Rizzo (2010) introduced the following
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divergence measure that can determine whether two independent random vectors are

identically distributed or not.

∫
Rd

|φx(t)− φy(t)|2ω(t)dt,

in which ω(t) is any positive weight function to make sure that the above integral is

defined.

By choosing a suitable weight function, Matteson and James (2014) rewrote the

divergence measure as

D(X,Y;α) =

∫
Rd

|φx(t)− φy(t)|2
(

2πd/2Γ(1− α/2)

α2αΓ[(d + α)/2]
|t|d+α

)−1
dt.

for some fixed constant α ∈ (0, 2).

An alternative divergence measure based on Euclidean distances may be defined

as follows

E(X,Y;α) = 2E|X−Y|α − E|X−X′|α − E|Y −Y′|α.

In the above equation, X′ and Y′ are independent copies of X and Y, respectively.

Matteson and James (2014) presented the above E-Divisive method to perform

hierarchical divisive estimation of multiple change points. As summarized by James

and Matteson (2015), the way to estimate multiple change points for E-Divisive

method is to iteratively apply a procedure for locating a single change point. The
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progression of this method can be regarded as a binary tree because at each iteration,

a new estimated change point will divides an existing segment. The root node of the

tree corresponds to the case of no change points, and thus contains the entire time

series. All other non-root nodes are either a copy of their parent, or correspond to

one of the new segments created by the addition of a change point to their parent.

Details on the estimation of change point locations can be found in Matteson and

James (2014).

The time complexity of this method is O(Kn2), where K is the number of es-

timated change points, and n is the number of observations in the series. We may

find the corresponding R function in the “ecp” package. In the current dissertation,

we will employ E-Divisive algorithm for comparison. As our change point model is

based on bivariate case, the E-Divisive will loss some of its advantages in computa-

tion efficient. However, it is still time consuming when comparing with our proposed

methods. One can refer the simulation studies for more details.

2.3.3 E-Agglo Algorithm

We now present the E-Agglo method (Matteson and James 2014) which per-

forms hierarchical agglomerative estimation of multiple change points. As concluded

by James and Matteson (2015), the E-Agglo algorithm requires an initial segmen-
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tation in order to reduce the computational complexity. It also allows to include a

prior knowledge of possible change point locations. If no such assumptions are made,

each observation can be assigned to its own segment. After the initial segmentation,

neighboring segments are then sequentially merged to maximize a goodness-of-fit

statistic. The estimated change points are determined by the iteration which maxi-

mizes the penalized goodness-of-fit statistic. When using the E-Agglo procedure it

is assumed that there is at least one change point existing in the data sequence.

The goodness-of-fit statistic used in Matteson and James (2014) is the between-

within distance (Székely and Rizzo 2005) among adjacent segments. Let C =

{C1, · · · , CK , CK+1} be a segmentation of the n observations into K + 1 segments.

The goodness-of-fit statistic is defined as

ŜK+1(C;α) =
K∑
i=1

Q̂(Ci, Ci+1;α).

Since calculating the true maximum of the goodness-of-fit statistic for a given

initial segmentation is computationally intensive, an advanced algorithm is used

to find an approximate solution (James and Matteson (2015)). If overfitting is a

concern, it is possible to penalize the sequence of goodness-of-fit statistics. Thus,

the change point locations are estimated by maximizing

S̃k = Ŝk + penalty(τ (k)),
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where τ (k) = {τ1, τ2, · · · , τk} is the set of change points associated with the goodness-

of-fit statistic Ŝk. The E-Agglo method is quadratic in the number of observations

with computational complexity O(n2). One can refer to James and Matteson (2014)

for more information about the algorithm. The corresponding R function can be

found in the “ecp” package.

2.3.4 ICSS Algorithm

Inclán and Tiao (1994) proposed a procedure to detect variance changes based on

iterated cumulative sums of squares (ICSS) algorithm. Now we employ this algorithm

and the test statistic Tk to detect the multiple change points in this section. The key

of ICSS algorithm is the iterative scheme based on successive application of statistic

to pieces of the series, dividing consecutively after a possible change point is found .

We use X[l1 : l2] to represent the piece of series Xl1 , Xl1+1 · · · , Xl2 , here l1 < l2, and

use the notation Tk(X[l1 : l2]) to indicate the test statistic Tk(t) based on X[l1, l2].

k∗(X[l1 : l2]) is used to denote the point at which maxk Tk(X[l1 : l2]) obtained and

M(X[l1 : l2]) is the maximum value. Another useful value is the critical value which

is denoted by CV (X[l1 : l2]). We can derive it by Theorem 2.2.1 and Theorem 2.2.3.

The algorithm is given as follows

Stage A: find all possible change points.
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1. Set l1 = 1, l2 = n, and calculate M(X[l1 : l2]), k∗(X[l1 : l2]); use C to store the

change points.

2. while(M(X[l1 : l2]) > CV (X[l1 : l2])){

3. kfirst = klast = k∗(X[l1 : l2]);

4. M1 = M(X[l1 : kfirst]); k1 = k∗(X[l1 : kfirst]);

5. while(M1 > CV (X[l1 : kfirst])){

6. kfirst = k1;M1 = M(X[l1 : kfirst]);

7. }End ‘while’ in (5)

8. M2 = M(X[klast : l2]); k2 = k∗(X[klast : l2]);

9. while(M2 > CV (X[klast : l2])){

10. klast = k2;M2 = M(X[klast : l2]);

11. } End ‘while’ in (9)

12. if (kfirst == klast)

13. there is only one change in [l1 : l2], save it in C and end the loop.

14. Else save the two candidate change points in C and continue
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15. End ‘if’ in (12)

16. Reset l1 = kfirst, l2 = klast;

17. } End ‘while’ in (2)

Stage B: refine the change points (if there are two or more candidate change

points).

18. Sort the locations of change points and denoted by P with the length of N ,

define two extreme values P0 = 0 and PN+1 = n

19. Do {For j = 1, · · · , N , check whether possible change points exist between

[Pj−1 + 1 : Pj+1]

20. If Yes, keep the point If Not, eliminate it.

21. } Until the number of change points doesn’t change.

Remark 2.3.1 In application, we set a new rule that the distance between the two

nearby detected change points can’t be smaller than 10. Thus, the Stage A of the

algorithm will end when klast − kfirst < 10.
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2.4 Data Analysis

In this section, we provide the simulation studies and real data analysis to illus-

trate the performance of COS and EXP methods proposed in the current chapter.

2.4.1 Simulation Study

We will compare the simulation performance of the COS, EXP, NMCD (Zou

et.al. 2014), E-Divisive (Matteson and James 2014) and E-Agglo (Matteson and

James 2014) methods on various sequences. We will evaluate the performance of

these methods by the following aspects:

1. the accuracy of successfully detecting each true change point;

2. the accuracy of successfully detecting all true change points under the condition

that the number of true change points is correctly estimated;

3. elapsed running time in seconds.

S1: we set the sample size n = 1000 and number of change point K = 1.

Observations before the change point follow N(0, 0.62) while observations after the

change point follow standard normal distribution. The location of the change point

is τ0 = 0.5. We will simulate 500 times and then present the results in Table 2.4.
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For the other two simulation studies, the sample size is set to be 1000 and there

existing 5 change points in each data sequence. The locations of change points are

(162, 310, 511, 653, 805) and thus, the data sequence is divided into six pieces. The

following is the model settings of these two simulation studies:

S2: for each segment, observations are sampled fromN(0, 0.62), N(1.2, 1), N(2.4, 1),

N(1.3, 1), N(0, 0.72), and N(1, 1), respectively. Simulated data for S2 is plotted in

Figure 2.6.
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Figure 2.6: Simulated data for S2. The dashed lines denote the locations of true

change points.
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S3: For each segment, observations are sampled from N(0, 1), logN(0.8, 1),

Γ(2, 2), χ2
3, N(3.5, 1), and noncentral t-distribution with 2 degrees of freedom and

noncentrality parameter equals 2, respectively. Simulated data for S3 is plotted in

Figure 2.7.
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Figure 2.7: Simulated data for S3. The dashed lines denote the locations of true

change points.

For each of the model settings S1, S2 and S3, we first generate a data sequence,

and then apply all five methods COS, EXP, NMCD, E-Divisive and E-Agglo, to

detect multiple change points in the dataset. We denote the set of estimated change
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points in the mth simulation by K(m) and define

A
(m)
ki

= K(m) ∩ [ki − 10, ki + 10], (2.34)

where i = 1, · · · , K. Obviously, K = 1 for the first scenario and K = 5 for the other

two scenarios. Actually, A
(m)
ki

is the set of estimated change points, derived from the

mth simulation, lying in the neighborhood of the ith true one. Here we regard 10

as a safe distance to determine whethere the estimated change point is a true one or

not. Moreover, we define the function J(x) as

J(A) =


0 if A = ∅,

1 otherwise.

(2.35)

Furthermore, we define B(m) = 1 if J(A
(m)
ki

) = 1 for all i = 1, . . . , K and the size of

K(m) is exactly K; B(m) = 0, otherwise. Note that B(m) = 1 if and only if the mth

simulation is successful in the sense that it detects exactly five change points and

all of these five estimated change points are close to the corresponding exact change

points. Here, “close” means the distance between these two locations is within 10.

With the aid of B(m), we define

ALLCP =
M∑
m=1

B(m)/M,

the successful simulations as a percentage of all simulations. Here, M is the number

of simulations. In the current section, we choose M = 500.
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Method COS EXP NMCD E-Divisive E-Agglo∑1000
m=1 J

(
A

(m)
k1

)∗ 380 370 331 353 478

cpnumber.R 495 496 417 472 0

ALLCP(%) 75.2 73.4 56.8 67.0 0

ERT.S 6.92 18.47 840.54 14625.74 311.86

∗ A(m)
ki

is defined in formula (2.34) and J(A) is given in formula (2.35).

Table 2.4: Simulation results of COS, EXP, NMCD, E-Divisive and E-Agglo based

on 500 simulations for scenario S1.

The simulation results are reported respectively in Table 2.4 and 2.5. In the ta-

bles, “cpnumber.R” stands for the number of simulations in which the true number

of change points is correctly estimated. “ALLCP” denotes the percentage of simula-

tions in which exactly one change point is estimated, and the estimated change point

is close to the corresponding exact change point. ERT.S means the total running

time in seconds.

From Table 2.4, we can find E-Agglo performs best in detecting all of the change

points. However, E-Agglo over-estimates the number of change points because its

“cpnumber.R” is 0. COS and EXP methods perform better than NMCD and E-

Divisive methods in terms of detecting the location and number of change points.
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We present one of the simulated data and the estimated change points by COS and

NMCD methods in Figure 2.8. From the figure, it can be seen that the NMCD

method, which estimates three changes, over-estimate the number of change points

in scenario S1.
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Figure 2.8: Simulated data for scenario S1. The solid line denote the location of true

change point. The dashed line and dotted line denote the estimated change point by

COS method and NMCD method, respectively.

What is more, from the value of “ALLCP”, we can conclude that COS and

EXP methods perform well in terms of estimating the number of change points and
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Scenario Scenario 2 Scenario 3

Method COS EXP NMCD E-Divisive E-Agglo COS EXP NMCD E-Divisive E-Agglo∑1000
m=1 J

(
A

(m)
k1

)∗ 482 492 486 463 361 462 497 499 498 475∑1000
m=1 J

(
A

(m)
k2

)
478 481 470 474 96 427 440 479 478 459∑1000

m=1 J
(
A

(m)
k3

)
472 478 460 468 47 428 458 478 416 441∑1000

m=1 J
(
A

(m)
k4

)
466 488 488 476 373 429 451 459 464 11∑1000

m=1 J
(
A

(m)
k5

)
431 485 474 483 229 452 461 444 461 1

cpnumber.R 448 481 486 434 0 382 451 488 460 2

ALLCP(%) 69.0 83.8 76.0 66.6 0 57.2 68.4 73.6 64.2 0

ERT.S 20.07 54.77 1070.72 32037.44 390.50 25.02 61.79 1124.02 32657.34 410.09

∗ A(m)
ki

is defined in formula (2.34) and J(A) is given in formula (2.35).

Table 2.5: Simulation results of COS, EXP, NMCD, E-Divisive and E-Agglo based

on 500 simulations for scenario S2 and S3.

the locations of change points simultaneously. The elapsed time of COS and EXP

methods show that the proposed methods are more efficient when comparing with

the other methods.

We observe from Table 2.5 that EXP method outperforms other methods in terms

of accuracy for detecting change point locations. COS, EXP, NMCD and E-Divisive

methods have similar performance and yield also good estimators of the true change

points. E-Agglo performs unsatisfactory in scenario S2 and S3. There are two reasons
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leading this. The fist one is that the change between two segments is not significant

enough for E-Agglo method to detect and the second reason is that the performance

of E-agglo method is highly influenced by the choice of initial segmentation.

If we compare these three methods in terms of ERT.S, we find that COS takes

least time to estimete change points. EXP and E-Agglo methods take more time

than COS method but can also be regard as efficient methods. NMCD is slow in

detecting multiple change points and it takes approximate 2 seconds to analyze a

sequence of size 1000. E-Divisive is the slowest method because it takes long time to

perform the permutation in order to determine the p-value while testing the statistical

significance of an estimated change point.

2.4.2 Real Data Analysis

As we mentioned at the beginning of Chapter 2, a picture can be transformed to

a matrix and each row or column can be regarded as a data sequence. In this section,

we will focus on the pattern recognition of letter “E” (Wang and Wang 2006). We

add Gaussian white noise to the image to make the graphic more reasonable and

practical. To de-noise, we first convert the noised image of the letter “E” to the

image matrix of dimensions 542 × 719 and then apply COS and EXP methods to

every row and column of this image matrix for image retrieval. The restored images
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Figure 2.9: The upper left image is the original letter “E”; upper top image is the

letter “E” with noise; the lower left image is processed by the COS method and the

lower right one is processed by EXP method

after applying COS and EXP methods are displayed in Figure 2.9, which shows that

the image of the letter “E” is retrieved successfully.

