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ABSTRACT 

Since the introduction of the Asian Emerald Ash Borer beetle (EAB, Agrilus planipennis) to 
Southern Ontario in 2002, the condition of all species of Ash trees (Fraxinus) in the province is 
currently at risk. Due to the aggressive nature of this beetle, early detection is critical in its 
eradication. Although species distribution modelling is not a new concept, several issues need 
to be addressed in order to increase its predictive accuracy. In this research, the effects of 
positive spatial autocorrelation as a result of sampling bias and data prevalence (i.e., 
proportion of absence to presence points) were investigated in an EAB dataset by applying a 
filtering distance threshold and employing various ratios of EAB presence to absence points 
during the modelling process. To analyze the impact of environmental and anthropogenic 
predictors on the distribution of the EAB, logistic regression, Random Forest (RF) and a hybrid 
of Random Forest and GLM known as the Random Generalized Linear Model (RGLM) were 
applied to EAB data from 2006-2012 across Ontario. Ultimately, three risk maps were created 
from the 2006-2012 EAB data by using the coefficients from logistic regression as weights and 
the creation of a risk map tool for RF and RGLM was used to validate the prediction dataset 
from 2013. High risk areas were identified from the risk maps for species prevalence and 
distribution monitoring. From these, precautionary measures can be implemented to stem 
the expansion of the beetle and thus reduce the destruction of the Ash tree species. All 
models identified June wind speed as the most important predictor variable followed by 
population centres. In terms of model transferability, logistic regression, Random Forest and 
RGLM achieved approximately 94% on the validation dataset. For the prediction dataset, 
RGLM had the best extrapolation accuracy (84%), followed by stepwise backward logistic 
regression (70%), and Random Forest (52%).  
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CHAPTER 1: INTRODUCTION 

 

The emerald ash borer (EAB, Agrilus planipennis) continues to severely impact ash trees since 

its invasion in 2002 in Windsor, Ontario. The stealthy nature of the beetle helped it stay 

undetected for approximately 10 years prior to its discovery in 2002 (de Groot et al., 2006; 

Fairmaire & Parsons, 2008). The EAB is an extremely aggressive pest as “in areas with a well 

established EAB population, ash trees can be mass attacked and killed in as little as two growing 

seasons” (Gaetz & Hildebrand, 2012, p. 1).  

 

In the initial stages of the EAB outbreak in Canada, various US states including Ohio and 

Michigan relied heavily on surveys and ash-tree removal in an attempt to slow its spread. 

Michigan and Ohio had removed all ash trees within approximately 400 metres of the infested 

front. While the USA focused mainly on tree-removal strategies, Canada relied heavily on visual 

surveys during the early years of EAB infestation (Marchant, 2012). However, visual surveys are 

not the most reliable form of surveying as ash trees only exhibit visible symptoms until after a 

year following infestation (BenDor et al., 2006; Pontius et al., 2008).  

 

Although surveying and detection methods may be effective in preparing conservation 

authorities for the arrival of the EAB in a particular area, the areas chosen to be surveyed are 

usually premeditated and spontaneous EAB emergence in the unregulated areas can go 

unnoticed. For this reason, predictive species distribution models using relevant anthropogenic 

and environmental factors can be used as a tool to draw attention to high-risk areas using risk 

maps derived from the models. BenDor et. al., (2006) modelled the impact of hypothetical 

anthropogenic enforcements such as firewood quarantines and EAB eradication programs on 

the attenuation of the EAB in an uninfected area in DuPage County, Illinois. The main inputs for 

the simulations were an EAB population model abstracted by the life cycle of the beetle and an 
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ash tree population model which approximated the seeding and life span of the ash trees. 

Although BenDor et al. (2006)’s model served to be essentially hypothetical, it still required 

specified inputs such as an ash tree inventory dataset which may not be readily accessible for 

a larger study area.  

 

Prasad et al. (2010) used a more practical approach to model the EAB in Ohio by combining 

historical EAB core zones (i.e., 1998-2006) and field sampled ash trees from 2004-2005 with 

relevant factors such as ash density, traffic density, distance to campgrounds and wood product 

industries. In addition, a predictor variable known as the “distance to the nearest EAB positive 

location from previous years” was included which added a spatio-temporal dimension to the 

model. In theory, Prasad et al. (2010)’s model calculated the probability of a cell becoming 

infested with the EAB and was validated by overlaying EAB points from 2007. Although the 

methodology used by Prasad et al. (2010) was pragmatic, the likelihood of positive 

autocorrelation present in the EAB dataset used to train the model was not addressed which 

violated the assumption of independent observations during modelling (Bebber, 1999; F. 

Dormann et al., 2007).  

 

The most recent research on the EAB was conducted by Huset (2013) using similar 

anthropogenic variables as Prasad et al. (2010) but also incorporated various climactic variables 

such as precipitation and temperature in order to assess the impact of climate change. Huset 

(2013) used logistic regression and a popular presence-only machine learning model known as 

Maxent to identify the most important variables and visualize the spread of the EAB. Unlike 

Prasad et al. (2010), Huset (2013)’s methodology investigated spatial autocorrelation and 

addressed it by aggregating the presence points in a cell-wise basis on a symmetrical grid. 

However, Huset (2013)’s approach of addressing autocorrelation appeared exhaustive as it 

reduced the presence points by a factor of 10. Secondly, another drawback in Huset (2013)’s 

research was the ambiguous procedure used to create the risk map from the logistic regression 

results. For instance, Huset (2013) used the p-values of the significant variables identified by 

logistic regression as weights for the risk map of the study area. The more rational method to 
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produce the risk map is to use the coefficients associated with the explanatory variables in 

logistic regression’s equation as weights to produce EAB risk probability of each cell ranging 

from 0 to 1 (Mousavi et al., 2011; Ohlmacher & Davis, 2003). Although the risk map generation 

for logistic regression is fairly straight forward, the same cannot be concluded for the machine 

learning models where the risk probabilities are more difficult to display in a cartographic GIS 

platform (Holcombe et al., 2007). 

 

While designing a species distribution model, the quality of the species and predictor variables 

can affect the model’s authenticity which results in a poor transferability. For instance, since 

tree insect data is usually collected in premeditated areas such as near urban centres, 

campgrounds, and known areas of tree decline, the sampled points does not represent the true 

range of the species due to sampling bias. Secondly, temporal and scale discrepancies among 

the predictor variables raises questions about the integrity of the model. Lastly, the presence 

of multicollinearity amongst the predictor variables interferes with the variable importance 

rankings of the models (Hegyi & Laczi, 2015). Whereas excluding predictor variables that exhibit 

high correlation coefficients and VIF values is a way to handle multicollinearity prior to 

modelling for regression techniques, dealing with multicollinearity or correlated variables in 

machine learning models such as Random Forest lacks a breakthrough (Gregorutti et al., 2017). 

 

With regards to the models used in this research, one of the most widely recognized statistical 

models used for species distribution purposes by ecologists is logistic regression, a type of 

generalized linear model (GLM), known for its ability to handle a binary distribution of species 

data such as presence and absence (Holcombe et al., 2007). Logistic regression is the most 

appropriate statistical model for this research because it takes a user-defined number of 

presence and absence species data, combines them with explanatory variables and derives an 

index of EAB risk in an study area ranging from 0 (low risk) to 1 (high risk). Aside from risk 

prediction, logistic regression also includes a variable importance ranking measure and 
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regression coefficients which provide information about the positive or negative effects a 

predictor variable has on the response variable. 

 

Aside from the conventional statistical models such as logistic regression, further 

advancements in analytical tools and software persuaded ecologists to explore alternate 

disciplines of species distribution such as machine learning, a type of algorithmic model that 

can be used to model a binary species distribution (Cushman & Huettmann, 2010). Given the 

complex nature of habitat selection for a species, the relationship between variables may be 

nonlinear or scale-dependent (Drew et al., 2011). For this reason, non-parametric machine 

learning approaches are attractive options that can overcome non-linear variable interactions 

and heterogeneity across spatial scales (Drew et al., 2011). Under the realm of machine 

learning, an algorithm known as Random Forest is gaining traction in the ecological community 

due to its brilliant predictive powers. Aside from its high prediction accuracy, Random Forest 

also includes variable importance measures (Archer & Kimes, 2008) unlike other machine 

learning methods such as k-nearest neighbours, support vector machines (SVM), and neural 

networks.  

 

The third model that will be explored in this research is a hybrid between logistic regression 

and Random Forest known as random generalized linear model (RGLM) which aggregates the 

results from a number of logistic regression models contained in “bags” using randomly 

sampled data. In essence, RGLM combines the highly accurate ensemble classifier Random 

Forest with the interpretability of a forward logistic regression model (Song et al., 2013). That 

said, aside from classification accuracies, RGLM provides mean regression coefficients across 

all bags to assess the positive and negative effects that the predictor variables have on the 

response variable. RGLM was initially used for detecting cancer in gene expression datasets by 

Song et al. (2013) and has not been used in species distribution modelling. Although the three 

models did not include a dynamic component, in this research, a spatio-temporal dimension 

was added to the models by generating a variable known as “distance to the nearest EAB 
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positive location from previous years”. Moreover, this variable represented the significance of 

previously EAB-detected locations on sampled points from a current year.  

 

Ultimately, the main research goals from this research is two-fold: address issues with data 

quality prior to modelling and devise a systematic framework to predict the dispersal of the 

EAB in Ontario. By addressing the problems associated with the species data and predictor 

variables, the transferability of the models can be increased and be effectively used as a 

template to predict EAB risk in a non-infested area.  In order to achieve the research goals, four 

specific research objectives were devised:   

 

1) Minimize high spatial autocorrelation present in the species data caused by sampling 

bias by applying a distance threshold to filter the data (Boria et al., 2014; Veloz, 2009) 

and produce spatially independent samples.   

 

2) Assess multicollinearity among the predictor variables and determine ways to address 

it in the modelling process. 

 

3) Investigate the performance of a statistical model (logistic regression) and two 

machine learning models (Random Forest and RGLM) on the predictive modelling of 

the EAB using various model performance indicators. 

 

4) Design an automated risk map creation tool for the machine learning models to 

visualize areas prone to EAB infestation. 

 

Furthermore, the layout of the thesis is as follows: following the introduction in Chapter 1, 

Chapter 2 discusses the origins of the EAB and its host species, detection methods, remediation 

strategies and a literature review on relevant research. Chapter 3 includes details about the 
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study area, the species and predictor data used in this research and their limitations. Chapter 

4 describes the methodology which includes details about data pre-processing and the species 

distribution models used. Chapter 5 includes the results and discussions on the findings. Lastly, 

Chapter 6 summarizes the main outcomes with regards to the research objectives and provides 

recommendations for future research. All in all, in the context of early detection of the EAB, the 

workflow devised from this research can be used to determine the relative EAB risk of a non-

infested county or region.   
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CHAPTER 2: BACKGROUND & LITERATURE REVIEW 

 

2.1 The EAB and Ash Species  

 

The Forest Service defines an invasive species as “a significant environmental and economic 

threat to the Nation’s forests and rangelands” (Dix et al., 2010). The term “invasive” can be 

described as a foreign species that is not native to an area and become the dominant predators 

by consuming natural resources and outcompeting native species. That is to say, the emerald 

ash borer (EAB) is an invasive and exotic pest which arrived in Southern Ontario by attaching 

onto untreated ash wood used for packing material in ships.  

 

The primary hosts of the EAB are ash trees belonging to the genus Fraxinus comprised of white 

ash (F. americana), green ash (F. pennsylvanica) and black ash (F. nigra) (McCullough and 

Katovich, 2004). Ash trees are an essential part of Southern Ontario’s native tree collection and 

make up a majority of woodlots, fence rows and trees surrounding water courses (“Emerald 

Ash Borer Management Plan update”, 2013). Ash trees are also a very popular choice in urban 

areas, both public and private due to their rapid growth and environmental adaptability. With 

regards to the economic impacts, green and white species are an important component of the 

hardwood forest industry as they are used to make cabinetry and sporting goods (Fairmaire & 

Parsons, 2008).  

 

Upon landing on an ash tree, the EAB lays eggs approximately 0.6 to 1 mm in size under bark 

crevices (Appleton et al., 2017). When the eggs become larvae, they hatch within a few weeks 

and feed on vascular tissue of the tree creating S-shaped galleries. A majority of the larvae 
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become pupae and remain in the tree’s pupal chambers. When they become adults, the EAB 

emerges from distinct D-shaped exit holes. 

 

2.2 Detection and Delimitation Efforts  

 

The unprecedented incursion of the EAB has sparked the interest of conservation authorities 

and many precautionary measures have been taken to slow down its spread. Two of the native 

forms of invasive species detection are detection and delimitation surveys (Marchant, 2012). A 

detection survey essentially gathers data about the presence or absence of a pest in an area. 

However, it is are not necessarily designed to acquire the number of insects in the given area. 

It is usually conducted by a regulatory agency such as the Canadian Food Inspection Agency 

(CFIA) and aims to find physical evidence of the EAB in a host tree or nearby trap. Areas that 

are more prone to be inhabited by the EAB via human activities are given more priority such as 

campgrounds, trailer parks, sawmills and firewood suppliers, tree nurseries, rest-stops along 

major highways, and industrial areas which receive off-shore shipments (Marchant, 2012). On 

the other hand, a delimitation survey is conducted to quantify the density of the EAB found in 

a sampled tree. Delimitation surveys inform samplers about the age and severity of an EAB 

infestation but are often more labour-intensive and expensive than detection surveys. 

Currently, several municipalities in Ontario are conducting detection surveys along with tree 

protection programs.  

 

Detection and delimitation surveys are conducted using four main methods: prism traps, visual 

examination, branch sampling and aerial and hyperspectral imaging. Prism traps have become 

a popular tool that is being incorporated into detection surveys by the CFIA. Prism traps are 

baited with a sticky green chemical known as Z-3-Hexenol to trap adult beetles and have proven 

to be quite effective in the early detection of the EAB (Marchant, 2012). As a reminder, prism 

traps used in detection surveys are not designed to quantitatively determine how many trees 

are infested, but rather whether trees at a particular location are infested. With this method in 

mind, there is a potential risk of false negative data for cases with low EAB population levels. 
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When the population of the EAB is significantly low and EAB adults are not detected, there is a 

chance of erroneously identifying a county as EAB-free when in fact it might be infested (Knight, 

et al., 2013; Pontius et al., 2008). On the other hand, false positive results might also be 

obtained if adult beetles are transported by wind or human vectors to a survey area.  

 

The second method to detect and delimit the EAB is via visual survey. Visual surveys examine 

trees at the ground or canopy level. They are less accurate but also less invasive than similar 

surveying methods such as branch sampling. A caveat with visual surveying is that because signs 

and symptoms of EAB infestation do not appear until five years after the initial attack, the 

presence of the EAB might go undetected using visual surveys. Visual surveys are also very 

selective as regulatory agencies often select trees to perform visual surveys that are deemed 

to be higher risk based on their proximity to lumber yards, campgrounds, parks, sawmills and 

firewood processing facilities (Marchant, 2012).  

 

The primary delimitation tool used in Canada is branch sampling and was recently developed 

by the Canadian Forest Service (CFS). It consists of sampling and the dissection of several 

branches of potentially infested ash trees delineated by their distances from the target facilities 

mentioned previously. Branch sampling is far more accurate than visual surveying because it is 

more effective at identifying infected ash trees at its initial stages with regards to signs and 

symptoms of the EAB. Although branch sampling is the most preferred method for early 

detection of the EAB, it is also costlier and more labour-intensive. However, to alleviate some 

of the costs and efforts associated with branch sampling, it can be integrated with other 

maintenance activities conducted by municipal forestry departments (Marchant, 2012).  

 

The last more broad-scale method for detection and delimitation of the EAB uses Hyperspectral 

Imaging (HSI) to detect early EAB infection from tree canopy. The use of remote sensing 

technology such as hyperspectral imagery has the potential to identify signs of EAB infection 

before they become visible to the human eye (Marchant, 2012; Pontius et al., 2008). 

Hyperspectral imagery consists of hundreds of narrow adjoining spectral bands which allow a 
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greater level of differentiation between objects of the same type (i.e., stressed vs. healthy tree) 

than multispectral imagery. In terms of tree physiology, stressed leaves of trees have reduced 

photosynthetic activity and chlorophyll content. As a result, subtle differences in chlorophyll 

content can be picked up by hyperspectral sensors in visible and near-infrared (NIR) bands 

(Pontius et al., 2008). Various wavelength indices can also be derived from hyperspectral 

imagery to optimize the detection of stressed ash trees.  

 

In Canada, Hyperspectral imagery was tested in Oakville in 2010 by the USDA-Forest Service on 

the identification of ash trees and level of infestation.  An accuracy of 80% in the identification 

of ash trees from other trees was achieved but an accuracy assessment on ash health was not 

performed because there were not enough spectral signatures from the field data (Hanou, 

2011). While previous EAB detection procedures focused primarily on one method, an 

integrated assessment of visualizing the dispersal of an invasive species can be performed 

through predictive species modelling by combining historic species data with relevant 

explanatory variables.  

  

2.3 Remediation Strategies  

 

Although the ideal way to diminish the EAB is through the aforementioned “early detection”, it 

is not as straight forward as trees only show symptoms years after the attack (Marchant, 2012; 

Pontius et al., 2008). After the infestation of the EAB has taken place, remediation strategies 

can be applied to ensure the EAB does not spread such as implementing an ash free zone, 

quarantine of infected areas and injection of pesticides (Marchant, 2012).  

 

An ash-free or a “firebreak” zone was implemented in the fall of 2003 by the CFIA west of the 

Chatham-Kent county in Southern Ontario. This approach included creating a barrier on the 

leading front of EAB spread by removing all ash trees in its path. This zone spanned 10 km and 

approximately 85, 000 ash trees were removed (Marchant, 2012). However, this method 

created a lot of controversy among residents and property rights activists and as a result was 
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discontinued by 2005. The second remediation method includes establishing quarantines 

around EAB infested areas and restricting the movement of firewood. In 2005 and 2006, the 

CFIA regulated areas where the EAB has been spotted and restricted the movement of ash trees 

and all firewood from these zones (Gaetz & Hildebrand, 2012; Marchant, 2012). Within 

quarantined zones, individual infested trees were further quarantined using a radial zone of 5 

kilometres. Quarantined specialists emphasized the effectiveness of quarantined zones in 

preventing new EAB outliers through human activities.  

 

A remediation approach that affects ash trees at the individual level is the injection of an 

insecticide known as TreeAzinTM (Azadirachtin) directly into the trees (“Emerald Ash Borer,” 

2012; Fairmaire & Parsons, 2008). TreeAzin’s main ingredient is an extract from the seeds of 

the Indian neem tree. TreeAzin was first introduced in Canada in 2012 and is injected into the 

base of ash trees every two years until it effectively kills the EAB larvae by interrupting larval 

shedding (Fairmaire & Parsons, 2008; Gaetz & Hildebrand, 2012).  

 

2.4 Species Distribution Models  

 

As previously mentioned, the main objective of this research is to develop a species distribution 

model for the EAB in order to highlight the areas that may be potentially at risk in the 

foreseeable future based on the species’ data from previous years. In order to develop the 

spread model, previous spread modelling methods on the EAB by several authors were 

explored. Existing EAB modelling papers by BenDor et al. (2006), Prasad et al. (2010) and Huset 

(2013) investigate natural and anthropogenic factors that influence the spread of the EAB using 

species distribution models. While BenDor et al. (2006), Prasad et al. (2010) used dynamic 

spatial models to establish the spread of the EAB, Huset (2013) used statistical and machine 

learning methods.  

 

BenDor et al. (2006) simulated the effects of firewood quarantine and an EAB eradication 

program on the spread of the EAB in DuPage County, IL, a county in the Chicago metropolitan 
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area not yet infested by the EAB at the time. In their research, BenDor et al. (2006) used a 

system dynamics model called STELLA and a Spatial Modeling Environment (SME) to test three 

different scenarios of EAB dispersal: the distribution of trees for different land uses, the 

establishment of firewood quarantine zones to limit anthropogenic influence and the 

implementation of an EAB eradication program. According to BenDor et al. (2006), 

incorporating a system dynamics model (STELLA) with a spatio-temporal model (SME) 

effectively captures the environmental heterogeneity presented across a study area. The SME 

used in BenDor et al. (2006)’s research incorporated the generic system dynamics model 

STELLA into a spatial array that is similar to cellular automata modelling. Within the SME, the 

features of the spatial data were used to create a matrix of independent spatially-specific 

system dynamics models.  

