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ABSTRACT

Understanding Observed and Projected Climate Changes

in the Antarctic, and their Global Impacts

Mark England

The Antarctic climate has undergone complex changes over the last fifty years, driven largely

by stratospheric ozone depletion. By the end of this century, under the current trajectory

of anthropogenic emissions, the climate of Antarctica is projected to be significantly wetter,

warmer and prone to the collapse of ice shelves and loss of sea ice cover. The overarching

aim of this thesis is to increase our understanding of recent and projected Antarctic climate

change and its drivers. We also investigate the potential global implications of these changes

and show that the effects will not be limited to the southern high latitudes.

In the first half, we investigate the drivers of Antarctic climate change over the obser-

vational period. Specifically, we study the influence of the stratosphere on the southern

high latitude surface climate, through stratosphere-troposphere dynamic coupling as well as

stratospheric ozone depletion. We examine the impact of these on the Amundsen Sea Low, a

key circulation feature near West Antarctica. We demonstrate using reanalysis that strato-

spheric heat flux extremes are linked to high latitude tropospheric anomalies in the Amund-

sen Sea region. During extreme negative (positive) events there is a westward (eastward)

shift of the Amundsen Sea Low, a warming (cooling) and increase (decrease) of geopotential

height over the Amundsen and Bellingshausen Seas. We find that most CMIP5 models are

not able to capture this relationship. Next, we demonstrate that, since 1965, stratospheric

ozone depletion has acted to deepen the Amundsen Sea Low in austral summer by 1 hPa

per decade. This result was consistent across two different comprehensive climate models,

each with very different model physics and climate sensitivity. It must be noted that the

ozone depletion signal on the Amundsen Sea Low is small compared to the internal climate

variability in this region. Using ensembles of model integrations and analysing them over

the full period of ozone depletion (which started a couple of decades before the satellite era)

is necessary to detect a robust signal.



In the second half, we investigate the effects of future Antarctic climate change, specifi-

cally the effects of projected sea ice loss over the coming century. Climate model simulations

are used to isolate the effect of end-of-the-century Antarctic sea ice loss which is compared

and contrasted with the effects of projected Arctic sea ice loss. We first study the effects of

projected Antarctic sea ice loss used atmosphere-only simulations. As for the Arctic, results

indicated that Antarctic sea ice loss will act to shift the tropospheric jet equatorward, an

internal negative feedback to the poleward shift associated with increased greenhouse gases.

Antarctic sea ice loss is shown to have an important effect throughout the year whereas

Arctic sea ice loss will have more seasonally varying impacts. Building upon these results we

the use the same climate model but in a fully coupled setup to study the effects of projected

Antarctic sea ice loss on the climate system. We show that both Arctic and Antarctic sea ice

loss will have important global effects, causing a ‘mini global warming’ signal. The tropical

response to Antarctic sea ice loss is shown to be remarkably similar to that of Arctic sea

ice loss, with enhanced warming in the Eastern Tropical Pacific and increased precipitation

throughout much of the equatorial Pacific. These results highlight how intimately coupled

the Antarctic climate is to the rest of the climate system.
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CHAPTER 1

INTRODUCTION

Antarctica is the most remote, and most extreme, continent on the planet. Its landmass is

larger than both Europe and the continental United States. It contains the coldest (-89.2°C

recorded at Vostok station), windiest (over 200 mph at Cape Denison) and driest (the Dry

Valleys) places on Earth. Antarctica was first sighted as late as 1820, being the last continent

to be discovered. Due to its remote and inhospitable nature, few observational records exist

in the interior of the continent; Stearns et al. (1997) refer to Antarctica as Earth’s “largest

meteorological void”. Despite these challenges, it is imperative to understand how the climate

of Antarctica has changed in the recent past and will change in the future. This is particularly

important because changes in the Antarctic climate can impact the lower latitudes, and may

even have important global implications.

There remain many challenges in trying to detect robust climate change signals at the

southern high latitudes. The paucity of observational data makes it difficult to constrain and

evaluate climate model simulations. Reanalysis products, which incorporate satellite data,

extend back to 1979; however, there are large, known biases over Antarctica, especially in

winter (Bracegirdle and Marshall, 2012). The climate variability of Antarctica and the sur-

rounding Southern Ocean is one of the largest on Earth (Ting et al., 2009) and so the lack of a

long observational record makes the detection and interpretation of climate trends especially

difficult. In addition, there are less than 20 years of systematic, high quality observations

from the Southern Ocean (Riser et al., 2016). This limits our ability to understand changes

in ocean circulation and ocean heat uptake and has obvious implications for studying the

1



Antarctic.

To improve our understanding of Antarctic climate change we utilise state-of-the-art

climate model simulations in an idealised manner. This is a powerful technique which allows

us to isolate one important component or driver in the complex climate system. For example,

we carry out simulations with or without an ozone hole, or with and without sea ice loss,

and this enables us to understand their effects on the coupled climate system. Our results

must be understood with the limitations previously outlined, as well as ability of the models

to realistically simulate the climate of the southern high latitudes.

In the remainder of this chapter, we first outline the major observed changes in Antarctic

climate over the past fifty years (Section 1.1). To provide context for this thesis, we focus on

observed Antarctic sea ice trends (Section 1.1.1) and the Amundsen Sea Low (ASL) (Section

1.1.2) and discuss the potential drivers of recent Antarctic climate change (Section 1.1.3).

We then transition to summarising how the Antarctic climate is projected to change in the

coming century (Section 1.2). This chapter concludes with an outline of this thesis and its

research goals (Section 1.3).

1.1 Observed changes in the Antarctic climate

Over the instrumental period (roughly the last fifty years), the most prominent and robust

feature of circulation change around Antarctica has been an increase in the positive phase

of the Southern Annular Mode (SAM) index (Turner et al., 2009a). The SAM is the major

mode of atmospheric variability at the southern high latitudes which reflects the difference

in zonal mean sea level pressure between the mid- and high-latitudes (Marshall, 2003). The

trend towards a more positive SAM index is due to a drop in pressure around the coast of

Antarctica and an increase in pressure at lower latitudes. This has a resulted in a poleward

shift of the mid-latitude jet and a strengthening of the zonal wind by 15-20% (Turner et al.,

2009a).

While most of the Earth’s surface has warmed over the past half century, much of the
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Antarctic continent has experienced either no warming or statistically significant cooling

(Turner et al., 2009a; Smith and Polvani, 2017). The Antarctic Peninsula and Western

Antarctica, however, have warmed substantially (Turner et al., 2009a; Smith and Polvani,

2017) and there has been an increase in surface mass loss due to glacier retreat in these

regions (Konrad et al., 2017; Scambos et al., 2017; Rignot et al., 2019). In fact, there is

new evidence to suggest that mass loss hasn’t been confined to the Western Antarctic and

that the Eastern Antarctic Ice Sheet is less stable than originally presumed (Rignot et al.,

2019). These trends have potentially disastrous implications for sea level rise (Ritz et al.,

2015; DeConto and Pollard, 2016).

1.1.1 Sea ice trends

Over the period 1979-2015, whilst Arctic sea ice has declined dramatically (Comiso et al.,

2017b; Stroeve and Notz, 2018), Antarctic sea ice extent (SIE) experienced a small but

statistically significant increase of 2% per decade. These Antarctic sea ice trends have a

complex seasonal and spatial dependence (Fig. 1.1). The largest positive trend has occurred

in the Western Ross Sea region, in every season, and there has also been a large increase

of sea ice concentration (SIC) in the Weddell Sea in austral autumn. The only consistent

decrease in SIC over this period has been in the Amundsen and Bellingshausen Seas in

austral summer and autumn. Climate models, however, are not able to replicate an increase

in SIE and instead simulate a substantial loss of Antarctic sea ice over this period (Eisenman

et al., 2011; Rosenblum and Eisenman, 2017), as CO2 concentrations have risen.

There have been a number of proposed explanations for why Antarctic SIE, in contrast

with what climate models simulate, has not been declining. It has been suggested that

accelerated mass loss from the Antarctic ice sheet (Wingham et al., 2009) has led to a

freshening of the Southern Ocean (Jacobs et al., 2002) which may have slowed the pace

of Antarctic sea ice loss (Bintanja et al., 2013). After performing model experiments with

fresh water dynamically added in the Amundsen Bay, however, Swart and Fyfe (2013) find

little effect on sea ice trends from mass loss from the Antarctic ice sheet. Alternatively,
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Figure 1.1: Trends in the sea ice cover during the austral (a) winter, (b) spring, (c) summer, and (d) autumn and (e) the entire

year, during the period August 1981–December 2015, using SSM/I data. This is Figure 5 of Comiso et al. (2017a).
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stratospheric ozone depletion over the Antarctic (Section 1.1.3), the major driver of Southern

Hemisphere (SH) climate change over this period (Polvani et al., 2011), is often argued to

cause this increase in sea ice ice extent, although modelling results do not agree (Landrum

et al., 2017). The regional pattern of sea ice trends, which seems largely to be wind driven

(Holland and Kwok, 2012), suggests a possible role for the ASL (Section 1.1.2) (Turner

et al., 2015). Lastly, the dominance of internal variability has also been used to explain the

discrepancy between models and observations (Polvani and Smith, 2013; Swart and Fyfe,

2013). These studies offer an important reminder to not directly match the observed record

and the ensemble mean of climate simulations.

The last three years have marked a departure from the gradual trend of sea ice growth and

Antarctic sea ice cover has diminished dramatically (Fig. 1.2). Sea ice conditions set record

lows in austral spring of 2016, which were 3σ outside of the normal range of variability

(Turner et al., 2017). The largest decrease in SIC occurred near the Antarctic peninsula

(Turner et al., 2017; Wang et al., 2019); Turner et al. (2017) highlight the important role of

the ASL in driving such changes. This sudden decrease in sea ice cover has been attributed

to atmospheric variability at the southern high latitudes (i.e. an extremely negative SAM)

(Stuecker et al., 2017; Turner et al., 2017) and a significant tropical influence (Stuecker

et al., 2017; Wang et al., 2019). It is also possible that the stratospheric polar vortex played

an important role (Wang et al., 2019). Whatever the cause of this recent record breaking

low, it has been suggested that this may be a turning point toward a continued decrease

in Antarctic sea ice cover over the coming decades (Ludescher et al., 2018). The effects of

future Antarctic sea ice loss are investigated in Chapters 4 and 5.

1.1.2 The Amundsen Sea Low

The ASL, a low pressure centre in the Amundsen-Bellingshausen Seas region, is a key feature

of the non-zonal circulation near Antarctica. To define the ASL, three metrics are normally

used: the absolute central pressure, and its position in longitude and latitude. The location

is determined from monthly sea level pressure data using the same method as Turner et al.
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Figure 1.2: Observed seasonal anomalies of Antarctic sea ice extent from 1979 through JJA 2018, seasonal anomalies from the

period 1979-August 2018; This is Figure 1a of Meehl et al. (2019).

(2013b): it is the location with the lowest mean sea level pressure in the region 50-180°W,

60-75°S. The location, and especially the depth of the ASL, has been shown to be important

for understanding surface air temperature, precipitation and sea ice conditions around West

Antarctica. Figure 1.3 shows, for the annual mean, the depth of the ASL between 1979 and

2017 (top row) from ERA-Interim data. We show the difference in sea ice conditions (bottom

row) between composites of years with the deepest ASL (blue dots) and the shallowest ASL

(red dots). This has been done for composites of different number of years to demonstrate

the robustness. The results show that an anomalously deep ASL is associated with an

increase in SIC in the Amundsen Sea and decrease in SIC in the Bellingshausen Sea and

Antarctic Peninsula. This is consistent with the meridional wind-driven changes due to a

deeper ASL and helps us understand the drivers of year-to-year variability of sea ice in the

West Antarctic.

One obvious question, therefore, is how has the ASL been changing over the past four

decades and has this contributed to the observed regional trends in Antarctic sea ice? Figure

1.4 shows the trend in the depth of the ASL in each season. There is a slight deepening

of the ASL during austral summer and autumn however these trends are not statistically

significant in any season, even using a 90% confidence level. The natural variability in

the West Antarctic region is extremely high and hinders detection of any possible signal

(Chapter 3). This suggests that the ASL is unlikely to be the driver of the recent trends in
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Figure 1.3: (Top row) The annual mean ASL depth in hPa from ERA-Interim, as defined in Turner et al. (2013b), between

1979-2017. (Bottom row) The difference in sea ice concentration (%) from NSIDC between a composite of years when the ASL

is at its deepest (blue dots) and a composite of years when the ASL is at its shallowest (red dots). We show the results of using

5, 8 and 11 years per composite to test the robustness of the results.
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Figure 1.4: 1979-2017 trends in the ASL depth, from ERA-Interim data. The trend is reported in red.

SIC. Comparing the regions of observed sea ice growth and loss in Figures 1.1 and 1.4, it

is clear that the sea ice trends are not consistent with an ASL signature. There has been

an increase in the Ross Sea rather than the Amundsen Sea and, if the ASL was driving the

changes, one would expect the opposite signed response in the Amundsen Sea and west of

the Peninsula.

1.1.3 Potential drivers of Antarctic climate change

The main driver of Antarctic climate change over the last fifty years has been stratospheric

ozone depletion (Polvani et al., 2011). A rapid increase in the amount of chlorofluorocarbons

(CFCs) and other ozone depleting substances (ODSs) in the atmosphere (Fig. 1.5a) caused

the concentration of stratospheric ozone to plummet (Fig. 1.5c). The largest loss of strato-

spheric ozone has been in the austral spring over Antarctica (Fig. 1.5d), commonly referred

to as the ozone hole. Since 1960, levels of stratospheric ozone over the Antarctic polar cap

have nearly halved. As a result of the Montreal protocol of 1987 (Catchpole et al., 2010),

which phased out the production and use of ODSs, stratospheric ozone concentrations are

projected to recover to 1980 levels by approximately 2060. Signs of the recovery of the ozone

hole have already been detected (Solomon et al., 2016; Kuttippurath and Nair, 2017).

Stratospheric ozone depletion has had an important influence over many different aspects
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Figure 1.5: Timeline of: a) CFC-11-equivalent emissions, b) equivalent effective chlorine, c) global total ozone, and d) October

Antarctic total ozone. This is Figure 1 of the executive summary of WMO (2018).
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of SH climate. It has caused a cooling of the polar stratosphere (Ramaswamy et al., 1996;

Son et al., 2010; WMO, 2018). In addition, the response to ozone depletion extends down

into the troposphere. Stratospheric ozone depletion is strongest during austral spring and so

tropospheric effects, which typically lag by 1-2 months, occur in early austral summer. These

effects includes a southward expansion of the Hadley cell (Polvani and Kushner, 2002; Kang

et al., 2011; Min and Son, 2013) and a poleward shift of the mid-latitude jet (Polvani et al.,

2011) and its accompanying storm tracks (Purich and Son, 2012; Grise and Polvani, 2014).