To compare with the other multiple change points detection methods, we present

the de-noised image by NMCD and E-Divisive methods in Figure 2.10. We ignore
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E-Agglo method because the performance of this method is poor and the de-noised

image is mussy. From Figure 2.10, we can find E-Divisive performs well but NMCD

has weak performance when determining the locations of change points. In practice,

how to de-noise an image efficiently is another important aspect we should consider.

In our example, we can find COS is the most efficient one because it takes only 13.89

second while EXP, NMCD and E-Divisive takes 40.31 seconds, 1023.65 seconds and

21624.59 seconds (approximate 6 hours), respectively.

Suppose the transformed matrix of “E” (without noise) is Xn×p, and the de-

noised image by change point detection method is Zn×p. We define DIFF =∑n
i=1

∑p
j=1 |Xij−Zij| with the purpose of comparing the difference between these two

matrix. For these four methods, which including COS, EXP, NMCD and E-Divisive

method, the corresponding DIFF is 206, 257, 321 and 169, respectively. After com-

paring the values of DIFF for these four methods, we can find E-Divisive method

performs best among these four methods. What is more, there are 389698 pixels in

the image and most of the pixels are corrected estimated, so the results obtained by

all of these methods are satisfactory.
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Figure 2.10: The left image is processed by the NMCD method and the right one is

processed by E-Divisive method.

2.5 Discussion

To detect the potential change point in a data sequence, we propose two test

statistics based on empirical characteristic function and then establish COS and EXP

methods for change point detection. From the simulation studies, we can conclude

that these two methods are computationally efficient and are able to estimate the

change point locations very well. Comparing with Hušková (2006a)’s method, these

two methods’ performance is satisfactory.

We extend our methods to multiple change points detection problems by the use

of ICSS algorithm. In the simulation study, we compare our methods with both E-

Divisive and E-Agglo methods and find that ours perform more effective and efficient.
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In the real data analysis, we employ our methods to de-noise the “E” plot and find

that the image can be retrieved successfully.
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3 A Sequential Multiple Change Point Detection

Procedure via VIF regression

3.1 Introduction

In this data-rich era, many data sequences have a very large size, and thus it is

not surprising that multiple change points might occur in such a data sequence. It

becomes desirable to find a fast and efficient method to detect the locations of these

change points. Recent literature in this area includes Harchaoui and Lévy-Leduc

(2008, 2010), Killick et al. (2012), Jin et al. (2013) among others. In this chapter,

we will tackle the problem of multiple change point detection in a mean-shift model

given below

yi =
b∑

r=0

µrI{kr,...,kr+1−1}(i) + εi, i = 1, · · · , n, (3.1)

where IA(·) denotes the indicator function of the set A; 1 < k1 < · · · < kb < n are

the unknown locations of b change points satisfying limn→∞minr(kr − kr−1)/n > 0;
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µ0, · · · , µb are the means such that µr 6= µr+1 for 0 ≤ r ≤ b − 1; and ε1, · · · , εn are

random errors with zero mean. Here, we have used the convention that k0 = 1 and

kb+1 = n+ 1. We denote the set of change points by K = {k1, · · · , kb}.

Let us illustrate the application of multiple change point detection by the follow-

ing example. Consider the problem of recognizing a one-dimensional barcode that

encodes 0123456789 in the top panel of Figure 3.1 (http://barcode.tec-it.com/

barcode-generator.aspx). When the image is converted into matrix form, all of

the values in the matrix lie between 0 (black pixel) and 1 (white pixel). It is noted

that all rows in this matrix are identical, and minr(kr − kr−1) in any row is 40. The

barcode recognition problem here can be converted into a multiple change point de-

tection problem in a mean-shift model. Decontaminating the barcodes is equivalent

to finding the set of change points K. To simulate the scanned input, we add two

levels of noise to each element of the matrix. The resulting data are left-truncated at

0 and right-truncated at 1, which yields two barcodes, shown respectively in panels

2-3 in Figure 3.1.

In addition to the barcode recognition problem, the detection of multiple change

points has many applications in areas such as genetic data analysis (see, e.g., Barry

and Hartigan 1992, 1993; Erdman and Emerson 2007, 2008) and signal processing

(see, e.g., Qu and Tu, 2006).
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Figure 3.1: Top panel: the original barcode encoding 0123456789 without noise.

Middle panel: the original barcode contaminated by the added Gaussian noise with

mean zero and σ = 0.1. Bottom panel: the original barcode contaminated by the

added Gaussian noise with mean zero and σ = 0.2.

There is a great need for efficient methods for detecting multiple change points.

Barry and Hartigan (1993) proposed a Bayesian analysis for change point problems

with the complexity of O(n3). This method was further improved by Erdman and

Emerson (2008), who reduced the computation time to O(n). While there are some

other methods with computational complexity of order O(n2) (see e.g. Auger and

Lawrence (1989), Jackson et al. (2005) and Rigaill (2010)), Scott and Knott (1974)

proposed a faster binary segmentation algorithm with only O(n log n) computational

complexity. The main feature of this algorithm is that it only considers a subset of
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the 2n−1 possible solutions (Killick and Eckley, 2013).

The Circular Binary Segmentation (CBS) and the Pruned Exact Linear Time

(PELT) are two popular methods for detecting multiple change points in a mean-

shift model. CBS was proposed by Olshen et.al. (2004) to detect change points in

the genomic data, and has been implemented in the R package DNAcopy (Seshan

and Olshen, 2015). PELT was proposed in Killick et al. (2012), and has also been

implemented in the R package changepoint (Killick et al. 2014). The main idea

behind PELT is to consider the data sequentially, and record the optimal segmenta-

tion at each step, for the data up to that step (Killick et al. 2012). The computation

time of PELT is of order O(n) , but its R package changepoint is not stable when

there are outliers in the data. Throughout this chapter, we use CBS and PELT to

stand for the R packages DNAcopy and changepoint, respectively.

It is noted that by properly segmenting a data sequence, the multiple change point

detection problem above can be equivalently expressed as a linear regression variable

selection problem, with a large number of regression coefficients (see Harchaoui and

Lévy-Leduc 2008; Jin et al. 2013 among others). Thus a modern variable selection

method can be utilized to obtain a rough estimation of multiple change points.

Recently, Lin et al. (2011) proposed the variance inflation factor (VIF) regression

algorithm for variable selection. This algorithm is much faster than many modern
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variable selection methods including LASSO and SCAD. In this chapter, we modify

the stagewise regression of the VIF regression algorithm, and perform the variable

selection sequentially in segment order. Once the segment containing a possible

change point is flagged, we adopt a weighted cumulative sum to justify and locate

the change point in this segment. The proposed procedure is implemented by the

algorithm VIFCP (“CP” stands for “change point”). We would like to remark that

our new algorithm allows the number of change points to increase with the sample

size, which makes our method applicable to various practical problems.

The rest of this chapter is organized as follows. In Section 3.2, the proposed

procedure VIFCP is presented in detail and its theoretical justification is provided.

In Section 3.3, we run simulation studies to examine the proposed procedure and to

compare its performance with CBS and PELT. In Section 3.4, we give two real data

examples. We conclude the chapter in Section 3.5.

The following notation is used throughout the rest of this chapter. Let {cn} be a

sequence of nonnegative numbers and {dn} be a sequence of positive numbers. If the

sequence {cn/dn} is bounded, it is denoted as cn = O(dn). If cn/dn → 0 as n→∞,

it is denoted as cn = o(dn). If cn/dn → 1 as n → ∞, it is denoted as cn ∼ dn.

If a sequence of random variables {ξn} tends to 0 in probability, it is denoted as

ξn = op(1). The symbol
d−→ denotes convergence in distribution. For convenience, we
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denote the m× 1 vectors (1, . . . , 1)T and (0, . . . , 0)T by 1m and 0m, respectively, and

write `m1,m2 = (0Tm1
,1Tm2

)T . In addition, Im stands for an m × m identity matrix

(the subscript m may be suppressed if there is no confusion), ‖ · ‖ stands for the

Euclidean norm, bcc the largest integer less than or equal to a real number c, and

Φ(·) the cumulative distribution function of the standard normal random variable.

3.2 The VIFCP Procedure and its Theoretical Justification

To establish a connection between the multiple change point detection and vari-

able selection, we follow the ideas of Harchaoui and Lévy-Leduc (2008) and Jin et

al. (2013) to reformulate the model (3.1) as follows:

yn =
b∑

r=0

γr`kr−1,n−(kr−1) + εn, (3.2)

where yn = (y1, · · · , yn)T is a column vector of n observations, γr with r = 1, · · · , b

are the differences between two successive means µr − µr−1, and γ0 = µ0, and εn =

(ε1, · · · , εn)T . Thus we can consider detecting multiple change points for model (3.1)

as carrying out variable selection for model (3.2). It is noted that this variable

selection problem is different from the traditional one, since K is unknown in model

(3.2). Nevertheless, the problem can be solved by applying the multiple change

point detection procedure as given below. The main idea of our new procedure

is to divide the data sequence into smaller segments and sample each segment in
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sequential order. If no change point is detected in a segment, the next segment is

added to the collective pool of other segments that have been labeled as such. If

this segment exhibits potential for containing a change point, it is flagged and a

weighted cumulative sum (CUSUM) is applied to test if there is a change point in

this segment.

3.2.1 Modified VIF Regression Algorithm and its Justification

We first introduce an artificial partition Q = {q1, · · · , qa} which divides the set

{1, · · · , n} into a+ 1 segments, where l = bn/(a+ 1)c is the length of each segment

excluding the first one. We set qs = n− (a+ 1− s)l for each s = 1, · · · , a. Without

loss of generality, we may assume that n is a multiple of a+1, and hence qs = sl with

l = n/(a+ 1) being the length of all segments. By convention, we also set q0 = 0.

Note that each artificial segment contains at most one change point by the setup

of model (3.1) and Assumption A1 below.

To reflect the artificial partition in model (3.2), we rewrite it as

yn =
a∑
s=0

βs`qs,n−qs − ηn + εn. (3.3)

The regression coefficients βs (with s = 1, · · · , a) are zeros, except when the artificial

segment [qs + 1, qs+1] contains a change point, say kr, and in this case, βs = γr. By

convention, we set β0 = γ0. The error vector εn = (ε1, · · · , εn)T is defined in the
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same way as in (3.2). Thus, we have correction vector ηn =
∑a

s=0 βsτ n(qs) with

τ n(qs) being the zero vector 0n if βs = 0, that is, no change point exists in the

segment [qs + 1, qs+1], and

τ n(qs) = `kr−1,n−(kr−1) − `qs,n−qs = (0Tqs ,1
T
kr−1−qs ,0

T
n−(kr−1))

T

if βs = γr, i.e., the rth change point kr ∈ [qs + 1, qs+1]. By convention, τ n(q0) = 0n.

It is readily seen that ηn is a sparse vector, because the change points are sparse and

the length of each artificial segment is comparably small. We would like to remark

that if the artificial partition has exactly n segments, then model (3.2) reduces to

the one studied by Harchaoui and Lévy-Leduc (2008). An illustration of the artificial

partition is plotted in Figure 3.2, where n = 10, ε10 = 010, b = 2, k1 = 4 and k2 = 7.

The model (3.2) is

y10 = γ0110 + γ1`3,7 + γ2`6,4.

Given an artificial partition Q = (2, 4, 6, 8), namely, a = 4, l = 2 and qs = 2s, this

model can be re-expressed as follows:

y10 = β0110 + β1`2,8 + β2`4,6 + β3`6,4 + β4`8,2 − η10,

where β0 = γ0, β1 = γ1, β2 = 0, β3 = γ2, β4 = 0, and the correction vector

η10 = (0, 0, γ1, 0, 0, 0, 0, 0, 0, 0)T , which is symbolically illustrated in Figure 3.2.

As mentioned previously, we will adopt the VIF regression algorithm (Lin et al.
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Figure 3.2: The upper plot is the observations y of size 10 without random errors;

the one below is the symbolic illustration of a parametric transformation (without

the correction vector) by an artificial partition. Here the signs ‘star’ and ‘diagonal

stripe’ represent locations of change points and segments, respectively.

2011) because it is an extremely fast algorithm for variable selection with satisfactory

accuracy. It consists of two steps: the search step and the evaluation step. The search

step takes advantage of sparsity (i.e. the nonzero regression coefficients are sparse

in the set of all regression coefficients). The evaluation step is similar to that of

a variation of a stepwise regression, forward stagewise regression, which evaluates

variables using only marginal correlations. A typical forward stagewise regression
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can be used to test the following alternative model:

y =
m∑
j=0

βjxj + βnewxnew + ε,

where x0, · · · ,xm are linearly independent predictors and xnew is a new predictor.

Let X = (x0, · · · ,xk). Now, we define ry = y − X(XTX)−1XTy and rnew =

xnew−X(XTX)−1XTxnew to be the residuals of y and xnew, respectively. The least

squares estimation of βnew is given by

β̂new = rTnewry/r
T
newrnew = xTnewry/x

T
newrnew = xTnew[I −X(XTX)−1XT ]y/ρ2, (3.4)

where

ρ2 = xTnewrnew = xTnew[I −X(XTX)−1XT ]xnew. (3.5)

Since I−X(XTX)−1XT is an idempotent symmetric matrix (a fact which will be used

frequently throughout this chapter), one can derive that the variance of β̂new is ρ−2σ2.