 

STELLA was developed by using two sub-models: the EAB population model and the ash tree 

population model. The sub-models were characterized by the parasitic relationship between 

the EAB larvae and live ash bark. The models simulated the act of the EAB larvae consuming 

the live ash trees thereby reducing the amount of available bark area and propagating the EAB 

to farther distances. The EAB model was characterized by the life cycle of the beetle and model 

parameters corresponded to each life stage. With the study area organized as a matrix, it was 

assumed that the decision for an EAB to migrate to a cell is dependent on the density of the 

EAB adults in the cell and the total area of tree bark in the cell. For the purposes of modelling, 

an upper bound on EAB adult density was approximated as 4 adults per square metre of ash 

bark area.  The total tree bark area was calculated by approximating the tree trunk as a cylinder 

and averaging different heights and diameters of various age cohorts of the ash trees.  

 

Next, the ash tree population model was created by visualizing the seeding and life span 

properties of ash trees. This was done by taking the average of the number of seeds produced 

by each tree in an average year. Within the STELLA model, it was assumed that the ash trees 

were planted by urban foresters and in order to stratify the levels of germination, a seed bank 

with a land-use dependent germination rate was simulated. Lastly, using an ash tree inventory 
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dataset and high-resolution land-use data, the ash tree density (number of ash trees per cell) 

was estimated for each land-use category. An algorithm was used to assign ash trees into 

different land-use classes in decreasing order of importance: uplands, floodplain forests, partial 

canopy/savanna and urban open space, low/medium density urban, and high-density urban.  

 

Following the implementation of the two sub-models into the SME framework, three different 

factors potentially affecting the spread of the EAB were simulated: the distribution of the ash 

trees and land-use, the ability of a county-wide firewood quarantine program to limit 

anthropogenic influence and the implementation of an EAB eradication program. BenDor et al. 

(2006)’s  findings show that implementing a firebreak zone (a buffer around known EAB 

infested locations) and limiting firewood movement from infested sites attenuated EAB larvae 

spread and adult population (BenDor et al., 2006). All in all, although BenDor et al. (2006)’s 

research provided some realistic simulations of primarily anthropogenic influences, two of the 

model inputs were based on theoretical estimations of EAB density and ash germination rates 

which cannot be approximated at alternate spatial scales. In addition, BenDor et al. (2006)’s 

research requires many detailed parameters such as an abstraction of the biological 

characteristics of the EAB and ash trees which requires extensive research for valid results. 

While being aware of the strictly theoretical nature of the research, BenDor et al. (2006) 

concludes that using scenario-driven models can build on empirical information on the EAB 

population and spread dynamics in order to identify knowledge gaps and provide a framework 

for field surveys.  

 

Furthermore, BenDor et al. (2006) simulated the potential spread of the EAB to a new area 

using various anthropogenic constraints while Prasad et al. (2010) used known EAB presence 

and absence points from 2003-2004, historic EAB maps and various relevant explanatory 

variables to simulate EAB spread in Ohio. In addition to obtaining known EAB presence points 

from Michigan’s conservation services, Prasad and co-authors also conducted their own field 

visits and surveyed infested ash trees. In the research, a spatially explicit cellular spread model 

called SHIFT was used to combine sub-models of the insect’s short-distance dispersal (insect 
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flight model (IFM)) with human-mediated long-distance dispersal mechanisms (insect ride 

model (IRM)) to create a hybrid spread model. In a spatially explicit cellular model, a transition 

state model is fitted to a real system where the transition from one step to the next depends 

on the empirical relationship between the target cell and its neighbours.  

 

While the only explanatory variable used by BenDor et al. (2006) was ash density, Prasad used 

Random Forest to identify the most important variables from variables such as ash density, 

human population density, traffic density, campground size and usage, and wood products 

industries. Using the variables previously mentioned, Prasad attempted to incorporate 

landscape heterogeneity in the SHIFT model. The first component of SHIFT, the insect flight 

model (IFM), calculates the probability of infestation of a future year based on EAB infestation 

of the previous year using an empirical spread rate of 20 km/year. In this research, the insect 

flight model was modified to a single predictor variable (distance to the nearest EAB positive 

location from previous years) in order to incorporate spatio-temporal aspects of EAB dispersal.  

 

The second component of SHIFT, the insect ride model (IRM) uses the same mechanism as the 

insect flight model but using a search radius of 400 km to accommodate long distance dispersal. 

Two variables of the insect ride model (roads and campgrounds) were incorporated using a 

gravity model which argues that the movement of a test subject being modelled is motivated 

by the attractiveness of its destination. For instance, the gravity model calculated the number 

of campers that travel between two locations which was used to estimate the potential risk of 

the destination. The distance between a location and a campground was calculated as the road 

network distance between the location’s zip code and the campground. Next, weights were 

assigned based on the density of people at a camp and its proximity to core zones. The variables 

population centres and wood product industries were categorized into classes according to 

population density and added to the SHIFT model.  

 

In theory, the SHIFT model calculates the probability of a cell becoming infested with the EAB 

based on its distance to a nearby EAB-infested cell. The infestation probability for each 
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unoccupied cell is a value from 0 to 1 and is characterized by their proximity to infested cells. 

SHIFT advances the EAB infested front based on its current location, the abundance of EAB 

behind the front, and the amount of ash trees ahead of the front.  

 

In conclusion, the SHIFT model was able to correctly identify 97% of the known outlier EAB 

positive points that fell in medium to high risk zones on the risk map generated. Aside from the 

high accuracy of Prasad et al., (2010)’s model, the execution of independent field work on ash 

trees served as an asset to the validation process. Ultimately, Prasad et al., (2010) concluded 

that the distance from current EAB centres was the most important variable, followed by the 

distance to roads, population density and the influence from quarantined counties (Prasad et 

al., 2010). Regardless of the methods used, the work of Prasad et al., (2010) served as a great 

insight into the potential anthropogenic factors that should be included in this research. In 

addition, Prasad tested the transferability of the model using verified EAB presence points from 

a previous year (i.e., 2005) which is coincidentally one of the objectives of this research.  

 

Pontius et al. (2008) shifted the focus from predictive spread modelling of the EAB to using 

purely remote sensing techniques to visualize the decline of ash trees. Pontius and co-authors 

used hyperspectral imagery collected in Michigan and Ohio to classify healthy and thinning ash 

canopies using various vegetation indices which examined chlorophyll and moisture content. 

Similar to Prasad et al. (2010), independent fieldwork was also employed in this research to 

collect ground-truth infested vs. non-infested ash trees with the assistance of a Trimble GPS 

unit. Unlike the research mentioned previously which incorporated primarily anthropogenic 

variables, Pontius performed stepwise linear regression on only biotic variables derived from 

vegetation bands such as a greenness index (GI), a water band ratio (WBI) and four chlorophyll-

related indices. The risk map created by Pontius achieved a very high accuracy of 97% in terms 

of separating the five categories of ash decline. Although the classification results achieved by 

Pontius were informative, the usage of hyperspectral imagery to examine ash health for the 

large scale of Ontario would be far too costly and impractical. As a result, the more readily 

available multispectral imagery was used. 
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The most recent study on EAB spread by Huset in 2013 used logistic regression and maximum 

entropy modelling (Maxent) to identify the factors most associated with the presence of the 

EAB in New York. Previously, Prasad et al. (2010) and BenDor et al. (2006) examined the spread 

of the EAB using only ash density and anthropogenic sources. On the other hand, Huset (2013) 

incorporated climactic variables along with anthropogenic and land-use data. The 17 variables 

used by Huset (2013) included distance to campgrounds, wood product industries, water, 

known EAB locations, wind power, human population, percent forested, percent developed, 

NDVI, elevation, slope, aspect, precipitation, and temperature. The logistic regression model 

used in Huset (2013)’s research essentially predicted the probability of the outcome of a 

dependent variable based on the values of various independent variables. Since logistic 

regression requires a binary dependent variable, pseudo-absence points were generated as 

Huset (2013) only had access to EAB presence points from 2009-2011. In contrast, since both 

EAB presence and true absence points in Ontario were obtained for this research, the usage of 

logistic regression seems plausible.  

 

On the other hand, the machine learning classifier Maxent requires presence-only species data. 

In theory, Maxent estimates the probability distribution of a target species by determining the 

probability distribution of maximum entropy that is the most uniform. In addition, a set of 

constraints is enforced in Maxent that represents incomplete information about the target 

distribution. For instance, if the sampled data exhibits sampling bias, the resulting predictions 

can be erroneous since the probability distribution is dependent on the observed presence data 

(Cushman & Huettmann, 2010). In such a case, the Maxent model explicitly assumes that the 

sample locations used in the model are compared to a sample of available locations across the 

study area. Within the Maxent model, the relationships between the response and the 

predictor variables can take on a variety of forms such as linear, quadratic, threshold and 

piecewise. In addition, the relationship between the response and predictor variables is 

assessed at different ranges or scales. For instance, a predictor variable could be modelled 

against the response variable using a linear function at its lowest range, using an interaction 

with another predictor in its middle range and using a threshold function in its upper range.  
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The outputs of the Maxent model include variable importance ranking and a validation scheme 

referred to as a “random test percentage” which uses a quarter of the dataset as testing data. 

The most visual output of Maxent is a risk map which represents the probability distribution of 

the species across the study area by finding the combination of predictor variables which 

maximizes the log-likelihood of the model. In order to prevent overfitting, the log-likelihood is 

penalized in Maxent by a regularization parameter which increases in accordance to the 

complexity of the model (Phillips & Dudík, 2008). Huset (2013)’s variable importance 

conclusions were consistent with Prasad et al. (2010)’s findings such that the distance to known 

locations of the EAB served as the most important variable (Huset, 2013). All in all, the 

incorporation of climactic variables with anthropogenic variables in Huset (2013)’s research 

was also implemented in this research along with some methodologies such as addressing 

multicollinearity of predictor variables, reducing positive autocorrelation of the sampled EAB 

points, determining the optimal ratio of EAB presence to absence points and creating the risk 

maps. That said, the descriptions of the three spread models used in this research are outlined 

below: 

 

2.4.1 Logistic Regression  

2.4.1.1 Model Description  

 

Logistic regression belongs to the family of generalized linear models and is one of the most 

widely used species distribution modelling methods due to its ability to predict the distribution 

of a dichotomous response variable based on a number of predictor variables (Peng et al., 

2002). Generalized linear models are comprised of a large category of regression models such 

as linear regression, logistic regression, multinomial regression and Poisson regression 

(McCullagh & Nelder, 1989). 

 

Logistic regression is more appropriate for this research over linear regression due of its ability 

to only model binary dependent variables, rather than continuous ones used in linear 
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regression. Another problematic aspect of linear regression models is that the residuals are 

assumed to be normally distributed with a constant variance, an assumption that cannot be 

made for all types of datasets. For example, if the response variable can only take on the value 

of 0 or a 1, the data cannot be normally distributed. In that case, logistic regression is used 

because it generalizes statistical assumptions by allowing other types of distributions. Logistic 

regression was implemented as a Microsoft Excel-add on statistical software known as XLSTAT 

(version 2017).  

 

To begin, the main category of binary response variable being analyzed in this research (EAB 

presence/absence), can be represented by the random variable 𝑌𝑖 with its realization of 𝑦𝑖. 

Since 𝑦𝑖 is a binary variable, it can take on two values: 𝑦𝑖 = 1 (presence), with probability 𝑝𝑖, 

or  𝑦𝑖 = 0 (absence) with probability  1 −  𝑝𝑖. Hypothetically, if 𝑦𝑖 is treated as a random 

variable 𝑌𝑖, it takes on a Bernoulli distribution according to (2.1).  

 

𝑃𝑟{𝑌𝑖 =  𝑦𝑖} =  𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)1− 𝑦𝑖        (2.1) 

 

If this Bernoulli distribution is repeated 𝑛 times, the joint distribution of 𝑌𝑖 follows a binomial 

distribution. Suppose that 𝑛𝑖  observations in group 𝑖 are independent and share the same 

probability 𝑝𝑖 and 𝑦𝑖 is the number of units associated with the attribute of interest in group 𝑖. 

Thus, the probability distribution function of 𝑌𝑖 can be given by (2.2).  

 

𝑃𝑟{𝑌𝑖 =  𝑦𝑖} = (
𝑛𝑖

𝑦𝑖
) 𝑝𝑖

𝑦𝑖(1 − 𝑝𝑖)𝑛𝑖− 𝑦𝑖   (2.2)     
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For 𝑦𝑖 = 0,1,2, … , 𝑛𝑖 where (
𝑛
𝑦𝑖

) =
𝑛!

𝑦𝑖!(𝑛−𝑦𝑖)!
 is called the binomial coefficient, 𝑝𝑖

𝑦𝑖(1 −

𝑝𝑖)1− 𝑝𝑖  is the probability of obtaining  𝑦𝑖 successes and  𝑛𝑖 − 𝑦𝑖 failures at the same time in a 

specified order. Although (2.2) addresses the response (or dependent) variable 

(presence/absence), it does not account for the explanatory (predictor or independent) 

variables. The next step is to introduce the explanatory variables by having the probability 𝑝𝑖 

associated with  𝑥𝑖  = (1  𝑥𝑖1   …  𝑥𝑖𝑚 )’, a (𝑚 + 1) dimensional vector of covariates and 

𝛽 = (𝛽𝑜  𝛽1 …  𝛽𝑚)′,  a (𝑚 + 1) dimensional vector of regression coefficients. 

 

The linear probability model derived from the dimensional vector of covariates and regression 

coefficients can be condensed as  𝑝𝑖 = 𝑥𝑖
′𝛽 =  𝛽𝑜 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + … + 𝛽𝑚𝑥𝑖𝑚. To 

emphasize, the goal of a logistic regression model is to identify the best fitting model between 

the dependent and independent variables by generating the coefficients, standard errors and 

significance levels in order to predict a logit transformation of the probability of presence of 

the characteristic of interest. The logit link function in (2.3) models the log odds of the 

probability of the presence of the dependent variable as a function of the given independent 

variables. The logistic regression model focuses on choosing and estimating parameters that 

maximize the likelihood of the observed samples, rather than the ones that minimize the sum 

of squared errors in ordinary least squares regression.  

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) =  𝑥𝑖
′𝛽 =  𝛽𝑜 +  𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑚𝑥𝑖𝑚    (2.3)  

 

In consideration of its advantages, a major caveat with (2.3) is that the linear predictor 𝑥𝑖
′𝛽 can 

represent any real value but the probabilities for each value are to be between 0 and 1 for the 

purposes of this research. In order to limit the predicted values to the correct range, complex 

restrictions need to be imposed. A way to circumvent this issue is to transform the probability 

𝑝𝑖 to eliminate the range restrictions and model the transformation as a linear function of the 
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covariates. This is achieved by a two-step procedure. First, the probability 𝑝𝑖 is converted to 

the odds as the ratio of the probability to its complement. Although the odds ratio and 

probability are similar, the odds ratio is preferred over the probability because it can take on 

any positive value and has no ceiling restriction (Rodriguez, 2007). Next, the logarithm is taken 

to the logit or log-odds of the odds ratio as in (2.4) to remove the floor restriction and map 

probabilities within 0 and 1.  

 

𝑛𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑜𝑔
𝑝𝑖

1− 𝑝𝑖
          (2.4) 

 

Furthermore, ceiling and floor effects are measurement errors preventing the distinction of 

values at the upper and lower regions of a scale where negatively skewed values experience 

ceiling effects and positively skewed values experience floor effects (Koedel & Betts, 2010; Yu, 

2000). The next transformation involves incorporating the explanatory variables in the link logit 

function in (2.3), which needs to be set equal to (2.4) as the right sides of both equations are 

equal to the probability, 𝑝𝑖 . Exponentiating the resulting equation defines a multiplicative 

model (2.5) for the odds for the i-th unit.   

 

𝑝𝑖

1− 𝑝𝑖
= exp {𝑥𝑖

′𝛽}        (2.5) 

 

Finally, solving for the probability 𝑝𝑖 to link the logit model in (2.3) results in (2.6) for logistic 

regression.  

 

𝑝𝑖 =
exp {𝑥𝑖

′𝛽}

1+exp {𝑥𝑖
′𝛽}

=
exp(𝑏0+𝑏1𝑥𝑖1+𝑏2𝑥𝑖2+⋯+ 𝑏𝑚𝑥𝑖𝑚)

1+ exp(𝑏0+𝑏1𝑥𝑖1+𝑏2𝑥𝑖2+⋯+ 𝑏𝑚𝑥𝑖𝑚)
                  (2.6)  

 

The predicted values of the logit are converted back into the predicted odds using the logistic 

regression function. For linear models, the 𝛽 parameters can be directly estimated using the 

maximum likelihood function whereas for logistic regression, an exact analytical solution does 
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not exist (“XLSTAT,” 2017). As a result, an iterative algorithm such as the Newton-Raphson 

algorithm is required to approximate a solution. In the context of EAB modelling,  𝑝𝑖 is given as 

the probability of EAB presence on a scale of 0 to 1 based on the values of explanatory variables 

𝑥𝑖
′for a given area.  

 

2.4.1.2 Model Selection Methods and Variable Importance Measures 

 

There are various variable selection methods available for logistic regression such as forward, 

backward, forward (step-wise) or backward (step-wise). The standard forward selection 

procedure starts with an intercept only model and adds the first predictor that makes the 

largest contribution to the model based on its Wald or likelihood ratio statistic. Next, the 

remaining variables are sequentially added to the model if their associated p-values is less than 

the specified entry p-value. Once a variable enters the model, it is never removed. This process 

continues until none of the variables meet the specified significance level for entry in the model 

(Bursac et al., 2008). Conversely, the backward elimination starts with a full model containing 

all the variables and at each step, the likelihood ratio or the Wald statistic is examined for each 

variable. If a variable exceeds the removal significance threshold, it is removed. The process is 

repeated until all the variables that fail to meet the specified removal threshold are removed.  

 

The dilemma with forward and backward variable selection methods is that they do not 

consider the contributions of other variables to the model while adding or eliminating a 

variable. As a result, the step-wise variable selection overcomes the risk of adding an 

insignificant variable or eliminating a significant variable by reaffirming the importance of 

previously added variables at each step. In the forward step-wise variable selection, the model 

initially includes only the intercept and the remaining variables are added in a step-wise fashion 

according to the guidelines followed by the standard forward variable selection procedure. 

However the main difference with the standard forward variable selection procedure and 

forward stepwise variable selection is that after the addition of a variable using forward 

stepwise variable selection, backward variable selection is performed subsequently and the 
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predictor variable with the smallest value of the removal significance threshold is removed 

(Wang, Zhang, & Bakhai, 2004).  

 

On the other hand, backward step-wise variable selection starts with a full model containing all 

the variables and standard forward and backward variable selection procedures are performed 

at each step until the procedure stops and no variable can be added nor removed. Although 

the step-wise strategy is very popular, it still has its limitations. The apparent issue with the 

stepwise process is that during the initial selection of variables at the bi-variant level (i.e., a 

comparison of an independent variable with the response variable), only partial information 

about the relationship between the independent variables and the dependent variable can be 

utilized (Akinwande et al., 2015). As a result, when a predictor variable appears uncorrelated 

to the dependent variable and is consequently eliminated, the eliminated variable may actually 

significantly improve the model’s performance (Akinwande et al., 2015; Courville & Thompson, 

2015). Moreover, the stepwise elimination of uncorrelated variables using stepwise cause an 

underestimation of some of the parameters and compromises the predictive power of the 

model (Lutz, 1983; Harrell, F. E., 2015). 