In fact, Polvani et al. (2011) demonstrate that over the second half of the 20th century, the

effects of stratospheric ozone depletion on the SH mid-latitude jet were 2-3 times larger than

those associated with greenhouse gases (Fig. 1.6, compare panels a and b). Stratospheric

ozone depletion has also contributed to recent changes in Southern Ocean temperature and

salinity (Solomon et al., 2015). Even without ozone depletion, variability in the stratosphere

is closely linked to anomalous tropospheric weather patterns in the SH through planetary-

scale waves (Gerber et al., 2012; Kidston et al., 2015). This can have an important regional

signature in the West Antarctic (Chapter 2).

In the absence of stratospheric ozone depletion, the climate of the southern high latitudes

would still have undergone significant change due to an increase in greenhouse gases. Roughly

a third of the observed poleward shift of the austral summer mid-latitude jet can be explained

by increased greenhouse gas emissions (Fig. 1.6). While the effects of stratospheric ozone

are seasonally confined, the response to increased greenhouse gases can be seen throughout

the year. Polvani et al. (2011) demonstrate that, unlike stratospheric ozone depletion which

has had no detectable effect, increased greenhouse emissions have resulted in a poleward

shift of the mid-latitude jet in austral winter. In addition to its effect on the jet, increased

greenhouse gases have also reduced the mean sea level pressure around Antarctica (Polvani

et al., 2011) and have played a more important role than ozone depletion in driving changes at

the southern low latitudes. Over the coming century (Section 1.2), CO2 and other greenhouse

emissions will become the dominant driver of Antarctic climate change.

Although not technically a ‘driver’ of climate change, the Southern Ocean is key in
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mediating the response of the southern high latitudes to ozone depletion and greenhouse

gas increases. Firstly, the Southern Ocean is a large sink of carbon, accounting for over

40% of the amount of greenhouse gases sequestered into the world’s oceans (Quere et al.,

2018). As a result, the Southern Ocean has played a key role in mediating the effects of

increased greenhouse emissions on the Antarctic (and the rest of the globe). Secondly, the

Antarctic Circumpolar Current, the dominant circulation feature in the Southern Ocean

which encircles the Antarctic continent, is understood to keep warm waters away from the

Antarctic continent and partially isolate the climate of Antarctica from the effects of lower-

latitude variability (Rintoul, 2000). Thirdly, the Southern Ocean has been shown to exhibit

a two-timescale response (Ferreira et al., 2014) in response to stratospheric ozone depletion.

The short timescale response is dominated by changes in the Ekman layer and leads to

cooling around Antarctica and an expansion of the sea ice cover. The long timescale response

is controlled by eddy diffusion and has the opposite effect: warming around the continent

and a reduction of the sea ice cover. Lastly, in response to increased greenhouse emissions,

the Southern Ocean has experienced a delayed warming (with important implications for

Antarctic climate change) due in large part to the meridional overturning circulation of the

Southern Ocean (Armour et al., 2016).
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Figure 1.6: The change in DJF mass stream function over the period 1960-2000 due to (a) stratospheric ozone depletion, (b)

greenhouse gases and (c) both stratospheric ozone depletion and greenhouse gases, with units of 1 × 1010 kg/s. The black

contours show the 1960 climatology values, with contour intervals of 2 × 1010 kg/s. Solid lines indicate positive values and

dashed lines indicate negative values. This is Figure 9 of Polvani et al. (2011).

1.2 Projected changes in the Antarctic climate

Determining how the Antarctic climate will change over the coming century, and the im-

plications for the global climate system, is extremely important. Projections of Antarctic

climate are made using a range of state-of-the art fully coupled climate models. These mod-

els, however, fail to capture many important features of the observed trends (Section 1.1).

The literature is divided on whether these discrepancies are due to high levels of internal

variability (Polvani and Smith, 2013; Zunz et al., 2013; Gagne et al., 2015) or to, yet to be

robustly identified, major flaws in the models (Marshall et al., 2014; Kostov et al., 2017;

Rosenblum and Eisenman, 2017). Whatever the reason, these projections are certainly asso-

ciated with large uncertainties. These uncertainties can be divided into uncertainties arising

from (i) internal variability (random fluctuations of the climate system unrelated to the

response to anthropogenic forcing), (ii) model uncertainty (differences in model design and

model physics causes models to produce different changes in climate in response to the same
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forcing) , and (iii) scenario uncertainty (imperfect knowledge of the emissions pathway)

(Hawkins and Sutton, 2009). By the end of this century, the uncertainties in projections

arise largely from scenario uncertainty and model uncertainty. The projections outlined be-

low come from a multi-model ensemble (to reduce model uncertainty) with many ensemble

members per model (to minimise the effects of internal variability) and are heavily dependent

on the emissions scenario.

Extensive surface warming is projected over Antarctica; models project a warming of

between 1 and 4°C over the coming century (Turner et al., 2009a). The Antarctic has

weaker projected polar amplification (where the poles warm faster than the rest of the globe)

compared to the Arctic. One reason for this asymmetry is the towering surface height of the

Antarctic continent, which is found to reduce the meridional heat transport and the water

vapour feedback (Singh et al., 2016; Salzmann, 2017). Nevertheless, the average projected

temperature increase over Antarctica is roughly an order of magnitude faster than previously

seen in Antarctic ice cores (Turner et al., 2009a). Although confidence in precipitation

projections are low, the most robust prediction is for an increase in net precipitation under

a warmer, moister climate, as well as a continued poleward shift of the mid-latitude storm

tracks (Uotila et al., 2007). As the world warms, the Antarctic ice sheets are expected to

shrink in size. Of particular concern is the West Antarctic ice sheet (Joughin and Alley,

2011); most modelling studies suggest that much of the ice sheet will remain viable during

this century but there is a tail risk of collapse which would be catastrophic for for global sea

level rise.

All models project a significant reduction in Antarctic SIE under business as usual con-

ditions, although the IPCC has low confidence in these projections. The annual average loss

of Antarctic SIE is projected to be 2.5×106km2, although most of the retreat is expected in

austral spring (Fig. 1.7). This will reduce the seasonal cycle of Antarctic SIE (Eisenman

et al., 2011), while, interestingly, the seasonal cycle of Arctic SIE will become more peaked.

Bracegirdle et al. (2015) demonstrate that historical biases in Antarctic sea ice cover can

project onto future projections of Antarctic climate. WACCM4, the model used in Chapters
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Figure 1.7: Projected change in Antarctic Sea Ice Extent for (left) February and (right) September under different RCP

scenarios.The multimodel mean is indicated by the line and the shading shows the spread across the multimodel ensemble. This

figure is taken from Topic 2 of the IPCC AR5 report (2014).

3, 4 and 5 simulates the seasonal cycle of Antarctic SIE well, which should increase confi-

dence in our results. The effects of future Antarctic sea ice loss have been studied much less

than the effects of future Arctic sea ice loss (e.g. Screen et al., 2018) so in Chapters 4 and 5

we explore the atmospheric response to projected Antarctic sea ice loss using sets of climate

model simulations.

Over the last half century, the response to greenhouse emissions and the response to

stratospheric ozone depletion combined together to create a robust effect on the climate

system, especially in austral summer. Concentrations of stratospheric ozone, however, are

expected to recover to pre-ozone hole levels by 2060 (Fig. 1.5). Therefore, over the next fifty

years, the effect on the atmospheric circulation of stratospheric ozone recovery and increased

greenhouse gases will oppose each other in austral summer (Arblaster et al., 2011; Polvani,

2011). This tug-of-war signal can also be seen in projected Antarctic sea ice loss, with ozone

recovery slowing the projected rate of sea ice loss (Smith et al., 2012). We should therefore

expect smaller trends in the SAM and the shift of the mid-latitude jet over the coming

decades. By the end, of the century however, the projected changes of the southern high

latitudes are driven almost entirely by increasing greenhouse emissions.
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1.3 Research goals of this thesis

The overarching aim of this thesis is to increase our understanding of recent and projected

Antarctic climate change and its drivers. We also investigate the potential global implications

of these changes and show that the effects may not be limited to the southern high latitudes.

In this section we briefly describe the results from each chapter and then highlight other

projects which the author has been involved in during his PhD.

1.3.1 Thesis outline

Chapter 2, Troposphere-stratosphere dynamical coupling in the Southern high latitudes, and

its linkage to the Amundsen Sea, was published in the Journal of Geophysical Research in

2016 (England et al., 2016b). In this chapter, we investigate the link between the strato-

spheric planetary-scale events and the surface climate of the southern high latitudes using

reanalysis and CMIP5 models.

We find that extremes in the distribution of SH stratospheric heat flux are connected

simultaneously to anomalous high-latitude tropospheric weather patterns in reanalysis, con-

sistent with results from the Northern Hemisphere (NH). The dynamical links are revealed

using a metric based on extreme stratospheric planetary-scale wave heat flux events, defined

as the 10th and 90th percentiles of the daily high-latitude wave 1 heat flux distribution at

50 hPa. We show extreme negative (positive) heat flux events are linked to a westward

(eastward) shift in the ASL and anomalous warming (cooling) over the Amundsen Belling-

shausen Seas in reanalysis data. Since coupling to the stratosphere via planetary waves has

significant impacts on the tropospheric circulation of both hemispheres, it is important to

understand which coupled climate models can reproduce this phenomenon. The heat flux

metric is used to evaluate troposphere-stratosphere coupling in CMIP5 models and com-

pare their performance across hemispheres. The results show that models with a degraded

representation of stratospheric extremes exhibit robust biases in tropospheric sea level pres-

sure variability over the Antarctic Peninsula. Models which fail to capture the extremes in

15



stratospheric heat flux, significantly underestimate the variance of the distribution of mean

sea level pressure anomalies over Western Antarctica.

Chapter 3, Robust response of the Amundsen Sea Low to stratospheric ozone depletion,

was published in Geophysical Research Letters in 2016 (England et al., 2016a). In this

chapter, using results from two different climate models, we demonstrate that stratospheric

ozone depletion causes a deepening of the ASL during austral summer.

The effect of stratospheric ozone depletion on the ASL, a climatological low-pressure cen-

ter important for the climate of West Antarctica, has been uncertain. Using state-of-the-art

climate models, we show in this chapter that stratospheric ozone depletion can cause a sta-

tistically significant deepening of the ASL in summer with an amplitude of approximately

1 hPa per decade. We are able to attribute the modelled changes in the ASL to strato-

spheric ozone depletion by contrasting ensembles of historical integrations with and without

a realistic ozone hole. In the presence of very large natural variability, the robustness of

the ozone impact on the ASL is established by (1) examining ensembles of model runs to

isolate the forced response, (2) repeating the analysis with two different climate models, and

(3) considering the entire period of stratospheric ozone depletion, the beginning of which

pre-dates the satellite era by a couple of decades.

Chapter 4, Contrasting the Antarctic and Arctic atmospheric responses to projected sea

ice loss in the late 21st Century, was published in the Journal of Climate in 2018 (England

et al., 2018). In this chapter, we use an atmospheric general circulation model with perturbed

sea ice conditions to isolate the atmospheric response to projected Antarctic sea ice loss. We

compare and contrast this with the atmospheric response to projected Arctic sea ice loss.

Models project that Antarctic sea ice cover will decline considerably by the end of this

century, but the consequences remain largely unexplored. In this chapter, the atmospheric

response to future sea ice loss in the Antarctic is investigated, and contrasted to the Arctic

case, using the Community Earth Systems Model (CESM) Whole Atmosphere Coupled

Climate Model (WACCM). Time-slice model runs with historic SIC are compared to runs

with future concentrations, from the late twenty-first century, in each hemisphere separately.
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As for the Arctic, results indicate that Antarctic sea ice loss will act to shift the tropospheric

jet equatorward, an internal negative feedback to the poleward shift associated with increased

greenhouse gases. Also, the tropospheric response to Antarctic sea ice loss is found to be

somewhat weaker, more vertically confined, and less seasonally varying than in the case of

Arctic sea ice loss. The stratospheric response to Antarctic sea ice loss is relatively weak

compared to the Arctic case, although it is here demonstrated that the latter is still small

relative to internal variability. In contrast to the Arctic case, the response of the ozone layer

is found to be positive (up to 5 Dobson units): interestingly, it is present in all seasons

except austral spring. Finally, while the response of surface temperature and precipitation is

limited to the southern high latitudes, it is nonetheless unable to impact the interior of the

Antarctic continent, suggesting a minor role of sea ice loss on recent Antarctic temperature

trends.

Chapter 5, Remarkably similar tropical response to Arctic and Antarctic sea ice loss, is

work currently in preparation. In this chapter, we use a fully coupled climate model with

perturbed sea ice conditions to isolate the atmospheric response to projected Antarctic sea

ice loss, building on work form Chapter 4. We focus on the response of the tropics to future

Antarctic sea ice loss and find the tropical effects remarkably similar to that of Arctic sea

ice loss.

Both Arctic and Antarctic SIE are projected to dramatically decline over the coming

century. In this chapter we isolate the tropical response to end-of-century Antarctic sea ice

loss and show it is as large as the response to end-of-century Arctic sea ice loss. Using climate

model simulations with a dynamic ocean, we find that Antarctic sea ice loss, like Arctic sea

ice loss will have important global effects, causing a ‘mini global warming’ signal. We show

that the tropical response to Antarctic sea ice loss is remarkably similar to that of Arctic sea

ice loss, with warming in the Eastern Tropical Pacific and increased precipitation throughout

much of the equatorial Pacific. Ocean energy transport is found to be the main pathway

for signals from both poles to reach the tropics. This chapter highlights the importance of

projected Antarctic sea ice loss on the climate system.
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1.3.2 Other work

During his PhD, the author has also worked on understanding the role of internal variability

in driving historical regional Arctic sea ice trends (England et al., 2019) and investigating the

role of internal variability in projected changes of the seasonal cycle of surface temperature

(Yettella and England, 2018).
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CHAPTER 2

TROPOSPHERE-STRATOSPHERE DYNAMICAL

COUPLING IN THE SOUTHERN HIGH

LATITUDES, AND ITS LINKAGE TO THE

AMUNDSEN SEA

This work was published in Journal of Geophysical Research in 2016 (England et al., 2016b).

2.1 Introduction

Variability in the stratosphere is closely linked to anomalous tropospheric weather patterns in

the SH (Gerber et al., 2012; Kidston et al., 2015). Coupling mainly occurs in SH spring time,

when the breakdown of the stratospheric vortex influences the position of the tropospheric

jet (Randel, 1988; Baldwin and Dunkerton, 2001; Baldwin et al., 2003; Gerber et al., 2012).

Planetary scale waves, generated in the troposphere, represent one of the main modes of

stratosphere troposphere coupling (Andrews et al., 1987; Plumb, 2010) and has significant

impacts on the variability of the stratospheric polar vortex (Polvani and Waugh, 2004; Dunn-

Sigouin and Shaw, 2015).

The primary mode of planetary wave coupling is upward wave coupling where signals in

the troposphere propagate up into the stratosphere. Randel (1988) found that wave-1 ex-

hibits an upward vertical propagation time scale of four days between the middle troposphere

and the middle stratosphere and that its vertical structure is significantly different from waves
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2 and 3. The upward propagation involves significant transfers of heat and momentum pole-

wards (van Loon and Jenne, 1972; Randel, 1988). Shaw et al. (2010) demonstrate that, in

addition to the upward coupling, wave-1 exhibits downward wave coupling (wave pattern in

the stratosphere leads wave pattern in the troposphere with a propagation timescale around

five days) from September to December when the zonal flow exhibits a bounded wave geom-

etry. Over the past several decades, ozone depletion has increased downward wave coupling

during November and December because the bounded wave geometry extends later into the

year in reanalysis data and models (Harnik et al., 2011; Shaw et al., 2011).