Lin et al. (2011) suggested constructing the t-statistic t̂ = β̂newρ/σ̂ = xTnewry/(σ̂ρ),

where σ̂ = ‖ry‖/
√

(n− k − 2), the corresponding root-mean-square error (RMSE)

of the residual ry. If Φ(|t̂|) > 1−α/2 for significance level α, then the new predictor

xnew is added to the model. This is the key to the algorithm given in Lin et al.

(2011).

We remark that the VIF regression algorithm cannot be directly applied to our

variable selection problem, because any two successive vectors `qs,n−qs and `qs+1,n−qs+1

74



differ only by o
(
n2/3

)
number of elements under Assumption A1 below, and hence

are asymptotically correlated. However, to overcome these obstacles, we can modify

the stagewise regression of the VIF regression algorithm as follows.

Suppose the predictors x1,i, · · · ,xm,i have been selected based on the first il rows

of yn. Here xr,i = `srl,(i−sr)l and s1 < . . . < sm < i. We now check whether

x
(i+1)
new = `il,l should be included as a new predictor via the following model

y(i+1) =
m∑
j=0

βj,i+1xj,i+1 + β(i+1)
new x(i+1)

new − η(i+1) + ε(i+1), (3.6)

where y(i+1) = y(i+1)l contains the first (i+ 1)l rows of yn and x0,i+1 = 1(i+1)l. The

error vector ε(i+1) and correction vector η(i+1) are the first (i + 1)l rows truncated

from the original vectors εn and ηn, respectively. Let X(i+1) = (x0,i+1, · · · ,xm,i+1).

β
(i+1)
new is estimated by

β̂(i+1)
new = ρ−2

i+1

(
x(i+1)

new

)T {
I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T

}
y(i+1), (3.7)

where

ρ2
i+1 =

(
x(i+1)

new

)T {
I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T

}
x(i+1)

new . (3.8)

Applying (3.6) and (3.8) to (3.7) gives

β̂(i+1)
new = β(i+1)

new + ρ−2
i+1

(
x(i+1)

new

)T {
I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T

}
(ε(i+1) − η(i+1)).(3.9)

Following Lin et al. (2011), let

t̂i+1 =
(
x(i+1)

new

)T
r(i+1)/(σ̂i+1ρi+1), (3.10)
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where r(i+1) = [I − X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T ]y(i+1) is the residual and

σ̂i+1 = ‖r(i+1)‖ /
√

(i+ 1)l −m− 2 is the corresponding RMSE. If Φ(|t̂i+1|) > 1 −

α/2, we put xm+1,i+1 = x
(i+1)
new and sm+1 = i + 1, and repeat the above process with

i and m replaced respectively by i + 1 and m + 1. Otherwise, we repeat the above

process by replacing i by i+ 1.

Before giving a theoretical justification of the modified VIF regression algorithm,

we make the following two assumptions.

A1. Assume that l→∞ and bl3/2 � n as n→∞.

A2. Assume that the errors {εi} in model (3.1) are independent and identically

distributed (iid) zero-mean random variables with variance σ2. Furthermore,

E|εi|2+ν <∞ for some positive constant ν > 0.

Remark 1. Assumption A1 allows b to go to infinity in the order of n/M(n), where

M(n)→∞ as n→∞. Assumption A2 is a very basic assumption that is necessary

for establishing asymptotic normality of the estimators of βs.

Remark 2. The choice of l should follow the rule that there is no more than one

change point in one partition. Under this condition, we can expect a more accurate

estimate of a change point with larger l.

The following theorem shows that under the assumptions A1-A2, the modified

stagewise regression is warranted. Its proof is given in the appendix.
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Theorem 3.2.1 If the assumptions A1-A2 are satisfied, then as n→∞,

ρ−1
i+1(x(i+1)

new )T
{
I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T

}
ε(i+1) d−→ N(0, σ2),(3.11)

[(X(i+1))TX(i+1)]−1 = O(1/n), ρ2
i+1/l→ 1,

where l = n/(a + 1) is the length of each artificial segment. Note that l is large but

l3/2/n is small by Assumption A1. Furthermore, the following statements hold true:

(a) If the null hypothesis is accepted, i.e., β
(i+1)
new = 0, then the scaled estimate

ρi+1β̂
(i+1)
new converges to N(0, σ2) in distribution as n→∞.

(b) If the alternative hypothesis is accepted, i.e., β
(i+1)
new 6= 0, then

(i) β̂
(i+1)
new = β

(i+1)
new [1 − ρ−2

i+1(km − il)] + op(1), where km denotes the change

point in the artificial segment [1 + il, (i+ 1)l].

(ii) Moreover, if the change point km lies in the artificial segment [1+(i−1)l, il]

(i.e., the change point was not detected during the previous search), then

β̂
(i)
new = β

(i)
new + op(1).

Proof of Theorem 3.2.1 Since εi, i = 1, 2, . . ., are iid zero-mean variables with

variance σ2, it follows from the definition of ρi+1 in (3.8) and the idempotence of

I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T that the variance of

ρ−1
i+1(x(i+1)

new )T{I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T}ε(i+1)
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is still σ2. By the central limit theorem, we obtain that

ρ−1
i+1(x(i+1)

new )T
{
I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T

}
ε(i+1) d−→ N(0, σ2).

Note that (X(i+1))TX(i+1) can be expressed as (U (i+1))TΛ(i+1)U (i+1), where U (i+1)

is the lower triangular matrix of order k + 1 whose nonzero entries are all 1’s, and

Λ(i+1) is a diagonal matrix with diagonal entries being k1 − k0, k2 − k1, . . . , km −

km−1, 1 + (i+ 1)l− km. Since the change points are well-separated, i.e., kr − kr−1 =

O(n), (Λ(i+1))−1 is of order O(1/n), we have that [(X(i+1))TX(i+1)]−1 is also of order

O(1/n).

Next, we prove that ρi+1 defined in (3.8) is asymptotically equal to
√
l. Note

that x
(i+1)
new = `il,l is the vector with only the last l elements being ones, and all other

elements are zeros. It can be seen that (x
(i+1)
new )Tx

(i+1)
new = l and (x

(i+1)
new )TX(n+1) = O(l).

Therefore, as n→∞, it is readily seen from [(X(i+1))TX(i+1)]−1 = O(1/n) that

ρ2
i+1 = (x(i+1)

new )Tx(i+1)
new − (x(i+1)

new )T
{
I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T

}
x(i+1)

new

= l −O(l2/n) ∼ l.

Under the null hypothesis, there exists no change point in the interval [1+il, (i+1)l].

It can be shown that the last l elements of the correction vector η(i+1) are zeros, which

implies that (x
(i+1)
new )Tη(i+1) = 0. Since (x

(i+1)
new )TX(i+1) = O(l), (X(i+1))Tη(i+1) =

op(bl), [(X(i+1))TX(i+1)]−1 = O(1/n) and ρi+1/
√
l→ 1, by Assumption A1, it follows
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that

ρ−1
i+1(x(i+1)

new )T
{
I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T

}
η(i+1) = o(1).

In view of the fact that β
(i+1)
new = 0, i.e., there is no change point in [1+ il, (i+1)l],

and ρi+1 →∞, by (3.7) and (3.9), we obtain that

ρi+1β̂
(i+1)
new

d−→ N(0, σ2).

This proves Theorem 1(a).

Under the alternative hypothesis, there exists a change point, say km, in the

segment [1+il, (i+1)l]. Moreover, km−il many of the last l elements of the correction

vector η(i+1) are equal to β
(i+1)
new , and β

(i+1)
new 6= 0, which implies (x

(i+1)
new )Tη(i+1) =

β
(i+1)
new (km − il).

Moreover, we have

ρ−2
i+1(x(i+1)

new )TX(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))Tη(i+1) = op(1)

from the proof of Theorem 1 (a). In view of (3.11), we obtain that

ρ−2
i+1(x(i+1)

new )T
{
I −X(i+1)[(X(i+1))TX(i+1)]−1(X(i+1))T

}
ε(i+1) = op(1).

Applying these results to (3.7) yields

β̂(i+1)
new = β(i+1)

new [1− ρ−2
i+1(km − il)] + op(1).
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Furthermore, if the change point km is located in the artificial interval [1+(i−1)l, il]

(i.e., the change point was previously undetected), then the correction vector η(i+1)

has zero components in the last l rows, which implies that (x
(i+1)
new )Tη(i+1) = 0. A

similar argument as above yields that β̂
(i+1)
new = β

(i+1)
new + op(1). This ends the proof of

Theorem 1 (b).

3.2.2 A CUSUM Test and its Justification

By Theorem 1 (b)(i), we may conclude that a change point exists in the artificial

time segment [il+ 1, (i+ 1)l] if β̂
(i+1)
new 6= 0. The precise location of the change point,

however, is unknown because the formula (3.7) does not fully reflect the information

contained in the correction vector ηn. To locate a change point in the artificial

segment [il + 1, (i + 1)l], one may conduct a test for a single change point over this

segment, which, jointly with Theorem 1 (b)(ii) suggests that the test only needs to

be carried out over the segment [1 + (i− 1)l, il + bl/2c].

Consider a univariate sequence {Zi} for i = 1, · · · , n with variance σ2. We intend

to test the null hypothesis

H0 : E(Z1) = · · · = E(Zn)

versus the alternative hypothesis

Ha : E(Z1) = · · · = E(Zk∗) 6= E(Zk∗+1) = · · · = E(Zn)
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for some k∗ ∈ (1, n). The change point k∗ is unknown, and both k∗/n and 1− k∗/n

are assumed to be bounded away from zero as n → ∞. Many single change point

detection methods in the literature can be used to solve this problem. Here, we apply

the following CUSUM

Uk = Ck/wk (3.12)

to perform the test, where

Ck =

(
n

k(n− k)

)1/2
(

k∑
i=1

Zi −
k

n

n∑
i=1

Zi

)
, (3.13)

and

wk =

√√√√ 1

n

k∑
i=1

(
Zi −

1

k

k∑
j=1

Zj

)2

+
1

n

n∑
i=k+1

(
Zi −

1

n− k

n∑
j=k+1

Zj

)2

. (3.14)

IfB(log n) max1≤k<n |Uk| ≤ − log(−1
2

log(1−α))+D(log n), whereB(x) = (2 log x)1/2

and D(x) = 2 log x+ (1/2) log log x− (1/2) log π, then there is no change point, oth-

erwise the change point exists and is estimated by k̂ = arg max |Uk|. It is noted

that the above CUSUM is also related to the quasi-likelihood ratio test statistic. See

Csörgő, M. and Horváth, L. (1997) (Equation 1.4.25) for details.

3.2.3 The Algorithm

The proposed method is implemented by the algorithm VIFCP below. Here, we

provide the pseudocode for the VIFCP algorithm:
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1. INPUT yn and l.

2. INITIALIZATION, a = n/l − 1, w = 0.05, dw = 0.05, flag= 0, K̂ = ∅, i = 1,

j = 1.

3. LOOP{

4. SET α = w/(1 + i− flag).

5. OBTAIN statistic t̂i+1 by (3.10).

6. IF 2Φ(|t̂i+1|) > 2− α

7. Test for a change point k∗ in [(i− 1)l, il + bl/2c] using the CUSUM.

8. IF the test is significant, obtain k̂j.

9. K̂ ← K̂ ∪ {k̂j}, flag← i, w ← w + dw, j = j + 1.

10. ELSE w ← w − α/(1− α).

11. END IF

12. ELSE w ← w − α/(1− α).

13. END IF

14. UPDATE i← i+ 1.
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15. }UNTIL i ≥ a+ 1 or w ≤ 0.

16. RETURN K̂.

The values w, dw and α represent the wealth, payout and significance level, re-

spectively. The details are given in Lin et al. (2011). From the3rd line to the

15th line, we use a loop to find all change points. In the 5th line, we calculate the

statistic t̂i+1 using the formula (3.10); this is the first key part of our algorithm. If

the test is significant, then there may exist a change point in the artificial segment

[il+ 1, (i+ 1)l]. The 7th line is the second key part of our algorithm, where we apply

the algorithm CUSUM defined in (3.12) to locate the change point k∗ in the interval

[(i − 1)l, il + bl/2c]. Here we set the significance level of CUSUM to be 0.05. After

the loop, we obtain K̂, the estimates of multiple change points. We remark that this

algorithm has been implemented in the R package VIFCP (Shi et al., 2015).

We use the example in Section 2 to provide a more thorough explanation of our

algorithm. The true change points are located at 4 and 7. As the sample size is 10

and l = 2, firstly we set i = 1 and will find there is no change point in the interval

[0, 3]; after setting i = 2, we will find a change point in the interval [2, 5] at 4. If we

set i = 3, we will not detect any changes in the interval [4, 7]. The change point at

7 will be detected when we set i = 4 in the interval [6, 9]. No change point will be

detected in [8, 10] upon setting i = 5.
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Now, we study the computational complexity of the algorithm VIFCP. Under

Assumption A1, the computation time for the variable selection is of order O(n2/l),

and the computation time for performing all the single change point tests is of order

O(bl). Hence the complexity of the algorithm VIFCP is O(n2/l+bl). It is noted that

for finite b, the complexity of the algorithm VIFCP can be as low as O(n4/3M(n))

(M(n) is defined in Remark 1), while for b = o(n), the complexity is o(n2).

3.3 Simulation Studies

In this section, we present three simulation studies. A Dell server (two E5520

Xeon Processors, two 2.26GHz 8M Caches, 16GB Memory) is used to perform the

simulation studies. We will compare the performance of the algorithm VIFCP with

CBS and PELT in terms of the accuracy of successfully detecting each true change

point, the accuracy of successfully detecting all true change points under the condi-

tion that the number of true change points is correctly estimated, and efficiency as

determined by the elapsed running time in seconds (ERT).