 

Prior to discussing the variable importance measures in logistic regression, it is important to 

discuss a challenge posed by the training dataset which interferes with the significance rankings 

of the predictor variables. Complete separation of the training dataset by a logistic regression 

model occurs when a predictor variable has the ability to separate the two classes of the 

response variable completely. In such a case, the maximum likelihood estimate for the 

predictor variable does not exist as it approaches infinity and the resulting estimated regression 

coefficient is not reliable. For quasi-separation, the predictor variable has the ability to separate 

the response variable to a high degree but the maximum likelihood estimate is not infinite. In 

the case of complete or quasi-separation, XLSTAT recommends using the “Firth’s method” 

(Firth, 1993) which is a penalized likelihood approach that produces finite estimates of 

regression parameters when maximum likelihood estimates are infinite (Williams & Dame, 

2018). Using the Firth’s method, a corrective procedure is applied to the maximum likelihood 
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estimate in order to reduce bias before the variable’s coefficient is calculated. As for variable 

importance measures, XLSTAT uses the likelihood ratio as the criterion to test the statistical 

significance of each independent variable in the model.  The likelihood ratio test involves 

comparing a full model to an alternate model with the exclusion or inclusion of a particular 

variable thereby making it analogous to the F-test in linear regression. If the difference between 

the full and alternate model is statistically significant, then the full model fits the data 

significantly better than the reduced model. The likelihood ratio is calculated by (2.7): 

 

𝐿𝑅 =  −2(𝑙(𝐵̂0) −  𝑙(𝐵̂))     (2.7) 

 

where 𝑙(𝐵̂) represents the log likelihood of the full model and 𝑙(𝐵̂0) represents the log 

likelihood of the reduced model evaluated at the maximum likelihood estimates specified by 

the null hypothesis (“The Pennsylvania State University”, 2018). The test statistic for the 

likelihood ratio test follows a Chi-squared distribution with 𝑝 –  𝑟 degrees of freedom where 𝑝 

represents the total number of variables in the full model and 𝑟 represents the number of 

variables in the reduced model. If the p-value associated with the test statistic is lower than the 

specified significance level, then the change due to the excluded variable in the reduced model 

is not significant. 

 

The second variable importance test is known as the Wald test which approximates the 

likelihood ratio test except that it only requires estimating one model and examines individual 

regression coefficients. Much like the likelihood ratio test, the Wald test also follows a Chi-

squared distribution with the degrees of freedom of 1 to indicate each individual regression 

coefficient. To that end, the Wald test is similar to the t-test in linear regression. The Wald test 

statistic is calculated using (2.8): 

 

𝑍2  =  (
𝛽̂𝑖

𝑠𝑒(𝛽̂𝑖)
) 2       (2.8) 

 



24 
 

where 𝛽̂𝑖 represents the regression coefficient and 𝑠𝑒 represents the standard error of the 

coefficient. All in all, the Wald test tests that the explanatory variables chosen by a variable 

selection procedure in the model are simultaneously equal to 0. The hypothesis  

for the Wald test are stated below:  

 

𝐻𝑜: The regression coefficient of the variable 𝛽𝑖 is equal to 0 

𝐻𝑎: The regression coefficient of the variable 𝛽𝑖 is not equal to 0 

 

Aside from the p-values indicating the significance of each variable, logistic regression includes 

coefficients indicating the degree of the effect the predictor variables have on the response 

variable. There are two kinds of coefficients provided by logistic regression: unstandardized and 

standardized. Unstandardized coefficients provide the change in the response variable for 1 

unit increase in the log odds of the predictor variable whereas the standardized coefficients 

provide the change in the response variable given one standard deviation increase in the log 

odds of the response variable.  

 

2.4.2 Random Forest 

2.4.2.1 Model Description  

 

Random Forest (Breiman, 2001) is an ensemble machine learning method that is gaining 

popularity in the ecological community due to its strong predictive power (Cushman & 

Huettmann, 2010). The usage of multiple decision trees to build a forest of predictions (i.e., an 

ensemble learning method) gives Random Forest its distinct name. In theory, Random Forest is 

a classification and regression trees (CART) based method that uses bagging, or bootstrap 

aggregation to independently construct a bootstrapped sample of the dataset for each decision 

tree followed by an aggregation of the predictions at the bottom of each tree. On its own, CART 

is sensitive to outliers in the training sample and is therefore unstable whereas Random Forest 

stabilizes any variations in the samples by acquiring bootstrapped samples from the original 

dataset (Breiman, 1996). Instability in a model can reduce the overall accuracy and discrepancies 
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in variable importance. In essence, bootstrapping is defined as creating multiple versions of the 

original dataset by taking random subsets of samples from the training dataset with 

replacement of the samples (Song et al., 2013). The random subsets account for roughly 2/3 of 

the training data for each tree. The remaining 1/3 of the training data is referred to as out-of-

bag (OOB) and is used to calculate the misclassification error of each tree (Bento et al., 2013; 

Breiman, 2001) for cross-validation purposes. Lastly, much like CART, Random Forest can be 

used for both regression and classification tasks to predict a phenomenon based on a training 

dataset (Louppe, 2014).  

 

In Random Forest, the replacement of the observations in the dataset is a key component in 

building a bootstrapped sample because it mimics the statistical properties of the original data 

by allowing repetitions. For the classification mode in Random Forest, a majority vote is taken 

at the bottom of each tree across all terminal nodes for the prediction of the outcome (Bento 

et al., 2013). Unlike standard decision trees, where each node is split using the best split among 

all variables, Random Forest splits each node using the best predictor among a sub-set of 

predictors randomly chosen at that node. This random selection prevents overfitting by 

minimizing the correlation between the trees thereby outperforming other classifiers such as 

discriminant analysis, support vector machines, and neural networks (Archer & Kimes, 2008; 

Breiman, 2001). The same algorithm is used for classification and regression within Random 

Forest. Classification is used for a categorical response variable whereas regression is used for a 

continuous response variable. Random Forest was implemented in R, version 3.4.0 (R 

Development Core Team, 2011) as the randomForest package. The Random Forest algorithm is 

explained by the following steps in detail: 

 

Step 1: Collect a number of randomly selected bootstrap samples from the original dataset 

specified by the parameter “ntree”. The usage of randomly selected subsets of the 

dataset prevents the need for increasing the sample size and is particularly useful for 

smaller datasets.   
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Step 2: For each bootstrap sample, a classification tree is grown un-pruned which contains all 

sections of the tree. At each node of the tree, a user-specified number of predictors is 

used to choose the best split and this process continues until the bottom of the tree is 

reached.  

 

Step 3: New data such as a testing or prediction dataset is predicted by aggregating the 

predictions of the original bootstrapped samples (i.e., the majority votes for 

classification).  

 

Step 4:  At each bootstrap iteration, the out-of-bag (OOB) data is predicted using the tree grown 

with the bootstrapped samples and the error rate is computed for each tree.  

 

2.4.2.2 Variable Importance Measures of Random Forest 

 

Useful outputs from the Random Forest model include the OOB misclassification rate, variable 

importance rankings, and a confusion matrix for the testing or prediction samples. The number 

of trees to be constructed for each bootstrapped sample is arbitrary and depends on the user. 

The importance of a variable in Random Forest is usually measured in two ways: the mean 

decrease in impurity importance (MDI) and the mean decrease in accuracy (MDA) (Hur, et al., 

2017; Louppe et al., 2013). 

 

The mean decrease in impurity importance (MDI) was used in this research. To begin, the 

impurity index is used to decide where to make the split in a tree and the variable(s) that are 

used to make the split. The mean decrease in impurity importance (MDI) for a variable is 

calculated by adding up the weighted impurity decreases for all nodes where the variable makes 

a split and is divided by the number of trees in the forest. As a result, the sum of the impurity 

reductions in all the trees is calculated as the importance of the variable (Hur et al., 2017) in 

(2.9): 
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(2.9)  

 

 

where  𝑋𝑚 is the variable in question, 𝑝(𝑡)∆𝑖(𝑠𝑡, 𝑡) refers to the portion of weighted impurity 

decreases for all nodes (𝑡) and splits (𝑠𝑡) where 𝑋𝑚 is used and averaged over all trees (𝑁𝑇) 

(Louppe et al., 2013). In Random Forest, the index for impurity reduction (MDI) is known as the 

Gini coefficient. On the other hand, MDA is based on a permutation test which measures the 

accuracy decreases across all OOB predictions when the variable in question is permuted while 

all other variables are left unchanged (Bento et al., 2013).  

 

2.4.3 Random Generalized Linear Model (RGLM)  

2.4.3.1 Model Description  

 

Logistic regression models that use the forward stepwise variable selection method are useful 

because their results are easy to interpret. However, the disadvantage is the prediction 

accuracy is compromised because it may lead to an overfitting and result in unstable predictors 

(Song et al., 2013). On the other hand, Random Forest has superior prediction abilities but is 

difficult to interpret (Cushman & Huettmann, 2010). As a result, a hybrid of a generalized linear 

model (GLM) and Random Forest known as RGLM (Song et al., 2013) is explored in this section 

which takes advantage of the excellent prediction capabilities of Random Forest and the 

palatability of a forward selection generalized linear model. Under these circumstances, RGLM 

can be used to predict binary, continuous and count outcomes. 

 

In order to improve the prediction capabilities of a logistic regression model, the concept of 

generating various subsets of the training dataset and aggregating the predictions is a plausible 

method. Interestingly, the idea of a bagged generalized linear model(GLM) has been proposed 

by Breiman (1996) but RGLM extends the proposition even further by incorporating an element 

of randomness through randomly selecting a specified number of variables in each bag. In fact, 

𝐼𝑚𝑝(𝑋𝑚) =
1

𝑁𝑇
∑ ∑ 𝑝(𝑡)∆𝑖(𝑠𝑡 , 𝑡)

𝑡∈𝑇:𝑣(𝑠𝑡)=𝑋𝑚 𝑇
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Song et al. (2013) compared the RGLM with other prediction models and found that it achieved 

the highest mean accuracy amongst gene expression datasets.  

 

In brief, much like Random Forest, RGLM is an ensemble predictor based on non-parametric 

bootstrap aggregation (bagging) of several logistic regression models (i.e., bags) where the key 

features (explanatory variables) are selected using forward variable selection according to the 

AIC criterion. RGLM arrives at the final prediction of the outcome (i.e., binary response variable) 

by aggregating the predictions using the selected explanatory variables across all the bags. 

Similar to Random Forest, the number of variables selected for forward regression for each bag 

is user-specified. In conclusion, the randomness incorporated in RGLM stems from creating 

several bootstrap samples of the training dataset like bagged GLMs and by selecting a random 

subset of explanatory variables for each bootstrap sample.  

 

RGLM was implemented as the randomGLM package in R, version 3.4.0 (Development Core 

Team, R., 2011) and realized through 5 major steps as follows: 

 

Step 1: Create a number of bootstrapped samples specified by the parameter “nBags” and for 

each bag, a number of samples equal to the number of samples of the original dataset 

is generated with replacement. In the case that a bag contains less than the number of 

samples indicated by the “minInBagObs” parameter, it is discarded and resampled. 

 

Step 2: The parameter “nFeaturesInBag” specifies the number of predictor variables to 

randomly select for each bag. This parameter is usually included if the number of 

predictor variables is quite large and a reduction of the number of variables is required. 

The variables are ranked according to their individual association with the response 

variable tested using the Wald or likelihood ratio test in each bag using a univariate GLM 

model.  
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Step 3: The cut-off for the number of highest ranked variables in each bag (i.e., the variables 

with the most significant univariate significance levels) indicated by the parameter 

“nCandidateCovariates” are chosen by forward selection based on the “stepAIC R 

function in the MASS R library” (Song et al., 2013, p. 3) to build a multivariate 

generalized linear model. 

 

Step 4: The predictions from the multivariate generalized linear model are aggregated across 

all bags to provide a final ensemble prediction. Similar to Random Forest, if the 

classification mode is used, a majority vote known as the adjusted Majority Vote (aMV) 

strategy is used to average the predicted probabilities across all bags (Prinzie & Van den 

Poel, 2008; Song et al., 2013). Lastly, a binary prediction is obtained using the predicted 

probabilities by choosing a threshold of 0.05. 

 

2.4.3.2 Variable Importance Measures of RGLM 

 

RGLM has three main variable importance measures. The first measure, and the most intuitive, 

is the number of times that a variable is selected by forward regression across all bags. A more 

specific measure is the number of times that a variable is selected as the candidate covariate 

for forward regression. The third measure is the sum of the absolute regression coefficient 

values for each variable. Among the three variable importance measures, Song et al. (2013) 

recommended to use  the number of times that a variable is selected through forward 

regression as it provides a direct association with the outcome variable. 
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CHAPTER 3: STUDY AREA AND DATA 

 

This chapter consists of descriptions of the study area, the species data and the predictor 

datasets used in the distribution models. The species and predictor data required extensive 

processing in order to improve their quality and maintain consistency with the spatial and 

temporal scales of the datasets. Lastly, the average values for the predictor variables for the 

EAB presence and absence points were examined for preliminary insights into the significant 

variables.  

 

3.1 Study Area 

 

The study area in this study is Southern Ontario, Canada (43° 10' 26.40" N, -81° 18' 57.60" W), 

approximately 136, 907 km2 in size and represents the extent of the EAB dataset provided by 

the CFIA as shown in Figure 3. 

 
Figure 3. Study area of Southern Ontario, Canada displayed in a red outline 
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3.2 Data: Response and Predictor Variables  

 

The two main types of variables required for this research are locational data of the EAB  

(presence/absence) and various environmental abiotic, biotic and anthropogenic variables. In 

this research, the EAB data is referred to as the response/dependent variable and the 

environmental and anthropogenic variables take on various interchangeable terms such as 

explanatory, predictor, and independent variables. Mac Nally (2000) argued that the variable 

selection process and subsequently, statistical inferences of a distribution model could be 

substantially improved if it builds on existing knowledge and theory. As a result, the explanatory 

variables were selected based on an a priori influence on the spread of the EAB. The datasets 

are listed in Table 3 followed by their descriptions of the response and explanatory variables.   
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Table 3. Descriptions of the data layers acquired for data collection   

 

Dataset Title Source Format Features Extracted Resolution Date 
Revised/Coverage 

1. Emerald Ash Borer 
data  

Canadian Food 
Inspection 
Agency (CFIA) 

Excel file 
containing 
geographic 
coordinates 

Presence/absence 
EAB points from 
Ontario 2006-2013 

- 2014 

2a. Landsat 5 TM scenes  USGS Earth 
Explorer  

Raster (TIF)  NDVI 30 m  Acquired from 2006-
2012 (May-August)  

2b. Landsat 7 ETM+ 
scenes  

USGS Earth 
Explorer 

Raster (TIF) NDVI 30 m Acquired from 2013 
(May-August) 

3. 3. Population 
Centres 

Statistics 
Canada  

Vector 
(points) 

Medium and large 
population classes  

-  2011 

4. Accommodations Point DMTI Spatial 
Inc.   

Vector 
(points) 

Campgrounds -  January 09, 2015 

5. Forest Processing 
Facilities 

Ontario 
Ministry of 
Natural 
Resources via 
Geoportal  

Vector 
(points) 

-  -  February 15, 2008 

6. Ontario Sea Ports SeaRates - 
Retrieved from 
https://www.s
earates.com/m
aritime/canada
.html  

Longitude/ 
Latitude 
coordinates 

-  -  2017 

7. Ontario Road Network 
(ORN) 

Land 
Information 
Ontario (LIO) 

Vector 
(lines) 

Freeways -  February 01, 2010 

8. Provincial DEM (South) 
Version 3.0 

Ministry of 
Natural 
Resources via 
Geoportal 

Raster Elevation, slope and 
Aspect  

30 m February 2014 

9. Ontario Wind 
Resources Information  

Ontario 
Ministry of 
Natural 
Resources  

NAD83  Southern Ontario  Vector 
(points) 
separated by 
1 km 

Monthly (June) speed 
data covered during 
20 years at 30 m 
height  

10. WorldClim Version 2 WorldClim – 
Global Climate 
Data  

Raster (TIF) Precipitation and 
solar radiation in 
June  

1 km Covered during 1970-
2000 

11. MODIS/Terra Land 
Surface 
Temperature/Emissivity  

Land Processes 
Distributed 
Active Archive 
Center (LP 
DAAC) 
 

Raster (TIF) Land surface 
temperature (LST) 
daytime products 

1 km 8-day composite 
products from March 
2000-present  
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Dataset 1: Emerald Ash Borer Data  

 

The CFIA provided sampled points of EAB presence and absence data from 2002 to 2013 in 

Ontario. In terms of sampling, the types of sampling activity conducted by the CFIA includes 

green prism traps and visual surveys. All baited traps were installed on June 1st and taken down 

on August 31st (Appleton et al., 2017). Visual surveys were conducted during late August which 

marks the period of time when signs and symptoms of the EAB is most prominent. The visual 

surveys were conducted in premeditated areas where the EAB could potentially have been 

introduced through human activities. These areas include: areas with ash decline, urban 

centres, provincial parks, campgrounds, rest stops along major transportation corridors, ash 

nursery stocks, and other areas identified by the public (Appleton et al., 2017).  

 

For green prism traps’ placement and density, a set of guidelines were followed by the CFIA. 

First of all, traps were deployed in urban centres using a triangular grid system. Traps were only 

placed in trees that were located along a forest edge, in an open area or open stand of trees. 

One trap was placed per chosen site and situated as high as possible within the canopy. In terms 

of orientation of the traps, they were placed on the south or southwest side of the tree in the 

middle of a branch. It should be noted that the GPS coordinates of the trees were truncated 

(i.e., rounded to three decimal places) for privacy and confidentiality reasons.  

 

With regards to the general shift of survey locations from a year to the next, each time a county 

had confirmed EAB sightings, it was declared regulated and sampling did not occur in the 

upcoming year within the same county. The presence and absence data collected by the CFIA 

from 2002-2013 are displayed in Figures 3.1 and 3.2 and the counts of the points from are 

provided in Table 3.1.  
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Figure 3.1. Study area of Southern Ontario overlain by EAB presence points collected from 

2002-2013. The counties highlighted in yellow were regulated as of 2013 
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Figure 3.2 Study area of Southern Ontario overlain by EAB absence points collected from 2002-

2013. The counties highlighted in yellow were regulated as of 2013 
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Table 3.1. Number of sampled EAB presence and absence points from their respective years in 

Southern Ontario. Note* only the rows outlined in bold were used as inputs into the models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the Figures 3.1 and 3.2, it should be noted that the counties highlighted in yellow were 

regulated by the CFIA as of 2013. Since the new EAB sightings were observed in 2013 in 

unregulated areas, the CFIA has declared the entire Southern Ontario regulated as of April 1, 

2014 as shown in Figure 3.3.  

Year Number of EAB 
presence points 

Number of EAB 
absence points 

2002 36 440 

2003 356 3912 

2004 163 6573 

2005 146 7952 

2006 59 6706 

2007 69 1417 

2008 124 1189 

2009 17 907 

2010 11 986 

2011 1 521 

2012 6 981 

2013 22 1253 
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Figure 3.3. EAB-regulated counties in Ontario and Quebec since April 2014. Source: (Canadian Food 
Inspection Agency, 2014) 

 

 

As evident in Figure 3.3, all the counties in Southern Ontario became regulated since 2014 and 

the EAB data acquired prior to 2014 is the only insight into the historical trends of the EAB since 

its introduction and further substantiates the importance of this research. The confirmed EAB 

points from 2002-2005 during its introduction were omitted from the model because they 

represented EAB infestation from the initial point of outbreak during which EAB appeared in 

dense clusters. An inclusion of these points in the model would provide inaccurate results 

because upon introduction into Canada, the EAB appeared to be in a state of frenzy and 

occupied as many ash trees in sight. This phenomenon defeats one of the main objectives of 

this research – to identify the areas the EAB prefer to inhabit without the influence of an 

introduction hotspot.  
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Datasets 2a and 2b: Landsat 5 TM and Landsat 7 ETM+ scenes 

 

A total of eight Landsat 5 “Collection 1 Higher-Level” scenes were downloaded from the USGS 

Earth Explorer website from May-August pertaining to the years of EAB coverage over Southern 

Ontario from 2006-2012. The months May to August were chosen because they coincide with 

the months when the EAB traps were deployed and collected and coincidently, it is also the 

growing season for ash trees in a given year (Royo & Knight, 2012). The range of four months 

allowed for the collection of an adequate number of scenes that covered the entire extent of 

EAB coverage in Ontario from 2006-2012 which would not be possible if the collection of scenes 

were from one particular month (i.e., the month of June). Having said that, the scenes were 

collected according to the extent of the EAB coverage for each consecutive sampling year (i.e., 

2006-2012).  