Planetary wave coupling has a significant impact on the tropospheric circulation in the

NH, associated with a distinct regional signal in the North Atlantic basin (Shaw et al.,

2014) (subsequently referred to as S14). The tropospheric impact was revealed using an

index based on extreme values of the high latitude heat flux at 50 hPa. The eddy heat

flux is proportional to the vertical group velocity according to linear wave theory and is

thus a measure of vertical coupling. Large positive eddy heat fluxes, indicating upward

wave coupling, were simultaneously associated with anomalous high pressure over the North

Atlantic reminiscent of the negative phase of the North Atlantic Oscillation (NAO) whereas

large negative eddy heat flux, indicating downward wave coupling, involved opposite signed

patterns. The simultaneous relationship reflected the peak time in the lifecycle of planetary

wave events in the stratosphere (see Fig. 2 of Dunn-Sigouin and Shaw (2015)). S14 used the

heat flux index to show that models with a biased stratospheric eddy heat flux distribution

exhibited biases in eddy geopotential height and jet stream position in the North Atlantic

troposphere. The models with the largest stratospheric heat flux bias were all low-top,

following the definition of Charlton-Perez et al. (2013).

We investigate whether planetary wave coupling has a significant regional signature in

the SH. One of the most important zonally-asymmetric features in the SH is the ASL.

The ASL, a low pressure centre located in the region 60-75°S 170-290°E, is a key driver

of of circulation variability over West Antarctica and has a large impact on the SIE in

surrounding regions (Turner et al., 1997; Hosking et al., 2013). The formation of the ASL
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is attributable to a combination of (i) flow separation over the coastal line of the Ross

Sea embayment and the steep orography inland (Baines and Fraedrich, 1989), and (ii) the

strong baroclinicity resulting from the irregular coastline of Antarctica, which intensifies the

cyclogenesis patterns in the region (Walsh et al., 2000; Fogt et al., 2012b). It is an essentially

barotropic phenomenon and its climatology is well documented by Turner et al. (2013b).

We seek to address the following questions: Are stratospheric heat flux extremes linked

to a regional circulation in the troposphere in the SH? What is the impact of the coupling in

the Amundsen Sea region? Does troposphere-stratosphere planetary wave coupling play as

dominant a role in setting the mean state and variability of the tropospheric circulation as

it does in the NH? Can tropospheric biases in the Amundsen Sea region in CMIP5 models

be linked to the ability to represent extreme stratospheric heat flux events?

This chapter is organised as follows. Section 2.2 describes the reanalysis data set and

CMIP5 simulations analysed in this study. In section 2.3 the links between stratospheric

planetary-scale wave heat flux extremes and SH tropospheric weather and climate patterns

in reanalysis data are examined. In section 2.4 the representation of stratospheric heat

flux extremes in CMIP5 models is studied and coupling with the tropospheric circulation is

compared in models with large and small biases in stratospheric heat flux extremes. Section

2.5 concludes the chapter with a summary and discussion.

2.2 Data and Methods

This study uses daily data from the European Centre for Medium-Range Weather Forecasts

(ECMWF) Interim (ERA-Interim) reanalysis for the years 1979-2005 (Dee et al., 2011). In

addition, we make use of daily and monthly data from 30 CMIP5 historical simulations

(Table 2.1) (Taylor et al., 2012). In this study anomalies are computed by removing the

climatological seasonal cycle (1979-2005).

The following analysis is based on the daily wave-1 (meridional) heat flux i.e. v′T ′k=1

at 50 hPa where the overbar represents a zonal average, the prime indicates a deviation
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Table 2.1: CMIP5 historical data used in this study model ensemble. The * and † indicate models included in the small and

large bias ensembles.

Model Ensemble member1 Model Ensemble member1

bcc-csm1-1 r1i1p1 bcc-csm1-1-m* r1i1p1

BNU-ESM r1i1p1 CanESM2 r1i1p1

CCSM4 r1i1p1 CMCC-CESM r1i1p1

CMCC-CM r1i1p1 CNRM-CM5† r1i1p1

FGOALS-g2† r1i1p1 FGOALS-s2 r1i1p1

GFDL-ESM2G† r1i1p1 GFDL-ESM2M† r1i1p1

HadCM3† r1i1p1 inmcm4† r1i1p1

MIROC5 r1i1p1 NorESM1-M* r1i1p1

CESM1-WACCM r1i1p1 CMCC-CMS* r1i1p1

GFDL-CM3 r1i1p1 HadGEM2-CC r1i1p1

IPSL-CM5A-LR* r1i1p1 IPSL-CM5A-MR* r1i1p1

MIROC-ESM† r1i1p1 MIROC-ESM-CHEM r1i1p1

MPI-ESM-LR r1i1p1 MPI-ESM-MR* r1i1p1

MPI-ESM-P r1i1p1 MRI-CGCM3* r1i1p1
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from the zonal average and k is the zonal wave number, which is extracted using Fourier

decomposition. We use the wave-1 heat flux, which represents 80% of the eddy (deviation

from the zonal mean) heat flux variability, as a measure of vertical wave coupling (Charney

and Drazin, 1961). The 50 hPa level, located in the mid to lower region of the stratosphere,

is chosen because it is a standard output level in the ERA-Interim and CMIP5 data sets.

The wave-1 heat flux is averaged between 60° and 90°S creating a daily time series, which

is hereafter referred to as the high-latitude stratospheric heat flux. This latitudinal band is

where the temporal variability of the heat flux is maximum. The sensitivity of the results

to the choice of latitudinal average and the effect of weighting by the cosine of the latitude

are negligible.

The study focusses on September, October and November (SON), which is the period of

maximum wave coupling between the troposphere and stratosphere in the SH (Fig. 2.1a.,

blue) (Shaw et al., 2010). S14 analysed the period January, February and March (JFM), the

period of maximum wave coupling in the NH (Fig. 2.1a., red).

The eddy field is found by calculating the deviation from the zonal mean. The eddy field

is broken down into its components of different wave-numbers using Fourier decomposition.

2.3 Links Between Stratospheric Wave-1 Heat Flux

Extremes and the Tropospheric Circulation in Re-

analysis Data

The daily distributions of high latitude wave-1 heat flux at 50 hPa for both the NH (averaged

60° to 90°N, JFM) in red and the SH (averaged 60° to 90°S, SON) in blue are shown in Figure

2.1b. Note that the NH distribution has been multiplied by -1, so that the mean has been

flipped from positive to negative, to allow for an easy comparison of the phenomenon in

the two hemispheres. In the SH (NH) the mean is negative (positive) meridional heat flux

values, consistent with upward propagating waves. The SH wave-1 heat flux distribution has
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Figure 2.1: The 60°-90°S and 60°-90°N wave-1 meridional heat flux at 50 hPa in ERA-Interim for 1979-2005. a) Seasonal cycle in

both hemispheres. The line shows the mean value of the heat flux and the shaded envelope gives one standard deviation interval

either side. b) Daily distribution averaged 60°-90°S during SON and 60°-90°N during JFM from 1979 to 2005. The distribution

from the NH has been multiplied by -1. The vertical lines represent the 10th and 90th percentiles of the distributions.
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Figure 2.2: The ERA-Interim mean sea level pressure (a) SON climatology, and a composite of (b) extreme negative and (c)

positive heat flux events. See text for definition of extreme positive and negative heat flux events. The contour interval is 2

hPa. The Amundsen Sea region (60-75°S 170-290°E) is shown by the red box. The location of the ASL (the point with the

lowest mean sea level pressure in the region) is represented by the red square and the ASL central pressure is indicated in hPa.

a smaller mean and standard deviation than that of the NH, consistent with the SH having

a weaker wave source. The NH wave-1 heat flux distribution therefore has thicker tails; the

10th percentile is 41.7 Kms−1 compared to -32.5 Kms−1 for the SH, and the 90th percentiles

is of -10.8 Kms−1 and 4.3 Kms−1 for the SH.

From now on we will focus on the SH and any mention of the heat flux distribution

refers to that in the SH. The mean of the distribution is negative and equal to -11.7 Kms−1,

indicating upward propagation. The standard deviation is equal to 17.2 Kms−1. Days with

stratospheric heat flux lower than the 10th percentile of the distribution (-32.5 Kms−1) will

be labelled as ‘extreme negative heat flux days’ and days with values larger than the 90th

percentile of the distribution (4.3 Kms−1) will be labelled as ‘extreme positive heat flux

days’. According to linear wave theory, extreme negative days are associated with upward

wave propagation and extreme positive days are associated with downward wave coupling.

As mentioned in the introduction, our eddy heat flux index exploits the near simultaneous

stratospheric and tropospheric signals seen in the planetary wave lifecycle.

We assess the link between extreme stratospheric heat flux events and the troposphere by

comparing the climatological pattern to the patterns during extreme stratospheric events.

The climatology of the mean sea level pressure (mslp) from ERA-Interim during SON is
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shown in Figure 2.2a from the years 1979-2005. The location and depth of the ASL is

indicated in red, in agreement with Figure 1 of Turner et al. (2013b). Figure 2.2b and 2.2c

show mslp for composites of extreme negative and positive stratospheric heat flux events

respectively. During extreme negative events the ASL centre migrates westwards by 12°

whereas during extreme positive events it shifts eastwards by 32°. This is a significant

longitudinal change given the amplitude of the seasonal cycle (taking monthly mean position)

is only 40° (Turner et al., 2013a). These shifts are in the lowest and highest 20th percentiles

of the distribution of monthly ASL longitude positions respectively. Hosking et al. (2013)

demonstrate how the longitudinal position of the ASL can have a large impact on SIC; when

the ASL is displaced westward there is a decrease in SIC in the Amundsen and Bellingshausen

Seas and vice versa.

Figure 2.3 shows the anomalous mslp (2.3a,b), anomalous temperature at 850 hPa (2.3c,d)

and anomalous meridional wind (2.3e,f) during extreme positive and negative heat flux days

in SON. During extreme negative heat flux events there is anomalously high mslp over

the Bellingshausen Sea, with equatorward flow over the Antarctic Peninsula and strong

poleward flow over the Amundsen Sea. Furthermore, there is anomalous warming over the

Amundsen and Bellingshausen Seas, due to advection from the north east (anticyclonic flow

around the anomalous high surface pressure). In contrast, for days with extreme positive

heat flux values, anomalously low mslp over the Bellingshausen Sea advects cold air from

over Antarctica equatorward and westward through cyclonic flow, causing anomalously cold

temperatures in this region. These patterns drive the longitudinal movement of the ASL

during SON seen in Figure 2.2.

The stratospheric events are also linked to patterns in the mid troposphere and upper

stratosphere. Figure 2.4 shows the climatological 500 hPa (black) and 10 hPa (shaded)

wave-1 and anomalous geopotential height, which both exhibit a clear wave-1 structure for

composites of extreme negative and positive events. During extreme negative heat flux

days (Fig. 2.4b,e) geopotential height patterns resemble those near the surface but with

a westward shift and tend to reinforce the climatology in high latitudes (Fig. 2.4a,d). In
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a) mslp neg. events b) pos. events

c) 850hPa T neg. events d) pos. events

e) 850hPa V neg. events f) pos. events

Figure 2.3: ERA-Interim composite of (a,b) mean sea level pressure, (c,d) 850 hPa temperature and (e,f) 850 hPa meridional

wind anomalies during extreme (left) negative and (right) positive heat flux events. The contour interval is 1 hPa for mean sea

level pressure, 0.5 K for temperature and 0.5 ms−1 for the meridional wind. Grey shading shows anomalous values statistically

significant at 99% (see Appendix 2.6 for details). Black contours show positive values, and dashed contour lines correspond to

negative values. The zero contour is omitted. The continents are plotted in brown.
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Figure 2.4: The ERA-Interim (top) wave-1 and (bottom) rededdy geopotential height for (a,d) SON eddy climatology from

1979 to 2005 and composites of anomalous values for extreme (b,e) negative and (c,f) positive heat flux events, at 500 hPa

(black) and 10 hPa (shaded). See text for definition of extreme positive and negative heat flux events. Contour interval is 10

m (black) and 100 m (shaded). Black contours and orange shading show positive values, and contours lines and blue shading

correspond to negative values. The zero contour is omitted. The continents are plotted in brown and the Amundsen Sea region

is shown in red.
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the troposphere, the wave-1 component (Fig. 2.4b) explains nearly 70% of the anomalous

geopotential height pattern in the high latitudes with wave-2 and -3 making up the remainder.

The wave pattern between 500 and 10 hPa exhibits a westward phase tilt with height,

consistent with upward propagation of wave activity from the troposphere to the stratosphere

(Andrews et al., 1987).

During extreme positive heat flux days the geopotential height anomalies are opposite in

sign to those during negative heat flux days (Fig. 2.4c,f), which moves the ASL eastward

(towards the Antarctic Peninsula, Fig.2.2b). There is an eastward phase tilt with height

between 500 and 10 hPa consistent with the idea of wave reflection. Similar to the extreme

negative case, wave-1 (Fig. 2.4c) explains roughly 80%. of the anomalous geopotential height

pattern (Fig. 2.4f).

These reanalysis results show that extreme variations of the stratospheric wave-1 heat

flux are linked to the Amundsen Sea region. The next step is to use the high-latitude heat

flux metric to evaluate the representation of stratospheric heat flux events in CMIP5 models

including their coupling to the troposphere.

2.4 Links Between Stratospheric Wave-1 Heat Flux

Extremes and the Tropospheric Circulation in

CMIP5 Models

2.4.1 Representation of Stratospheric Heat Flux Extremes

Here we use the stratospheric heat flux extremes metric to evaluate how well CMIP5 climate

models simulate planetary-scale wave coupling between the troposphere and stratosphere.

The daily high latitude heat flux distributions at 50 hPa is calculated for the CMIP5 models

listed in Table 2.1. Figure 2.5 shows the percentage of days in SON for the years 1979 to 2005

that were classified as extreme negative heat flux days (values less than the 10th percentile

of the ERA-Interim distribution, -34.2 Kms−1) against the percentage of days labelled as
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Table 2.2: Classification of models as small or large bias as indicated by Figure 2.5. Low-top models are shown by (L) and

high-top models are shown by (H).

Small bias model set Large bias model set

bcc-csm1-1-m (L) CNRM-CM5 (L)

NorESM1-M (L) FGOALS-g2 (L)

CMCC-CMS (H) GFDL-ESM2G (L)

IPSL-CM5A-LR (H) GFDL-ESM2M (L)

IPSL-CM5A-MR (H) HadCM3 (L)

MPI-ESM-MR (H) inmcm4 (L)

MRI-CGCM3 (H) MIROC5 (L)

extreme positive heat flux days (values greater than the 90th percentile of the ERA-Interim

distribution, 4.1 Kms−1). The models have been colour coded in the same manner as S14

with circles representing low-top models and squares showing high-top models, following the

definition of Charlton-Perez et al. (2013).