In the simulation studies, we consider the following three model settings:

S1: yi =
∑5

r=0 µrI{kr,...,kr+1−1}(i) + εi, i = 1, · · · , 2000, where

(1) {k0, k1, k2, k3, k4, k5, k6 − 1} = {1, 324, 620, 1102, 1386, 1610, 2000},

(2) (µ0, µ1, µ2, µ3, µ4, µ5) = (0, 0.3, 0.7, 0.2,−0.2, 0.3),
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(3) εi, 1 ≤ i ≤ n, are iid ∼ N(0, σ2),

(4) σ = 0.2, 0.3 and 0.4.

Simulated data for S1 with different value of σ, are plotted in Figure 3.3.
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Figure 3.3: Simulated data for S1 with σ = 0.2, 0.3 and 0.4 (from the top to bottom

panels).

S2: This setting is the same as the setting S1 with only the following exception:

in each simulation, we randomly select 5 locations between 1 and n, and then add

5 to each value at these locations. The values at these 5 locations are considered as

outliers.
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S3: This setting is the same as the setting S1 with only the following exception:

in each simulation, we randomly select 10 locations between 1 and n, and then add

5 to each value at these locations. The values at these 10 locations are considered

as outliers.

For each of the model settings S1, S2, and S3, we first generate a data sequence,

and then apply all three methods PELT, CBS, and VIFCP, to detect multiple change

points in the dataset. We define A
(m)
ki

, where m = 1, 2, · · · , K and J(A) in the same

way as that in section 2.4.1 with the exception that K = 5. For each scenario, the

number of simulation is set to be M = 1000.

The simulation results are reported respectively in Tables 3.1-3.3. Similar as

the denotation in Chapter 2, “cpnumber.R” stands for the number of simulations in

which the true number of change points is correctly estimated. “ALLCP” denotes

the percentage of simulations in which exactly one change point is estimated, and

the estimated change point is close to the corresponding exact change point. ERT.S

means the total running time in seconds.

We observe from Tables 3.1 - 3.3 that VIFCP, PELT and CBS have similar

performances in accuracy for S1. For S2, that differs from S1 by having 5 outliers,

VIFCP and CBS have better accuracy in multiple change point detection than PELT,

and hence, are more stable. However, for S3, the performance of PELT decreases
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Method PELT CBS VIFCP

l 100 80

σ 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4∑1000
m=1 J

(
A

(m)
k1

)∗ 957 831 674 957 830 676 947 811 583 947 795 508∑1000
m=1 J

(
A

(m)
k2

)
997 954 838 946 841 733 994 936 819 986 923 702∑1000

m=1 J
(
A

(m)
k3

)
999 971 921 999 969 904 999 968 907 998 968 863∑1000

m=1 J
(
A

(m)
k4

)
985 931 834 988 921 812 980 924 797 979 930 797∑1000

m=1 J
(
A

(m)
k5

)
1000 982 915 997 975 905 994 972 904 997 977 899

cpnumber.R 1000 998 994 872 854 814 980 980 863 940 948 630

ALLCP(%) 93.8 69.9 41.0 89.2 59.5 32.3 91.3 65.4 34.2 90.6 65.6 33.0

ERT.S 9.312 9.502 9.269 201.196 202.099 205.639 0.422 0.503 0.420 0.402 0.417 0.376

∗ A(m)
ki

is defined in formula (2.34) and J(A) is given in (2.35).

Table 3.1: Simulation results of PELT, CBS, and VIFCP based on 1000 simulations

for three different noise levels (σ = 0.2, σ = 0.3, and σ = 0.4) of scenario 1.

sharply with the increase of the number of outliers. Actually, PELT is very sensitive

to the sudden change in observations, and detects outliers as change points in both

S2 and S3.

If we compare these three methods in terms of ERT.S, we find that VIFCP is

much faster than CBS and PELT in all three simulation studies. To examine whether

or not the results obtained by using VIFCP are sensitive to the choice of l, we have

varied the value of l. It can be seen from the three tables that the results for l = 80

and l = 100 are similar.

87



Method PELT CBS VIFCP

l 100 80

σ 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4∑1000
m=1 J

(
A

(m)
k1

)∗ 534 462 401 612 494 381 781 643 441 797 646 407∑1000
m=1 J

(
A

(m)
k2

)
766 730 651 894 776 697 910 833 742 889 775 600∑1000

m=1 J
(
A

(m)
k3

)
866 836 787 963 921 874 956 905 844 925 838 743∑1000

m=1 J
(
A

(m)
k4

)
729 713 624 943 872 780 885 794 669 884 795 683∑1000

m=1 J
(
A

(m)
k5

)
863 818 788 961 926 879 954 902 819 933 884 784

cpnumber.R 0 0 0 602 539 486 817 738 551 695 609 373

ALLCP(%) 0 0 0 69.1 45.3 27.8 64.6 43.2 28.3 67.9 45.3 22.5

ERT.S 7.005 6.940 6.982 117.529 118.142 128.291 0.411 0.423 0.451 0.425 0.374 0.358

∗ A(m)
ki

is defined in formula (2.34) and J(A) is given in (2.35).

Table 3.2: Simulation results of PELT, CBS, and VIFCP based on 1000 simulations

for three different noise levels (σ = 0.2, σ = 0.3, and σ = 0.4) of scenario 2.

88



Method PELT CBS VIFCP

l 100 80

σ 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4∑1000
m=1 J

(
A

(m)
k1

)∗ 290 287 276 376 311 235 643 511 343 643 477 337∑1000
m=1 J

(
A

(m)
k2

)
563 534 473 824 717 631 850 729 609 757 630 474∑1000

m=1 J
(
A

(m)
k3

)
746 715 668 926 902 836 884 854 748 793 685 577∑1000

m=1 J
(
A

(m)
k4

)
514 550 470 875 828 711 755 684 518 752 707 553∑1000

m=1 J
(
A

(m)
k5

)
718 703 658 897 886 820 886 860 715 855 783 651

cpnumber.R 0 0 0 389 369 313 627 549 310 490 380 181

ALLCP 0 0 0 52.7 36.0 21.4 45.9 30.4 16.1 43.1 27.9 17.7

ERT.S 6.287 6.095 6.197 91.659 99.610 104.866 0.482 0.431 0.413 0.490 0.406 0.407

∗ A(m)
ki

is defined in formula (2.34) and J(A) is given in (2.35).

Table 3.3: Simulation results of PELT, CBS, and VIFCP based on 1000 simulations

for three different noise levels (σ = 0.2, σ = 0.3, and σ = 0.4) of scenario 3.
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3.4 Real Data Examples

In this section, we will analyze the following two real data examples.

3.4.1 Denoising a Barcode

The original barcode was given in the top panel of Figure 3.1. As explained in

Section 1, all the values in the original image matrix range from 0 (black) to 1 (white).

We now add Gaussian noises with mean 0, and standard deviation σ = 0.1 or 0.2, to

each element of the original image matrix. Note that the resulting matrices may have

elements smaller than 0 or larger than 1. To mimic an image matrix, we replace such

elements by 0 or 1, i.e., we apply the transformation xI[0, 1](x) + I(1,∞)(x) to each

element of the two noise-added matrices to make the noised grayscales range from 0

to 1. We name these two resulting matrices as Matrix 1 and Matrix 2, respectively.

One realization of the first row of each of Matrices 1-2 is plotted in Figure 3.4. The

task is to reconstruct the original barcode, i.e., to find all the change points marked

by vertical lines (obtained from the original image in the top panel of Figure 3.1).

Here, the true number of change points is 48. We choose l = 20 for applying the

VIFCP algorithm. For both datasets, VIFCP correctly detected all change points.

In contrast, CBS and PELT failed to detect all change points. For the case when

σ = 0.1, PELT detected 17 change points, while CBS correctly detected all of the
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change points. When σ = 0.2, PELT still detected 17 change points, but CBS

failed to detect two change points. Thus in terms of the multiple change point

detection accuracy, even though CBS and PELT failed to compete with VIFCP,

CBS outperformed PELT in this example.

Figure 3.4: The data produced by a scanner through reading the first row of con-

taminated barcode image with different noise levels (σ = 0.1 and σ = 0.2). The true

change points are marked by vertical lines.
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3.4.2 Genetic Data

In this subsection, we consider a test using a genetic dataset involving 57 bladder

tumor samples (Stransky. et al. 2006); see web page http://microarrays.curie.

fr/publications/oncologie_moleculaire/bladder_TCM/. The problem is to find

changes in the DNA copy number of an individual using array comparative genomic

hybridization (CGH).

In order to perform multiple change point detection, we firstly deal with missing

values in the dataset. Following Matteson and James (2013), we remove all series

that had more than 7% of values missing, which left genome samples of 42 individuals

for analysis. As in Matteson and James (2013), we also normalize the data so that

the modal ratio is zero on a logarithmic scale. For each missing value, we find the 3

nearest neighbors using a Euclidean metric, and infer the missing value by averaging

the values of its neighbors. As an illustration, we randomly choose two individuals’

array CGH dataset for analysis. Here we choose the 11th and 13th individuals.

The choice of l is critical in the real data analysis. We will give a criterion for

choosing l later in Section 5 (see the formula (3.15) for more details). We first limited

the range of l to {5, 6, . . . , 30} before applying this criterion. The application of the

criterion returned l = 8 and l = 13, respectively, for the 11th and 13th patient, as

the optimal value of l.
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For individual 11, VIFCP with l = 8 detects 22 change points, while PELT and

CBS claim respectively 9 and 35 change points, which are displayed in Figure 3.5.

From this figure, we observe that both VIFCP and CBS perform better than PELT.

PELT fails to detect some change points. As a matter of fact, neither VIFCP or

CBS is perfect in detecting the change points. There are three potential change

points around 150, 500 and 600 but VIFCP fails to detect them. As for CBS, the

minimum distance between two successive change points is 3, and in addition, the

distance between adjacent change points in each of two pairs is 5. Thus CBS may

overestimate the number of change points.

For individual 13, VIFCP with l = 13 detects 18 change points, while PELT and

CBS report 6 and 44 change points, respectively. The result is shown in Figure 3.6.

We conclude that CBS and VIFCP perform better than PELT because PELT fails

to detect some potential change points. Moreover, VIFCP may fail to claim some

change points while CBS obviously overestimates the number of change points.

3.5 Discussion

In this chapter, we propose a procedure, as well as its theoretical justification,

for detecting multiple change points in the mean-shift model, where the number

of change points is allowed to increase with the sample size. We first convert a
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Figure 3.5: The normalized relative aCGH signal for the 11th individual with a

bladder tumor. The change points detected by VIFCP with l = 8, PELT and CBS

are indicated by the vertical lines.

change point detection problem into a variable selection problem by partitioning

the data sequence. This allows us to apply a modified variance inflation factor

regression algorithm to perform the variable selection sequentially in segment order.

Once the segment containing a possible change point is flagged, a weighted CUSUM

algorithm is applied to test if there is a change point in this segment. This procedure

is implemented in the algorithm, named VIFCP. Simulation studies demonstrate
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Figure 3.6: The normalized relative aCGH signal for the 13th individual with a

bladder tumor. The change points detected by VIFCP with l = 13, PELT and CBS

are indicated by the vertical lines.

that VIFCP, when compared with two popular algorithms, CBS and PELT, has a

satisfactory performance in accuracy and computation time. It is also shown in the

barcode example that VIFCP is better than CBS and PELT in terms of detection

accuracy of multiple change points. In the second real-data analysis, VIFCP and

CBS outperform PELT from the point-of-view of estimating change point locations.

In the simulation studies, segment length l is set to be 100, 80 for n = 2000. In

the barcode example, l is set as 20, to account for the barcode design. The choice
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of l is a very important issue. We may make the optimal choice of l by applying a

Bayesian information criterion as follows:

lopt = arg min
l
{log(n)(DFl + 1) + n log(RSSl/n)}, (3.15)

where DF is the number of estimated change points and RSSl =
∑n

i=1(yi − ŷi)2.

In this chapter, it can be seen that the proposed procedure for a mean-shift

model can be extended to detect multiple change points in other types of regression

models, including generalized linear models. The algorithm for implementing such a

procedure is also feasible, requiring only a straightforward extension of VIFCP.
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4 A Semiparametric Nonlinear Mixed-Effects

Model with Covariate Measurement Errors and

Change Points

4.1 Introduction

With the rapid development of longitudinal studies, various statistical models

have been proposed to analyze different kinds of longitudinal data. The mixed-

effects model is a commonly used approach, and it assumes that the response is

linked to a function of covariates with fixed and random regression coefficients. When

the mechanism of the data is known, a parametric nonlinear mixed-effect (NLME)

model is often used to fit the longitudinal data. In literature, there are mainly three

types of NLME models: parametric NLME models, nonparametric NLME models,

and semiparametric NLME models. The parametric NLME models have been widely

used in many longitidunal studies, such as HIV viral dynamics and pharmacokinetic
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analysis. However, the performance of parametric NLME models is less satisfactory,

especially when the underlying mechanism which generates the data is complicated

in practice. In these cases, semiparametric or nonparametric NLME models may be

more flexible in modelling the complex longitudinal data (Ke and Wang, 2001; Wu

and Zhang, 2002).

In many longitudinal studies, great attention is paid to the inter-patient variation.

This variation may be partially explained by time-varying covariates. For example,

in HIV viral dynamic studies, patients’ CD4 cell counts are repeatedly measured

during the treatment, and they may partially explain the inter-patient variation.

However, some covariates may be measured with substantial errors and may contain

missing values. Ignoring measurement errors and missing data in covariates may lead

to biased results (Higgins et al., 1997; Wu, 2002).