 

The images were chosen to exclude as much cloud cover as possible and were already 

atmospherically corrected, avoiding the burden of post-production processing. As a result, the 

output products provided atmospherically corrected surface reflectance bands. The USGS 

mainly produced higher-level Landsat data products to facilitate land surface change studies. 

Surface reflectance data products simulate information that would be received if the sensor 

was just above the earth’s surface without the inclusion of any artifacts which often decrease 

consistency. Aside from the Landsat 5 scenes, sets of eleven scenes from Landsat 7 were 

downloaded for the year of 2013 to be used as prediction.   

 

Although the images were atmospherically corrected, there were two problematic pixel types: 

fill and saturate. The fill pixels indicated an absence of data and the saturate pixels indicated 

high brightness observed from clouds, white sandy deserts, and other bright surfaces. As a 

result, these pixel types were converted to “No Data” and interpolated using a 12 by 12 

rectangle to calculate the average value of the cells in the neighbourhood. Lastly, the scale 

factor “0.0001” was applied to all bands (“Landsat 4-7 Surface Reflectance (LEDAPS) Product 

Guide,” 2018).  
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Furthermore, the modified Landsat images were used to compute a normalized difference 

vegetation index (NDVI) layer to analyze the health of the trees that the EAB invade. The red 

band (Band 3) and near infrared band (NIR) (Band 4) from the Landsat images were used in the 

NDVI equation: reflectance in NIR band – reflectance in red band / reflectance in NIR band + 

reflectance in red band. The NDVI is a commonly used vegetation index designed to study the 

health of vegetation using the red band in which chlorophyll in plants absorbs radiation and the 

NIR band in which chlorophyll reflects vegetation. The NDVI ranges from -1 to 1 where values 

closer to 1 indicate greener, more healthy vegetation.  

 

Dataset 3: Population Centres   

 

The population centres polygon layer was used as a proxy for urban land cover in that it 

generalizes the density of humans within a given area. It contains the boundaries of all 

population centres defined for the 2011 Ontario census. By definition, a population centre has 

a minimum of 1000 people and a population density of 400 people per square kilometer 

(Statistics Canada, 2011). The population centre size class groups include small, medium and 

large urban population centres. For the purposes of this research, only the medium population 

centres (30,000-99,999 population) and large population centres (>100,000 population) were 

chosen because due to their size, they have a potentially greater influence over smaller urban 

centres. 

 

Dataset 4: Accommodations Points (Campgrounds)  

 

A major potential anthropogenic influence on the spread of the EAB is the distance to 

campgrounds. Campgrounds were extracted from the accommodation points layer which 

included locations of all housing facilities such as hotels, motels, campgrounds, inns, hostels 

and resorts in Ontario to assess their impact. The summer peak season for camping coincides 

with the peak time of EAB maturation from May and thus can be considered a vector of 
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anthropogenic spread (BenDor et al., 2006). In addition, campgrounds were used as a predictor 

variable in the research of Prasad et al. (2010) for estimating EAB abundance in Ohio.   

 

Dataset 5: Forest Processing Facilities  

 

Much like the campgrounds layer, the forest processing facilities is another anthropogenic 

pathway by which the EAB can spread. All types of forest processing facilities 

(pulp/paper/paperboard, sawmill, veneer and composite/panel) were included because they 

are in direct contact with raw wood material (i.e., logs). To emphasize, Prasad et al. (2010) had 

selected wood product industries as one of the variables to be included in their insect ride 

model (IRM). 

 

Dataset 6: Ontario Sea Ports  

 

Since the initial outbreak of the EAB occurred due to importing infected ash wood via ships into 

North America, it is highly likely that this same transport mechanism could be used to spread 

the EAB across counties close to large water bodies. The wood contained in these ships are 

used for stabilizing cargo and packing heavy consumer products. SeaRates 

(www.searates.com/maritime/canada.html) is an online shipping company that arranges cargo 

delivery in shiploads in Canada. Geographic coordinates of the ship docking stations from 

SeaRates in Southern Ontario were collected and converted into a points shapefile. 

 

Dataset 7: Ontario Road Network (ORN) 

 

The Ontario road network (ORN) contains all types of roads in Ontario with the positional 

accuracy of 10 metres or greater (“User Guide for ORN Segment with Address,” 2016). The road 

classes include alleyway, arterial, collector, expressway/highway, freeway, local/strata, 

local/street, and local/unknown. To clarify, Ontario roads was included as an anthropogenic 

variable to analyze long-distance dispersal of the EAB. Roads act as a long-distance vector for 
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the EAB due to insect-hitchhiking and firewood transported in trucks. Since roads with a higher 

volume of traffic alludes to a greater EAB risk, only the expressways/highways were included 

as they carry more than 40,000 vehicles per day. A buffer of 1 kilometer was applied to the 

highways to account for the “increased probability of insects attached to windshields, radiators, 

or the vehicle itself” (Prasad et al., 2010, p. 359).  

 

Dataset 8: Provincial Digital Elevation Model (DEM) (South) Version 3.0 

 

The provincial DEM was used as an explanatory factor in addition to the slope and aspect. The 

DEM surface represents true ground elevations in Southern Ontario and was generated using 

Ontario Radar DSM, OBM, DTM points and 2002 GTA Ortho contours (“Provincial Digital 

Elevation Model Technical Specifications, v3.0,” 2013). Notably, the elevation, slope and aspect 

serve as indirect environmental gradients which rarely affect the distribution of species but are 

included due to their correlation with more relevant predictors such as temperature, 

precipitation and solar radiation (Elith & Leathwick, 2009). In the case of the ash trees, the slope 

was used as a proxy for the species type and stress level of the ash trees that are found on the 

terrain. Research performed by Royo and Knight (2012) suggest that areas with steeper slopes 

(> 45 degrees) and a history of defoliation which indicates stripping of leaves contain stressed 

ash trees (Royo & Knight, 2012).  Distinctly, the EAB is known to invade healthy ash trees but 

stressed ash trees are even more susceptible to invasion due to an increase in vulnerability 

(McCullough et al., 2009). The aspect was used to indicate the direction of the slope and analyze 

its relationship to the EAB points. For example, the south facing slopes are known to be warmer 

and drier than the north facing slopes (Chatt & Walberg, 2005). The values of the aspect 

correspond to a direction accompanying the slope. For instance, 0 corresponds to north, 90 

corresponds to east, 180 corresponds to south, and 270 corresponds to west.  
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Dataset 9: Ontario Wind Resources Information 

 

The abiotic factor wind speed is a prominent factor in contributing to the spread of the EAB 

across short and long distances. The dataset provided by the Ministry of Natural Resources 

contained long term average monthly wind speed data in the form of points covering Southern 

Ontario at 30 and 80 metres above ground level. The month to use for the wind speed data 

needed to coincide with the time period that EAB traps were employed and removed (i.e., June 

to August). That said, June was the most appropriate month to use as it represented the peak 

emergence of EAB adults in Canada which occurs mid-to late June (Appleton et al., 2017; 

Marchant, 2012) and the height chosen was 30 m because ash trees, particularly green ash 

trees grow to a maximum height of about 30 metres (“Emerald Ash Borer,” 2012).  

 

Dataset 10: WorldClim Version 2 – Global climate data  

 

WorldClim (Fick & Hijmans, 2016) provided various climactic layers such as June precipitation 

and solar radiation. These variables represented the effects of climate on the presence and 

absence of EAB points. They were obtained at a spatial resolution of 30 seconds (1 km2) 

between the years 1970-2000. The month of June was selected again because it represents the 

month during which adult EABs emerge from ash trees and the precipitation and solar radiation 

are potential variables that could affect the survival of the EAB in preceding years.  

 

Dataset 11: MOD21A2: MODIS/Terra Land Surface Temperature 

 

Another abiotic variable that is potentially conducive to the dispersal of the EAB is land surface 

temperature which a prime indicator of global warming facilitated by anthropogenic activities 

such concentrated human activities and the establishment of paved land cover or barren lands 

(Settur et al., 2013). As a side note, temperature was also included as one of the explanatory 

variables in Huset (2013)’s research on the EAB to investigate one of the objectives of the 

research – how anthropogenic climate change affects EAB risk. Although surface 
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temperature/emissivity could have been calculated from the thermal band of the Landsat TM 

images used to calculate NDVI, it was not recommended for a large heterogenous study area 

(Vlassova et al., 2014). Since Landsat images have a high spatial resolution, they are more 

sensitive to the thermal contrast in land surface temperatures (LSTs) between landcover 

features such as tree canopy during the summer months. Research conducted by Vlassova et 

al. (2014) support this theory where LSTs retrieved from Landsat images using the single-

channel (SC) method produced the greatest variances (above 6 °C) in the summer and lower 

variances in the winter months compared to LST values from MODIS. Coincidentally, since the 

month of EAB emergence (June) falls during the summer months, the usage of the MODIS LST 

products seemed more practical. In addition, the coarse resolution (1 km2) of the MODIS LST 

products was consistent with the other climactic variables.  

 

The land processes distributed active archive center (LP DAAC) website offers various MODIS 

land surface temperature products from the Terra and Aqua satellites. The Terra satellite was 

chosen over the Aqua because it is timed to cross the equator from north to south in a 

descending mode rather than the Aqua’s ascending mode from south to north. The MODIS21 

product uses the Temperature Emissivity Separation (EST) algorithm to retrieve the LST and 

emissivity dynamically from the three MODIS thermal infrared bands 21, 31, and 32 (Hulley & 

Hook, 2017). The MOD21A2 dataset is essentially an 8-day composite LST product that uses a 

simple averaging method to calculate the average from all the cloud free MOD21A1D (day) and 

MOD21AN (night) products from the 8-day period. Moreover, much like the NDVI dataset, land 

surface temperatures for all the EAB presence and absence points from the month of June were 

obtained for the corresponding years. Lastly, a scale factor of 0.02 was applied.  

 

3.3 Descriptive Statistics of the EAB Data  

 

Before conducting the spread modelling, an insight needs to be made into the statistics of the 

EAB presence and absence data by analyzing their descriptive statistics such as mean, median, 

standard deviation (STD), minimum and maximum for each of the 14 explanatory variables 
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using the XLSTAT software. For a fair comparison of the EAB presence and absence data, the 

original EAB presence points and the same number of randomly selected absence points were 

analyzed. The descriptive statistics for the presence and absence data are summarized in Tables 

3.2 and 3.3. In addition, a visual depiction of the average values of the explanatory variables is 

displayed in Figure 3.4 as bar plots.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



45 
 

 
 
 
Table 3.2. Descriptive statistics such as minimum, maximum, median, mean and standard deviation 
using quantitative explanatory variables for the EAB presence data 

 

 

 

 

 

 

 

 

 

 

 

Statistic Minimum Maximum Median Mean 
Standard 
Deviation 

Population Centres (m) 0 68578.35 1555.96 11090.06 15852.74 

NDVI 0.10 0.92 0.55 0.55 0.22 

Elevation (m) 51.48 380.53 185.67 188.27 63.52 

Aspect (Direction) 1.42 359.37 193.70 194.50 92.45 

Slope (°) 0.00 9.20 0.50 0.84 1.14 

Ports (m) 1693.07 83230.06 45559.03 45777.19 25568.89 

June Precipitation 
(mm) 

68.00 94.00 85.00 83.63 5.94 

Forest Processing 
Facilities (m) 

3750.00 77762.18 39600.92 40326.24 21634.19 

June Wind Speed (m/s) 2.60 3.50 3.30 3.34 0.13 

Nearest EAB Positive 
Location (m) 

111.05 34613.16 468.79 2343.66 4974.10 

Highways (m) 0.00 34780.78 10852.95 10050.17 6510.89 

Camps (m) 1351.33 57937.22 10802.08 16329.93 16466.11 

June Land Surface 
Temperature (Kelvin) 

263.32 308.32 299.38 298.14 8.04 

June Solar Radiation 
(kJ/m²day) 

20613.00 21822.00 21320.00 21317.64 154.09 
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Table 3.3. Descriptive statistics such as minimum, maximum, median, mean and standard deviation 
using quantitative explanatory variables for the EAB absence data 

 

 

 

 

 

 

 

 

 

 

 

Statistic Minimum Maximum Median Mean 
Standard 
Deviation 

Population Centres 
(m) 

0.00 197916.03 21161.66 25905.63 25984.87 

NDVI 0.12 0.92 0.67 0.65 0.16 

Elevation (m) 55.77 361.43 214.03 216.55 37.64 

Aspect (Direction) 3.08 359.95 195.71 189.69 103.95 

Slope (°) 0.00 10.82 0.54 1.09 1.52 

Ports (m) 241.87 81729.22 34205.86 37037.08 18964.50 

June Precipitation 
(mm) 

61.00 109.00 85.00 84.25 5.31 

Forest Processing 
Facilities (m) 

1594.24 74813.92 23635.22 25057.93 15928.96 

June Wind Speed 
(m/s) 

2.70 5.43 3.97 3.94 0.37 

Nearest EAB Positive 
Location (m) 

82.29 9947.05 4129.07 4503.09 2665.12 

Highways (m) 0.00 40616.28 11782.45 14107.51 11664.53 

Camps (m) 30.00 99536.00 27152.50 28095.70 16699.83 

June Land Surface 
Temperature (Kelvin) 

321.18 345.92 339.14 338.33 3.13 

June Solar Radiation 
(kJ/m²day) 

20613.00 21822.00 21356.50 21353.62 185.61 
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Figure 3.4. Bar plot of average values of explanatory variables for EAB presence points (grey) and EAB 
absence points (black) 

 

First of all, it is quite evident from the descriptive statistics in Tables 3.2 and 3.3 that the 

distance from population centres is shorter to the presence points than the absence points. 

The mean distance from the population centres to the presence points is approximately 11,090 

m whereas the mean distance from the population centres to the absence points is 25,906 m. 

However, the standard deviation of the mean distance from the population centres to the 

absence points is substantially large (25,984 m) compared to the one from the presence points 

(15,852 m), suggesting that there is a large variation in the distances of the absence points. 

Nonetheless, the distance from population centres to the presence points is most likely an 

important variable, which will be confirmed by the variable importance tests in Chapter 5.    

 

Another anthropogenic factor, forest processing facilities, showed some unexpected results. 

The mean distance from a forest processing site to presence points is 40,326 m whereas the 

mean distance to the absence points is 25,057 m. This correlation is unusual because of the 

implication that it is about twice as likely for a location to be infested by the EAB the farther 

away it is from a forest processing site. However, the standard deviation values of the distance 

from forest processing facilities for the presence and absence points tell a different story. For 
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instance, the standard deviation of the presence points was 21,634 m whereas the standard 

deviation of the absence points was 15,929 m which implies perhaps there might be some 

presence points that are closer to the forest processing facilities. However, based on the mean 

values, this phenomenon is the opposite for Huset (2013) as her research concluded that the 

closer a location is to a wood product industry, the greater the risk of EAB infestation (Huset, 

2013). Similarly, the mean distance from sea ports to the EAB presence points was 45, 777 m 

while the mean value to the absence points was 37, 037 m. The mean distance from 

campgrounds to the presence points was 16, 330 m and the absence points was 28, 096 m. 

Moreover, from the descriptive statistics, the distances from the two anthropogenic variables 

(sea ports and forest processing facilities) had a negative relationship with the presence points 

such that the greater the distance from an anthropogenic facility, the greater the chance of EAB 

presence.  

 

The last anthropogenic layer, distances to highways showed that the median distance to the 

presence points from highways (10,050 m) was shorter than the average distance to the 

absence points (14,108 m) which suggested that a majority of EAB presence points are found 

near highways. The standard deviations support this theory as the standard deviation for the 

EAB presence points is lower (6511 m) than the one (11, 665 m) for the EAB absence points. 

Furthermore, the mean and standard deviation values conclude that there is less spatial 

variation among the EAB presence points from the highways than among the absence points 

which makes this variable a potential significant variable. 

 

Next, for the NDVI data for the presence points, the mean value was 0.55 whereas the mean 

NDVI absence value was approximately 0.67. This suggests there may be a correlation between 

the health of the trees and EAB infestation where the EAB is more likely to infest an unhealthier 

tree rather than a healthy tree. For the abiotic variables such as the elevation, aspect, and the 

slope, the presence and absence points showed similar trends. The mean elevation for the 

absence points was 217 m whereas the mean elevation for the presence points was 188 m. The 
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standard deviation was about two times greater for the presence points (63.519 m) than the 

absence points (37.636 m). For the aspect, both averaged presence and absence points fell in 

the 190 ° - 195 ° range and according to Burrough’s aspect guideline, this range suggests that 

ash trees generally face South (Burrough, 1998). The findings are consistent with the EAB 

surveying protocols for placing traps on the south side of trees.  

 

Lastly, the average slope was 0.84 for the presence points and 1.09 for the absence points, 

respectively. Although their distinction was not significant, this relationship opposes Royo & 

Knight’s (2012) theory that steeper slopes contain stressed trees thus making them more prone 

to attacks by the EAB (Royo & Knight, 2012). Although it cannot be confirmed whether the 

sampled EAB-absent ash trees were in fact stressed, according to the descriptive statistics, the 

EAB infected trees are more likely to exist at the lower angles. When the standard deviation 

values were examined, the relationship was not as clear as the values were similar for both 

presence (1.14) and absence points (1.52).  

 

The biotic variables, both with the presence and absence points had similar values as the mean 

precipitation was approximately 84 mm and the mean solar radiation was 21,300 kJ/m²day. 

The mean June wind speed was 3.34 m/s for the presence points and 3.94 m/s for the absence 

points, which suggests that EAB infestation decreases at locations with strong winds.  The mean 

and standard deviations of the land surface temperatures for the EAB presence points were 

298 and 8.0 kelvins whereas the mean and standard deviations of the land surface 

temperatures for the EAB absence points were 338 and 3.13 kelvins. The mean surface 

temperatures for the EAB absence points were approximately 40 kelvins greater than the EAB 

presence points suggesting that the EAB prefer cooler areas.  

 

Lastly, the mean distance to the nearest EAB positive location was examined. The distinction 

between the EAB presence and absence points based on the mean, standard deviation and 
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median values could not be made with confidence. For instance, the mean distance to the 

nearest EAB positive location from the presence points was 2344 m whereas the mean distance 

to the nearest EAB positive location from the absence points was 4503 m. This relationship was 

inconsistent with the standard deviations where the standard deviation for the EAB presence 

points was 4974 m whereas it was 2665 m for the absence points. When the median values 

were examined, it was 469 m for the EAB presence points and 4129 m for the EAB absence 

points. Based on these relationships, it is difficult to predict a relationship between the distance 

to the nearest EAB positive location for EAB presence and absence points. However, Huset 

(2013)’s results concluded the average distance from a given location to a known EAB location 

was shorter for the EAB-containing quadrants than for the non-EAB quadrants.  
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CHAPTER 4: METHODOLOGY 

 

The methodology includes the complete workflow of pre-processing the response and 

predictor variables and analyzing the data using three distribution models (i.e., logistic 

regression, Random Forest and RGLM). To overcome the issue of high positive spatial 

autocorrelation, the sampled EAB presence and absence points were filtered using a distance 

threshold corresponding to the distance between two points at which maximum clustering 

occurred. Next, the models were trained using a 1:1 ratio of prevalence as it provided an equal 

representation of the samples from each class. Despite this, the effects of using a greater 

proportion of absence points was tested by gradually increasing the number of absence points 

using logistic regression and examining the misclassification rates. 

 

Next, a correlation coefficient matrix, significance testing and VIFs (variance inflation factors) 

of the predictor variables were assessed to determine the variables that were required to be 

removed prior to modelling due to exhibiting multicollinearity. In addition to addressing 

multicollinearity before modeling, a method known as recursive backward elimination (RFE) 

was used in Random Forest to address multicollinear variables during the modeling process. 

Following the pre-processing of the species data and predictor variables, the transferability of 

the three distribution models (i.e., logistic regression, Random Forest and RGLM) was tested by 

assessing the classification accuracies, ROC curves and AUC values, and risk maps of the models. 