The percentage of extreme negative heat flux days and the percentage of extreme positive

heat flux days at 50 hPa for the CMIP5 models are significantly correlated (r = 0.64,

p = 0.01). The correlation suggests that models which under-predict the number of extreme

positive heat flux days also under-predict the number of extreme negative heat flux days.

This is to be expected because downward wave coupling is preceded by upward wave coupling.

The majority of CMIP5 models under-predict the stratospheric extremes (both positive and

negative) at 50 hPa in the SH (models in the lower left quadrant).

Two model ensembles are constructed based on the bias relative to the 10th and 90th

percentiles of the ERA-Interim heat flux distribution. Models are labelled as ‘small bias’ if

the combined bias of positive and negative extremes at 50 hPa is less than 3.5% (models

contained within red circle of radius 3.5% in Figure 2.5). Models are labelled as ‘large bias’

if the percentage of either the extreme negative or extreme positive heat flux days is under

4.0% (models contained within blue square in Figure 2.5). This classification system produces
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Figure 2.5: Percentage (frequency) of extreme negative wave-1 heat flux events versus extreme positive events at 50 hPa

averaged 60°-90°S during SON. Here, negative and positive extreme events are defined as the 10th and 90th percentiles of the

ERA-Interim distribution for SON 1979 to 2005 with values of < -34.2 Kms−1 and > 4.1 Kms−1 respectively. CMIP5 models,

with circles representing low-top models and squares representing high-top models, along with the ERA-Interim data are plotted

averaged over 1979 to 2005. The blue square is used to define the large bias models and the red circle is used to define the

small bias models.
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Figure 2.6: Distribution of 50 hPa wave-1 meridional heat flux averaged 60°-90°S during SON from 1979 to 2005 for ERA-

Interim (black) and ensemble of CMIP5 models with the small (blue) and large (red) biases relative to ERA-Interim, with

model ensembles defined in Table 2.2. The vertical black lines represent the 10th (-32.5 Kms−1) and the 90th (4.3 Kms−1)

percentile values of the daily ERA-Interim distribution.

seven small bias models and seven large bias models (Table 2.2). The results presented below

are largely insensitive to the addition or removal of one model from the ensembles.

The distribution of the large bias ensemble is significantly different from the ERA-Interim

distribution at 95% significance (compared red and black in Fig. 2.6) whereas the distribution

of the small bias ensemble is significantly similar (compared blue and black in Fig. 2.6),

according to a random sampling Kolmogorov-Smirnov test (Table 2.3). Note, a regular

Kolmogorov-Smirnov test was not used because of the known biases introduced into the

statistical test when applied to populations of significantly different sizes. The statistical

analysis shows that the large bias models do not capture the mean or higher order moments

of the ERA-Interim distribution.

All large bias models are low-top models, consistent with S14’s findings in the NH. All

six models identified in S14 as large bias for the NH are also part of the large bias model

ensemble in the SH. Models which fail to replicate the heat flux extremes at 50 hPa in one

hemisphere, also under-represent the extremes in the other hemisphere which seems to imply

32



Table 2.3: Statistics of the daily distribution of wave-1 heat flux averaged 60°-90°S at 50 hPa during SON for ERA-Interim

data, the small bias model set and the large bias model set for the years 1979-2005. The Kolmogorov-Smirnov test is relative

to ERA-Interim data. For this run no large bias samples had a KS test p value over 0.05 whilst small bias samples had a KS

test p value over 0.05 95.4% of the time. This was implemented using method in S14 appendix A.

Mean Std 10th perc. 90th perc. KS test p value

50 hPa

ERA-Interim -12.05 17.62 -34.23 4.10 1.00

Small bias -12.39 17.81 -34.50 3.17 > 0.05

Large bias -4.51 8.13 -14.89 1.17 < 0.05 (95%)

there are mechanisms intrinsic to these models. Although the majority of the models in the

small bias ensemble are high-top, two models (bcc-csm-1-m and NorESM1-M) are low-top.

Only two models (MPI-ESM-MR and MPI-ESM-P) are contained in the small bias model

ensembles in both hemispheres. It can be seen from Figure 2.5 that although high-top models

are generally better at capturing the extremes in the heat flux distribution, there are some

low-top models which perform well by this criterion, and there are some high-top models

which do much worse.

The large bias models also under-estimate negative and positive heat flux extremes at

10 hPa (not shown), with a tendency of the low-top models to fall above the 1-to-1 line, as

found by S14. Shaw and Perlwitz (2010), motivated by previous work by Boville and Cheng

(1988), investigated planetary wave biases associated with low-top models. They found that

at 10 hPa low-top models either under-predict upward wave coupling because of excessive

damping or over-predict downward wave coupling due to unphysical wave reflection from the

model lid.

Figure 2.7 compares the error at 10 hPa (defined as the radial distance from the ERA-

Interim, for which both types of extreme events occur 10 percent of the time) in the NH

during JFM versus the same bias in the SH during SON. The correlation value between the

extremes of CMIP5 in the NH JFM and the SH SON is 0.71, consistent with the idea that

a model’s performance according to this metric is roughly the same between hemispheres,

especially higher up in the stratosphere. The high-top models, in general, are better able
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Figure 2.7: Error of the NH JFM high latitude eddy heat flux versus SH SON high latitude eddy heat flux at 10 hPa for the

CMIP5 models. The error has been defined as the radial distance to ERA-Interim for percentage of extreme negative and

positive days (< -71.34 Kms−1and > 2.81 Kms−1 for the SH and < -10.41 Kms−1 and > 148.10 Kms−1 for the NH). CMIP5

models, with circles representing low-top models and squares representing high-top models, along with the ERA-Interim data

(which has zero error) are plotted.
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to capture the extremes of the planetary-wave stratospheric heat flux at 10 hPa in both

hemispheres (with the error close to zero in both hemispheres). The low-top models consis-

tently show larger biases in representing the heat flux extremes at 10 hPa. We can see that

the majority of models fall on the 1-to-1 line, but with some noticeable exceptions such as

GFDL-CM3, a high-top model which performs significantly better at this metric at 10 hPa

in the NH, and vice versa for the low top model CMCC-CESM.

2.4.2 Representation of Links to Troposphere

In this section we explore whether model biases in high latitude stratospheric heat flux

extremes are connected to the tropospheric circulation in CMIP5 models. In the NH biases

in stratospheric eddy heat flux were largest for extreme negative events and this led to model

biases in the North Atlantic jet stream and geopotential height. An important difference

between the SH and NH is that the modelled mslp and eddy geopotential height exhibit large

climatological biases compared to ERA-Interim. Figure 2.8 shows the difference between the

CMIP5 models and ERA-Interim SON climatological mslp (top row) and climatological

eddy geopotential height (bottom row), at 500 hPa (black) and 10 hPa (shaded). Individual

models cannot capture the longitudinal position seasonal cycle of the ASL and the central

pressure is high compared to reanalysis (Hosking et al., 2013). Only the small bias models are

able to capture the wave-1 high latitude pattern at 10 hPa. Neither of the model ensembles

are able to replicate the 500 hPa ERA-Interim SON climatology (Fig. 2.4a,d) sufficiently,

with the differences as large as between the model ensembles themselves. Since the mean

state of the models are so biased, compared to ERA-Interim, we cannot use the CMIP5

models to detect the impact of biased stratospheric wave-1 heat flux extremes (Fig. 2.5 on

the mean tropospheric climate in the SH, in contrast to the NH.

We find that the biased eddy geopotential height variance at 500 hPa (
√
z′2) is signif-

icantly correlated with the position of the jet stream relative to reanalysis (defined as the

difference in latitude of maximum zonal-mean zonal wind at 850 hPa ) as shown in Figure

2.9. The biased position of the SH jet is well known (Kidston and Gerber, 2010). The cor-
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Figure 2.8: Difference in climatological mean sea level pressure (top), and eddy geopotential height (bottom) at 500 hPa (black)

and 10 hPa (shaded), during SON from 1979 to 2005 between ERA-Interim and (left) small, (right) large bias ensembles.

Contour interval is 1hPa for mslp and 10 m (black) and 100 m (shaded) for eddy geopotential height. The zero contour is

omitted.

relation coefficient is r = −0.54 and a linear regression explains 30% of the model variance.

This suggests that reducing the bias in geopotential height is important.

The link between the representation of stratospheric heat flux extremes in CMIP5 his-

torical simulations to tropospheric conditions can be quantified after removing the biased

climatological mean state. Figure 2.10 compares the mslp anomaly of the small bias and

large bias model ensembles with ERA-Interim. The small bias models are able to capture

the strength and position of the anomalous mslp seen during the extreme events whereas

the large bias models are unable to replicate this tropospheric variability. We obtain similar

results for 500 hPa geopotential height and 850 hPa temperature (not shown). The issue of

differences in the length of time series, with considerably fewer extreme days for large bias

compared with small bias models, is discussed in Section 2.6.

The large bias models do not capture the anomalous mslp over the Antarctic Peninsula

during stratospheric extreme events. Figure 2.11 shows the SON distribution of anomalous

daily mslp over the Antarctic Peninsula for ERA-Interim and the CMIP5 model ensembles.
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Figure 2.9: CMIP5 high-latitude 500 hPa eddy geopotential height amplitude bias relative to ERA-Interim versus bias in SH

tropospheric jet at 850 hPa relative to ERA-Interim during SON. See section 2.4.2 for explanation of how each quantity was

calculated. Circles represent low-top CMIP5 models and squares represent high-top CMIP5 models. A linear fit is added, along

with its regression coefficients and the R2 value.
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a) ERA neg. b) Small bias neg. c) Large bias neg.

d) ERA pos. e) Small bias pos. f) Large bias pos.

Figure 2.10: Mean sea level pressure field for extreme (top) negative days and extreme (bottom) positive days during 1979 to

2005. See section 2.3 for definition of extreme event days. The anomalies found for (a,b) ERA-Interim are compared with those

for the (b,e) small bias model set and the (c,f) large bias model set. Positive anomalies are shown with full lines and negative

anomalies are indicated by dashed lines, with contour levels of 10 m. The zero contour has been omitted in all plots. Grey

shading shows anomalous values statistically significant at 99% (see Appendix 2.6 for details).

The region 60°-75°S, 240°-330°E was chosen to coincide with the centre of the wave-1 anoma-

lous pattern seen in Figure 2.3a,b. The large bias models (unlike the small bias models)

do not capture the extent of the variability seen in reanalysis. In particular, the large bias

ensemble distribution is significantly different from the ERA-Interim distribution at 99%

significance according to a random sampling Kolmogorov-Smirnov test. The mean and vari-

ability of the small bias models agree well with ERA-Interim. Although the topography of

the region makes the comparison harder, similar assertions can be made for Eastern Antarc-

tica. The representation of stratospheric wave events appears to be an important factor in

the variability of Antarctic weather and climate patterns during spring.
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Figure 2.11: Daily distribution of anomalous mean sea level pressure averaged from 60°-75°S, 240°-330°E during SON from

1979 to 2005 for ERA-Interim (black) and small (blue) and large (red) bias CMIP5 model ensembles, with ensembles defined

in Table 2.2.

2.5 Summary and Discussion

2.5.1 Summary

A dynamical metric of troposphere-stratospheric planetary-wave heat flux events, defined

as the 10th and 90th percentiles of the daily 50 hPa wave-1 heat flux originally developed

for the NH, is applied to the SH. These extreme events in the stratosphere are associated

with upward and downward wave-coupling between the troposphere and the stratosphere.

To investigate which CMIP5 models have realistic troposphere-stratosphere coupling in the

SH, a ‘small bias’ and a ‘large bias’ ensemble are created containing models which can and

cannot replicate the stratospheric heat flux extremes seen in ERA-Interim data, respectively.

The main findings of this study on SH stratosphere-troposphere coupling are as follows:

• In reanalysis, SH stratospheric heat flux extremes are linked to high latitude tropo-

spheric anomalies in the Amundsen Sea region. During extreme negative (positive)

events there is a westward (eastward) shift of the ASL, a warming (cooling) and in-

crease (decrease) of geopotential height over the Amundsen and Bellingshausen Seas.
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These findings complement those from the NH where the largest impacts occurred in

the North Atlantic (Shaw and Perlwitz, 2013, S14).

• CMIP5 models exhibit a large climatological eddy geopotential height bias during SON

which is connected to the well-known bias of the jet position. This climatological bias

prevents an assessment of any potential impact of stratospheric heat flux extremes on

tropospheric climate.

• The impact of stratospheric heat flux extremes on tropospheric variability can be as-

sessed after the climatological bias is removed. The results show that CMIP5 models

with biased stratospheric heat flux extremes significantly under-estimate mslp vari-

abilty over the Antarctic Peninsula.

2.5.2 Discussion

We have demonstrated that stratospheric variability is linked to tropospheric variability

over the ASL. However, large climatological mean biases in the SH circulation (Kidston and

Gerber, 2010; Ceppi et al., 2012; Bracegirdle et al., 2013) mask any impact of troposphere-

stratosphere coupling on the tropospheric mean state.

We investigated potential sources of tropospheric bias including biased sea surface tem-

perature (SST) and model resolution. However, we found no significant difference between

the eddy geopotential height simulated in atmosphere-only models, AMIP (Atmospheric

Model Intercomparison Project), and CMIP models. There are, however, a limited num-

ber of models available with AMIP runs so the size of the ensembles were restricted to two

models in this analysis. We also found no relationship between the model bias and model

resolution across CMIP5 models.

The distribution of Antarctic sea ice has been shown to influence the tropospheric cir-

culation at high latitudes (Raphael, 2001). The link to extreme changes in sea ice can be

seen in mslp (Wu et al., 1996) and 500 hPa geopotential height(Renwick, 2002). Sea ice

variability has a large radiative effect, as well as an impact on mass flux in the polar region
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(Budd, 1991).

Ozone has had a significant impact on regional climate in the SH during 1979-2005

(Thompson and Solomon, 2002). There have been no significant changes in the 50 hPa heat

flux distributions during SON, however there are impacts later in the seasonal cycle (Shaw

et al., 2011). How troposphere-stratosphere coupling in the SH will change during the period

of ozone recovery is a question for further research.

We have shown that planetary wave coupling is linked to climate variability of the Amund-

sen Sea region. The vast majority of coupled climate models are not reproducing the observed

trends in Antarctic SIE (Eisenman et al., 2011; Maksym et al., 2012; Turner et al., 2013a)

so improving simulation of Antarctic climate variability and connections to the ASL is an

important question for future research (Raphael et al., 2016). Our results suggest an ac-

curate simulation of stratospheric variability is important for the ASL. Understanding the

dynamical mechanism responsible for the link between troposphere-stratosphere planetary-

scale wave coupling and the ASL and Antarctic tropospheric climate variability is an area

for future research.

2.6 Appendix: Statistical significance of anomalous val-

ues

The grey shading in Figures 2.3 and 2.10 indicates that the anomalous values are statistically

significant at 99%. This analysis was completed, for every latitude and longitude gridpoint,

by taking 10,000 random composite subsamples, with each subsample the same size as the

composite of extreme events, from the whole SON time series to create a distribution. The

shaded areas occur outside of the 0.5th and 99.5th percentile of this distribution and so can

be thought of as statistically distinct from the natural variability of the region. This also

solves the issue of differing length of time series and uses the entire period of data available.
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CHAPTER 3

ROBUST RESPONSE OF THE AMUNDSEN SEA

LOW TO STRATOSPHERIC OZONE DEPLETION

This work was published in Geophysical Research Letters in 2016 (England et al., 2016a).