It is a common practice to analyze complex longitudinal data using NLME models

in literature, however, these models may bacome a challenge if the response contains

rebound part, which occurs often in longitudinal studies. Such rebound part in

one patient’s trajectory may be an important indicator to help quantify treatment

effect and improve management of patient care. To overcome this challenge, change

point models are introduced and should be simultaneously addressed for the NLME

model. To the best of our knowledge, there are limited studies under the framework of
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change point NLME model for longitudinal data. Huang (2013) studied change point

modeling methods to investigate segmental mixed-effects models and illustrate the

proposed methodology by longitudinal data from HIV viral dynamic study. Huang

et al. (2015) implemented change point methods to analyze piecewise linear mixed-

effects model for longitudinal studies under a Bayesian framework.

To consider the above problems in the longitudinal studies, we will address covari-

ate measurement errors and change points in semiparametric NLME models based

on the likelihood method in this chapter.
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Figure 4.1: Viral loads and CD4 cell counts of four randomly selected HIV patients.

Our research in this chapter is motivated by HIV viral dynamic studies, and we

are aiming to build suitable models to describe the viral load trajectories after the
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start of an anti-HIV treatment. Figure 4.1(a) shows the viral load trajectories during

an anti-HIV treatment for four randomly selected patients. We see that the viral

loads of patients decrease sharply in the initial period after starting the treatment

(a rapid initial decay, called first-phase viral decay). The pattern of the first-phase

viral decay is clear and can be described parametrically. However, after the initial

period of the treatment, the viral loads may continue to decrease with slower decay

(called second-phase viral decay), and some of them may rebound at the late stage

of the treatment. Thus, there may exist change points in the viral load trajectories.

The viral load trajectories before the change points exhibit a clear pattern and may

be modeled parametrically. On the other hand, the viral load trajectories after

the change points can be quite complicated, so a parametric modeling may not be

appropriate.

Based on some biological arguments, Wu and Ding (1999) derived the following

two-exponential model with individual-specific parameters for short-term HIV viral

dynamics (see also Wu, 2002)

yij = log10(P1ie
−λ1ijtij + P2ie

−λ2ijtij) + eij, (4.1)

log(P1i) = β1 + b1i, λ1ij = β2 + b2i,

log(P2i) = β3 + b3i, λ2ij = β4 + β5CD4ij + b4i, i = 1, 2, · · · , n, j = 1, 2, · · · , ni,

where yij is the log10-transformation of the viral load measurement for patient i at

100



time tij. P1i and P2i are baseline values and βi’s are fixed effects coefficients. λ1i and

λ2i are the first (initial) and the second phases of viral decay rates respectively. We

assume that E(λ1ij) > E(λ2ij) and β1 > β3. eij’s represent within-individual errors,

and bki’s are random effects coefficients. We use a time-varying covariate CD4 cell

count to partially explain the large inter-patient variation. Figure 4.1(b) shows the

CD4 trajectories of four randomly selected patients. It is well known that CD4 cell

count is often measured with substantial error, so it is reasonable to assume that the

viral loads in model (4.1) are related to the true but unobserved CD4 values rather

than the observed but mis-measured CD4. What is more, some CD4 values are not

measured at the same time as the viral loads, which leads to missing data in CD4.

To avoid the truncation of the data and take change points and covariate measure-

ment errors and missing data into account, we consider the following semiparametric

NLME model for long-term HIV viral dynamics with covariate measurement errors

and change points

yij = log10(P1ie
−λ1ijtij + P2ie

−λ2ijtij) + si(tij) max(tij − τi, 0) + eij, (4.2)

log(P1i) = β1 + b1i, λ1ij = β2 + b2i,

log(P2i) = β3 + b3i, λ2ij = β4 + β5CD4∗ij,

si(tij) = ω(tij) + hi(tij),

where ω(tij) and hi(tij) are nonparametric fixed and random smooth functions, re-
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spectively. CD4∗ij is the true but unobserved CD4 values. τi denotes the change

point for the ith patient, and the expression max(tij− τi, 0) is used to maintain con-

tinuity of viral load trajectories at the change point. Compared with model (4.1), the

model (4.2) still chooses the two-exponential models to fit the viral load trajectories

before change points, and it has the advantage of taking the rebound parts of the

trajectories into consideration.

Commonly used measurement errors models are reviewed in Carroll et al. (1995).

For NLME models with covariate measurement errors, Higgins et al. (1997) proposed

a two-step method and a bootstrap method, Wu (2002) considered consored response

and covariate measurement errors based on a joint model, and Liu and Wu (2007)

studied semiparametric NLME models with covariate measurement errors and miss-

ing responses.

Some authors have proposed random change point models for longitudinal data.

For example, Carlin, Gelfand,and Smith (1992) proposed hierarchical Bayes models

and applied to HIV/AIDS data. Morrell et al.(1995) used a nonlinear mixed-effects

model to describe longitudinal changes in PSA in men before their prostate can-

cers were detected clinically. Hall et al. (2003) and Jacqmin-Gadda, Commenges,

and Dartigues (2006) proposed change point models for cognitive function and de-

mentia. However, there is little literature on simultaneously addressing covariate
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measurement errors and change points for semiparametric NLME models. This is

the objective of the current chapter.

In Section 4.2, we propose a general semiparametric NLME response model with

covariate measurement errors and change point and then approximate it by a para-

metric NLME model, following Wu and Zhang (2002). We model the covariate

process by using a mixed-effects model to incorporate measurement errors and miss-

ing data. Moreover, we consider survival models for the possibly censored times of

change points. In Section 4.3, we simultaneously obtain maximum likelihood esti-

mates (MLE) of all model parameters by using a Monte Carlo EM (MCEM) algo-

rithm along with Gibbs sampler methods. We also employ the hierarchical likelihood

(h-likelihood) approach, which is computationally much more efficient than MCEM

approach, for an approximate MLE of those parameters. Both of the proposed ap-

proaches are illustrated in a real AIDS study in Section 4.4 and are evaluated via

simulation in Section 4.5, respectively. We conclude this chapter in Section 4.6.
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4.2 A General Semiparametric NLME Model with Covariate

Measurement Errors and Change Points

4.2.1 A Semiparametric NLME Response Model with Change Points

Suppose there are n independent subjects in a study. Let yi = (yi1, . . . , yini
)T be

the observed response trajectory for individual i with the change point τi, where yij

is the observed response value for individual i at time tij, i = 1, . . . , n, j = 1, . . . , ni.

During the study period, not all the τi’s are observed since some individuals’ trajec-

tories may not experience their change points. Thus, the observed change point data

for individual i are Ti = min(τi, tini
) and ci = I(τi ≤ tini

), where I(·) is an indicator

function. Let zikl be the observed value, possibly measured with error, and z∗ikl be the

corresponding true but unobservable value of covariate k for individual i at time uil,

i = 1, . . . , n, k = 1, . . . , ν, l = 1, . . . ,mi. Here, we allow the covariate measurement

times uil to differ from the response measurement times tij, i.e., we allow missing

data in the covariates. We denote zi = (zTi1, . . . ,z
T
imi

)T , where zil = (zi1l, . . . , ziνl)
T ,

l = 1, . . .mi. The observed data are {(yi, zi, Ti, ci), i = 1, . . . , n}.

For the response process, we consider a general semiparametric NLME model

which incorporates possibly censored change points and mis-measured time-varying
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covariates

yij = g1(tij,β
∗
ij) + si(tij)(tij − Ti)+ + eij,

β∗ij = d(z∗ij,β
∗, b∗i ), (4.3)

si(t) = g2(ω(t), hi(t)), i = 1, . . . , n, j = 1, . . . , ni,

where x+ denotes max(x, 0) for a variable x, g1(·),d(·) and g2(·) are known para-

metric functions, ω(t) and hi(t) are unknown nonparametric smooth fixed-effects and

random-effects functions, respectively. β∗ij are individual-specific and time-dependent

parameters, β∗ are population parameters, eij are within-individual random errors,

and b∗i are random effects. Let ei = (ei1, · · · , eini
)T and we assume ei

i.i.d.∼ N(0, δ2Ini
),

where δ2 is the unknown within-individual variance, and Ini
is the ni × ni identity

matrix. b∗i
i.i.d.∼ N(0, B∗) with B∗ being an unstructured variance-covariance matrix,

hi(t)’s are i.i.d. realizations of a zero-mean stochastic process, and b∗i and hi(t) are

independent of ei.

Note that in model (4.3), we assume that the individual-specific parameters β∗ij

depend on the true but unobservable covariates z∗ij rather than the observed co-

variates zij, which may be measured with substantial errors. In model (4.3), we

incorporate change points in the response trajectories. We parametrically and non-

parametrically model the response trajectories before and after the change points to

account for the data mechanism before the change points and the trajectory com-
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plexity after the change points, respectively.

For likelihood reference, we approximate the nonparametric functions ω(t) and

hi(t) by linear combinations of basis functions Ψp(t) = (ψ0(t), ψ1(t), . . . , ψp−1(t))T

and Φq(t) = (φ0(t), φ1(t), . . . , φq−1(t))T as follows (Rice and Wu 2001):

ω(t) ≈ ωp(t) =

p−1∑
k=0

µkψk(t) = Ψp(t)
Tµp,

hi(t) ≈ hiq(t) =

q−1∑
k=0

ξikφk(t) = Φp(t)
Tξiq (4.4)

where µp and ξiq are unknown vectors of fixed and random coefficients respectively.

We can regard ξiq as i.i.d. realizations of a zero-mean random vectors. We consider

natural cubic spline bases with percentile-based knotes, and the number of knotes

is determined by the AIC or BIC criteria. If we substitute ω(t) and hi(t) by their

approximations ωp(t) and hiq(t), then the semiparametric NLME model (4.3) can be

approximated by the following parametric NLME model

yij = g1(tij, d(z∗ij,β
∗, b∗i )) + g2(Ψp(tij)

Tµp,Φp(tij)
Tξiq)(tij − Ti)+ + eij

≡ g(tij, z
∗
ij,β, bi, Ti) + eij (4.5)

where β = (β∗,µp) are fixed effects, bi = (b∗i , ξiq) are random effects, bi
i.i.d.∼ N(0,B)

with B being an unstructured variance-covariance matrix, and the function g(·) is

known.
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4.2.2 Measurement Errors and Missing Data in Covariates

In the NLME model (4.5), covariate value zij must be available at the response

measurement times tij. However, due to different covariate measurement schedules

or other problems, covariates may be missing at times tij. Because of the existance

of measurement errors and missing data in the time-varying covariates, we need to

model the covariate processes. We consider the following multivariate LME model

(Shah, Laird, and Schoenfeld, 1997) to describe the covariate process

zil = Uilα+ Vilai + εil(≡ z∗il + εil), i = 1, . . . , n, l = 1, . . . ,mi, (4.6)

where Uil and Vil are ν×d and ν×r design matrices, α and ai are unknown population

(fixed-effects) and individual-specific (random-effects) parameter vectors, and εil are

the random measurement errors for individual i at time uil. We assume that the

true covariate values are z∗il = Uilα + Vilai. Moreover, we assume ai
i.i.d.∼ N(0, A),

εil
i.i.d.∼ N(0, R), where A and R are unknown variance-covariance matrices. Let

εi = (εTi1, . . . , ε
T
imi

)T , which is assumed to be indepedent with ai. We also assume

that ai and εi are independent of bi and ei in the response model. Models such

as (4.6) may be interpreted as a covariate measurement error model (Carroll et al.,

1995).
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4.2.3 Change Points Analysis

In this section, we will build a suitable model for the times of the change points

in model (4.3). The time of the rebound is likely related to the longitudinal response

and covariate process. We can specify the association by assuming the time of

change point τi ∼ f(t|ai, bi;γ, η) with unknown parameters γ and η, where ai and

bi are random effects in the covariate and the response model, respectively. We may

consider the following model

log(τi) = γ0 + γT1 ai + γT2 bi + ζi, i = 1, · · · , n, (4.7)

where γ = (γ0,γ
T
1 ,γ

T
2 )T are regression coefficients, and the random errors ζi’s are

i.i.d. and follow a parametric distribution with mean 0 and other parameter η, such

as ζi ∼ N(0, η2). We assume that ζi’s are independent of ai and bi. Model (4.7)

may be a good choice when the change points are thought to depend on individual-

specific longitudinal trajectories, such as initial slopes and intercepts, or summaries

of the longitudinal trajectories, and it is closely related to so-called shared parameter

models (Wu and Carroll, 1988; DeGruttola and Tu, 1994).
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4.3 Joint Likelihood Inference

We consider likelihood inference for semiparametric NLME models with covariate

measurement errors and change points based on the approximate parametric NLME

response model (4.3), the covariate measurement error model (4.6), and the change

point model (4.7).

Let θ = (α,β,γ, δ, R,A,B, η) be the collection of all unknown model parame-

ters, and let f(·) denote a generic density function. The approximate log-likelihood

function of θ for the observed data {(yi, zi, Ti, ci), i = 1, · · · , n} can be written as

lo(θ) =
n∑
i=1

l(i)(θ) ≡
n∑
i=1

log

∫ ∫ [
fY (yi|ai, bi, Ti;α,β, δ2)fZ(zi|ai;α, R) (4.8)

×[f(Ti|ai, bi; γ, η2)]ci [1− F (Ti|ai, bi;γ, η)]1−ci
]
f(ai;A)f(bi;B)daidbi

where F (Ti|ai, bi,γ, η) is the cumulative distribution function. The approximate

maximum likelihood estimate (MLE) of θ can be obtained by directly maximizing the

observed data log-likelihood lo(θ). However, this is computationally infeasible since

the function lo(θ) may not have a closed-form expression with high-dimensional and

intractable integrals. Therefore, we consider the following two alternative approaches

to obtain the approximate MLE of θ.
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4.3.1 A Monte Carlo Expectation Maximization Approach

We consider a Monte-Carlo Expectation Maximization (MCEM) algorithm to find

the approximate MLE of θ. By treating the unobservable random effects ai and bi

as additional “missing” data, we have the “complete data” {(yi, zi, Ti, ci,ai, bi), i =

1, · · · , n}. Thus the “complete data” log-likelihood function of θ for all individuals

can be expressed as

lcom(θ) =
n∑
i=1

l(i)com(θ) ≡
n∑
i=1

{
log fY (yi|ai, bi, Ti;α,β, δ2) + log fZ(zi|ai;α, R)

+ci log f(Ti|ai, bi;γ, η) + (1− ci) log[1− F (Ti|ai, bi;γ, η)] (4.9)

+ log f(ai;A) + log f(bi;B)
}
.