An automated risk map tool was generated for the machine learning models (Random Forest 

and RGLM) to visualize the outputted probabilities from the models. A flow chart of the 

methodology is displayed in Figure 4. 
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4.1 Data Pre-Processing 

 

In order to achieve an ideal species distribution model, the quality of the species data is an 

essential component as it forms the foundation of the model. However, there are various 

roadblocks and limitations that affect the quality of the species data in a species distribution 

model. Among the factors, two of the most prominent ones are the scale of the study area and 

species sampling bias.  

 

Figure 4. Flow diagram of the methodology of the EAB species distribution model 
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Although the province-wide scale of the EAB data allows for a broad understanding of macro-

level EAB interactions, the study area consequently also represents significant spatial 

heterogeneity across the landscape. Since the main goal of a species distribution model is to 

predict the suitability of a landscape for a species, the chosen scale for modelling should 

illustrate a strong interaction between the species and the limiting resources in its environment 

(Cushman & Huettmann, 2010). However, the optimal spatial scale that maximizes the 

relationship between the species and its surroundings is unknown to researchers and is 

somewhat restricted based on the species data acquired. In the case of the EAB, because the 

data was collected in counties of various sizes, there was a discrepancy between the scale of 

the species data and the predictor variables which were generated at a small scale for the 

anthropogenic variables and a coarse scale for the climactic variables. In order to maintain 

consistency, all the absence points that fell within a 1 km radius of the presence points were 

eliminated to ensure that each cell of the coarsest predictor variables, which also had a 

resolution of 1 km2, did not have overlapping EAB presence and absence points. This was done 

to address the scale discrepancy between the EAB data and the predictor variables.  

 

Aside from the spatial scale discrepancy, because the EAB data was collected over several years, 

there was also a discrepancy with the temporal scale of the species data and the predictor 

variables. For instance, most of the anthropogenic variables (i.e., campgrounds, sea ports, 

forest processing facilities, etc.) were collected during one specific year. However, since these 

anthropogenic features are static and do not typically change positions overtime, their effects 

would be similar during each year of EAB sampling. However, for the variables or layers that 

were available for multiple years such as NDVI and land surface temperature, each sampled 

point collected during a given year was matched with the variable from the same year. Lastly, 

the disjoint NDVI and surface land temperature predictor layers from several years were 

mosaicked as a single layer to be used as inputs for generating the risk maps from the models. 

With regards to modelling, a layer was generated known as the “distance to the nearest EAB 

positive location from previous years” which indicated the distance from a presence or absence 

point from a particular year to the nearest EAB presence point of previous years in order to 
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account for the spatio-temporal variability in the dataset. This was done using the near tool in 

ArcMap 10.6 (Environmental Systems Research Institute (ESRI), 2016) which takes a point 

dataset and computes the Euclidean distance to another set of features. For instance, for the 

year 2008, the distances from all the presence and absence points to the nearest EAB presence 

point from the years 2002-2007 was calculated. After the distances for all the presence and 

absence points were calculated, the presence and absence points from the years 2006-2012 

were merged as a separate points shapefile and used as the input data. Moreover, this variable 

indicated the likelihood for an arbitrary point to be infested by the EAB based on its proximity 

to locations of infested trees from past years. 

 

Secondly, during field sampling, sampling bias presented in species data induces positive spatial 

autocorrelation (i.e., a cluster of EAB points in close proximity to one another). The sampling 

bias is broken down into two categories: geographic and climactic. Geographic sampling bias 

occurs when data acquisition is performed within a specified area such as along main roads, 

highways, or within high risk areas (Barbet-Massin et al., 2012; Syfert et al., 2013). In the case 

of EAB sampling performed by the CFIA, the data acquisition was performed in premeditated 

areas such as the areas along highways, near urban centres, provincial parks, campgrounds and 

ash nursery. Geographic sampling bias is demonstrated by the EAB presence points found 

serially along an agricultural road as shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

   Figure 4.1. Example of geographic sampling bias of EAB samples taken along roads 
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If these areas were to be analyzed according to an explanatory variable such as land cover, it 

would appear that some EAB prefer to inhabit agricultural areas when in reality sampling was 

just performed on trees alongside agricultural fields. As a result, in order to avoid potential 

inconsistent modelling results due to the sampling bias, a land use dataset will not be included 

as one of the explanatory variables. 

 

Likewise, climatic sampling bias occurs when the sampling isn’t carried out over an entire 

environmental range, such as sampling only at low altitudes due to a lack of accessibility to 

higher altitudes (Barbet-Massin et al., 2012). In both sampling cases, a bias is present in the 

acquired species samples due to a locational accessibility of the samplers. When sampling bias 

is present in the sample, it does not adequately represent the true distribution of the species. 

Climatic sampling bias does not directly apply to the sampling design of the EAB as ash trees 

are found on relatively low laying surfaces which are easily accessible to samplers. In the 

context of the EAB data, if neighbouring sampled points share the same attributes for an 

explanatory variable (i.e., similar elevation values), the resulting model will be overfitted and 

model performance values will appear inflated (Boria et al., 2014; Hijmans & Elith, 2013; Veloz, 

2009).  An overfitted model is a model that fits too closely to the calibration data and limits the 

model’s ability to predict an independent set of testing data (Boria et al., 2014).  

 

In a broader sense, an inflated test statistic increases the chance of the Type I error or an 

incorrect rejection of the null hypothesis which was demonstrated by Veloz (2009). Veloz 

(2009) concluded that spatially autocorrelated occurrence data of an invasive plant species 

known as Asteraceae led to a lack of independence between the training and testing datasets 

resulting in a bias in model predictions. Veloz (2009)’s research demonstrated that accounting 

for spatial autocorrelation significantly improved the prediction accuracies of the GARP model 

as indicated by the similarity statistic, which was 0.719 before filtering the occurrence points 

and 0.828 after spatial filtering.  
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Similarly, Václavík and co-authors (2012) used various species distribution models to predict 

the spread of an invasive plant pathogen known as P. ramorum and have concluded that 

accounting for multi-scale structure of spatial autocorrelation by using spatial eigenvector 

mapping (SEVM) significantly enhanced the predictive capability of the models. The presence 

of autocorrelation in a dataset can be detected using the Moran’s I, Geary’s c (Elith & Leathwick, 

2009; F. Dormann et al., 2007) and the nearest neighbour index (Fisher et al., 2007) which 

compares the average distance from a point’s centroid to its nearest neighbour’s centroid with 

the hypothetical average distance if the points were randomly distributed. The average nearest 

neighbour index, or ratio is calculated as the ratio of the observed average distance to the 

expected average distance for a random distribution (Environmental Systems Research 

Institute (ESRI), 2016). If the average nearest neighbour index is less than 1, the spatial 

distribution of the points is clustered whereas when the spatial distribution of the points is 

dispersed, the index is greater than 1. Autocorrelation of the EAB points was assessed using the 

nearest neighbour index where the observed average distance (𝐷̅𝑜) between each point and its 

nearest neighbour is equal to the sum of the nearest distances for each point and divided by 

the number of points. On the other hand, the expected mean distance of the points for a 

random distribution (𝐷̅𝐸) is calculated by (4.1). 

 

𝐷̅𝐸 =
0.5

√𝑛/𝐴
      

 

where 𝑛 is the number of points and A is the area of the rectangle surrounding the points. The 

average nearest neighbour z-score statistic is obtained by subtracting 𝐷̅𝐸  from 𝐷̅𝑜 and further 

dividing by the standard error (SE), which is equal to 0.26136/√𝑛2/𝐴.  

 

The EAB presence points achieved an observed mean distance of 2349.93 metres whereas the 

expected mean distance was 19031.80 metres resulting in a nearest neighbour ratio of 0.123. 

Similarly, the EAB absence points achieved an observed mean distance of 752.48 metres with 

an expected mean distance of 2882.03 metres, resulting in a nearest neighbour ratio of 0.261. 

(4.1)  
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The statistical testing of the average nearest neighbour analysis assigns a significance level p-

value for specified ranges of the critical value (z-scores) achieved by the analysis. For instance, 

within the critical value range between -2.58 to -1.65, the significance level is at 0.05 and with 

the critical values beyond -2.58, the significance level is 0.1. The z-score achieved by the EAB 

presence and absence points were -29.43 and -151.07, respectively which suggests a less than 

1% chance that the clustered distribution was the result of random chance.  

 

The presence of autocorrelation in the species data can be addressed during modelling using 

methods such as autocovariate regression, spatial eigenvector mapping, generalized least 

squares and generalized linear mixed models (F. Dormann et al., 2007). Where the 

aforementioned methods analyzes spatial autocorrelation during modelling, the effects 

autocorrelation was addressed pre-modelling in this research by filtering the species data using 

a specified distance tolerance (Boria et al., 2014; Veloz, 2009). By filtering the clusters of species 

localities to a single point, the resulting points become spatially independent which is essential 

for model calibration and evaluation (Brown, 2014). However, the distance to spatially filter 

species data is arbitrary but should be selected with a valid justification. For instance, Boria et 

al. (2014) spatially filtered occurrence data of a shrew species known as Microgale cowani by 

removing localities that were within 10 km of one another. The distance 10 km was chosen 

based on the high spatial heterogeneity of the mountains in Madagascar, the habitat of the 

Microgale cowani.  

 

Since the primary focus of this research is to understand the nature of EAB dispersal, intuitively 

the distance between neighbouring EAB presence points should hold more importance as it 

determines the beetle’s dispersal range. With this in mind, the distance at which EAB clustering 

resulted in positive autocorrelation was determined using a heuristic approach rather than a 

mathematical one. A technique proposed by Kramer-Schadt et al. (2013) to reduce 

autocorrelation included filtering Malay civets occurrence points within a radius of 10 

kilometers. This radius was chosen because it represented the home range distance of 

individual Malay civets in Borneo, Southeast Asia. Similarly, the natural spread of the EAB was 
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simulated by USDA’s Northern Research Station where the EAB beetles were released and 

captured at outlier sites originated 1 and 3 years earlier from infested nursery trees. 

Conclusively, EAB-colonized trees were found 638 and 540 metres from the epicentres at the 1 

year and 3-year sites, respectively (Northern Research Station, 2016). This suggested that the 

extent of the EAB spread after a year was approximately 540 metres from its epicentre and 

clusters of the EAB were likely to be found along this radius. 

 

Although USDA’s research provided a great insight into the realized dispersal extent of the EAB, 

it was merely a simulation and cannot be approximated for the EAB samples used in this 

research.  As a result, the shortest distance from an EAB-infested ash tree to nearby infested 

ash trees as an approximation of the realized dispersal extent of the EAB was determined using 

a histogram in Figure 4.2.  

 
 

Figure 4.2. Histogram of the frequency of distances between two neighbouring EAB presence points  

 

According to the histogram in Figure 4.2, maximum clustering of the EAB presence points 

occurred at a radius of 100 metres and decreased gradually as the distance increased. 

Furthermore, to filter the autocorrelated EAB presence points, a filtering distance of 100 metres 

was chosen. Similarly, since the EAB absence points were treated as a separate group, the 

minimum distance between two EAB absence points at which clustering was most prominent 

was also determined using a histogram in Figure 4.3.  
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Figure 4.3. Histogram of the frequency of distances between two neighbouring EAB absence points  

 

After the optimal distances for the EAB presence and absence points were determined, a 

filtering tool known as the “Spatially Rarefy Occurrence Data for SDMs” created by Jason L. 

Brown (Brown, 2014) was used to filter multiple sampled records to a single record within the 

two specified distances. This tool is essentially used to reduce the bias of predictor variables 

resulting from spatially autocorrelated occurrence data, which otherwise would compromise a 

distribution model’s ability to predict spatially independent data. The tool functions by 

calculating a distance matrix for all the points and then systematically removing points that are 

closer than the specified search distance. It is a non-random process where the closest cluster 

is removed first, then the table of distances is re-evaluated until all the points are removed at 

the specified distance. This tool was used on both the EAB presence and absence data to reduce 

the points to their respective distance thresholds.  

 

An overview of the tool suggests that spatially filtering species data at 5 km2, 10 km2, and 30 

km2 in areas of high, medium, and low environmental heterogeneity (Brown, 2014). Given the 

large scale of Southern Ontario and the range of elevation values (21.5 to 655 m), the study 

area fell under the category of high environmental heterogeneity and the distances derived 

(i.e., 100 and 150 metres) for filtering the EAB presence and absence points were confirmed as 

appropriate. When the filtering thresholds of 100 and 150 metres were used on the presence 

and absence points, respectively, the spatially rarefy occurrence tool reduced 269 presence 
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points to 250 points and 11,422 absence points to 9525 points. The pictorial depiction of the 

spatially rarefy tool is displayed in Figure 4.4.  

 

 

 

 
 

Next, 20% of the presence points from 2006-2012 were randomly selected for the validation 

dataset including an equal number of absence points. Subsequently, increasing numbers of 

absence points were randomly selected to assess the effects of prevalence on the logistic 

regression model. The points were selected using the  “Sampling Design” tool developed by the 

National Oceanic and Atmospheric Administration (NOAA) (NOAA Biogeography Branch, 2013). 

This tool is designed to exercise sampling procedures under a GIS framework, and derive 

information about population metrics. NOAA’s main usage of this tool was focused on marine 

habitats; however, its use can be extended to any type of population spread over physical 

space. There are two sampling selection procedures in this tool: simple random and stratified 

random. The simple random procedure randomly selects a user-defined number or percentage 

of samples whereas the stratified random procedure selects samples from various levels of 

Figure 4.4. Usage of the spatially rarefy occurrence data tool using EAB presence points. The yellow 

points represent the points that were removed, and the blue points represent points retained by 

the tool  
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strata, which is specified as an attribute.  The absence points were chosen using the simple 

random procedure which ensures an unbiased selection of absence points from all the counties 

regardless of their concentration of absence points.  

 

4.2 The Removal of Multicollinearity in Predictor Variables  

 

Prior to building a spread model, the issue of multicollinearity in the predictor data should be 

analyzed thoroughly.  Multi-collinearity is a phenomenon that leads to a deficiency in the 

proposed models, with which two or more predictor variables are linearly correlated such that 

one or more predictor variables can be derived from the others. A perfect collinearity exists 

between two independent variables if the correlation is equal to 1 or -1 (Akinwande et al., 

2015). In theory, it is rare for ecological datasets not to exhibit multicollinearity, especially 

when climactic variables are modelled. For the explanatory variables used in this research, it is 

possible for the climactic variables such as June temperature, wind speeds, precipitation, and 

solar radiation to exhibit multicollinearity as they are driven by similar atmospheric circulation 

processes (Braunisch et al., 2013). If the purpose of a species distribution model is to predict 

within the range of the training dataset for interpolation purposes, then it can be assumed that 

the collinearity between variables will remain constant but for extrapolation purposes, 

consistent collinearity patterns cannot be presumed (Dormann et al., 2013; Werkowska et al., 

2017).  Since the models were tested on their interpolation and extrapolation abilities, the 

likelihood of multicollinearity was investigated. The presence of multicollinearity in a dataset 

can be detected using a correlation coefficient matrix where the variables with absolute 

correlation coefficients close to 1 indicate a strong correlation. Although a strong correlation 

does not necessary translate to collinearity, high correlation coefficients can usually be used 

to approximate linear relatedness, or collinearity (Dormann et al., 2013). 

 

There are two methods to address multicollinearity in ecological data: cluster-dependent and 

cluster-independent. Cluster-dependent methods such as principle component analysis (PCA) 

and cluster analysis identifies the predictor variables that form clusters and creates a proxy set 
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of the variables. On the other hand, cluster-independent methods such a correlation 

coefficient matrix and variance inflation factors (VIFs) bypasses the creation of clusters by 

identifying predictor variables that exhibits collinearity (Dormann et al., 2013) prior to 

modelling. Since cluster-dependent methods such as PCA (Lee et al., 2012) and cluster analysis 

(Wille, 2004, p. 273) are typically used for high dimensional data (i.e., numerous predictor 

variables) (Werkowska et al., 2017), the cluster-independent methods were more appropriate 

for this research as there were fifteen predictor variables and multicollinearity was a suspicion 

amongst only the climactic variables.  

 

The correlation coefficient matrix of the predictor variables determines which variables are 

strongly correlated based on their pair-wise correlation coefficient (𝑟). However, the 

appropriate cut-off value for declaring a variable as strongly multicollinear is subjective. As a 

result, a hypothesis test can be performed to test the significance of the correlation coefficients 

of the variables which takes into consideration the number of observations in the dataset. The 

p-value is calculated using a 𝑡 distribution with 𝑛 − 2 degrees of freedom evaluated at the 

significance level of 0.05 (4.2): 

 

𝑡 =
𝑟√𝑛 − 2

√1 − 𝑟2
 

 

where 𝑟 is the correlation coefficient and the hypothesis statements are provided below: 

 

𝐻𝑜: The correlation coefficient is equal to 0 

𝐻𝑎: The correlation coefficient is different from 0 

 

Although the correlation matrix and p-values provide insights about each pair of predictors, 

this may be limiting as even if pairwise correlations are small for two variables, there may be a 

linear dependence among three or more variables (The Pennsylvania State University, 2018). 

A more robust test for multicollinearity is the variance inflation factor (VIF) which summarizes 

(4.2) 
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the variables that are correlated to one or more variables by a single value (Kgosiesele, 2010; 

Midi et al., 2010). The VIF for an explanatory variable is obtained by running an ordinary least 

square regression as a function of the remaining variables as seen in (4.3).  

 

𝑉𝐼𝐹𝑘 =
1

1−𝑅𝑘
2     (4.3) 

 

In (4.3),  𝑅𝑘
2 is the coefficient of multiple determination of 𝑥𝑘 with the other variables. When 

𝑅𝑘
2 = 0, the VIF is equal to 1, and 𝑥𝑘 is not correlated with other variables which indicates an 

absence of multicollinearity between predictors. When the VIF value is between 5-10, it 

indicates a high correlation (Akinwande et al., 2015) with one or more variables. The test for 

multicollinearity was performed in XLSTAT and the results are summarized in chapter 5.  

 

When multicollinearity exists among the predictors, it affects each model type (statistical vs. 

machine learning) in a different manner. In logistic regression, multicollinearity inflates the 

variances of the estimated parameters and therefore provides incorrect inferences of the 

relationships between the explanatory and response variables (Midi et al., 2010; P. Vatcheva & 

Lee, 2016) based on the unstable p-values for the predictors. As a result, the inclusion of linearly 

correlated variables in the model can lead to an erroneous identification of the significant 

variables. For moderate and large sample sizes, it is recommended to eliminate one of the 

highly correlated variables in order to reduce multicollinearity (Midi et al., 2010). The upside to 

removing multicollinear variables is that it does not reduce the predictive powers of the model, 

but rather affects the calculations for individual predictors. 

 

The Random Forest model also experiences negative effects of multicollinearity on its variable 

importance measures such as impurity-based ranking (i.e., Gini index). When a multicollinear 

variable is included in the model, it compromises the importance of all the variables that 

interact with the multicollinear variable such that the total importance of a given variable is 

either extremely low or suspiciously high because similar information is spread within the 
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multicollinear variable(s) (Toloşi & Lengauer, 2011). Consequently, if the multicollinear 

variable(s) are considered several times for computing the total importance (Louppe et al., 

2013), the importance of other variables will have a lower reported importance since a large 

portion of the impurity is already removed by the multicollinear variable. A strategy devised 

by Guyon et. al., (2002) on handling correlated predictor variables in Random Forest is known 

as recursive feature elimination (RFE), which re-examines ranked variables using a permutation 

importance measure at each step of a backward elimination algorithm. Using this method, RFE 

can effectively create models with fewer, significant variables that remain during the last steps 

of the backward elimination procedure even with the presence of correlated variables 

(Gregorutti et al., 2017). The RFE algorithm was accessed through the caret package in R (Kuhn 

et al., 2018). The model was evaluated with a 10-fold cross validation scheme by first 

computing the variable importance for all the variables and then recursively re-evaluating the 

importance using each subset of variables 𝑆𝑖, 𝑖 = 1 … 𝑆, where 𝑆 represents the total number 

of variables. A similar approach by Strobl et. al., (2008) used a conditional importance measure 

which consisted of conditionally permuting the variables to correlated variables. However, this 

method is only feasible for a small number of predictor variables as it is computationally 

intensive.   