3.1 Introduction

Stratospheric ozone depletion, and the occurrence of the ozone hole during spring, has been

the dominant forcing of SH climate change in recent decades (Polvani et al., 2011) and

its effects on large-scale features of the atmospheric circulation have been well documented

(Marshall, 2003; Son et al., 2010; Thompson et al., 2011; Previdi and Polvani, 2014). Recent

research has attempted to document how ozone depletion has driven changes in the ASL,

one of the most important regional features in the southern high latitudes (Turner et al.,

2013b). The ASL is a low pressure centre located in the region 60-75°S 170-290°E. The depth

and location of the ASL have been shown to have a significant impact on the surface air

temperature, precipitation and the distribution of sea ice around West Antarctica (Turner

et al., 1997; Massom et al., 2008; Holland and Kwok, 2012; Hosking et al., 2013), the region

with the largest trends in SIE (Parkinson and Cavalieri, 2012). More detail on the ASL for

the period 1979-2017 is given in Section 1.1.2. Due to the ASL’s influence over the climate

of West Antartica, it is important to understand how it has been affected by the forcing of

stratospheric ozone depletion in the twentieth century.
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Turner et al. (2013b) examine the monthly trends in central pressure and location of the

ASL in the years 1979-2008 using ECMWF reanalysis data, and find that they are highly

variable, with no robust trend in any season. Nonetheless, Turner et al. (2009b) have pro-

posed that a slight deepening of the autumn ASL in models might be linked to stratospheric

ozone depletion. Furthermore Fogt and Zbacnik (2014) offered modelling evidence for the

importance of ozone depletion in deepening the summertime ASL, although were not able

to demonstrate this at the 95% significance level.

The difficulty in establishing ozone-forced trends in the ASL arises from the very large

natural variability in that region (Lachlan-Cope et al., 2001; Turner et al., 2015). Inter-

annual variations of the ASL has been linked to several drivers of climate variability: the

phase of El Nino-Southern Oscillation is important for the ASL central pressure (Fogt et al.,

2011; Pezza et al., 2012; Turner et al., 2013b), and the phase of the SAM influences the

ASL central pressure and longitudinal location (Lefebvre et al., 2004; Fogt et al., 2012a;

Turner et al., 2013b). Furthermore, recent model studies (Ding et al., 2011; Ding and Steig,

2013; Fogt and Wovrosh, 2015; Li et al., 2015; Raphael et al., 2016) have highlighted the

importance of tropical SSTs on the ASL and West Antarctic temperatures (Comiso, 2000;

Marshall, 2003; Schneider et al., 2012). Finally, a stratospheric influence has been shown to

be important for the location of the ASL (England et al., 2016b). The goal of this paper

is to bring out the ozone-forced response of the ASL and distinguish it from this large and

complex natural variability.

We here isolate the effect of ozone forcing by comparing an ensemble of climate model

runs with a realistic ozone hole evolution to an ensemble with stratospheric ozone concen-

trations fixed at 1955 levels. This comparison allows a direct attribution of the differences

to stratospheric ozone depletion, and the use of ensembles allows us to extract the forced re-

sponse from the large natural variability. To establish a robust result, we repeat this analysis

with two different, fully coupled general circulation models: although both of these models

are from the CESM family, they have very different physical processes and configurations.

Both models show a robust deepening of the summertime ASL forced by stratospheric ozone
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depletion over the second half of the twentieth century

3.2 Data and Methods

In this study we employ two configurations of a state of the art model, the CESM1, to

investigate the effect of stratospheric ozone depletion on the ASL. WACCM4, documented

by Marsh et al. (2013), is the high-top atmosphere model configuration included in CESM1.

It has a horizontal resolution of 1.9° latitude by 2.5° longitude, with 66 vertical levels and

a model lid height extending up to the lower thermosphere, 140 km. WACCM4 has fully

interactive middle atmosphere chemistry, so is able to realistically capture the development

of the Antarctic ozone hole in austral spring. The Community Atmosphere Model (CAM5)

is the low top atmosphere model configuration of CESM1 (Kay et al., 2015). It has a higher

horizontal resolution of 0.9° latitude by 1.25° longitude. There are 30 levels in the vertical

direction, with a rigid lid at 50 km above the surface. Both models are coupled to fully

prognostic ocean, sea ice, and land components (Gent et al., 2011).

For each model configuration, we analyse two ensembles of 51-year runs 1955-2005, differ-

ing only in the levels of stratospheric ozone depletion. The first ensemble comprises standard

‘historical’ Coupled Model Intercomparison Project Phase 5 (CMIP5) integrations (Taylor

et al., 2012), including all known natural and anthropogenic forcings. These runs will be

referred to as ‘Ozone Hole’ runs. The second ensemble is identical in every respect, except

that ODSs and, for CAM5, the levels of stratospheric ozone, are held fixed at 1955 levels

(pre-ozone hole). These runs will be referred to as ‘Fixed Ozone’ runs because no ozone hole

develops in the springtime. Since the ozone concentrations in CAM5 are specified from the

mean of the WACCM4 historical runs, the amplitude and evolution of stratospheric ozone

depletion is practically identical between the WACCM4 and CAM5 runs. Spring polar cap

ozone levels for the individual WACCM4 members (Fig. 3.1), and these were found by Marsh

et al. (2013) to compare very well with observations. There are six members contained in

both WACCM4 ensembles, previously analysed by Solomon et al. (2015) in the context of the
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Southern Ocean response to changing ODSs, and eight members contained in both CAM5

ensembles.

To put the model results in the context of observations, monthly mean sea level pressure

is analysed from two reanalysis datasets, the Interim European Centre for Medium-Range

Weather Forecasts (ECMWF) reanalysis (ERA-Interim) (Dee et al., 2011) and the National

Centre for Environmental Prediction: U.S. Department of Energy (NCEP-DOE) AMIP-II

reanalysis (Kanamitsu et al., 2002) over the period 1979-2005. As in other investigations

of the ASL (eg.Fogt et al. (2012b)), the usage of reanalysis products is limited to the years

following 1979, after the assimilation of satellite data.

Finally, we introduce the three metrics used to define the ASL: the absolute central

pressure, and its position in longitude and latitude. The location is determined from monthly

sea level pressure data using the same method as Turner et al. (2013b): it is the location

with the lowest mean sea level pressure in the region 50-180°W, 60-75°S. Figure 3.2 shows

the climatological seasonal cycle of the three ASL metrics for the historical runs of CAM5

and WACCM4. The seasonal cycle of the ASL for the ensemble average WACCM4 (green)

and CAM5 (red) ‘Ozone Hole’ runs are compared to reanalysis (black) as well as a range

of 26 CMIP5 models (shaded envelope). Both WACCM4 and CAM5 display better skill in

simulating the seasonal cycle of these three ASL properties compared to the majority of the

models (Hosking et al., 2013), especially the location.

Building upon previous work by Fogt and Zbacnik (2014) and Fogt and Wovrosh (2015),

we are able to detect a robust signal of ozone depletion on the ASL. By employing large

ensembles of runs from two state of the art climate models, which are able to well represent

the ASL climatology (Figure 3.2), we are able to isolate the forced signal from the large nat-

ural variability (Lachlan-Cope et al., 2001). Moreover, comparing ‘Fixed Ozone’ and ‘Ozone

Hole’ ensembles allows us to directly attribute any differences in the ASL to stratospheric

ozone depletion because all other factors are held fixed.
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Figure 3.1: Polar cap 70-90°S integrated ozone, SON, for six WACCM4 runs (a-f) with fixed ozone (red) and historic ozone

levels (blue).
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Figure 3.2: Seasonal cycle (average over 1979-2005) of three key metrics that define the Amundsen Sea Low: central pressure

(left), longitude (centre) and latitude (right). An ensemble average of six WACCM4 (green) and eight CAM5 (orange) historical

integrations are compared with NCEP-DOE II (dashed black) and ERA-Interim (solid black). The grey shading indicates the

+/− 1σ envelope for 26 CMIP5 models.

3.3 Results

Figure 3.3a shows the column integrated polar cap ozone levels during spring; levels of

stratospheric ozone are seen to start depleting after 1965, reaching a minimum value by

2005. Whilst the Antarctic ozone hole forms in spring, it takes time for the signature

to migrate down to the surface resulting in the largest effects of ozone depletion in the

troposphere occurring in summer (Thompson et al., 2011). Consistent with this, we find

that stratospheric ozone depletion only has an impact on the ASL in DJF (Dec., Jan. and

Feb.).

When forced with a realistic ozone hole the ASL is seen to deepen by 1 hPa per decade

in DJF over a 41-year period of stratospheric ozone depletion in both WACCM4 and CAM5

(Figures 3.3b,c blue curves). In contrast, the ‘Fixed Ozone’ ensembles (red curves) display

no trends in the central pressure of the ASL over the same time period (Figures 3.3b,c red

curves). The difference between the two ensembles becomes statistically significant at 95%

levels by 1993 in WACCM4 and 1999 in CAM5. It must be noted that the magnitude of

the change is smaller than the natural variability of the ASL as depicted by the large spread

across the individual ensemble members (thin blue and red curves). The presence of the

ozone effect in two very different models provides confidence in the result. Of the three

ASL metrics, stratospheric ozone depletion only has an effect on the ASL central pressure;
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Figure 3.3: a) Column integrated polar (60-90°S) ozone in the Southern Hemisphere, averaged over SON, used for the CAM5

runs with fixed ozone (red) and historic ozone levels (blue). The trendlines show trends over the period 1965-2005. Ozone levels

for the individual WACCM members are shown in supplementary figure S1. b) The ASL central pressure during DJF for six

‘Fixed Ozone’ runs and six ‘Ozone Hole’ runs in WACCM4 with the bold lines indicating the ensemble averages. c) The ASL

central pressure during DJF for eight ‘Fixed Ozone’ runs and eight ‘Ozone Hole’ runs in CAM5 with the bold lines indicating

the ensemble averages.
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in agreement with Fogt and Wovrosh (2015), we find no statistical difference between the

‘Fixed Ozone’ and ‘Ozone Hole’ ensembles when examining the latitudinal or longitudinal

position of the ASL over the same time period (not shown).

To illustrate that the ozone effect on the ASL is confined to summer, we show in Figure 3.4

the full seasonal cycle of ASL central pressure in WACCM4 (a,c) and CAM5 (b,d) averaged

over the 15 years before the dramatic depletion of stratospheric ozone (1955-1969) and the

15 years when stratospheric ozone levels reached their minimum (1991-2005). The 15-year

averaging window was chosen to maximise the signal to noise ratio. Although Turner et al.

(2009b) and Fogt and Zbacnik (2014) suggested there was a possible relationship between

ozone depletion and the ASL in austral autumn, our models show no evidence for this. For

the ‘Ozone Hole’ ensemble there is a pronounced deepening in summer, most notably in

January, found in the years after the ozone hole has peaked. In contrast, the seasonal cycle

of ASL for the ‘Fixed Ozone’ ensemble remains unchanged between the two periods.

Recent studies into the link between ozone depletion and changes in the ASL (Turner

et al., 2009b; Fogt and Zbacnik, 2014) only looked at the years following 1979, constrained

by available reanalysis and model data. However, it is well established that levels of strato-

spheric ozone started to significantly decrease from the mid 1960s, so these studies miss out

on roughly 15 years of ozone forced trends. Figure 3.5 compares DJF trends in ASL central

pressure for the WACCM4 and CAM5 ensembles found over the truncated period 1979-2005

and those from the full period 1965-2005. Trends for the ensemble means (left panels) are

calculated by examining the distribution of trends of the individual members (centre and

right panels). Trends are statistically different from zero at 95% significance if the errorbars

do not cross the zero line. The deepening of the ASL in DJF due to ozone depletion can be

seen in Figure 3.5 from the trend in the difference (green) between the ‘Ozone Hole’ (blue)

and ‘Fixed Ozone’ (red) ensembles.

For the WACCM4 runs, even with the large number of members used, this non-zero

trend is only statistically significant at a 95% level using the longer time period. This would

explain why previous studies found it difficult to diagnose a robust ozone effect on the ASL.
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b) CAM5 1955-1969
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c) WACCM 1991-2005
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d) CAM5 1991-2005

Figure 3.4: Seasonal cycle of ASL central pressure taken over fifteen-year periods: a) and b) the early period (1955-1969) before

the effects of ozone depletion, and c) and d) the late period (1991-2005) with the effects of ozone. Fixed ozone (red) and realistic

ozone (blue) runs from, a) and c), WACCM4 and, b) and d), CAM5 are compared. The lines indicate the ensemble average

and the shading represents the +/− 1σ of the yearly variability across the ensemble over the fifteen-year period.
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Figure 3.5: Trends in ASL central pressure in DJF during years 1979-2005 (top) and 1965-2005 (bottom). The ensemble

average for both WACCM4 (circles) and CAM5 (squares) runs, as well as the individual members, are displayed with error bars

indicating 95% significance. NCEP-DOE II and ERA-Interim are plotted for the shorter time period. Red indicates runs with

fixed ozone levels, blue indicates runs with realistic ozone and green shows the difference between them.

Trends for individual members of each ensemble are also shown; broadly, the individual

‘Ozone Hole’ runs have negative trends, whilst the individual ‘Fixed Ozone’ runs have no

trends. Averaging over all members of the ensemble, as well as the full time period 1965-

2005, is required to clearly see that stratospheric ozone depletion causes a deepening of the

ASL in summer.

3.4 Summary and Discussion

Using two CESM1 models, CAM5 and WACCM4, we have demonstrated that stratospheric

ozone depletion causes a deepening of the summertime ASL of roughly 1 hPa/dec. Previous

studies have struggled to isolate the impact of stratospheric ozone on the ASL, mostly due to

the large natural variability of the ASL itself. This study makes it clear, however, that using

ensembles of model integrations and analysing them over the full period of ozone depletion

(which started a couple of decades before the satellite era) are crucial in determining the
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ozone impact on the ASL.

In contrast with similar studies (Turner et al., 2009b; Fogt and Wovrosh, 2015; Hosking

et al., 2016) which only analysed integrations with all known forcings present, the changes

seen here can be unequivocally attributed to stratospheric ozone depletion since we have

explicitly run the model with and without ozone depletion. One might question, however,

whether two models are enough to draw robust conclusions. It should be emphasised that

these are two very different models, with markedly different climate sensitivities (Gettelman

et al., 2013). Furthermore, impacts of stratospheric ozone depletion being confined to sum-

mer is consistent with the observational study by Thompson et al. (2011), and we are able

to build upon the modelling study by Fogt and Zbacnik (2014) to more cleanly isolate the

signal.