Let θ(t) be the parameter estimate of θ from the t-th EM iteration. The E-step

for individual i at the (t+ 1)th EM iteration can be written as

Qi(θ|θ(t)) = E(l(i)com(θ)|yi, zi, Ti, ci;θ(t)) =

∫ ∫ [
log fY (yi|ai, bi, Ti;α,β, δ2)

+ log fZ(zi|ai;α, R) + ci log f(Ti|ai, bi;γ, η)

+(1− ci) log[1− F (Ti|ai, bi;γ, η)] + log f(ai;A) + log f(bi;B)
]

×f(ai, bi|yi, zi, Ti, ci;θ(t))daidbi. (4.10)

Generally there is no closed-form for the above integration, and numerically evalua-

tion of the integral is usually infeasible. However, note that Qi(θ|θ(t)) is an expecta-

tion with respect to the conditional distribution f(ai, bi|yi, zi, Ti, ci;θ(t)), so it can
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be evaluated using MCEM algorithm (Wei and Tanner, 1990; Ibrahim et al. 2001).

Specifically, we can use the Gibbs sampler (Gelfand and Smith, 1990) to generate

samples of (ai, bi) from f(ai, bi|yi, zi, Ti, ci;θ(t)) by iteratively sampling from the full

conditionals f(ai|yi, zi, Ti, ci, bi;θ(t)) and f(bi|yi, zi, Ti, ci,ai;θ(t)) as follows:

f(ai|yi, zi, Ti, ci, bi;θ(t)) ∝ f(zi|ai;α(t))f(ai;A
(t))f(yi|ai, bi, Ti;α(t),β(t), δ(t))

×[f(Ti|ai, bi;γ(t), η(t))]ci [1− F (Ti|ai, bi;γ(t), η(t))]1−ci ,

f(bi|yi, zi, Ti, ci,ai;θ(t)) ∝ f(bi;B
(t))f(yi|ai, bi, Ti;α(t),β(t), δ(t))[f(Ti|ai, bi;γ(t), η(t))]ci

×[1− F (Ti|ai, bi;γ(t), η(t))]1−ci .

After generating large random samples of (ai, bi) from f(ai, bi|yi, zi, Ti, ci;θ(t)),

we can replace the “missing data” by the simulated values and then approximate

the expectation Qi(θ|θ(t)) by its empirical mean. The M-step, which maximize∑n
i=1 Qi(θ|θ(t)), is like a complete-data maximization, so complete-data optimiza-

tion procedures may be used to update the parameter estimates.

When the MCEM algorithm is convergent, we obtain the approximate MLE θ̂

of θ, whose variance-covariance matrix can be calculated by the following formula

(McLachlan and Krishnan, 1997):

Cov(θ̂) =

[
n∑
i=1

E(S(i)
c |yi, zi, Ti, ci; θ̂)E(S(i)

c |yi, zi, Ti, ci; θ̂)T

]−1

, (4.11)

where S
(i)
c = ∂l

(i)
c (θ)/∂θ and the expectations can be approximated by Monte Carlo
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methods.

4.3.2 An Approximation Approach Based on Hierarchical Likelihood

As the MCEM method involves sampling the random effects (ai and bi), which

may have a high dimension, it may be computationally intensive and sometimes has

the problem of nonconvergence, even with the availability of modern computers. To

overcome these disadvantages, in this section we consider an alternative approach

called the hierarchical likelihood (h-likelihood) approach for approximate likelihood

inference. The h-likelihood approach is computationally feasible and may be used to

obtain good parameter starting values for the MCEM approach.

Let ξ denote the general “nuisance parameters” and θ denote the parameters of

interest. Lee and Nelder (1996) considered the following function

pξ̂(l(θ, ξ)) =

[
l(θ, ξ)− 1

2
log

∣∣∣∣ 1

2π
D(l(θ, ξ), ξ)

∣∣∣∣]
ξ=ξ̂

, (4.12)

where D(l(θ, ξ), ξ) = −∂2l(θ, ξ)/∂ξ2, and ξ̂ is the solution to ∂l(θ, ξ)/∂ξ = 0.

Following Lee and Nelder (1996), the complete-data log-likelihood function lcom(θ)

in (4.9) can be called the hierarchical log-likelihood function because it combines

the two stages of mixed-effects models. Specifically, if we define ωi = (aTi , b
T
i )T and

ω = (ωT1 , · · · ,ωTn )T , the complete-data log-likelihood lcom(θ) of (4.9) can be denoted

112



as lcom(θ,ω). Thus, the function pω̂(lcom(θ,ω)) can be written as

pω̂(lcom(θ,ω)) =
n∑
i=1

[
l(i)com(θ,ω)− 1

2
log

∣∣∣∣ 1

2π
D(l(i)com(θ,ω),ωi)

∣∣∣∣]
ωi=ω̂i

. (4.13)

where ω̂ = (ω̂Ti , · · · , ω̂Tn )T are the solutions to the equations ∂l
(i)
com(θ,ωi)/∂ωi =

0, i = 1, · · · , n. It can be shown that pω̂(lh(θ)) is the first-order Laplace approxima-

tion to the marginal log-likelihood lo(θ) in (4.8) using the hierarchical log-likelihood

function lcom(θ).

Recall that the first-order Laplace approximation to the intractable integral,

which is in the form of
∫
ekρ(ν)dν, can be written as

∫
ekρ(ν)dν =

(
2π

k

)d/2
·
∣∣∣∣∂2ρ(ν̂)

∂ν2

∣∣∣∣− 1
2

· ekρ(ν̂) +O(k−1), (4.14)

where ν is a d-dimension vector, ν̂ maximizes ρ(ν), and ∂2ρ(ν̂)
∂ν2 = ∂2ρ(ν)/∂ν2|ν=ν̂ .

Letting Ni = ni+mi and N = miniNi, we assume that Ni = O(N) uniformly for

i = 1, · · · , n. Taking k = Ni, kρ(ν) = l
(i)
com(θ,ωi), d = dim(ωi), and ν = ωi in the

Laplace approximation (4.14), we can approximate the ith individual’s contribution

113



l(i)(θ) to the overall observed-data log-likelihood function lo(θ) as

l(i)(θ) = log

∫
el

(i)
com(θ,ωi)dωi = log

∫
eNiρ(ωi)dωi

= log

{(
2π

Ni

)d/2 ∣∣D(ρ(ωi),ωi)|ωi=ω̂i

∣∣−1/2
eNiρ(ω̂i) +Op(N

−1
i )

}

= log

{(
2π

Ni

)d/2 ∣∣∣∣ 1

Ni

D(l
(i)
h (θ,ωi),ωi)

∣∣
ωi=ω̂i

∣∣∣∣−1/2

el
(i)
com(θ,ω̂i) +Op(N

−1
i )

}

= log

{∣∣∣∣ 1

2π
D(l(i)com(θ,ωi),ωi)|ωi=ω̂i

∣∣∣∣−1/2

el
(i)
com(θ,ωi) +Op(N

−1
i )

}
= log

[
exp{pω̂i

(l(i)com(θ,ωi))}+Op(N
−1
i )
]

= pω̂i
(l(i)com(θ,ωi)) +O(N−1

i ). (4.15)

Hence, the observed data log-likelihood function lo(θ) in (4.8) can be approxi-

mated as

lo(θ) =
n∑
i=1

l(i)o (θ) =
n∑
i=1

[pω̂i
(l(i)com(θ,ωi)) +O(N−1

i )]

= pω̂(lcom(θ,ω)) +
n∑
i=1

O(N−1
i )

= pω̂(lcom(θ,ω)) +
n∑
i=1

O(N−1)

= pω̂(lcom(θ,ω)) + nO(N−1)

As N = miniNi grows faster than n, the function pω̂(lcom(θ,ω)) approaches the

observed-data log-likelihood function lo(θ). Thus, the estimate of θ, which maximizes

pω̂(lcom(θ,ω)), also maximizes lo(θ). Therefore we propose the following algorithm

to obtain an approximate MLE of θ denoted by θ̂h:
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Step 1. Initialize the estimate θ(0) = (α(0),β(0),γ(0), δ(0), A(0), B(0), R(0), η(0)) of

θ = (α,β,γ, δ, A,B,R, η) based on a naive approach.

Step 2. Given the current parameter estimates θ(t), update ω
(t+1)
i by maximizing

l
(i)
com(θ(t),ωi) with respect to ωi, i = 1, · · · , n.

Step 3. Given the random effects estimates ω(t+1), update the parameter estimate

θ(t+1) by maximizing pω(t+1)(lcom(θ,ω(t+1))) with respect to θ.

Step 4. Iterate between Step 2 and Step 3 until convergence.

We can use Fisher information to obtain the following approximate formula for

the variance-covariance matrix of the approximate MLE θ̂h.

Cov(θ̂h) =

[
−∂

2pω̂(lcom(θ,ω))

∂θ∂θT

]−1

θ=θ̂h

.

4.3.3 Asymptotic Properities of the Approximate MLE θ̂h

Firstly we give the following lemma which will be useful in the proof of the

theorem.

Lemma 4.3.1 Let Yn be a sequence of random variables satisfying Yn = c+Op(an)

where an = o(1). If f(x) is a function with r continuous derivatives at x = c, then

f(Yn) = f(c) + f (1)(c)(Yn − c) + · · ·+ [1/(r − 1)!]f (r−1)(c)(Yn − c)r−1 +Op(a
r
n),

where f (k)(c) is the kth derivative of f evaluated at c. In particular, f(Yn) = f(c) +
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Op(an). This result holds when Op(·) is replaced everywhere by op(·) or when Yn and

c are replaced by a vector/matrix random variable Yn and vector/matrix constant c.

One can refer to Vonesh and Chinchilli (1997) for the proof of Lemma (4.3.1).

Theorem 4.3.1 Suppose lo(θ) in expression (4.8) has second continuous deriva-

tives, and ∂l
(i)
o (θ)/∂θ are i.i.d. with finite entries covariance, we have

(θ̂h − θ0) = Op

[
max

{
n−

1
2 ,
(

min
i
Ni

)−1
}]

, (4.16)

where θ0 is the true value of θ.

Proof. Let ω̂i maximize l
(i)
com(θ,ωi) with respect to ωi for fixed θ. We denote Ni =

ni + mi and N = miniNi, and assume that Ni = O(N) uniformly for i = 1, · · · , n.

The ith individual’s contribution l(i)(θ) to the overall observed-data log-likelihood

may be approximated as

l(i)(θ) = pω̂i
(l(i)com(θ,ωi)) +O(N−1

i ). (4.17)

Hence, the observed-data log-likelihood lo(θ) can be written as

lo(θ) = l∗(θ) +O(nN−1), (4.18)

where l∗(θ) = pω̂(lcom(θ,ωi)) =
∑n

i=1 pω̂i
(l

(i)
com(θ)). Let u∗(θ) = ∂l∗(θ)/∂θ and let

θ̂h be the approximate maximum likelihood estimate satisfying u∗(θ̂h) = 0. As
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lo(θ) has second continuous derivatives and if we assume θ̂h is an interior point in

a neighborhood containing θ0, by the Lagrange theorem, we can know that there

exists a vector θ̃ on the line segment between θ0 and θ̂h such that

n−1u(θ̂h) = n−1u(θ0) + n−1M(θ̃)(θ̂h − θ0), (4.19)

where u(θ) = ∂lo(θ)/∂θT and M(θ) = ∂2lo(θ)/∂θ∂θT are the first and second order

derivatives of lo(θ).

The first term n−1u(θ0) can be rewritten as

1

n
u(θ0) =

1

n

∂lo(θ)

∂θ

∣∣∣∣
θ=θ0

=
1

n

n∑
i=1

∂l
(i)
o (θ)

∂θ

∣∣∣∣
θ=θ0

. (4.20)

As ∂l
(i)
o (θ)/∂θ are i.i.d. and the covariance has finite entries, we can apply the

Lindeberg Central Limit Theorem and then have

1√
n
u(θ0)

d−→ N(0, Ī(θ0)), (4.21)

where Ī(θ) = lim
n→∞

1
n

n∑
i=1

Ii(θ) and Ii(θ) is the information matrix for individual i.

Thus, we have

1√
n
u(θ0) = Op(1) (4.22)

which is equivalent to 1
n
u(θ0) = Op(n

−1/2).

Next, we will focus on the second term n−1M(θ̃) on the right side in formula

(4.19). By the Law of Large Numbers, we have

1

n
M(θ̃) =

1

n

∂2lo(θ)

∂θ∂θT

∣∣∣
θ=θ̃

p−→ −Ī(θ̃). (4.23)
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As Ī(θ̃) is invertible tends to 1, the probability that n−1M(θ̃) is invertible tends to

1. We can rewrite formula (4.23) as 1
n
M(θ̃) = −Ī(θ̃) + op(1). As lo(θ) has second

continuous derivatives, we know u(θ0) is derivativable and we can apply Lemma

(4.3.1) to derive

[n−1M(θ̃)]−1 = −Ī(θ̃)−1 + op(1). (4.24)

Similarly, as lo(θ) has second continuous derivatives, we can apply the Lemma

(4.3.1) to the partial derivative function in the expression (4.18) and then we have

n−1u(θ̂h) = n−1u∗(θ̂h) +O(N−1). (4.25)

From formula (4.19), we have

n−1M(θ̃)(θ̂h − θ0) = n−1u(θ̂h)− n−1u(θ0).