 

As for RGLM, since each bag of the model is constructed using an individual logistic regression 

model and forward variable selection is performed on each set of observations using a 

specified number of random variables for each bag, it can be assumed that the inclusion of 

multicollinear variables in RGLM will also increase the likelihood of inflated standard errors of 

the regression coefficients. In addition, during the forward variable selection process, if one 

collinear predictor is selected rather than another, then the selection process could take very 

different paths (Dormann et al., 2013). Nonetheless, the multicollinearity effect in RGLM is not 

known to its full extent.  
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4.3 Species Distribution Models Specifications 

 

The species distribution models were developed by adjusting specific parameters to 

accommodate the response and explanatory variables. However, in order to obtain accurate 

information about the significance of the variables, the existence of complete or quasi-

separation caused by the predictor variables was assessed using the “brglm2” package in R and 

using a contingency table. With regards to the models, in logistic regression, first a backward 

then forward stepwise variable selection method was used to effectively identify the most 

important variables. For starters, backward variable selection is preferred by many statisticians 

(Shtatland et al., 2001) as it starts with a full model and eliminates variables at each step that 

fail to meet the critical p-value (Haque et al., 2018). However, the backward variable selection 

tends to over-estimate the number of significant variables in a dataset compared to forward or 

step-wise variable selection methods as demonstrated by Austin & Tu (2004), Haque et al. 

(2018) and Iwundu & Efezino, (2015). For this reason, the predictor variables identified as 

important using the backward variable selection procedure were compared to forward and 

backward stepwise variable selection procedures which applies multiple removal and addition 

steps on the variables. Moreover, given the caveats of stepwise variable selection such as biases 

in parameters and over-fitting (Sainani, 2013; Whittingham et al., 2006), it was justified to 

perform backward variable selection prior to stepwise for a fair comparison of the results.  

 

In XLSTAT, the logit link function was used according to the likelihood criterion. This way, the 

change in log likelihoods between each step is tested to determine which variables should be 

excluded from the model. If the overall fit of the model increases following the elimination of 

a variable, it is removed (Sarkar et al., 2010). The tolerance was set to 0.001, below which a 

variable is automatically ignored. The entry probability for an explanatory variable into the 

model was set 0.15 while the probability for the removal of a variable was 0.2 as recommended 

by Hosmer & Lemeshow (2000). Under the specifications for stop conditions, the number of 

iterations performed was set as 100 and a value of 0.00001 for the convergence. The 
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confidence interval was set to be associated with the probability of 95%, indicating a 

significance level (α) of 0.05.  

 

Generally speaking, since logistic regression focuses on arriving at a single best model using 

multiple iterations of the same dataset, it can be argued that standard logistic regression is not 

a robust method for predicting new datasets. The concept of bagging or bootstrap aggregation 

can be exercised to avoid the instability of automatic variable selection methods of logistic 

regression (Sainani, 2013) by taking random subsets of replicates of the training dataset with 

replacement to establish relationships with the predictor variables. By using the out-of-bag 

(OOB) dataset to calculate the misclassification rate of the bootstrapped samples, cross-

validation is performed internally in Random Forest. However, since random variability in 

model fitting is exhibited by Random Forest (Wenger & Olden, 2012), 100 iterations were 

performed.  

 

The two main parameters in Random Forest that governs the construction of trees are the 

number of trees constructed and the number of predictor variables selected for splitting the 

nodes of each tree. Although Random Forest provides a guideline on how to select the number 

of predictor variables to be randomly chosen at each node of the tree (i.e., 

√𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠), the number of trees to be constructed is subjective. As a result, a 

sensitivity analysis was performed which analyzed the OOB error rates of the model by 

increasing the number of trees. Using this method, the optimal number of trees that produced 

the lowest OOB error rate was selected. Aside from Random Forest’s bagging feature which 

averages the results of multiple bootstrapped samples, its high predictive power is also 

achieved by a randomized selection of the predictor variables. The randomization process 

essentially de-correlates the trees making them less variable (James et al., 2013). However, 

since the variables are chosen randomly and not according to an advanced variable selection 

scheme, this also means insignificant variables have an equal chance of being selected as 

significant variables for the root node (Song et al., 2013). With this in mind, RGLM, a statistical-
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machine learning hybrid model combines the advantages of bagging samples with forward 

variable selection in each bag in order to maximize the selection of significant variables.  

 

Another stipulation that RGLM enforces on the variable selection process is that prior to 

performing forward variable selection on a specified number of variables, it ranks all the 

variables according to their individual association with the response variable. The variables for 

ranking are selected from the entire pool of variables according to the “nFeaturesInBag” 

parameter. According to RGLM’s guidelines, the value of this parameter depends on the total 

number of variables. If the number of predictor variables is between 11-300 (Song et al., 2013), 

then the value for this parameter is calculated by N(1.0276 – 0.00276N), where N is the number 

of total variables. Using a value of 13 as N for the equation above provided the value of 12.89. 

As a result, the rounded-up value of 13 was used. Using this method, the predictor variables 

are subjected to two rounds of importance ranking and uses fewer variables for prediction than 

Random Forest (Song et al., 2013). 

 

Next, much like Random Forest, a sensitivity analysis was performed for RGLM to determine 

the optimal number of candidate explanatory variables to be considered for forward regression 

in each bag that resulted in the lowest OOB error rate. As has been noted, RGLM includes a 

range of variable selection parameters that helps capitalize on the selection of important 

variables.  A valuable parameter of RGLM that should be mentioned is “mandatoryCovariates” 

which has the ability to force a variable into the bags even if it is not selected for forward 

variable selection. This can be useful to researchers when assessing the impact of a variable of 

interest on the model performance. However, since there were no proposed target variables 

for the EAB, this parameter was not used.  

 

4.4 Assessment Methods of Model Performance  

 

After the development of distribution models using species data, it is informative to compare 

their performance using a collection of assessment methods. In this research, three different 
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approaches were used: classification tables, receiver operating characteristic (ROC) curves and 

risk maps. The standard classification tables, or confusion matrix cross-tabulates the actual 

versus the predicted presence and absence records. The accuracies are commonly displayed as 

percentages. However, classification tables are threshold dependent such that by convention, 

a probability of 0.5 or greater predicted by the model is classified as presence (1) and 

probabilities below 0.5 are classified as absence (0). That is to say, the threshold is user-

enforced and its selection can have a significant impact on the model accuracy and the 

predicted prevalence (Freeman & Moisen, 2008).  

 

The usage of ROC plots has been adopted by ecological studies due to its threshold-

independence in evaluating presence-absence models. The ROC curve essentially plots the true 

positive rate (sensitivity) against the false positive rate (1 – specificity) of a model across various 

probability thresholds ranging from 0 to 1. In order to construct the ROC curve, the probabilities 

generated for each observation of the prediction dataset are ordered from lowest to highest 

and each probability is sequentially used as a threshold to classify the points. The points for the 

curve start at the origin and increases by one unit for every positive outcome and increases one 

unit to the right for every negative outcome. Lastly, the area under the ROC curve, referred to 

the AUC is determined by the trapezoidal rule. The AUC index provides a discrimination 

measure of model performance (Lobo et al., 2008) where effective models exhibit AUC values 

near 1 and poor models exhibit AUC values close to 0.5. The ROC curves and AUC values were 

obtained using the “pROC” package (Xavier et. al., 2011) in R.  

 

The last method of validation of the distribution models is performed visually through risk map 

validation. The risk maps reflect the level of risk associated with each cell in the study area using 

the same classification scheme of the probabilities in ArcMap 10.6. For instance, the 

probabilities associated with each risk level were reclassified such that the lowest risk 

corresponded to EAB presence probabilities between 0 – 0.22, low risk corresponded to 

probabilities between 0.22 – 0.40, moderate risk between 0.40 – 0.50, high risk between 0.50 

– 0.72 and highest risk between 0.72 – 1. The range for the highest risk was liberal due to the 
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possibility of areas exhibiting latent signs of EAB infestation. The resolution of the risk maps 

was set as 1 km to maintain consistency with the resolution of the coarsest variables and are 

displayed in the Appendix section.  

 

The risk maps were validated by determining the proportion of EAB presence and absence 

points from 2013 that fell under each category of risk. Although the classification scheme of 

the three risk maps outputted by the SDMs were similar, the process that involved the creation 

of the risk maps differed. To begin, to create the risk map for 2013, some layers were required 

to be generated and updated. For instance, the NDVI layer was updated to a 2013 version and 

a Euclidean distance layer was included which displayed the relative distances from each 

presence point throughout the years 2002-2012. For the logistic regression model, only the 

variables identified as significant were included in the risk map. The unstandardized coefficients 

associated with the predictor variables were used as weights. The equation was directly 

inserted into ArcMap’s “Raster Calculator” tool to create the risk map for 2013. Furthermore, 

for each cell in the study area, the values for the predictor variables were used as input data to 

derive an EAB presence probability index between 0 to 1.  

 

The risk maps for RGLM and Random Forest were generated using a different approach as 

unlike logistic regression, the probabilities could not be directly imported into a GIS platform 

for visualization. First, a lattice of equally spaced points (1000 m by 1000 m) was created across 

the study area. This resolution was chosen to approximate the large scale of Southern Ontario 

and maintain consistency with the climactic variables. The points were then projected to the 

spatial reference system “NAD 83 UTM Zone 17” and the values for each explanatory variable 

were extracted for each point. The R-ArcGIS bridge was used to obtain the EAB presence 

probabilities from the Random Forest and RGLM models and assign the probabilities to the 

sampled points. Lastly, the “Inverse distance weighting” tool was used to convert the points 

into a surface. In theory, each pixel of the risk map is a value from 0 to 1 which represents EAB 

risk, where 0 is the lowest EAB risk and 1 is the highest EAB risk. The risk maps for the logistic 

regression model, random forest and RGLM are displayed in the Appendix.   
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CHAPTER 5: RESULTS & DISCUSSION 

 

Chapter 3 highlighted the data layers used in this research and the descriptive statistics 

provided preliminary insights of the EAB presence and absence data using minimum, maximum, 

median, mean and standard deviation values. The methodology in Chapter 4 featured a 

workflow of processing the response variable and explanatory variables and details about their 

inclusion into the three species distribution models (i.e., logistic regression, Random Forest and 

RGLM). Lastly, Chapter 5 will summarize the results of the multicollinearity test of the 

explanatory variables, the classification accuracies of the models and the variable importance 

rankings.  

 

5.1 Multicollinearity Results of Explanatory Variables 

 

To reflect, multicollinearity is a phenomenon that arises when there is an approximately linear 

relationship between two or more predictor variables resulting in an unfit model. Hence, it is 

important to exclude them from the input variables (Akinwande et al., 2015; Hegyi & Laczi, 

2015). Multicollinearity of the variables was tested using the Pearson coefficient correlation 

matrix and a multicollinearity test. According to Evans (1996), correlation coefficient values 

between 0.40-0.59 indicate a moderate correlation, values between 0.60-0.79 indicate a strong 

correlation and values between 0.80-1.0 indicates a very strong correlation. A correlation 

matrix of the predictor variables used in this research is summarized in Table 5.  
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Table 5. Correlation coefficient matrix of the predictor variables 

 

 

According to Table 5, four variables exhibited strong correlations with two or more variables. 

For instance, June solar radiation had a strong correlation with the variables forest processing 

facilities (0.6) and elevation (0.627). The variable camps experienced strong correlations with 

population centres (0.786) and forest processing facilities (0.613). Elevation had a strong 

correlation with June solar radiation (0.627) and forest processing facilities (0.649). Lastly, 

forest processing facilities was strongly correlated with elevation (0.649), camps (0.613), and 

June solar radiation (0.6). In addition, the variables that exhibited significant p-values indicating 

strong correlations with other variables are as follows: camps, June solar radiation, forest 

processing facilities, surface temperature, highways, elevation, nearest EAB positive location, 

and June wind speed.  

 

The issue with the correlation coefficient matrix and p-values are that only pair-wise 

relationships are assessed and therefore relationships with other interacting variables are not 

considered. As a result, the variance inflation factors (VIF) of all the variables is summarized in 

Table 5.1 which provides a single value for the degree of multicollinearity of a variable against 

all the other variables. Although the threshold VIF value for considering a variable as 

Variables
Population 

Centres
NDVI Aspect Slope Ports

June 

Precipitation

Forest 

Processing 

Facilities

June Wind 

Speed

Nearest EAB 

Positive Location
Elevation Camps Highways

Surface 

Temperature

June Solar 

Radiation

Population 

Centres
1.000 0.110 0.076 -0.183 0.182 0.077 -0.439 0.381 0.265 0.251 0.786 0.086 -0.247 0.377

NDVI 1.000 0.020 0.095 0.123 -0.028 -0.010 0.087 0.024 0.036 -0.004 0.006 -0.082 -0.017

Aspect 1.000 -0.113 -0.025 0.081 -0.048 0.121 -0.026 0.019 0.014 0.009 0.001 -0.051

Slope 1.000 -0.089 -0.156 0.149 -0.380 -0.149 -0.108 -0.222 0.003 0.034 0.017

Ports 1.000 0.578 0.168 0.128 0.134 -0.325 0.171 0.194 -0.031 -0.521

June 

Precipitation
1.000 -0.154 -0.073 0.094 -0.251 0.180 0.040 -0.050 -0.522

Forest 

Processing 

Facilities

1.000 -0.276 -0.255 -0.649 -0.613 0.144 0.170 -0.600

June Wind 

Speed
1.000 0.173 0.320 0.357 -0.107 -0.192 0.287

Nearest EAB 

Positive 

Location

1.000 0.080 0.384 0.320 0.144 0.149

Elevation 1.000 0.258 -0.259 0.008 0.627

Camps 1.000 0.066 -0.227 0.455

Highways 1.000 0.081 -0.217

Surface 

Temperature
1.000 -0.049

June Solar 

Radiation
1.000
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multicollinear is arbitrary, according to existing literature, VIF scores between 5 to 10 indicates 

a high correlation (Akinwande et al., 2015).  

 

Table 5.1.  Multicollinearity test using all explanatory variables  

 

 

From Table 5.1, it is evident that aside from elevation, the predictor variables that were 

correlated with two or more variables in Table 5 also exhibited high VIF values, except for 

camps. For instance, the calculated VIF values for the variables June solar radiation, distance 

from camps and forest processing facilities are greater than or close to 5. Because June solar 

radiation had the greatest VIF value (5.714) compared to the rest of the variables, it was 

removed from the list of input predictor variables. For the variables camps and forest 

processing facilities, because they shared similar second highest VIF values (4.687, 4.827), it 

was more difficult to omit one. In addition, according to literature (Huset, 2013; Prasad et al., 

2010), the two variables shared a known contribution in the dispersal of the EAB. As a result, 

they were retained in the model until further analysis. 

 

5.2 Logistic Regression 

 

As mentioned previously, before analyzing the results of logistic regression, the predictor 

variables’ abilities to separate the response variable into two mutually exclusive groups was 

assessed using the “detect separation” method of the brglm2 package. According to the results, 

separation was not detected by the variables as the maximum likelihood estimates of all the 

variables were all finite. However, contingency tables were created for all the variables to 

assess the likelihood of quasi-separation. The results indicated that the variable June wind 

speed was able to separate the two classes of EAB presence and absence the most effectively. 

The result of the contingency table is provided in Table 5.2.  

Variable 
Population 

Centres
NDVI Aspect Slope Ports

June 

Precipitation

Forest 

Processing 

Facilities

June 

Wind 

Speed

Nearest 

EAB 

Positive 

Location

Elevation Camps Highways

Surface 

Tempera

ture

June 

Solar 

Radiation

R² 0.667 0.087 0.070 0.239 0.598 0.731 0.793 0.402 0.311 0.627 0.787 0.273 0.209 0.825

VIF 3.007 1.095 1.075 1.314 2.485 3.717 4.827 1.673 1.452 2.684 4.687 1.375 1.264 5.714
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Table 5.2. Contingency table of June wind speed values of the EAB presence and absence points 

 

 

 

 

 

 

According to the contingency table of the EAB presence and absence training points in Table 

5.2, although it is certain that the EAB do not inhabit areas with wind speeds greater than 3.83, 

for wind speeds lower than 3.83, there is an overlap of the two classes suggesting a case of 

quasi-separation. Furthermore, in order to ensure finite maximum likelihood estimates, the 

Firth’s method was applied to the stepwise models. 

 

5.2.1 Backward Variable Selection Method excluding Multicollinear Variable(s)  

 

As mentioned in the methodology, after eliminating the variable June solar radiation due to its 

exhibition of high multicollinearity, the standard backward variable selection method was used 

to eliminate insignificant variables based on the probability of the likelihood-ratio statistic. The 

results of the backward variable selection process are summarized in Table 5.3. 

 

 

 

 

 

 

 

 

 

 

June Wind Speed 

Ranges (m/s) 
Presence Absence 

2.50 - 2.94 35 5 

2.95 - 3.38 88 14 

3.39 - 3.82 127 67 

3.83 - 4.26 0 125 

4.27 - 4.70  0 30 

4.71 - 5.14 0 9 



74 
 

Table 5.3. Results of the backward variable selection procedure for logistic regression 

 

According to Table 5.3, the variables highways, June surface temperature, aspect, NDVI and 

camps were eliminated from the full model using the backward variable selection process as 

the -2 Log(Likelihood) values increased at each step following the removal of the variables. A 

Number 
of 

Variables 

Variables Variable 
IN/OUT 

Status -2 
Log(Likelihood) 

Pr > 
LR 

13 Population Centres / NDVI / 
Aspect / Slope / Ports / June 

Precipitation / Forest Processing 
Facilities / June Wind Speed / 

Nearest EAB Positive Location / 
Elevation / Camps / Highway / 

Surface Temperature 

  
174.718  0.00 

12 Population Centres / NDVI / 
Aspect / Slope / Ports / June 

Precipitation / Forest Processing 
Facilities / June Wind Speed / 

Nearest EAB Positive Location / 
Elevation / Camps / Surface 

Temperature 

Highway OUT 174.742  0.00 

11 Population Centres / NDVI / 
Aspect / Slope / Ports / June 

Precipitation / Forest Processing 
Facilities / June Wind Speed / 

Nearest EAB Positive Location / 
Elevation / Camps  

Surface 
Temperatu

re 

OUT 174.756  0.00 

10 Population Centres / NDVI / Slope 
/ Ports / June Precipitation / 

Forest Processing Facilities / June 
Wind Speed / Nearest EAB 

Positive Location / Elevation / 
Camps 

Aspect OUT 174.981 
 

0.00 

9 Population Centres / Slope / 
Ports / June Precipitation / Forest 
Processing Facilities / June Wind 

Speed / Nearest EAB Positive 
Location / Elevation / Camps 

NDVI OUT 175.582 
 

0.00 

8 Population Centres / Slope / 
Ports / June Precipitation / Forest 
Processing Facilities / June Wind 

Speed / Nearest EAB Positive 
Location / Elevation  

Camps OUT 176.397 
 

0.00 
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noteworthy observation about the camps variable is that in addition to being excluded from 

the model, it also exhibited a high VIF value from the multicollinearity test (Table 5.1).  

 

5.2.2 Stepwise Variable Selection Method excluding Multicollinear Variable(s)  

 

After an insight was made into the variables eliminated by the standard backward variable 

selection process, forward and backward stepwise variable selection methods were used by 

applying the Firth’s method to prevent a quasi-separation of the data by the June wind speed 

variable. The estimated Chi-Squared (Wald) test statistic for each variable was calculated as the 

squared ratio of the coefficient to the standard error and the p-value was used to test the null 

hypothesis (𝐻𝑜). If the significance of the p-value was lower than the specified significance level 

of α (i.e., 0.05), the null hypothesis was rejected. As a side note, the cut-off p-value is rounded 

to the tenth decimal place, thus a value of p-value = 0.049 is rounded to 0.05.  The two stepwise 

variable selection methods were compared using three criteria:  the variables identified by the 

methods as significant (i.e., p-value less than 0.05), the variables that were considered 

insignificant (i.e., p-value greater than 0.05), and the presence and absence classification 

accuracies of the validation and prediction datasets. The results of the two stepwise variable 

selection methods are compared in Table 5.4.  
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Table 5.4. Variable selection results and classification accuracies of the forward and backward stepwise 
methods of logistic regression 

 

From Table 5.4, it is evident that after eliminating the variables June precipitation and 

population centres by the stepwise backward selection method, it achieved a prediction 

accuracy 18% greater than the stepwise forward selection method. As a result, although the 

validation accuracies of both the selection methods (i.e, forward and backward) were similar, 

the stepwise backward variable selection method produced a more parsimonious model which 

had greater extrapolation capabilities. Overall, the accuracies for the validation dataset 

exceeded the accuracies of the prediction dataset. An insight into the lower accuracy of the 

prediction dataset from 2013 could be attributed to the spatio-temporal variation of the 

dataset compared to the validation dataset. 