Although beyond the scope of this study, the next step would be to establish the precise

mechanism connecting stratospheric ozone depletion and the ASL. One reasonable hypoth-

esis pertains to changes in synoptic scale activity around West Antarctica. High latitudes

cyclones in the Amundsen and Bellingshausen Seas have been shown to be important for the

formation of the ASL (Walsh et al., 2000; Fogt et al., 2012b). Grise et al. (2014) demon-

strate that stratospheric ozone depletion has induced a significant poleward shift in cyclone

frequency in summer, with a marked increase in the frequency of the strongest cyclones

in the Amundsen and Bellingshausen Seas region. Therefore an intensification of cyclonic

activity around West Antarctica, as a result of stratospheric ozone depletion, is a potential

mechanism which would cause the ASL to deepen in summer.
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CHAPTER 4

CONTRASTING THE ANTARCTIC AND ARCTIC

ATMOSPHERIC RESPONSES TO PROJECTED

SEA ICE LOSS IN THE LATE 21ST CENTURY

This work was published in Journal of Climate in 2018 (England et al., 2018).

4.1 Introduction

Although Antarctic SIE has been increasing steadily (Section 1.1.1) at a small but signifi-

cant rate of nearly 2% per decade over the last forty years (Comiso et al., 2017a), it is hard

to imagine, under the current trajectory of greenhouse gas emissions, a scenario without a

significant reduction in SIE by the end of this century. In fact, 2017 and 2018 were at, or

near, record lows for Antarctic March SIE (NSIDC, 2019). In all of the Representative Con-

centration Pathways (RCPs) examined by the Intergovernmental Panel on Climate Change

Fifth Assessment Report, both Arctic and Antarctic SIE are projected to decrease by 2100

(Collins et al., 2013). The atmospheric response to future Antarctic sea ice loss under a

changing climate is, at present, a largely unexplored question.

The recent literature has almost entirely focused on the atmospheric effects of Arctic sea

ice loss (for recent reviews see e.g., Cohen et al. (2014) and Vihma (2014)), partly motivated

by the recent dramatic reduction of Arctic SIE at a rate of over 4% per decade (Vaughan

et al., 2013). The consequences of diminishing Arctic sea ice on the high latitudes are well

established, with higher levels of warming in the Arctic than at lower latitudes, and increased
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precipitation in that region (Deser et al., 2010; Screen and Simmonds, 2010). There is less

agreement, however, on the impact of Arctic sea ice loss on the mid-latitudes (Barnes and

Screen, 2015; Overland et al., 2015; Screen, 2017a). Evidence from climate models suggests

that Arctic sea ice loss acts to shift the jet equatorward in winter (Butler et al., 2010; Deser

et al., 2010; Peings and Magnusdottir, 2014; Sun et al., 2015) and the robustness among

models has been documented in (Screen et al., 2018). However, many features of the mid-

latitude response to sea ice loss identified from the recent historical trends (Screen et al.,

2013; Mori et al., 2014; McCusker et al., 2016; Sun et al., 2016) seem to be model dependent.

For instance, there is disagreement over whether sea ice loss causes a weakening (Kim

et al., 2014; Peings and Magnusdottir, 2014; Sun et al., 2015) or a strengthening (Cai et al.,

2012; Screen et al., 2013; Sun et al., 2014) of the polar vortex. Sun et al. (2015) (hereafter

S2015) demonstrate that part of the discrepancy can be reconciled by the competing effect

from the sea ice loss in the Pacific and Atlantic sector: melting sea ice in the Atlantic sector

is linked to enhanced wave propagation into the stratosphere and a weaker vortex whereas

melting sea ice in the Pacific sector is linked to wave suppression and a stronger vortex.

This cancellation, also reported in McKenna et al. (2018), is found to produce a muted

stratospheric response when sea ice loss is imposed in both sectors.

Unlike the Arctic, there has been very little research concentrating on the atmospheric

impacts of projected Antarctic sea ice loss. The Antarctic offers the opportunity to investi-

gate the effects of future sea ice loss in a simpler setting than the Arctic because (1) most

of the major land masses are found in the NH, (2) the SH atmospheric circulation is more

zonally symmetric and (3) projected sea ice losses are much less regionally varying in the

Antarctic. In the context of historical trends, it has been suggested that recent sea ice ex-

pansion might have resulted in a small poleward jet shift during the cold seasons (Smith

et al., 2017). Results from Raphael et al. (2011) suggest that changes in Antarctic sea ice

in austral summer may also have an effect on the atmospheric circulation. Complicating

matters, Bracegirdle et al. (2018) suggest that the relationship between Antarctic SIE and

the strength of the Southern jet is possibly stronger than the relationship with the latitu-
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dinal position of the jet. On the subject of future Antarctic sea ice decline, we are aware

of only three studies that have used comprehensive climate models, and their results are in

disagreement; Kidston et al. (2011) find no significant effects when contracting the sea ice

edge, whereas Bader et al. (2013) (while investigating the response in Austral winter alone)

find an equatorward shift of the tropospheric jet, in agreement with an earlier study by

Menendez et al. (1999). The effect of the changing Antarctic sea ice on the mid-latitudes is

still largely an unresolved question.

In this paper, we examine the atmospheric response to future reduced Antarctic SIE, and

contrast it with its Arctic counterpart, using a state of the art climate model. Following

S2015, we use the CESM WACCM, a model with a well-resolved stratosphere and interactive

chemistry for stratospheric ozone. We find that projected Antarctic sea ice losses have a

clear and robust effect on the tropospheric circulation throughout the year, albeit with an

amplitude that is somewhat smaller compared to the Arctic response.

This chapter is organised as follows. In Section 4.2, we describe the model and experi-

mental design used in this study. In Section 4.3, we compare and contrast the atmospheric

response, in the troposphere, stratosphere and at the surface, to future Antarctic and Arctic

sea ice loss. The chapter is concluded with a summary and discussion in Section 4.4.

4.2 Data and Methods

4.2.1 Model

For this study we employ WACCM4, a high top model which participated in the CMIP5,

and was fully documented by Marsh et al. (2013). It has a horizontal resolution of 1.9°

latitude by 2.5° longitude, with 66 vertical levels and a model lid extending up to the lower

thermosphere, near 140 km. In addition to enhanced vertical resolution in the stratosphere

and mesosphere, WACCM incorporates an interactive stratospheric chemistry package, and

special gravity wave parametrizations for the upper atmosphere. These features give this

model a much improved representation of the stratosphere than low top models. Employing
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a high top model is important because recent research has identified the stratosphere as a

possible pathway for interactions between the polar climate and mid-latitude weather (Peings

and Magnusdottir, 2014; Zhang et al., 2017).

4.2.2 Experiments

We investigate the effect of Antarctic and Arctic sea ice loss on the atmospheric circulation by

performing three numerical experiments, each 151 years long, using WACCM; a control run

and two perturbed sea ice runs. The control experiment is forced with a repeating seasonal

cycle of SIC and SST, averaged over the period 1955-69 (the reason for this choice is discussed

below), obtained from the mean of a six-member ensemble of historical twentieth-century

simulations with the corresponding fully coupled version of WACCM (Marsh et al., 2013).

The two perturbation experiments are specified with repeating seasonal cycles of polar SIC in

one hemisphere, averaged over the period 2085-99, from the mean of a six-member ensemble

of twenty-first-century simulations of the fully coupled version of WACCM, forced by RCP8.5.

The perturbed Antarctic experiment has prescribed 2085-99 values for Antarctic SIC, but

Arctic SIC is unchanged from the control. Similarly, the perturbed Arctic experiment has

prescribed 2085-2099 values for Arctic SIC, but Antarctic SIC is left unchanged from the

control. The SSTs in the perturbation experiments are handled using the same method as

S2015: in the perturbation experiments, SSTs are changed to end of the century values,

averaged from the six WACCM RCP8.5 runs, only in grid cells where SIC is projected to

decrease. Following convention (e.g., Peings and Magnusdottir (2014)), sea ice thickness is

specified to be 2 m in the Arctic and 1 m in the Antarctic.

While it is common to use the year 2000 (or present conditions) for the control runs, in

our experiments all forcings (including ozone-depleting substances) are fixed at 1955 year

levels, except for SIC. In all other aspects, the design of these experiments is similar to the

Arctic runs performed by S2015. However, we have chosen to use an earlier period for the

control because we are primarily focusing on the SH. By fixing all forcings at 1955 values, we

can avoid including a perpetual stratospheric ozone hole in the simulations (recall that the
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Figure 4.1: Seasonally averaged sea ice loss (difference between 1955-1969 and 2085-2099 averages) imposed for the Arctic (first

row) and Antarctic (third row) experiment, and the associated net surface heat fluxes in the Arctic (second row) and Antarctic

(fourth row). Positive heat fluxes correspond to the ocean releasing heat to the atmosphere and negative heat fluxes correspond

to the atmosphere losing heat to the ocean. Note that seasons have been shifted to align northern and austral seasons.

Antarctic polar stratosphere is severely perturbed at present, but the ozone hole is expected

to recover by 2060-2080 (WMO, 2014)). To avoid complicating matters with the recovery of

stratospheric ozone, we have selected the SIC from the middle of the 20th century, before

the ozone hole over Antarctica was ever formed. This choice results in a slightly larger

amount of sea ice loss than the one imposed by S2015; however, since the vast majority of

the loss is projected to occur in the 21st century, the results of these two studies are broadly

comparable in the Arctic.
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4.2.3 The imposed sea ice forcing

Given our experiment design, it should be clear that differences found in the atmospheric

circulation between the Antarctic perturbation experiment and the control experiment can

be attributed to Antarctic sea ice loss, although a small remnant of internal variability might

be present, even with such long integrations (150 years). Similarly, differences found in atmo-

spheric circulation between the Arctic perturbation experiment and the control experiment

can be attributed to Arctic sea ice loss. Therefore we start by examining the SIC forcing,

and contrasting the Antarctic and Arctic losses of sea ice.

Figure 4.1 shows the differences between the perturbation experiments and the control

experiment for the Arctic SIC (first row) and Antarctic SIC (third row). SIC is projected to

diminish in all seasons in both hemispheres by the end of the century. In the NH, significant

sea ice loss is found in the Arctic circle in summer and autumn. In the winter and spring, sea

ice loss is restricted to the marginal zones, especially the Bering Sea, Hudson Bay, the Sea

of Okhotsk and the Barents Sea. In comparison, the predicted sea ice loss in the SH appears

far more zonally symmetric. In austral winter and spring the projected sea ice loss is an

annulus completely encircling the Antarctic continent, whereas in austral autumn future sea

ice loss is confined to the Antarctic coastline. The net heat flux (the sum of the long wave

flux, the sensible heat flux and the latent heat flux) associated with these sea ice changes is

also shown (second and fourth row) with, as expected, areas of sea ice melt losing energy to

the atmosphere. Equatorward of the sea ice loss region, the atmosphere can be warmed by

thermal advection while SSTs are fixed by experimental design. This leads to a downward

heat flux response, a common feature in similar modelling studies (e.g. Deser et al., 2010).

The area integrated quantities of sea ice and net heat flux, and their variations throughout

the year, are presented in Figure 4.2. The seasonal cycle of sea ice area for the control

(averaged 1955-1969) and the perturbed experiments (averaged 2085-2099) are shown for

the Arctic (a) and the Antarctic (b). Consistent with the theory of Eisenman et al. (2011),

sea ice area becomes less seasonally varying in the Antarctic by the end of the century,
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Table 4.1: Details of the three WACCM timeslice experiments and the sea ice conditions imposed in them. Sea ice conditions

averaged averaged the years 1955-1969 are from the ensemble mean of six WACCM historical runs. Sea ice conditions averaged

over the years 2085-2099 are from the ensemble mean of six WACCM RCP8.5 runs.

Experiment Antarctic sea ice Arctic sea ice Years All other forcings

Control (C) 1955-1969 1955-1969 151 Fixed at 1955 values

Future Antarctic (A1) 2085-2099 1955-1969 151 Fixed at 1955 values

Future Arctic (A2) 1955-1969 2085-2099 151 Fixed at 1955 values

whereas the seasonal cycle of Arctic sea ice becomes larger. This is more easily interpreted

by considering the timing of the maximum Arctic sea ice loss (c) which aligns with the Arctic

September minimum (a), whereas the minimum Antarctic sea ice loss (c) coincides with the

Antarctic February minimum (b).

The annual cycle of net surface flux (d) and total forcing to the atmosphere (e), arising

from the SIC changes, are lagged by a few months after the timing of the maximum sea

ice loss in the Arctic, but this does not seem to be the case in the Antarctic. Recall that

changes in heat flux need not be in phase with changes in sea ice loss; for example, in the

Arctic, the energy transport from the ocean to the atmosphere is highest in winter even

though sea ice loss peaks in the autumn. The details of how the net surface flux and the

total forcing to the atmosphere were calculated are included in the Appendix. We expect

to see the largest atmospheric circulation response to sea ice loss in months where the net

surface flux peaks, so winter for the Arctic, and autumn and winter for the Antarctic. In

addition to the role played by the net surface fluxes, the basic climatological state of the

atmosphere is also important, as shown by Smith et al. (2017).

The experimental setup for the experiments is summarised in Table 4.1. The following

figures will all show the difference (future - past) between the perturbation and the control

experiments: we will refer to these as the ‘response’ to sea ice loss. In all of the following

figures the months have been aligned so that boreal and austral seasons correspond with
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each other. To calculate the strength and latitudinal position of the tropospheric jet, we use

the approach of Bracegirdle et al. (2018). The zonally averaged zonal wind between 75°S

and 15°S (SH jet) and 15°N and 75°N (NH jet) is interpolated with a cubic spline onto a

0.1° latitude grid; from this interpolated curve, the maximum wind speed and its location is

determined for each month. A two-sided Student’s t-test is used to estimate the statistical

significance of all responses. We discard the first year of each 151 year simulation from our

analysis.
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Figure 4.2: The seasonal cycle of 1955-1969 and 2085-2099 total sea ice area for (a) the Arctic and (b) the Antarctic, from

historical and RCP8.5 WACCM runs respectively. For both the Arctic and Antarctic the monthly sea ice loss between these

two periods is shown in (c). Resulting from this sea ice loss are the net surface flux differences (d) and the total forcing to the

atmosphere (e) [values in (c) multiplied by values in (d)]. Note that the months have been shifted to align northern and austral

seasons.
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4.3 The atmospheric response to future sea ice loss

4.3.1 Troposheric response

Figure 4.3 show the zonally averaged temperature response (shading) throughout the whole

atmosphere to Arctic (top row) and Antarctic (bottom row) projected future sea ice losses in

the four seasons, overlayed on to the climatological temperature structure from the control

experiment (contours). High levels of local warming are evident at high latitudes over the

regions of sea ice loss. In both hemispheres, the response peaks in winter and is smallest in

summer: this corresponds to the seasonal cycle of the net surface flux. It can be seen that, in

the troposphere, the response in the Arctic shows larger seasonal variations whereas, in the

Antarctic, the temperature response is more similar throughout the year. Examining the first

harmonic of the area averaged temperature response in the lower troposphere, the Arctic

response has a seasonal cycle amplitude which is 2.1x larger than that for the Antarctic

response, and is significant at a 99% level.

The local warming is clearly confined, both latitudinally and vertically. In neither hemi-

sphere we find a large mid-to-upper tropospheric warming, although the warming extends

slightly higher in the Arctic (up to 400 hPa) compared to the Antarctic (up to 600 hPa).