Thus,

(θ̂h − θ0) = [n−1M(θ̃)]−1[n−1u(θ̂h)− n−1u(θ0)]

= (−Ī(θ̃)−1 + op(1))[n−1u(θ̂h)− n−1u(θ0)]

= (−Ī(θ̃)−1 + op(1))[n−1u∗(θ̂h) +O(N−1) +Op(n
−1/2))] (4.26)

= −Ī(θ̃)−1Op

[
max

{
n−1/2, N−1

}]
+ op

[
max

{
n−1/2, N−1

}]
= Op

[
max

{
n−1/2,

(
min
i
Ni

)−1
}]

.
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Finally, we use θ̂ML to denote the “exact” maximum likelihood estimate with

u(θ̂ML) = 0. Let miniNi = O(nv) for v > 1 so that the accuracy of the Laplace

approximation to the marginal log-likelihood is approximately O(n1−v) = o(1). Then

under the same regularity conditions as before, by multiplying n on the both sides

of equation (4.25) and noting that u(θ̂HL) = 0, we have

u(θ̂h) = u∗(θ̂h) + op(1) = 0 + op(1) ≡ u(θ̂ML) + op(1). (4.27)

Thus u(θ̂h)−u(θ̂ML) = op(1) and hence θ̂h is asymtotically equivalent to the “exact”

maximum likelihood estimate θ̂ML.

Next, we explore the asymprotic normality of θ̂h and have the following theorem.

Theorem 4.3.2 If we suppose N = O(nv) for v > 1
2
, lo(θ) has second continuous

derivatives, and ∂l
(i)
o (θ)/∂θ are i.i.d. with finite entries covariance, the approximate

MLE θ̂h and the “exact” MLE θ̂ML have the same asymptotic distribution.

Proof. Noting that the approximate MLE θ̂h satisfies a set of the equations u∗(θ̂h) =

0, we can have the following formular after taking a first-order Taylor series expansion

of u∗(θ̂h) around the true parameter θ0

0 = u∗(θ̂h) = u∗(θ0) +
∂u∗(θ∗)

∂θT
(θ̂h − θ0), (4.28)
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where θ∗ is on the line segment joining θ0 and θ̂h, which implies

√
n(θ̂h − θ0) =

[
− 1

n

∂u∗(θ∗)

∂θT

]−1 [
1√
n
u∗(θ0)

]
(4.29)

=

[
− 1

n

n∑
i=1

∂2pω̂i
(l

(i)
com(θ∗,ω))

∂θ∂θT

]−1 [
− 1√

n

n∑
i=1

∂pω̂i
(l

(i)
com(θ0,ω))

∂θ

]
.

Now we apply Lemma (4.3.1) to the first and second partial derivative functions

in the expression in formula (4.18), we have

1√
n
u∗(θ) =

1√
n
u(θ) +O(n1/2N−1),

⇐⇒ 1√
n

n∑
i=1

∂pω̂i
(l

(i)
com(θ,ω))

∂θ
=

1√
n

n∑
i=1

∂l(i)(θ)

∂θ
+O(n1/2N−1), (4.30)

and

1

n

∂u∗(θ∗)

∂θT
=

1

n

∂u(θ)

∂θT
+O(N−1),

⇐⇒ 1

n

n∑
i=1

∂2pω̂i
(l

(i)
com(θ∗))

∂θ∂θT
=

1

n

n∑
i=1

n∑
i=1

∂2l(i)(θ)

∂θ∂θT
+O(N−1). (4.31)

If we suppose N = O(nv) for v > 1
2
, then it is easy to know O(n1/2N−1) =

O(n1/2−v) = o(1). From (4.30) and (4.31), we have

lim
n→∞

1√
n

n∑
i=1

∂pω̂i
(l

(i)
com(θ0,ω))

∂θ
= lim

n→∞

1√
n

n∑
i=1

∂l(i)(θ0)

∂θ
,

lim
n→∞

1

n

n∑
i=1

∂2pω̂i
(l

(i)
com(θ∗,ω))

∂θ∂θT
= lim

n→∞

1

n

n∑
i=1

∂2l(i)(θ∗)

∂θ∂θT
. (4.32)

Note that θ̂h−θ0 = Op[max{n− 1
2 , N−1}] = Op(n

− 1
2 ). Since θ∗ is on the line segment

joining θ0 and θ̂h, θ
∗ p−→ θ0 as n → ∞. Under the condition that ∂l

(i)
o (θ)/∂θ are
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i.i.d. and the covariance has finite entries, it follows from (4.21) and (4.23) that

1√
n

n∑
i=1

∂l
(i)
o (θ0)

∂θ

d−→ N(0, Ī(θ0)),

− 1

n

n∑
i=1

∂2l
(i)
o (θ∗)

∂θ∂θT
p−→ Ī(θ0). (4.33)

Combining the results in (4.32) and (4.33) and using Slutsky’s theorem, we have

√
n(θ̂h − θ0)

d−→ N(0, Ī(θ0)−1). (4.34)

Thus, we can conclude that when N = O(nv) for v > 1/2, the approximate MLE θ̂h

and the “exact” MLE θ̂ML have the same asymptotic distribution.

4.4 Real Data Analysis

In this section, we analyze the HIV dataset described in Section 4.1 to illustrate

the proposed likelihood estimation methods. The study contained 45 HIV infected

patients who were given an anti-HIV treatment. Viral load, CD4 cell counts, and

other variables, were repeatedly measured over a period of 48 weeks and the number

of observations for each patient varied from 4 to 10. The viral load has a detectable

limit of 100 RNA copies/ML. For simplicity, we impute the censored viral load values

by 50 RNA copies/ML. We apply the log10-transformation to viral load measurements

to stabilize the variance and make the data more normally distributed. It is well

known that CD4 cell counts are measured with substantial errors.
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Figure 4.2: 15 viral load trajectories with change points in the study.

We consider there exists a rebount point (the lowest point) on a viral load trajec-

tory if i). there is at least two observations after the minimum viral load is achieved

or ii). there is only one observation after the minimum viral load, but the absolute

value of the slope after the minimum value is larger than that just before it.

Figure 4.2 shows 15 trajectories with rebound points among the 45 patients in

the study.
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4.4.1 The Semiparametric NLME Response Model

We consider semiparametric NLME model (4.2) in Section 4.1 for long-term HIV

viral dynamic with covariate measurement errors and change points. For complete-

ness, we describe this model again here.

yij = log10(P1ie
−λ1ijtij + P2ie

−λ2ijtij) + si(tij) max(tij − τi, 0) + eij,(4.35)

log(P1i) = β1 + b1i, λ1ij = β2 + b2i, (4.36)

log(P2i) = β3 + b3i, λ2ij = β4 + β5CD4∗ij, (4.37)

si(tij) = ω(tij) + hi(tij), (4.38)

where yij is the log10 transformation of the viral load measurement for the ith patient

at time tij. P1i and P2i are baseline values, λ1ij and λ2ij are the first and the second

phases of viral decay rates, respectively. CD4∗ij is the true but un-observed CD4 cell

counts observed at time tij, and eij represents random errors. β′is, i = 1, · · · , 5, are

fix effects, and b′iks are random effects which represent individual deviations. We

assume that E(λ1ij) > E(λ2ij) and β1 > β3. ω(tij) and hi(tij) are nonparametric

fixed and random smooth functions, respectively. τi denotes the time of the change

point for the ith patient, and the expression max(tij − τi, 0) is used to maintain

continuity of viral load trajectories at the change point.

As discussed in Section 4.2, we approximate the nonparametric functions ω(t)
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p q AIC BIC

3 3 498.70 614.61

3 2 498.18 590.91

3 1 488.60 562.02

2 2 494.56 583.43

2 1 498.39 567.94

Table 4.1: AIC and BIC values for the response model (4.35)-(4.38), with 1 ≤ q ≤

p ≤ 3.

and hi(t) by linear combinations of basis functions Ψp(t) and Φq(t). Following Wu

and Zhang (2002), we take the same natual cubic splines with q ≤ p in order to

decrease the dimension of random effects. The AIC and BIC criteria are used to

determine the values of p and q. Based on these AIC and BIC values in Table 4.1,

the model with p = 3 and q = 1, i.e.,

si(tij) ≈ β6 + b4i + β7ψ1(tij) + β8ψ2(tij) (4.39)

seems to be the best, and thus it is selected for our analysis.

We denote bi = (b1i, · · · , b4i)
T and assume bi

i.i.d.∼ N(0, B). In order to reduce the

number of nuisance parameters, we assume that the variance-covariance matrics B

of the random effects is diagonal matrices. To avoid very small (large) estimates, we
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standardize the observed but error-proned CD4 cell counts and rescale the original

time t so that the new time scale is between 0 and 1.

4.4.2 The Covariate Model

It is well-known that the time-varying covariate CD4 cell counts is measured with

substantial errors. If we ignore the covariate measurement errors, the statistical

inference would be misleading. So we need to model the CD4 process to address

the covariate measurement errors and missing values. In the absence of a theorical

rationale, we employ the empirical polynomial linear mixed-effects (LME) model for

the CD4 process to account for the large inter-patient variation.

Type Random Effect AIC BIC

Linear a0 770.04 785.47

Linear a0a1 772.64 795.79

Linear a1 936.30 951.73

Quadratic a0a1a2 718.68 757.23

Quadratic a0a1 721.15 748.13

Quadratic a0 728.77 748.05

Table 4.2: AIC and BIC values for the linear and quadratic LME models
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We choose the best fitted CD4 model based again on AIC and BIC criteria.

Table 4.2 presents AIC and BIC values for these models. Specifically, we consider

the following quadratic LME model for the CD4 process.

CD4ij = (α0 + a2i) + (α1 + a2i)uil + α2u
2
il + εil, (4.40)

CD4∗ij = (α0 + a1i) + (α1 + a2i)uil + α2u
2
il, (4.41)

where uil is the observed time, α = (α1, α2, α3)T are the population parameters,

and ai = (a1i, a2i)
T are the ransom effects. We assume ai

i.i.d.∼ N(0, A) and εil
i.i.d.∼

N(0, σ2).

4.4.3 A Model for the Times of Change Points on Response Trajectories

For likelihood inference, we need to model the times of change points on response

trajectories. We assume that these times of change points are related to the longi-

tudinal process through the random effects in the semiparametric NLME response

model and the covariate model. Specifically, we consider the following time-to-event

model (Wu, Liu and Hu, 2010)

log(τi) = γ0 + γ1a1i + γ2a2i + γ3b2i + γ4b3i + ζi, (4.42)

where γi’s are parameters and the random error ζi
i.i.d.∼ N(0, η2).

126



4.4.4 Estimation Methods and Computation Issues

We estimate the model parameters using the naive approach for comparison

and the two proposed likelihood approaches. In the naive approach, we ignore the

covariate measurement errors and the change points on the viral load trajectories.

For the MCEM and h-likelihood approach, we use the estimated parameters obtained

by the naive approach as the starting values of the algorithms.

For the naive approach, we use the software R function nlme() to obtain param-

eter estimates and the standard errors. For the MCEM approach, the time series

plots and the sample autocorrelation function plots are drawn to check the conver-

gence of the Gibbs sampler. For example, in Figure 4.3 and 4.4 for patient 10, we

plot the time series for the random effects ai and bi. The autocorrelacation function

plot for b1 associated with patient 15 is given in Figure 4.5. From these figures, we

can see that the Gibbs sampler converges quickly and the autocorrelations between

successive generated samples are negligible after lag 20.

Based on the findings in the time series plots and the sample autocorrelation

function plots, we discard the first 500 samples as burn-in, and then choose one

sample from every 20 simulated samples to obtain “independent” samples.

Convergence of the MCEM and the h-likelihood approaches are considered to be

achieved when the maximum percentage change of all estimates is less than 5% in
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Figure 4.3: The time series plots of the sampled values of ai for patient 10.

two consecutive iterations. In the real data analysis, the h-likelihood approach can

significantly reduce the computationally time, and thus is more efficient than the

MCEM approach.

4.4.5 Analysis Results

The MCEM approach and the h-likelihood (HL) approach are applied to simulta-

neously estimate all the model parameters in the three joint model for the viral load

dynamics, the CD4 process, and the change points on the viral load trajectories. For

comparison purpose, we use the naive approach for the parameter estimation, which

ignoring both the covariate measurement errors and the change points. The result-
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Figure 4.4: The time series plot of the sampled values of bi for patient 10.

ing parameter estimates, together with their standard errors, are reported in Table

4.3. We can see that the naive approach may severely under-estimate the CD4 effect

(i.e. β5), and may poorly estimate some other parameters as well. The parameter

estimates based on the MCEM and the h-likelihood approaches are similar and may

be more reliable, while the h-likelihood approach takes much less time to implement.

The left and the right panel of Figure 4.6 present the viral load trajectories
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Figure 4.5: The autocorrelation function plot for b1 associated with patient 15.

for three patients without and with change points, respectively. We can see that

the naive approach fits the data poorly for all six HIV patients, especially after

the change points, while both the MCEM approach and the h-likalihood approach

perform very well in fitting the observed viral load trajectories with and without

change points.