 

An important observation regarding the variable camps is that since it was eliminated by the 

standard backward variable selection and the stepwise methods in addition to exhibiting 

multicollinearity, the inclusion of camps in subsequent models can potentially undermine the 

models’ predictive powers. As a result, the variable camps was excluded from the Random 

Forest and RGLM models. A closer inspection of the variable importance rankings of the 

Stepwise 
Method 

Significant Variables Insignificant Variables Validation 
Accuracy (%) 

Prediction 
Accuracy (%) 

Forward June Wind Speed 
Slope 

Nearest EAB Positive 
Location 

Population Centres 
June Precipitation 

Elevation 

Forest Processing Facilities 
Ports 

Highway 
Surface Temperature 

Camps 
NDVI 

Aspect 

93% 52.38% 

Backward June Wind Speed 
Slope 

Nearest EAB Positive 
Location 
Elevation 

 
 

Forest Processing Facilities 
Ports 

Highway 
Surface Temperature 

Camps 
NDVI 

Aspect 
Population Centres 
June Precipitation 

93% 70.45% 
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stepwise backward method was assessed in Table 5.5 using the unstandardized and 

standardized coefficients.  

 

Table 5.5. Variable importance ranking of the backward stepwise process excluding multicollinear 
explanatory variables  

 

In Table 5.5, the degrees of freedom (DF) corresponds to each variable estimated in the model. 

For each variable, one DF is required to define the Chi-Squared distribution to infer whether 

the unstandardized coefficient for the variable in question is 0 given the remaining variables 

are in the model. The unstandardized coefficients for each variable indicate the amount of 

change in EAB presence given by a one-unit increase in the log-odds of the variable. However, 

it should be noted that with the unstandardized coefficients, the difference in the units of the 

explanatory variables is not taken into account. For instance, the unstandardized coefficient of 

the anthropogenic variable (nearest EAB positive location) is considerably lower than the 

remaining variables because it is expressed in metres as opposed to the climactic variables 

which have less variation in the units of measurement.  As a result, the magnitude of the 

relationship between the explanatory variables and the response variable should not be 

assessed using the unstandardized coefficients but rather the standardized coefficients which 

takes into consideration the units of measurement of the explanatory variables. The 

standardized coefficients are measured in units of standard deviations and indicates the change 

in the standard deviation of the dependent variable given one standard deviation increase in 

the log odds of an independent variable. The absolute value of the standardized coefficients, 

which are adjusted to the units of measurement for each variable are used to rank the variables 

Variable DF 
Unstandardized 

Coefficients 
Chi-Square 

(Wald) 
Pr > Wald 

Significance at 
α = 0.05 

Standardized 
Coefficients 

June Wind 
Speed 

1 -9.02E+00 67.47  < 0.0001 Significant -2.314 
 

Elevation 
1 1.19E-02 5.09 

 
0.019 

 
Significant 0.444 

 

Slope 
1 -5.31E-01 12.07 

 
0.001 Significant -0.426 

 

Nearest EAB 
Positive 
Location 

1 -5.20E-06 5.47  0.024  Significant -0.317 
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in order of importance. A discussion regarding the change in the response variable (EAB 

presence/absence) caused by the predictor variables is as follows: 

 

a. June wind speed  

An increase of 1 m/s in wind speed decreased the log odds of EAB presence probability by 9.02. 

This relationship is in contrast with the theory that stronger winds assist EAB migration to 

farther distances (Stohlgren et al., 2010). However, due to the large temporal and spatial scale 

of the EAB data, it can be said that the propagation methods of the EAB has potentially changed 

over the years 2002-2012 and that the EAB now require stagnant winds for survival. June wind 

speed was ranked as the most significant variable as indicated by its absolute standardized 

coefficient which is reflected by its ability to quasi-separate the EAB presence and absence 

points from Table 5.5.  

 

a. Elevation 

The elevation exhibited a positive relationship with EAB risk such that for every 1 unit increase 

in the elevation of an area, the log odds of EAB presence probability increased by 0.0119 

suggesting that the EAB prefer to inhabit trees on higher grounds. 

 

b. Slope 

Since the elevation possessed a positive relationship with EAB risk, it was expected that the 

slope would also exhibit a negative relationship as the slope is a bi-product of elevation. The 

slope had a negative relationship to the EAB risk as for one degree increase in slope, there is a 

0.531 decrease in the logit of EAB presence probability. This relationship does not hold true for 

research conducted by Royo et al. (2012) where ash trees faced greater dieback and reduced 

crown conditions on upper slopes than ash populations in lower slopes. Although this is 

inherent for ash trees, the same conclusion cannot be made about the ash trees chosen by the 

EAB dataset in this research as according to logistic regression’s results, the EAB prefer to 

inhabit ash trees on lower slopes.  
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c. Distance to the nearest EAB positive location  

Perhaps one of the most important explanatory variables in this research is the distance from 

a presence or absence point to presence points from past years. It is expected from existing 

literature (Huset, 2013; Prasad et al., 2010) that it is more likely for a location to be infested by 

the EAB based on its proximity to past EAB-infested locations. According to Table 5.5, the results 

corroborate conclusions made by past literature where for every metre increase in the distance 

from a sampled point of a current year to the presence points from previous years, the log odds 

of the probability of EAB presence decreased by 0.0000052. This relationship, although very 

small, coincides with findings by Huset (2013) where for every metre increase in the distance 

from known EAB locations, the log odds of EAB presence also decreased. In addition, it was 

overwhelmingly the most significant variable as identified by logistic regression and Maxent 

models’ low p-values compared to other variables by Huset (2013). However, according to the 

unstandardized coefficients and Pr > Wald values in Table 5.5, although the variable distance 

to the nearest EAB positive location proved to be significant, it did not provide an 

overwhelmingly substantial predictive power over June wind speed based on its 

unstandardized coefficient value.  

 

Above all, it should be noted that Huset (2013) used only 3 years of fine-scaled EAB presence 

data in New York (2009-2011) where a majority of the EAB points appeared in clusters. 

However, the EAB data used in this research was collected over 11 years (2002-2012) across 

the province of Ontario. Following the outbreak of the EAB in 2002, the sightings appeared in 

close range until 2008. The EAB sightings appeared sporadic, especially for 2009 and 2010 when 

the EAB was discovered in isolated counties as seen in Figure 3.1. As a result, the distance to 

the nearest EAB positive location differed greatly from a current year to past years which could 

have contributed to the weaker relationship.  
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5.2.3 Assessing the Effects of Prevalence using Logistic Regression  

 

As a reminder, although there was a greater proportion of absence points to presence points 

available,  the logistic regression model was trained using a 1:1 prevalence to avoid a class 

imbalance issue (Cushman & Huettmann, 2010). Nonetheless, the effects of increasing the size 

of the absence points was further investigated in Table 5.6 by assessing the misclassification 

rates of the stepwise backward selection models. 

 

 Table 5.6. Misclassification rates of the training dataset using logistic regression 

Number of 
Absence Points 

Misclassification Rate (%) 

200 7.00% 

1200 3.64% 

2200 4.17% 

3200 3.74% 

4200 3.11% 

5200 3.00% 

6200 2.64% 

7200 2.30% 

8200 2.14% 

 

From the misclassification rates in Table 5.6, it is evident that as the number of absence points 

was increased from 200, the misclassification rate decreased gradually from 7% to 2.14% when 

8200 absence points was used. This suggests that the logistic model performed the best when 

a 1:41 ratio of EAB presence to absence points was used. By the same token, it is expected that 

the high accuracy would be transferred to the validation and prediction datasets. To test this 

theory, the accuracies were examined using a 1:41 ratio (i.e., 8200 absence points) in Tables 

5.7 and 5.8.   
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Table 5.7. Classification table of the validation dataset with 8200 absence points using logistic 

regression  
 Absence Presence Total % Correct  

Absence 49 1 50 98.00% 
 

Presence 33 17 50 34.00% 
 

Total 82 18 100 66.00% 
 

 

Table 5.8. Classification table of the prediction dataset with 8200 absence points using logistic  
regression  

 Absence Presence Total % Correct 

Absence 3 19 22 13.64% 

Presence 2 20 22 90.91% 

Total 5 39 44 52.27% 

 

According to the testing and prediction accuracies in Table 5.7 and 5.8, the results refute 

Barbet-Massin et al. (2012)’s findings that using a higher ratio of species presence to absence 

points achieves greater transferability for GLMs such as logistic regression. Compared to Table 

5.4 where the models were trained using 200 absence points, the validation accuracy decreased 

by 27% whereas the prediction accuracy decreased by approximately 18% from the stepwise 

backward selection method. However, the key difference between Barbet-Massin et al. 

(2012)’s research and this research is the usage of pseudo-absence points whereas true 

absence points were used in the latter and thus is subjected to sampling bias. Furthermore, all 

subsequent models were trained with a 1:1 prevalence.  

 

5.3 Random Forest  

 

Among the various specifications of Random Forest, the two main parameters that influences 

the performance of the model are the number of trees constructed and the number of 

predictor variables randomly chosen at each node of the tree. Although a guideline to specify 

the number of variables to be randomly chosen for each node is determined by the value of the 
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square root of the total number of predictors, the total number of trees to be constructed is 

arbitrary. A pragmatic solution is to conduct a sensitivity test by increasing the number of  

trees and comparing the output OOB error rates. The number of variables to be randomly 

chosen was rounded down to “3” from a calculated value of 3.46 by taking the square root of 

the total number of variables (i.e., 12). Next, the OOB error rate for the training sample for each 

step increase in the number of trees (ntree) is displayed in Table 5.9.  

 

 Table 5.9. ntree vs. OOB estimate of error rates for Random Forest 

 

 

 

 

 

 

 

 

It is evident from Table 5.9 that for the EAB training dataset, the OOB error rate is not overly 

sensitive to the number of trees used to construct the random forest and the rate remains 

constant at 5.25% beyond 200 trees. As a result, 200 was used as the number of trees. Although 

the OOB rates for the training sample were relatively low, the robustness of Random Forest is 

truly tested by its performance on novel datasets. As a reminder, one of the main objectives of 

this research is to assess the transferability of distribution models in two scenarios: unsampled 

areas within the same time frame (i.e., validation data) and areas in a future time frame (i.e., 

prediction data). From the logistic regression results in section 5.2, since it was concluded that 

the models with the same proportion of EAB presence and absence points had the best 

performance, the results were compared with Random Forest in Tables 5.10 and 5.11, 

respectively.  

 

 

 

Ntree OOB Estimate of Error Rate (%) 

20 6.25% 

50 5.75% 

100 5.50% 

200 5.25% 

500 5.25% 

1000 5.25% 
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Table 5.10. Classification table of the validation dataset using Random Forest 
 Absence Presence Total % Correct  

Absence 45 5 50 90.00% 
 

Presence 0 50 50 100.00% 
 

Total 45 55 100 95.00% 
 

 
 

Table 5.11. Classification table of the prediction dataset from 2013 using Random Forest 
 Absence Presence Total % Correct  

Absence 4 18 22 18.18% 
 

Presence 3 19 22 86.36% 
 

Total 7 37 44 52.27% 
 

 

It is evident from Tables 5.10 and 5.11 that Random Forest had an excellent classification 

accuracy (95%) for the validation dataset but a poor prediction accuracy (52%). This suggests 

evidence of overfitting by Random Forest where the high accuracy achieved by the validation 

dataset was not reflected in the prediction dataset. Furthermore, much like logistic regression’s 

results, the inability to transfer in novel datasets that vary spatio-temporally is a proven 

shortcoming of Random Forest.  

 

5.3.1 Variable Importance of Random Forest 

 

The variable importance chart for Random Forest is summarized in Table 5.12 using the mean 

decrease Gini which is also referred to as the mean decrease impurity (MDI) (Louppe, 2014).   

 

 

 

 

 

 

 

 



84 
 

Table 5.12. The mean decrease Gini (MDI) for the predictor variables in Random Forest 

 

 

As a reminder, for an arbitrary tree in Random Forest, each time a parent node makes a split 

using a variable, the Gini impurity index for the two preceding children nodes is lesser in value 

than the parent node. As a result, by summing up the Gini decreases for each variable between 

the parent and children nodes across all trees in the forest, a variable importance score can be 

obtained. Accordingly, Table 5.12 shows that the greatest decrease in Gini was achieved by the 

variable June wind speed (MDI = 14.96) as it was the most significant variable. The remaining 

variables’ decreases in Gini showed insignificant differences between two successive variables 

suggesting that their importance was not as prominent compared to the decrease in Gini of the 

first variable. As a reminder, it was established that the inclusion of multicollinear variables in 

Random Forest interferes with variable importance and thus were eliminated by examining 

their VIF values prior to modelling. A second method to handle multicollinearity was by 

employing the RFE algorithm in Random Forest. A comparison of the Gini index values for the 

two methods (i.e., VIF-guided vs. RFE) and a standard Random Forest model with the inclusion 

of all the variables is displayed in Figure 5. 

 

Variable Mean Decrease Gini (MDI) 

June Wind Speed 14.96 

Population Centres 2.25 

Highway 1.84 

Land Surface Temperature 1.69 

Forest Processing Facilities 1.67 

Nearest EAB Positive Location 1.51 

NDVI 1.20 

Elevation 1.10 

Slope 1.10 

Ports 1.07 

Aspect 0.62 

June Precipitation 0.52 
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Figure 5. Comparison of the mean decrease Gini of the RF, VIF-guided RF, and RFE-RF models. Note* 

The explanatory variables without values for the VIF-guided RF or RFE-RF models suggest that they 

were eliminated by the methods  

 

An examination of Figure 5 reveals that the inclusion of all the variables in the RF model 

achieved similar variable importance rankings as the VIF-guided RF model and the RFE-RF 

method. The variable June wind speed remained the top most important variable identified 

by all methods. For the RFE-RF method, the importance of June wind speed was the most 

substantial compared to the other models following the elimination of the variables NDVI, 

aspect, slope, ports, June precipitation. A noteworthy observation about the variables camps 

and June solar radiation, which exhibited multicollinearity and was consequently eliminated 

by the VIF-guided RF method, were included in the model by the RFE-RF method. A study 

conducted by Darst et. al., (2018) concluded that in the presence of many highly correlated 

variables, the standard random forest model outperformed the RFE-RF model in terms of 

highly ranking the causal variables. Although there was not an abundance of the number of 

correlated variables in this research and there is mainly one causal variable, a reflection of the 

ability of the methods to effectively transfer to novel datasets was assessed by their 

accuracies. While all three models scored similar accuracies for the validation dataset (96%), 
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the accuracies for the prediction dataset achieved by the standard RF and VIF-guided RF were 

52.27% whereas the accuracy of the RFE-RF method was 47.73% which suggests the RFE-RF 

method eliminated too many variables which were necessary for calibration of the model. 

Furthermore, since the RF model achieved the same prediction accuracy as the VIF-guided RF 

method, it supports the theory that RF is robust against multicollinear variables (Matsuki et 

al., 2016). 

 

5.4 Random Generalized Linear Model (RGLM) 

 

In terms of transferability, both logistic regression and Random Forest shared similar results in 

that they performed relatively well on the validation dataset and poorly on the prediction 

dataset. Comparatively, logistic regression performed better than Random Forest on the 

prediction dataset (16% increase) which suggests superiority of a statistical model over the 

machine learning model for transferability purposes using species data. Since RGLM combines 

the concept of bootstrapped GLMs and a randomness aspect from Random Forest, it is 

expected that RGLM should have the best performance. As mentioned before, although a 

guideline for the number of variables randomly selected for each node is specified by Random 

Forest, RGLM does not provide such recommendations. As a result, while using the same 

number of trees in Random Forest as the total number of bags, the number of variables 

required for forward regression in each bag was determined by assessing the OOB error rates 

in a sensitivity analysis in Table 5.13.   
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Table 5.13. nCandidateCovariates vs. the out-of-bag (OOB) estimate of error rates for RGLM 

nCandidateCovariates OOB Estimate of Error 
Rate (%) 

12 7.50% 

11 7.50% 

10 7.00% 

9 7.00% 

8 7.25% 

7 7.00% 

6 7.00% 

5 6.50% 

4 6.50% 

3 6.50% 

2 6.75% 

1 7.25% 

 

According to Table 5.13, it is evident that using 200 bags, the ideal number of candidate 

variables is difficult to assess as there is no single number of candidate predictor variables 

greater than which the OOB rate stabilizes at a constant value. As a result, the validation and 

prediction accuracies were analyzed for each number chosen for the candidate covariates. The 

results indicated that using a “nCandidateCovariates” value of 7 achieved the greatest 

transferability as summarized in Table 5.14 and 5.15, respectively. 

 

Table 5.14. Classification tables of the validation dataset using RGLM 

 Absence Presence Total % Correct  

Absence 46 4 50 92.00% 
 

Presence 1 49 50 98.00% 
 

Total 47 53 100 95.00% 
 

 
 

Table 5.15. Classification tables of the prediction dataset from 2013 using RGLM 
 Absence Presence Total % Correct  

Absence 20 2 22 90.91% 
 

Presence 5 17 22 77.27% 
 

Total 25 19 44 84.09% 
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From the classification results in Tables 5.14 and 5.15, while the validation accuracy achieved 

by RGLM were consistent with logistic regression and Random Forest, its prediction accuracy 

significantly exceeded both models. Furthermore, by abstracting the RGLM as a bagged 

regression model as opposed to an individual regression model, it was expected that its 

accuracies would surpass logistic regression’s and by combining the concept of randomly 

selecting a specified number of predictor variables for each bag like Random Forest, RGLM 

proved to the most robust model for both interpolation and extrapolation purposes.  

 

5.4.1 Variable Importance of RGLM 

 

Next, the variable importance measure of RGLM was investigated. In RGLM, a command used 

as a proxy for variable importance provides the variables that are repeatedly chosen in each 

bag for forward regression using the AIC criterion. Using this command, the variables that are 

chosen the most times across all bags are considered the most significant ones. Accordingly, 

the variable importance ranking displaying the variables and the number of times they were 

chosen in each bag is given in Figure 5.1.  

 

 

Figure 5.1. Most important variables identified by the RGLM model determined by the number of times 
the variable was chosen for forward regression in each bag using RGLM 
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According to Figure 5.1, the single most important variable selected in forward regression in all 

200 bags was June wind speed. The rest of the variables were chosen by forward selection in 

150 or lesser number of bags. A noteworthy observation is that the variable aspect was not 

chosen to be included in any bag as it was considered the least significant variable and both 

logistic regression and Random Forest support the same conclusion.  

 

5.5 Comparison of the Three Model Performances 

 

Before discussing the results of the three models, it is important to discuss various factors of 

the species and predictor data that could have affected model performance. For starters, the 

two main issues associated with the species data were sampling bias and a greater proportion 

of EAB absence data compared to the presence data. Inconsistencies in the collection of the 

species data misrepresents the true range of the species and therefore makes it challenging for 

distribution models to predict in a new area. By filtering the species data using a threshold and 

determining the optimal ratio of presence to absence points required to achieve the highest 

classification accuracies, the quality of the species data can be improved.  

 

Secondly, inconsistencies between the scale and acquisition periods of the predictor variables 

and the species data undermines the authenticity of the models. For instance, due to the high 

costs associated with acquiring climactic predictor variables such as rainfall and wind speed, 

they are only available as a long-run average over several years at a coarse scale (i.e., 1 km2). 