Note also a small cooling response above 600 hPa in the Antarctic for most of the year.

The largest stratospheric temperature changes are found in the Arctic in winter, but the

stratospheric response is examined in Section 4.3.2 below.

Figure 4.4 shows the zonally averaged zonal wind response throughout the whole atmo-

sphere to projected Arctic and Antarctic sea ice loss (shaded). Again, it is clear that the

tropospheric zonal wind response to Antarctic sea ice loss is less seasonally confined than for

the Arctic case, although the biggest response occurs in spring. In the Arctic, the largest

wind changes are seen in the stratosphere: however, even with our century long integrations,

most of the stratospheric response is not statistically significant because of the high variabil-

ity in the Arctic stratosphere. In agreement with most previous studies, we find that melting
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Figure 4.3: Zonally averaged temperature changes throughout the atmosphere for the four seasons in response to Arctic and

Antarctic future sea ice loss (shaded contours) on top of the control climatological temperature structure (black contours) with

contour increments of 15°C. Stippling denotes a statistically significant response at the 95% confidence level. Note that for ease

of comparison, the latitudes for the NH have been reversed.

sea ice causes an equatorward shift in the tropospheric jet in both hemispheres. This agrees

with the recent finding of Baker et al. (2017) who suggest that, as long as it is located on the

jet’s poleward flank, a local source of heating will move the tropospheric jet equatorwards.

The key point is that both Arctic and Antarctic projected sea ice losses would provide a neg-

ative feedback on the poleward tropospheric jet shift associated with increasing greenhouse

gases in each hemisphere (Yin, 2005; Lorenz and DeWeaver, 2007; Barnes and Polvani, 2013;

Grise and Polvani, 2014). Comparing to WACCM RCP8.5 simulations, according to these

simulations sea ice losses would reduce the end of the century poleward winter jet shift by

roughly 30-40% (assuming the relationship remains linear (McCusker et al., 2017)).

The tropospheric zonal wind response to future sea ice loss throughout the year is illus-

trated in Figure 4.5, which shows the entire seasonal cycle of zonal wind response at 700 hPa.

This plot best conveys the difference in the seasonality of the response to future Arctic and
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Figure 4.4: As in Figure 4.3 but for zonally averaged zonal wind. Contour increments of the control climatological zonal wind

structure have increments of 10m/s with the bold line being zero and the dashed lines indicating negative values.

Antarctic sea ice loss. The latitudinal position of the maximum zonal wind of the control

run is indicated by the black dots, to demonstrate that both Arctic and Antarctic sea ice loss

result in jet shifts, although as discussed later Antarctic sea ice loss also causes a weakening

of the jet. These results disagree with the findings of Kidston et al. (2011) who find no

apparent effect on the zonal wind. The major difference between the atmospheric responses

in the two hemispheres is that Antarctic sea ice losses causes an equatorward shift of the

eddy-driven jet throughout the entire calendar year, whereas the Arctic response is largest

between December and May and not significant at all in the autumn. Lastly, we note that

the peak response to future Antarctic sea ice loss is somewhat smaller than in the Arctic,

albeit statistically significant for every month of the year.

To further elucidate the response of the tropospheric jet, the top panel of Figure 4.6 com-

pares the effect of Arctic and Antarctic sea ice on two important parameters describing the

jet: the jet maximum speed and its latitudinal location (details about how these parameters
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Figure 4.5: Seasonal cycle of zonally averaged zonal wind changes at 700hPa in response to Arctic and Antarctic future sea

ice loss (shaded contours) on top of the control climatological zonal wind structure (black contours). Contour increments of

the control climatological zonal wind structure have increments of 3 m/s with the bold line being zero. Stippling denotes a

statistically significant response at the 95% confidence level. The latitudinal location of the maximum zonal wind is shown with

the black circles. Note that months have been shifted to align northern and austral seasons.

are calculated are included in Section 4.2). Consistent with Figure 4.5, the response of the

SH tropospheric jet is a small but significant equatorward shift in every month, whereas the

jet response to Arctic sea ice loss is not statistically significant for roughly a third of the

year. The amplitude of the seasonal cycle of the response to Arctic sea ice loss is roughly

double that of the Antarctic response, similar to the response of near-surface temperature

discussed previously.

Interestingly, one important feature where Antarctic sea ice loss seems to have a larger

impact on than Arctic sea ice loss is the jet strength, shown in the bottom panel of Figure

65



Figure 4.6: Seasonal cycle of response of the NH and SH tropospheric jet (at 700 hPa) to sea ice loss. The top panel shows

the equatorward jet shift response and the bottom panel shows the change in jet strength, with the negative values indicating

a slowdown of the jet. For information on how these parameters were calculated, refer to Section 4.2. Shading indicates the

+/− 2σ envelope. Note that months have been shifted to align northern and austral seasons.

4.6. While the impact of sea ice loss is to weaken the tropospheric jet in both hemispheres,

Antarctic sea ice loss has a significantly larger effect. This is consistent with Bracegirdle

et al. (2018) who reported a stronger relationship between Antarctic SIE and jet strength,

than between SIE and the latitudinal location of the jet. Although Bader et al. (2013) do

not decompose the jet response into the strength and location, it seems that their results

tell a similar story (although their experiment only examines the summertime). The role

of jet strength could offer a partial explanation of why, even though the seasonal cycle of

total forcing to the atmosphere is the same in both hemispheres, the response of the SH

jet latitude varies less seasonally than the NH jet latitude; rather, these seasonal variations
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Figure 4.7: 700 hPa zonal wind response to Arctic and Antarctic future sea ice loss (contours) on top of the control climatological

700 hPa zonal wind structure (black contours) with contour intervals of 4m/s. Stippling denotes a statistically significant

response at the 95% confidence level. Some values are not plotted because of topography.

manifest themselves in a weakening of the jet.

Figure 4.7 shows the zonal wind response at 700hPa for each of the four seasons. The

tropospheric zonal wind response due to future Antarctic sea ice loss is largely zonally sym-

metric, unlike the regional response to Arctic sea ice loss. One would have predicted a more

zonal response in the SH for two reasons: 1) the projected end of the century sea ice losses,

seen in Figure 4.1, are approximately zonally symmetric in the Antarctic and regionally con-

fined in the Arctic, and 2) the effects are acting upon a climatological state is which is far

more zonally symmetric in the SH (Kushner et al., 2000). In contrast, in response to melting

Arctic sea ice, WACCM’s primary centre of action seems to be over the Pacific basin (not

the North Atlantic): this is a common feature of many climate models (Gong et al., 2017).
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4.3.2 Stratospheric response

Figure 4.8 shows the seasonal cycle of the stratospheric zonal wind response to future sea

ice loss, the same as Figure 4.5 but at 10hPa rather than 500hPa. One can easily see that

while the tropospheric responses to Arctic and Antarctic sea ice loss are quite similar, the

stratospheric responses are not. Arctic sea ice loss results in a strengthening of the polar

vortex in our model between December and March, although the reader should note that

much of it is not statistically significant. Our findings differ from many other modelling

studies (Kim et al., 2014; Peings and Magnusdottir, 2014), and perhaps most interestingly,

S2015, who used a very similar experimental design and the same model as we do. Although

the stratospheric response in boreal spring is the same, S2015 find a slowdown of the polar

vortex in winter. We offer two possible explanations of this discrepancy: (1) given that

the changes are small relative to the climatological conditions and much of the changes are

not statistically significant, the differences could simply arise from the large levels of internal

variability in the stratosphere or (2) our study imposes slightly more sea ice loss in the Pacific

sector (for example in the sea of Okhotsk in winter) than S2015 and, as a consequence, wave

suppression could be more pronounced, leading to a stronger polar vortex. If the 150 year

integration is broken down into three 50-year chunks, one out those three time periods shows a

large weakening of the winter statospheric vortex in the NH, rather than a strengthening (not

shown). The fact that the sign of the response is not consistent throughout the integration

suggests that internal variability might be the most important fator behind these differences.

The largest, and robust, stratospheric response to Antarctic sea ice loss, in Figure 4.8,

is seen in austral autumn (MAM): it consists of a weakening of the polar vortex on its

poleward flank and a slight strengthening on its equatorward flank. Although these responses

are statistically significant, their amplitudes are small and consitute only a few percent of

the climatological state, with the SH polar vortex being much stronger than its northern

counterpart. It is possible that this small stratospheric response could be intensified when

the atmospheric model is coupled to an interactive ocean (Smith et al., 2017), but that
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Figure 4.8: As in Figure 4.5 but for zonally averaged zonal wind changes at 10hPa. Contour increments of the control

climatological zonal wind structure have increments of 10m/s with the bold line being zero.

remains to be established for our model.

To investigate the stratospheric responses further, Figure 4.9 shows the stratospheric

Eliassen-Palm (E-P) flux divergence response to Arctic and Antarctic sea ice loss. E-P flux

divergence quantifies wave dissipation. Consistent with the stratospheric wind response, the

largest change E-P flux divergence in the stratosphere is during boreal winter in response to

Arctic sea ice loss. The increase in E-P flux divergence (reduced wave dissipation) is related

to a suppression of upward wave propagation into the stratosphere (not shown), and thus a

strengthened stratospheric jet. The E-P flux divergence response in the Antarctic, largest in

austral spring and autumn, is weaker and does not impact the strength of the stratospheric

jet. Projected sea ice losses in the Antarctic are highly zonally symmetric, and thus might
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Figure 4.9: Seasonal cycle of E-P flux divergence response (shaded contours) [m/s/day] at 10hPa in response to Arctic (top)

and Antarctic (bottom) future sea ice loss overlayed on E-P flux divergence climatology (contours). Contour increments of the

control climatological values have increments of 1 m/s/day with the bold line being zero and thin lines being negative. Only

statistically significant responses have been shown. Negative values correspond to convergence and positive values correspond

to divergence.

not cause large changes in planetary waves and the stratospheric circulation.

Leveraging the fact that WACCM has interactive stratospheric chemistry, we now inves-

tigate the impact of sea ice loss on stratospheric ozone concentrations. Changes in strato-

spheric ozone have been shown to have an important impact upon the climate system (Previdi

and Polvani, 2014). Analysing the same set of runs as S2015, Sun et al. (2014) find that

Arctic sea ice loss causes a significant reduction of total column ozone in the spring, by

over 30 Dobson Units. Figure 4.10 shows the response of total column ozone to Arctic and

Antarctic sea ice loss in our runs. In agreement with Sun et al. (2014), we find a reduction

of total column ozone in the spring (although of roughly half their magnitude), and this re-

duction extends back through the winter to November. This response is consistent with the
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Figure 4.10: As in Figure 4.5 but for zonally averaged total column ozone, in Dobson units, in response to Arctic and Antarctic

future sea ice loss. Contour increments of the control zonally averaged total column ozone structure have increments of 25DU.

Stippling denotes a statistically significant response at the 95% confidence level.

stratospheric cooling seen in these seasons. The differences in the amplitude of stratospheric

ozone seen in these two set of experiments might be linked to the different climatological

conditions in the control runs; Sun et al. (2014) analyse a base period with reduced Arctic

stratospheric ozone owing to the high levels of hydrocarbons in their simulations (Manney

et al., 2011). These results further highlight how sensitive the stratospheric response is to

the experimental design of these sea ice loss experiments.

In contrast to the reduction in stratospheric ozone seen in response to Arctic sea ice,

Figure 4.10 demonstrates that Antarctic sea ice loss will actually cause an increase in strato-

spheric ozone, throughout much of the year. The response of ozone in the two hemispheres is

consistent with the stratospheric temperature changes and their effect on ozone production

rates. Another difference between the two hemispheres is that the response to Antarctic sea

ice loss does not coincide with the season of maximum ozone depletion (SON, (WMO, 2014));
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austral spring actually exhibits the smallest response of any season. Note that in both hemi-

spheres the response of stratospheric ozone concentrations to sea ice loss is small compared

to the climatological values (especially in the Antarctic where the response constitutes only

1-2%). Long integrations are required to detect statistically significant differences (see Figure

2b of Sun et al. (2014) for an indication of the large internal variability). These changes in

ozone are not considered large enough to influence the dynamics. Nevertheless, stratospheric

ozone offers another instance with interesting differences between the atmospheric response

to Antarctic and Arctic sea ice loss.

4.3.3 Surface response

Of potential societal and ecological importance, it is important to understand the surface

response to Antarctic sea ice loss, starting from the surface temperature response which

is shown in Figure 4.11. First, note that the amplitude of warming in both hemispheres

is similar with a maximum of roughly 10°C in the wintertime. Second, note that surface

temperature changes in both hemispheres are broadly confined to the polar regions, with

Arctic sea ice loss having a slightly larger effect towards the equator because the sea ice

loss extends to lower latitudes. Third, our model shows that projected sea ice losses in the

SH have negligible impact upon the surface temperatures of the interior of the Antarctic

continent; however, we note a warming over the Peninsula and the West Antarctic, which

might have profound impacts upon the stability of Antarctic ice shelves (Trusel et al., 2015).

It is probable that coupling to an interactive ocean would intensify the local warming further

into the continent, and extend it in height (Smith et al., 2017), but we find it surprising how

trapped near to the surface the response is in these runs, given the magnitude of the sea

ice loss imposed. We also point out that Arctic sea ice loss causes a clear winter Eurasian

cooling in these model integrations, between 1 and 2°C, in agreement with other studies

(Cohen et al., 2014; Mori et al., 2014; Sun et al., 2015; Wu and Smith, 2016); however this

response is not found by all studies (Screen et al., 2013; McCusker et al., 2016; Sun et al.,

2016) and it may partly depend on the magnitude of the sea ice forcing.
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Figure 4.11: Surface temperature response to Arctic and Antarctic future sea ice loss. Stippling denotes a statistically significant

response at the 95% confidence level.

We conclude by examining how precipitation responds to Arctic and Antarctic sea ice

loss (Figure 4.12). It can be seen that precipitation changes correspond to changes in the net

heat flux, shown in Figure 4.1. Areas in which the net heat flux is positive (where the ocean

is releasing energy into the atmosphere) are co-located with an increase in precipitation.

Conversely, areas in which the net heat flux is negative (where the atmosphere is losing

energy to the ocean) experience a decrease in precipitation. This similarity between the net

heat flux and local precipitation is in agreement with the findings of Deser et al. (2010), who

show that the seasonal cycle of the averaged net heat flux and the integrated precipitation are

completely in phase with one another. In the SH, changes in precipitation at low latitudes,

which could be affected by the mid-latitude jet are not significant. There is no significant

change in precipitation over populated landmasses in the SH, such as Australia or South
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Figure 4.12: Precipitation response to Arctic and Antarctic future sea ice loss, with units of mm/day. Stippling denotes a

statistically significant response at the 95% confidence level.