4.5 The Simulation Study

In the simulation study, we evaluate the proposed joint approaches (MCEM and

HL), and compare them with the naive approach. We generate 100 datasets from
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Method α0 α1 α2 β1 β2 β3 β4 β5 β6 β7 β8

Naive
11.64 54.93 6.27 -0.75 0.97

(0.18) (3.24) (0.27) (0.41) (0.27)

MCEM
-0.42 4.78 -4.60 11.73 61.99 6.87 1.81 1.58 17.14 -18.52 -12.53

(0.15) (0.49) (0.58) (0.13) (4.05) (0.19) (0.51) (0.24) (2.99) (4.82) (2.68)

HL
-0.49 4.72 -4.20 11.70 62.77 6.86 2.08 1.53 16.87 -18.55 -12.75

(0.05) (0.42) (0.53) (0.13) (4.08) (0.19) (0.47) (0.27) (2.87) (4.63) (2.58)

Method γ0 γ1 γ2 γ3 γ4 δ σ η

Naive
0.49

MCEM
0.15 0.48 0.30 0.03 0.27 0.33 0.51 1.16

(0.05) (0.04) (0.03) (0.01) (0.02) (0.02) (0.04) (0.04)

HL
0.19 0.53 0.31 0.02 0.26 0.29 0.49 1.22

(0.03) (0.05) (0.07) (0.01) (0.03) (0.02) (0.03) (0.04)

Table 4.3: Estimates (standard errors) of the parameters in the joint models in the

example.

the following model, which corresponds to model (4.35)-(4.38),

yij = log10(P1ie
−λ1ijtij + P2ie

−λ2ijtij) + si(tij) max(tij − τi, 0) + eij,(4.43)

log(P1i) = β1 + b1i, λ1ij = β2 + b2i, (4.44)

log(P2i) = β3 + b3i, λ2ij = β4 + β5CD4∗ij, (4.45)

si(tij) = (4.8 + 0.1b4i) sin(4.2 + 3.1tij), (4.46)
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Figure 4.6: The observed (open-circle) and the fitted viral load trajectories for ran-

domly selected three HIV patients without change points (left panel) and three pa-

tients with change points (right panel) based on the naive approach (solid line), the

MCEM approach (dashed line), and the h-likelihood approach (dotted line).

where the nonparametric model (4.43)-(4.46) is carefully chosen to closely mimic

the observed viral load trajectory after the change point in the real-data example

in the previous section. The covariate model and the model for the times of change
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points are the same as those in the real-data example. We set up n = 50 and

ni = 15, i = 1, · · · , n, with the equal-spaced measurement time points between

0 and 1. The true values of α and β as well as γ and the precision parameters

are presented in Tables (4.4) and (4.5), respectively. The true variance-covariance

matrixes A = diag(0.7, 1.2) and B = diag(1, 9, 2, 4). In the simulation study, when

we use the MCEM approach, we discard the first 1000 samples as burn-in, and then

choose one sample from every 30 simulated samples to obtain “independent” samples.

Firstly, we evaluate the nonparametric modeling by studying the performance

of AIC and BIC for selecting the numbers of knots, i.e. p and q. For the 100

simulated dataset from models (4.43)-(4.46), we find that most of the BIC values

and AIC values lead to p = 3, q = 1. Furthermore, we simulate 100 datasets from

models (4.35)-(4.38) with (β6, β7, β8) = (17,−18.5,−12.5), and then use AIC and

BIC criteria to select the best model. The performance of AIC and BIC criteria is

again excellent and similar to the foregoing results. Thus, we may conclude that

AIC and BIC criteria perform well in the current modelsetting.

To compare different estimation approaches, we calculate averages of the resulting

estimates (EST) and their standard errors, the percent relative biases (BIAS) defined

by (β̂j − βj)/|βj| × 100%, and the percent relative root mean-square-errors (MSE)

defined by 100 ×
√
MSEj/|βj| based on each of three approaches. BIAS and MSE
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for the nonparametric fixed-effects function are defined by 1
n

∫ 1

τi
[ω̂i(t) − ω(t)]dt and

1
n

∫ 1

τi
[ω̂(t) − ω(t)]2dt, respectively, where ω̂i(t) and ω(t) are the ith patient’s fitted

and true trajectory, respectively. These simulations results are reported in Tables

4.4 and 4.5.

Parameter α0 α1 α2 β1 β2 β3 β4 β5 β6 ∼ β8

True value -0.45 4.75 -4.5 11.7 62 7 1.8 1.5 4.8 sin(4.2 + 3.1t)

EST

Naive
9.72 33.29 3.93 -1.65 0.41

(0.38) (5.52) (0.33) (0.34) (0.09)

MCEM
-0.44 4.77 -4.48 11.68 61.85 6.96 1.76 1.51

(0.15) (0.31) (0.45) (0.23) (3.21) (2.55) (0.41) (0.35)

HL
-0.44 4.71 -4.55 11.66 62.37 7.04 1.85 1.53

(0.17) (0.34) (0.47) (0.20) (3.56) (2.49) (0.38) (0.31)

BIAS

Naive -17.51 -45.49 -42.13 -195.19 -78.24 50.41

MCEM -2.34 0.53 -0.44 -0.27 -0.20 -0.48 -2.47 0.84 -1.43

HL -2.47 -0.90 1.37 -0.54 0.79 0.54 2.62 1.75 2.48

MSE

Naive 30.41 45.98 46.14 253.19 110.43 57.05

MCEM 3.87 1.17 0.74 0.52 0.30 1.12 4.18 1.54 2.42

HL 4.05 1.75 2.15 0.86 1.63 1.34 5.37 2.45 4.68
.

Table 4.4: Simulation results for the estimates (standard errors) of α and β

From the simulation results in Tables 4.4 and 4.5, we can see that these two

proposed joint model approaches (MCEM and HL) perform well in terms of both
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BIAS and MSE. MCEM approach performs better than HL approach as expected,

while HL approach also performs reasonally well and is computationally much more

efficient. The naive approach may lead to severely biased estimates and large MSEs

for some parameters. Therefore, it is important and necessary to take covariate

measurement errors and change points into account when analyzing the longitudinal

response data.

Parameters γ0 γ1 γ2 γ3 γ4 δ σ η

True value 0.15 0.48 0.3 0.028 0.27 0.33 0.51 1.16

Estimate

MCEM
0.15 0.47 0.3 0.03 0.26 0.33 0.52 1.19

(0.13) (0.15) (0.13) (0.01) (0.03) (0.04) (0.02) (0.04)

HL
0.15 0.50 0.31 0.03 0.28 0.32 0.48 1.21

(0.14) (0.21) (0.16) (0.01) (0.03) (0.05) (0.03) (0.06)

Bias
MCEM -0.78 -1.69 2.61 2.37 -3.16 -2.12 2.81 2.58

HL 0.86 4.76 3.43 3.61 3.42 -4.28 -5.45 4.17

MSE
MCEM 1.95 3.65 6.53 5.34 6.13 4.35 6.35 4.98

HL 2.15 7.69 7.67 7.33 6.54 7.19 8.76 7.45

Table 4.5: Simulation results for the estimates (standard errors) of γ and the preci-

sion parameters.
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4.6 Conclusion

In this chapter, we simultaneously address the measurement errors in time-

varying covariates and change points for semiparametric NLME models. To obtain

the approximate MLE of joint model parameters, we implement two approaches:

the MCEM and the h-likelihood approach. Both approaches can derive reliable

results and the h-likelihood approach can be computationally efficient. Thus, the

h-likelihood approach can be used as an alternative one to estimate the parameters

in the joint models. The h-likelihood approach may also provide excellent parameter

starting values for the MCEM approach. The simulation study shows that the two

proposed approaches produce satisfactory results, while the naive approach, which

ignores the measurement errors and change points, may perform poorly.

In the real data analysis, we impute the censored response values by half of the

detection limit of response for simiplicity. It is reasonable to treat the response

values below the detection limit as the left-censored data and include them in the

likelihood inference. The proposed approaches may be extended to analyse this type

of datasets.
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5 Discussion

5.1 Summary

In Chatpter 2, we are aim to propose simultaneously efficient and efficient meth-

ods for change point detection. For the univariate dataset, we propose COS and EXP

method to test the existence of the change point and then detect it if it exists. We

explore the asymptotic results of our proposed test statistics and analyze the type I

error as well as the power in this chapter. We employ ICSS algorithm to extend our

methods to detect multiple change point in data sequences and achive satisfactory

results. The main advantage of our test statistics is that we can detect the change

points effectively and efficiently. The comparison of our methods with some other

popular multiple change points detection methods is present in Section 2.4.

In Chapter 3, we proposed a procedure, as well as its theoretical justification,

for detecting multiple change points in the mean-shift model, where the number

of change points is allowed to increase with the sample size. We first convert a
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change point detection problem into a variable selection problem by partitioning

the data sequence. Once the segment containing a possible change point is flagged,

a weighted CUSUM algorithm is applied to test if there is a change point in this

segment. Simulation studies and real data analysis have provided solid ground to

prove that our procedure is efficient and effective.

In Chapter 4, we simultaneously address the measurement errors in time-varying

covariates and change points for semiparametric NLME models. To obtain the

approximate MLEs of the joint model parameters, we have proposed the two ap-

proaches: the MCEM and the h-likelihood approach. We illustrate the proposed

approaches by analyzing a real HIV dataset and evaluate their performance by con-

ducting a simulation study. The simulation study shows both approaches may pro-

duce satisfactory results in estimating the joint model parameters, while the naive

approach, which ignores the measurement errors and change points, may perform

poorly.

5.2 Future Research

The proposed COS method performs well when there exists significant mean shift

in the dataset after the cosine transformation. When the mean shift of cos(X) is too

small, the performance of COS method is not satisfactory.
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With the rapid development of multiple change points detection methods, our

proposed algorithm in Chapter 3 may play important role in detecting some other

types of change points, such as changes in variance, changes in distribution. On the

other hand, we could advance our method to detect change points in the multivariate

dataset. Both of these two improvements will make our method more general and

effective in practice.

There are several research topics that can be explored in the future. Firstly, it is

reasonable and meaningful to treat the response values below the detection limit as

the left-censored data and include them in the likelihood inference. Secondly, it is

very common that some individuals may drop out of the study before the scheduled

end for various reasons such as drug intolerance. The dropout may be informative in

the sense that it may be related to the missing values. We may extend the proposed

approaches to take the informative dropout into account. Thirdly, the h-likelihood

approach is much more computationally efficient than the MCEM approach. We

may explore other approximate likelihood approaches such as a first-order Taylor

approximation to the nonlinear functions in the response model.
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[32] Hlávka, Z., Hušková, M., Kirch, C. and Meintanis, S.G. (2012). Monitoring

change in the error distribution of autoregression models based on Fourier meth-

ods, Test, 21, 605-634 .

[33] Huang Y. (2013). Segmental modeling of viral load changes for HIV longitudinal

data with skewness and detection limits, Stat Med., 32(2), 319-334.

144



[34] Huang Y., Chen J. (2016). Bayesian quantile regression-based nonlinear mixed-

effects joint models for time-to-event and longitudinal data with multiple fea-

tures, Statistics in Medicine, 35, 5666-5685.
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[73] Meintanis, S., James, A. (2014). A nonparametric approach for multiple change

point analysis of multivariate data, J. Amer. Statist. Assoc., 109, 334-345.

[74] Meintanis, S.G., Swanepoel, J., Allison, J. (2014). The probability weighted

characteristic function and goodnessoffit testing. J. Statist. Plann. Inference,

146, 122-132.

[75] Morrell, C. H., Pearson, J. D., Carter, H. B., and Brant, L. J. (1995). Estimating

unknown transition times using a piece-wise nonlinear mixed-effects model in

150



men with prostate can-cer, Journal of the American Statistical Association, 90,

45-53.

[76] Moyeed, R.A., Diggle, P.J. (1994). Rates of convergence in semi-parametric

modeling of longitudinal data, Australian Journal of Statistics, 36, 75-93.

[77] Muggeo, V. M., and Adelfio, G. (2011). Efficient change point detection for

genomic sequences of continuous measurements, Bioinformatics, 27, 161 -166.

[78] Muller, H. (1992). Change points in nonparametric regression analysis, Annals

of Statistics, 20, 737-761.

[79] Ombao, H., Raz, J. A., von Sachs, R. and Malow, B. A. (2001). Automatic

statistical analysis of bivariate nonstationary time series, J. Am. Statist. Ass.,

96, 543-560.

[80] Page, E. S. (1955). A test for a chance in a parameter occurring at an unknown

point, Biometrika, 42, 523-527.

[81] Page, E.S. (1957). On problem in which a change in a parameter occurs at an

unknown point, Biometrika, 44, 248-252.

[82] Press, S.J. (1972). Estimation in univariate and multivariate stable distributions,

J. Amer. Statist. Assoc., 67, 842-846.

151



[83] Ombao, H., von Sachs, R., and Guo, W. (2005). SLEX analysis of multivariate

nonstationary time series, Journal of the American Statistical Association, 100,

519-531.

[84] Qian G., Shi X., and Wu Y. (2014). A statistical test of change-point in mean

that almost surely has zero error probabilities, Aust. N. Z. J. Stat., 55, 435-454.

[85] Raimondo, M. (1998). Minimax estimation of sharp change points, Ann. Statist.

26, 1379-1397.

[86] Rice, J.A., Wu, C.O. (2001). Nonparametric mixed-effects models for unequally

sampled noisy curves, Biometrics, 57, 253-259.

[87] Rousseeuw, P., and Croux, C. (1993). Alternatives to the median absolute de-

viation, Journal of the American Statistical Association, 88, 1273-1283.

[88] Scott, AJ, Knott, M. (1974). A cluster analysis method for grouping means in

the analysis of variance, Biometrics, 30(3), 507-512.

[89] Sen, A., Srivastava, M.S. (1975). On tests for detecting change in mean, The

Annals of Statistics, 3(1), 98-108.

[90] Shao, X. and Zhang, X. (2010). Testing for change points in time series, Journal

of the American Statistical Association, 105, 1228-1240.

152



[91] Shi, X., Wu, Y., and Miao, B. (2009). Strong convergence rate of estimators of

change point and its application, Computational Statistics and Data Analysis,

53, 990-998.

[92] Shi, X., Wang, X., Wei, D., and Wu. Y. (2016). A sequential multiple change-

point detection procedure via VIF regression, Computational Statistics, 31(2),

671-691.
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