Having said that, if the scale of the species data is greater than the predictor variables, each cell 

of the predictor variables can contain both presence and absence points. In order to overcome 

this issue, eliminating the absence points that fell within 1 kilometer of the presence points 

ensured that each cell of the coarser scale predictor variables represented one sampled point. 

Notably, a previous trial without filtering the absence points achieved lower model accuracies 

(approximately 15% lower) for the validation dataset and slightly lower model accuracies for 

the prediction dataset. However, one of the drawbacks of filtering the species data in order to 
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account for the scale of the predictor variables is that it caused some variables to achieve biased 

importance rankings. For instance, after filtering the absence points, the variable June wind 

speed was overwhelmingly ranked the most important variable by the three models which was 

not the case prior to filtering. Consequently, whether this relationship is entirely valid or as a 

result of the filtering is uncertain. That said, species distribution models built for large scale 

studies should carefully inspect the species data to ensure it is consistent with the scale of the 

predictor variables. With regards to the models, evaluating a species distribution model based 

on two aspects of transferability (i.e., interpolation and extrapolation) provides a means of 

“identifying relationships between the species and predictor variables that are truly general 

thereby reducing the risk of overfitting” (Wenger & Olden, 2012, p. 262). That said, a robust 

species distribution model is one that can predict both validation data with similar spatio-

temporal characteristics and a novel dataset successfully with varying conditions. In terms of 

improving model performance, machine learning methods such as support vector machines 

(Drake et al., 2006), classification and regression trees, and Random Forest (Breiman, 2001) are 

known to match non-linear complex relationships in a dataset more efficiently than traditional 

generalized linear modelling (Wenger & Olden, 2012). As a result, both generalized linear 

modelling and machine learning methods were exercised in this research to test the 

transferability capabilities of the models.  

 

With regards to fine-tuning the models, adjustments of model parameters were essential in 

achieving high classification accuracies. For instance, logistic regression’s backward stepwise 

variable selection method achieved the highest prediction accuracy compared to the forward 

stepwise variable selection methods as it used fewer variables to effectively predict EAB risk. 

For the machine learning models, although it is not certain how sensitive Random Forest is to 

the number of predictor variables randomly selected for each tree because the default value 

was utilized, the number of variables selected for forward regression in each bag for RGLM was 

quite sensitive to the classification accuracies. As a result, a sensitivity analysis was performed 

by increasing the number of predictor variables for each tree or bag and analyzing the validation 

and prediction accuracies in Figure 5.2.  
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Figure 5.2. Sensitivity analysis of the classification accuracies vs. varying numbers of predictor variables 
for RGLM and Random Forest 
 
 

As evident in Figure 5.2, when the number of predictor variables increased, the validation 

accuracies of RGLM and RF stayed relatively constant beyond an increase of three variables but 

the prediction accuracy changed drastically. RGLM was more sensitive to the number of 

predictor variables chosen to be selected for forward regression in each bag compared to RF, 

where the accuracy significantly dropped and plateaued after using just one variable. In 

general, as the number of predictor variables increased, the classification accuracy increased 

for RGLM with two distinct hikes in accuracy using four and seven variables. Moreover, the 

sensitivity analysis exemplified the superiority of RGLM over RF in predicting a novel dataset 

and an adjustment in the number of variables made a huge impact on the classification 

accuracy. 

 

According to the classification accuracies, all models achieved high validation accuracies, 

stepwise backward logistic regression (93%), Random Forest (95%), and RGLM (95%), 

respectively. For the prediction dataset, RGLM outperformed the two models by achieving 84% 

whereas logistic regression achieved 70% and Random Forest performed the poorest (52%). 
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Nevertheless, since the classification accuracies were obtained by enforcing a threshold of 0.5 

on the probabilities, the results could potentially be subjective. Furthermore, a more robust 

form of assessing model performance is by using ROC curves and corresponding AUC values 

which is independent of the probability threshold. The ROC curves are displayed in Figure 5.3 

and the corresponding AUC values and standard deviations are summarized in Table 5.16. 

 

Figure 5.3. A comparison of the ROC curves of the three models (logistic regression=black line, random 
forest=blue line, RGLM=red line) for the validation dataset (left) and prediction dataset (right) 

 

Table 5.16. Average AUC and standard deviation values for the three models (logistic regression, 
Random Forest and RGLM) 

Model 
Validation Dataset Prediction Dataset 

AUC SD AUC SD 

Logistic Regression 0.96 0.02 0.86 0.06 

Random Forest 0.99 0.006 0.58 0.09 

RGLM 0.96 0.02 0.83 0.07 

 

From Table 5.16, it is evident that the AUC values of logistic regression, Random Forest, and 

RGLM are very close to 1 with Random Forest attaining an almost perfect AUC value for the 

validation dataset. On the other hand, for the prediction dataset, the AUC values of logistic 

regression (0.86) and RGLM (0.83) were similar compared to Random Forest (0.58). In the same 

way, the ROC curve of Random Forest in Figure 5.3 gravitates towards the diagonal where the 

true positive rate is equal to the false positive rate (AUC = 0.5) for all thresholds, suggesting 
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that the predictive ability of the model is equivalent to random assignment (Freeman & Moisen, 

2008). Overall, based on the results of the ROC curves and AUC values, RGLM and logistic 

regression had similar predictive powers compared to the classification accuracies which 

established RGLM as the most robust model. Next, the results of the risk maps were validated 

(Table 5.17) by calculating the percentage of EAB presence and absence points that fell under 

the five categories of risk. 

 

Table 5.17. Risk map validation results of the EAB prediction dataset from 2013 

 

Logistic Regression Random Forest RGLM 

Presence 
Points (%) 

Absence 
Points (%) 

Presence 
Points (%) 

Absence 
Points (%) 

Presence 
Points (%) 

Absence 
Points (%) 

Lowest Risk 23% 13% 59% 36% 23% 23% 

Low Risk 41% 41% 41% 59% 40% 50% 

Moderate Risk 4.5% 23% 0% 5% 23% 9% 

High Risk 18% 13% 0% 0% 0% 18% 

Highest Risk 13.5% 10% 0% 0% 14% 0% 

 

According to Table 5.17, none of the models were able to successfully divide the EAB detected 

and non-detected ash trees into appropriate categories based on risk. However, by examining 

the two extreme risk levels (lowest risk and highest risk), some important insights can be made. 

For logistic regression, the second greatest proportion of presence points (23%) fell in the 

lowest risk category compared to a very low proportion of points in the highest risk category 

(13.5%). Similar percentages are obtained for RGLM with the exception of a greater proportion 

of points in the moderate risk category than the high-risk category compared to logistic 

regression. Conversely, Random Forest incorrectly predicted 59% of the EAB presence points in 

the lowest risk category and 0% presence points were predicted in the high or highest risk 

category suggesting substandard prediction abilities. The classification accuracies of the 

absence points were relatively high for all three models with a large proportion of absence 

points falling in the low and lowest risk categories.   

 



94 
 

Based on the results of Random Forest, research performed by Wenger & Olden (2012) on the 

occurrence of the brook and brown trout in the western United States concluded similar 

findings where Random Forest outperformed all models using a random cross-validation 

dataset but performed poorly on a dataset that varied spatially. On the other hand, a 

generalized linear mixed model (GLMM) displayed greater transferability than Random Forest. 

It is proposed by the authors that the GLMM performed better than Random Forest due to its 

inclusion of random effects and correlated errors in the dataset during model calibration 

(Wolfinger & O’connell, 1993). To be specific, in the GLMM, the variable temperature was 

represented by a quadratic relationship due to an a priori association with the species niche 

(Magnuson et al., 1979). Conversely, Random Forest models the response variable against the 

predictor variables empirically without making assumptions about the true form of the data 

(Wenger & Olden, 2012). The authors established this phenomenon by constructing a partial 

dependence plot of relative occurrence vs. response to temperature for Random Forest and 

compared it to a plot of the occurrence probability vs. temperature of the best-supported 

GLMM. The results showed that the response curve for Random Forest appeared very jagged 

whereas the response curve for GLMM was smoother. Furthermore, the results indicated that 

unlike GLMM, the response curve for Random Forest matched the training data so closely that 

it failed to transfer to new datasets.  

 

In conclusion, the performance of the models in this research coincided with the findings by 

Wenger & Olden (2012). Although a standard logistic GLM was used in this research as opposed 

to a GLMM used in the latter, the fact remains that logistic regression also scrutinizes the 

selection of predictor variables into the model by offering various variable selection methods 

(i.e., forward, backward, forward step-wise, backward step-wise, etc.) in order to maximize the 

selection of only significant variables. By the same token, RGLM capitalizes on the forward 

variable selection method by incorporating the concept of bootstrapped samples and ranking 

the predictor variables prior to being selected for forward selection.  
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On the contrary, Random Forest does not provide the user with many model specifications that 

pertain to variable selection. As a result, although Random Forest is known to model complex 

relationships between a response variable and predictor variables without any a priori 

knowledge, it fails to detect conditional dependencies among the predictor variables in a new 

dataset if the training dataset does not exhibit such a relationship (Prajwala, 2015; Robnik-

Šikonja, 2004). This limitation of Random Forest can be attributed to its variable importance 

measure, the Gini index as it measures the impurity before and after a split is made by the 

candidate variable at the node level. In this way, Random Forest assumes a conditional 

independence of the predictor variables as the Gini index evaluates each variable individually 

and does not take into consideration other contributary variables (Robnik-Šikonja, 2004) and  

is biased to the order of variables at each node of the tree (Hur et al., 2017). With this in mind, 

the likelihood ratio test and AIC criterion used in logistic regression and RGLM compares 

competing models with different combinations of predictor variables in each model and selects 

the best model while preserving conditional dependencies between the variables thereby 

providing greater a transferability than Random Forest.  

 

In summary, when comparing the three models, they all performed well on the validation 

dataset but relatively poorly on the prediction set from 2013. A logical explanation would be 

that the environmental conditions had changed from 2012 in 2013 thereby affecting the 

explanatory variables, especially the values of the environmental variables. This change was 

assessed by comparing the average values of the explanatory variables of the EAB presence and 

absence points in 2006-2012 to the EAB points in 2013 using bar plots in Figures 5.4 and 5.5. 
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Figure 5.4. Bar plot outlining differences between the average values of the explanatory variables for 
EAB presence points from 2006-2012 (grey) vs. EAB presence points from 2013 (blue)  

 

According to Figure 5.4, the average values of the climactic variables (i.e., June precipitation, 

surface temperature and solar radiation) for the 2006-2012 and 2013 EAB presence points were 

similar for both time periods suggesting that these variables did not affect the transferability of 

the models significantly. The average values of June wind speed, which was identified as the 

most important variable by all three models decreased slightly for the 2013 presence points. 

However, the mean values of the anthropogenic variables such as the distance from population 

centres, ports, forest processing facilities, highways and camps in 2013 differed substantially 

from the group of EAB presence points from 2006-2012. For instance, the EAB presence points 

were found significantly farther away from population centres and camps in 2013 than the 

points from 2006-2012. Although this finding reflects stricter regulations enforced by Canadian 

officials in these areas, the inconsistencies in the average values of the anthropogenic variables 

between the two time periods could explain the lower prediction accuracies of the models.  
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Figure 5.5. Bar plot outlining differences in the average values of the explanatory variables  

for EAB absence points from 2006-2012 (grey) vs. EAB abesence points (blue) from 2013 

 

Similar to the EAB presence points, the average values of the climactic variables such as June 

precipitation and solar radiation in Figure 5.5 did not differ for the EAB absence points for both 

time periods (i.e., 2006-2012 and 2013). However, for June wind speed and surface 

temperature, the absence points from 2013 exhibited slight decreases. As for the 

anthropogenic variables, the three variables that differed the most between 2006-2012 and 

2013 were distance from ports, highways and the nearest EAB positive location. The variable 

“distance from the nearest EAB positive location” showed some unexpected results as the EAB 

absence points appeared to be closer to the presence points during 2006-2012 compared to 

2013 whereas this trend was the opposite for the EAB presence points. Nonetheless, the bar 

plots summarized the lack of consistency between the values of the predictor variables for the 

2006-2012 and 2013 datasets which could have contributed to the lower prediction accuracies 

of the models. 
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CHAPTER 6: CONCLUSIONS AND REMARKS 

 

In conclusion, this research established a framework to model the spread of the EAB in 

Southern Ontario by designing methods to improve the quality of the species and predictor 

data in order to achieve high model accuracies. Since the EAB outbreak in Ontario, early 

detection of the beetle in uninhabited areas is paramount to slowing its spread. That said, in 

order to successfully build a predictive model to identify potential at-risk areas, high quality 

historic species data is required. However, there were a few discrepancies with the collection 

of the sampled data in this research that posed challenges for the modelling process which 

should be discussed in detail. For instance, during the surveying process, a majority of the data 

acquisition was performed through visual survey during which the trees were briefly examined 

at the ground or canopy level. As a result, the EAB would be virtually undetectable at low 

densities if the trees did not exhibit visual signs of infestation. Although visual surveying was 

the preferred method over other labour and cost-intensive sampling methods such as branch 

sampling, the possibility of mislabelling a tree as “absence” introduced significant omission 

errors in the detection of the EAB, thereby reducing the quality of the data.  

 

Secondly, although the sampled data provided by the CFIA provided an excellent temporal 

coverage of the EAB from the years 2002-2013 in Ontario, this meant the data exhibited high 

spatial heterogeneity which was evident in the descriptive statistics. For instance, the 

descriptive statistics in Tables 3.2 and 3.3 indicated the anthropogenic variables had high 

standard deviations for the sampled points. A solution to address the issue of varying spatial 

scales on the distribution of a species is to create models with hierarchical structures where the 

predictors are separated into sub-models (Mackey & Lindenmayer, 2001). However, the 

efficiency of such models has not been tested thoroughly to be used as a reliable method to 

deal with different  scales (Elith & Leathwick, 2009). In order to overcome the scale issue 
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pertaining to the predictor variables, a solution proposed in this research was to eliminate all 

points that fell within a distance that is equivalent to the scale of the coarsest predictor variable. 

This way, no two sampled EAB presence and absence points shared the same cell of a predictor 

variable. With this in mind, a future research objective is to implement a generalized linear 

mixed model (GLMM) that can include random variation within the two classes (i.e., EAB 

presence and absence) even when there is inconsistency between the scales of the predictor 

variables. 

 

Aside from addressing the scale issue, the quality of the predictor data was also assessed such 

as testing for multicollinearity using a correlation matrix and VIF values. Although the effect of 

multicollinearity in generalized linear models is clear, such that it inflates the regression 

coefficients of the predictor variables, its effect on machine learning models lacks a proper 

understanding. In this research, the effects of excluding variables that exhibited high VIF values 

was assessed using Random Forest where a full model containing all the variables was 

compared to reduced models excluding the multicollinear variables and a model containing 

variables retained by the RFE method. Overall, it was concluded that the exclusion of variables 

that exhibited high VIF values from the models resulted in greater classification accuracies than 

the RFE method which eliminated too many variables. 

 

A prominent issue with the species data was high levels of clustering as indicated by the nearest 

neighbour index which was problematic from a modelling perspective. As a result, the effects 

of clustering were tackled by filtering the species clusters to a single point based on a distance 

threshold. Using a distance threshold of 100 meters for the EAB presence points and 150 metres 

for the EAB absence points, the classification accuracies achieved on the validation dataset by 

logistic regression, Random Forest, and RGLM were 93%, 95%, and 95%, respectively. Another 

method of pre-processing the EAB dataset to maximize model performance was determining 

the most appropriate ratio of EAB presence to absence points. The optimal ratio was 

determined to be 1:1 whereas using greater number of absence points to presence points 

deteriorated the models’ performances.  
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Although all the models performed well on the validation dataset, the performances of logistic 

regression and Random Forest were significantly lower for the prediction dataset: logistic 

regression (70%) and Random Forest (52%). On the other hand, RGLM outperformed both 

models by achieving 84% for the prediction accuracy. It is a well known historical issue with 

species distribution models that are tested for their transferability, especially for extrapolation 

purposes (Elith & Leathwick, 2009) to exhibit a lower performance due to an assumption of 

equilibrium conditions of the predictor variables in the predicting region. For this reason, 

variability among the predictor variables due to natural phenomenon such as climate change 

in the predicting region cannot be reflected by the species points used to train the model. 

Differences among the predictor variables between the EAB presence and absence points in 

the sampling region (2006-2012) vs. the prediction region (2013) was assessed using bar plots 

for the two spatio-temporal periods to substantiate any differences. The findings concluded 

that various predictor variables, particularly the anthropogenic variables exhibited large 

variations between the two sets of points which sheds some light on the poor prediction 

capabilities of the models as a result of conflicting values of the predictor variables. Above all, 

even with spatio-temporal variations in the prediction dataset, RGLM performed the best due 

to its sophisticated variable selection methods over Random Forest and logistic regression such 

as administering two rounds of variable ranking prior to selection into the models. A drawback 

of RGLM over Random Forest is the longer computation time.  

 

Aside from the classification accuracies of the three modeling methods, their variable 

importance rankings were consistent. According to the results, logistic regression, Random 

Forest, and RGLM identified June wind speed as the most significant variable. The other 

variables had significantly lower rankings which raised the question of data separation. When 

a contingency table was created for June wind speed, it was determined that the variable 

contributed to a quasi-separation of the two classes which could explain its superiority over 

other variables. From a climactic perspective, it suggests that the EAB do not require high wind 

speeds to travel long distances and that other transport mechanisms, most likely anthropogenic 

vectors are responsible. Among the anthropogenic variables, population centres and forest 
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processing facilities were ranked amongst the top variables by the machine learning models 

suggesting that the influence of humans on the spread of the EAB is profound.  

 

A variable that surprisingly was not identified as one of the most important variables as 

suggested by literature (Huset, 2013; Prasad et al., 2010) was the distance to the nearest EAB 

positive location. This variable was overwhelmingly the most important variable in the logistic 

regression and Maxent models used by Huset (2013). However, although its negative effect on 

EAB risk was consistent with Huset (2013), such that as the distance from an EAB positive 

location increased, the EAB risk decreased, it was among the lower ranked variables in the 

models. This relationship is also authenticated by the descriptive statistics where the average 

distance from a presence point to a nearby presence points was shorter than from the absence 

points which suggests that the EAB thrive in areas that were previously infested. 

 

The last objective of this research was to create an automated risk map tool which streamlined 

the visualization of risk probabilities outputted by the machine learning models. The advantage 

of the tool is that it can be used on any spatial scale to calculate the risk of a species. That said, 

the disadvantage is that it is quite computationally intensive as it requires the collection of an 

adequate amount of sample points pertaining to the desired resolution of the risk map (i.e., the 

higher the resolution of the risk map, the more sample points are required). Following the 

acquisition of the sample points, the rest of the steps such as obtaining the probabilities for 

each sampled point does not require much computer time. Nonetheless, the creation of the 

risk map tool using the ArcGIS-R bridge for the Random Forest and RGLM models allowed the 

opportunity to compare all the models in the same GIS platform. An extension of this tool is to 

develop a mobile and desktop application on the early detection of the EAB in Canada. The 

application is currently being developed by Esri Canada in conjunction with our research team 

at the Earth Observation Laboratory of York University. The scope of the application is to allow 

users to visualize previously EAB-infested trees, enter locations of newly EAB-infested trees and 

visualize the risk of the area based on previously detected EAB positive locations and various 

explanatory layers. The application holds a lot of promise but the true method of eradication 
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of the EAB consists of a multi-integrated plan consisting of stricter regulations on all pathways 

of exposure. 

 

Ultimately, a comprehensive analysis was conducted on the preparation of the EAB dataset in 

Southern Ontario in order to model its dispersal patterns using various distribution models. 

From the classification results, it is abundantly clear that strictly machine learning methods 

cannot be used to predict the emergence of the EAB but rather a combination of statistical 

modelling with some aspects of randomness such as a random generalized linear model should 

be used. Using the methods and results from this research as a stepping stone, a similar 

procedure can be used by conservation authorities to visualize the dispersal of the EAB in any 

region. For the most part, complete eradication of the EAB is not in the foreseeable future, but 

its spread can certainly be impeded with the right vision and tools. 
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Random Generalized Linear Model (RGLM) EAB Risk Map (2013) 