America, as the response is confined near the regions of sea ice loss. These results suggest

a small impact of Antarctic sea ice loss on the mid-latitudes in the SH, either through

changes in temperature or precipitation. Including ocean coupling, however, could alter this

conclusion, because ocean dynamics could act as a pathway to extend the impacts to the

lower latitudes (Deser et al., 2016). Over the period 1979-2009, Smith et al. (2017) only find

significant changes in precipitation near Australia or South America when the atmosphere

is coupled to an interactive ocean.
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4.4 Summary and Discussion

4.4.1 Summary

We have performed a comprehensive set of model experiments to compare the atmospheric

response to projected late twenty-first- century Arctic and Antarctic sea ice loss. There has

been very little research on the effects of Antarctic sea ice loss, so our aim was to place the

findings in the context of the Arctic, for which a vast literature exists. Our main conclusion

is that future Antarctic sea ice loss is likely to have a significant impact on the atmospheric

circulation throughout the year, with comparable magnitude to the impact of Arctic sea ice

loss. We find that in both hemispheres, sea ice loss is associated with considerable surface

and lower tropospheric warming in the polar regions: however this localised warming is more

confined in height and in latitude in the Antarctic case. Interestingly, the surface warming

response in the Antarctic is unable to penetrate the interior of the Antarctic continent in

these runs. Similarly, changes in precipitation are also confined to the polar regions. One

possible reason for these two results, which motivates further study, is the lack of ocean

coupling in these experiments. Sea ice loss in both hemispheres causes the tropospheric jet

to shift equatorwards; this is a negative feedback on the poleward jet shift associated with

increased concentrations of greenhouse gases. The stratospheric response to Antarctic sea

ice loss is smaller than the response to Arctic sea ice loss, and has a different seasonality.

Comparison of our results with S2015 suggests that stratospheric response to Arctic sea ice

loss could be dominated by the large levels of internal variability in the stratosphere.

Perhaps the largest difference between the atmospheric effects of Arctic and Antarctic

sea ice loss is their seasonal variability, even though the seasonal cycles of the net surface

fluxes are similar. The peak response in the atmospheric circulation is seen in winter, but

the amplitude of that response is significantly larger for Arctic sea ice loss than for Antarctic

sea ice loss. However, the tropospheric response in the Antarctic is seen throughout the

calendar year, whereas the response in the Arctic is mostly confined to winter and spring.
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The only impact of Antarctic sea ice loss which is of larger amplitude than of its Arctic

counterpart, is a weakening of the tropospheric jet, which peaks in winter. A key difference

between two hemispheres is found in the zonality of the response to sea ice loss. For the

Antarctic, the response of the atmospheric circulation is approximately zonally-symmetric,

whereas for the Arctic sea ice loss the response shows an important regional structure, with

much of it located over the Pacific basin.

4.4.2 Discussion

One important caveat of these findings is that they are derived from a single climate model,

so they are only as reliable as our model can be. It is obviously desirable to repeat our

exercise with other models, to confirm these results and estimate the spread across models.

One would want to understand why the results of Kidston et al. (2011) are in stark contrast

to the findings of this study and that of Bader et al. (2013). Recent results from studies

investigating the response to Arctic sea ice loss have highlighted the dependence of the results

on the mean state of the atmosphere (Screen and Francis, 2016; Osborne et al., 2017; Smith

et al., 2017). Any biases in the background state of the control run, or the period chosen for

the control run, could impact the results. This may explain some discrepancies between the

results of this study and Sun et al. (2015), even though the same model was used with a very

similar experimental set-up; the choice of 1955 rather than 2000 forcing could contribute

to any differences. Further complicating the issue, there is evidence suggesting that the

atmospheric response has a non-linear relationship to the magnitude and location of the sea

ice loss (Chen et al., 2016; Screen, 2017b).

It is important to recall that recent observed sea ice trends in the Antarctic look very

different to those simulated in WACCM, and in all other current-generation climate models;

models show significant levels of high latitude warming and a decline in SIE in the last

several decades. The literature is divided on whether the reason for this discrepancy is due

to high levels of internal variability (Polvani and Smith, 2013; Zunz et al., 2013; Gagne

et al., 2015) or to, yet to be robustly identified, major flaws in the models (Marshall et al.,
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2014; Kostov et al., 2017; Rosenblum and Eisenman, 2017). Whatever may be the case, it is

hard to imagine that there will not be significant melting of Antarctic sea ice by the end of

the century, in response to increasing greenhouse gases; so our exercise is still informative.

For instance, from our study we can learn something about possible circulation errors in

the future projections. If, in the future, Antarctic sea ice loss occurs at a slower rate than

projected by the current generation of climate models, then model projections are also likely

to overestimate the future local warming and underestimate the poleward shift of the jet

as well as the jet strength. Our results offer an initial estimate of the magnitude of these

potential errors.

An important finding from our study is that, in our model, surface temperatures over

the interior of the Antarctic continent appear not to respond to changes in sea ice conditions

(even with the substantial end of the century sea ice loss imposed). In recent decades, the

West Antarctic regions have been warming in the autumn (Schneider et al., 2012; Bromwich

et al., 2013) but the eastern part of the continent has experienced a small cooling trend

(Nicolas and Bromwich, 2014). The extent to which these regional trends are due to internal

variability (Smith and Polvani, 2017) or are part of an anthropogenically-forced response

(Steig et al., 2009) is an open question. Our study suggests that cooling of the interior of

Antarctica may be unrelated to changing sea ice conditions, but further investigations which

couple an interactive ocean to the atmosphere are necessary to validate this hypothesis.

The next step to further our understanding of the effects of Antarctic sea ice loss, which

we aim to complete soon, will be to repeat the same experiment using WACCM with a

coupled ocean rather than fixed SSTs, using the approach of Deser et al. (2015). Literature

on the Arctic suggests that including a coupled ocean can allow sea ice loss to have an impact

on the low latitudes (Deser et al., 2016; Tomas et al., 2016; Blackport and Kushner, 2017)

and have a amplified effect on the high latitudes because of feedbacks (Deser et al., 2015;

Smith et al., 2017). One would want to investigate whether this amplifying effect is as large

in the SH given the different configuration of oceans and land masses in the SH. In addition,

it is important to understand how a coupled ocean might affect the difference in seasonality
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of the atmospheric response to Arctic and Antarctic sea ice loss that we have shown in this

study.
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CHAPTER 5

REMARKABLY SIMILAR TROPICAL RESPONSE

TO ARCTIC AND ANTARCTIC SEA ICE LOSS

5.1 Introduction

By the end of this century, a considerable decline in the sea ice cover in both the Arctic

and the Antarctic is expected. Over the past four decades, observed Arctic sea ice cover has

already dramatically decreased; September SIE has nearly halved since 1979 (NSIDC, 2019),

having lost an estimated 8,000 km3 of sea ice volume over that period (Schweiger et al.,

2011). In addition, 2017 and 2018 were the two lowest years for Antarctic SIE since satellite

observations began in 1979 (Ludescher et al., 2018; NSIDC, 2019), indicating a potential

turning point toward a continued decrease in Antarctic SIE over the coming decades. In

each of the RCPs examined by the Intergovernmental Panel on Climate Change’s Fifth

Assessment Report, both Arctic and Antarctic SIE are projected to decrease by 2100 (Collins

et al., 2013), and, under a business-as-usual scenario, models predict that the first ice-free

Arctic summer will occur by the middle of this century (Liu et al., 2013; Overland and

Wang, 2013; Jahn et al., 2016). To understand the full effect of these dramatic changes on

the climate system, we here study the impact of future Arctic and Antarctic sea ice loss both

separately and together.

The NH high latitude response to Arctic sea ice loss involves an intense warming and

moistening of the polar atmosphere (Deser et al., 2010; Liu et al., 2012; Screen et al., 2018),

especially near the surface. The mounting body of modeling work on Arctic sea ice loss
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indicates that the likely impacts also include a weakening and equatorward shift of the

tropospheric jet (Screen et al., 2013; Peings and Magnusdottir, 2014; Sun et al., 2015; England

et al., 2018) and a potential slowdown in the Atlantic Meridional Overturning Circulation

(AMOC) (Blackport and Kushner, 2016; Tomas et al., 2016; Sevellec et al., 2017; Sun et al.,

2018; Liu and Fedorov, 2019). When these experiments are run in an atmosphere-only

configuration, the effects of sea ice loss are confined to the mid- and high-latitudes (Smith

et al., 2017; England et al., 2018): however when coupled to an interactive ocean, sea ice

loss can have global effects (Deser et al., 2015; Tomas et al., 2016; Smith et al., 2017), with

important impacts in the tropics (Sun et al., 2018; Wang et al., 2018; Chemke et al., 2019).

So far studies examining the effects of projected Antarctic sea ice loss have been limited to

atmosphere-only models (Kidston et al., 2011; Bader et al., 2013; England et al., 2018), and

therefore have not captured the full extent of the response. In this study, we are the first to

examine the far-flung effects of Antarctic sea ice loss using model simulations with a coupled,

dynamic ocean. Under this framework, we are able to investigate the impact of Arctic and

Antarctic sea ice loss on the tropics.

Arctic sea ice loss has been shown to impact tropical SSTs, the position of the Intertrop-

ical Convergence Zone (ITCZ) and the strength and location of the Hadley Cell (Chiang and

Bitz, 2005; Deser et al., 2015; Tomas et al., 2016; Sun et al., 2018; Chemke et al., 2019; Liu

and Fedorov, 2019). Zonally asymmetries in the tropical SST response are linked to ocean

dynamics, with enhanced warming in the Eastern Equatorial Pacific (Tomas et al., 2016).

This response is detectable less than 25 years after a large instantaneous amount of sea ice

loss is imposed (Wang et al., 2018), but when a more realistic, transient change in Arctic

sea ice is imposed, it takes significantly longer to detect this robust pattern of warming (Sun

et al., 2018). This warming is accompanied by an increase in rainfall over the Equatorial

Pacific, roughly symmetric about the equator, which intensifies the equatorward edge of the

ITCZ (Deser et al., 2015; Tomas et al., 2016; Sun et al., 2018; Wang et al., 2018). In this

study we address the following questions: (i) Will future Antarctic sea ice loss have an im-

portant impact on the tropics? and, if so, (ii) Does Antarctic sea ice loss act to reinforce or
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oppose the tropical response to Arctic sea ice loss?

5.2 Methods

5.2.1 Sea Ice Extent

SIE is defined as the total area of the gridboxes in the Arctic/Antarctic which are covered

with 15% or more of sea ice. For an observational estimate of the seasonal cycle of Arctic

and Antarctic SIE, we use the U.S. National Snow and Ice Data Center’s (NSIDC) Sea Ice

Index (NSIDC, 2019).

5.2.2 WACCM4

To investigate the effect of Arctic and Antarctic sea ice loss, we performed experiments

using the WACCM4, a high top model that participated in phase 5 of the Coupled Model

Intercomparison Project. WACCM4 has been fully documented by Marsh et al. (2013).

It has a horizontal resolution of 2 latitude by 2.6 longitude, with 66 vertical levels and a

model lid extending up to the lower thermosphere, near 140 km. In addition to enhanced

vertical resolution in the stratosphere and mesosphere, WACCM incorporates an interactive

stratospheric chemistry package, and special gravity wave parametrizations for the upper at-

mosphere. These features give this model a much improved representation of the stratosphere

than low top models. Employing a high top model is important because recent research has

identified the stratosphere as a possible pathway for interactions between the polar climate

and mid-latitude weather (Peings and Magnusdottir, 2014; Zhang et al., 2018; De and Wu,

2018). It also allows us to compare these results with previous atmosphere-only experiments

using the same model (England et al., 2018). We run WACCM4 coupled to the CICE4 ice

model (Holland et al., 2012) and the POP2 ocean model (Danabasoglu et al., 2012).
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5.2.3 WACCM experiments with constrained sea ice conditions

We investigate the effect of Antarctic and Arctic sea ice loss on the climate system by

performing four numerical experiments (outlined in Table 5.1), each 350 years long, using

WACCM: a control run and three perturbed sea ice runs. There is the control experiment

CONTROL where sea ice conditions in both hemispheres are kept at mid-20th century values,

MELT-A where only Arctic sea ice is melted to end-of-21st century values and Antarctic sea

ice is unperturbed from the control run, MELT-AA where only Antarctic sea ice is melted

to end-of-21st century values and Arctic sea ice is unperturbed from the control run, and

MELT-BOTH where both Arctic and Antarctic sea ice is melted to end-of-21st century

values. The control period is chosen to be the sea ice conditions averaged over the years

1955-69 obtained from the mean of a six-member ensemble of historical twentieth-century

simulations with the fully coupled version of WACCM. The future period is chosen to be the

sea ice conditions averaged over the years 2085-99 obtained from the mean of a six-member

ensemble of 21st-century simulations of the fully coupled version of WACCM, forced by

RCP8.5. We note that WACCM4 is able to well simulate the climatological seasonal cycle

of sea ice in each hemisphere (Fig. 5.1).

To achieve the desired seasonal cycle of sea ice conditions in each hemisphere, we follow

the ‘ghost forcing’ method outlined in Deser et al. (2015). This involves specifying a season-

ally varying longwave radiative flux to the ice model at each grid box and time step. ‘Ghost

forcing’ refers to the fact that the additional longwave forcing is invisible to other model

components, except indirectly through changes in sea ice. This flux is only applied to areas

where sea ice is present, but for simplicity does not vary spatially. The longwave radiative

flux necessary to replicate the desired sea ice conditions was calibrated through 5-10 itera-

tions of shorter runs. The process is outlined in the appendix of Deser et al. (2015). We note

that the change in SIE has a linear relationship with additional long wave forcing except

for in the summer months (when the relationship is non-linear); this requires additional it-

erations before the experiments are within an acceptable tolerance of the target SIE values.
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Figure 5.2 shows how close the constrained sea ice experiments are to their target values

from the historical or RCP8.5 integrations. We also note that the ‘ghost flux’ method used

in this study is one of a few techniques commonly used in this type of experiment (Screen

et al., 2018).

In all of our experiments, all forcings (including ozone-depleting substances) are fixed at

1955 year levels, except for the added longwave radiative flux used to constrain the SIC. As

in England et al. (2018), we use this period for the control because we are largely focussed on

the SH and want to avoid including a perpetual stratospheric ozone hole in the simulations

[recall that the Antarctic polar stratosphere is severely perturbed at present (see England

et al. (2016a) for the stratospheric ozone depletion in the WACCM historical runs), but

the ozone hole is projected to recover before the end of this century (WMO, 2018)]. We

have selected periods before and after the existence of the ozone hole, so as to simplify the

interpretation of our results. Our choice results in a slightly larger amount of sea ice loss

than similar studies, but the results are still broadly comparable because the vast majority

of the sea ice loss is projected to occur in the 21st century.

It should be clear that differences between the experiments arise from differences in SIC

alone, assuming that the integrations are long enough to minimise the effect of internal

variability. The effect of Arctic sea ice loss can be found from MELT-A – CONTROL.

Similarly, the effect of Antarctic sea ice loss can be found from MELT-AA – CONTROL.

Lastly, the effect of Arctic and Antarctic sea ice loss together can be found from MELT-

BOTH – CONTROL. From the 350-year long integrations, we discard the first 100 years and

average over the remaining 250 years in order to capture the equilibrium response to sea ice

loss (Wang et al., 2018).

5.2.4 Calculating the atmospheric and oceanic northward heat

transport

The oceanic Northward Heat Transport (NHT) is diagnosed directly from the N HEAT

variable in the ocean history file. The atmospheric net NHT is calculated using the method
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Figure 5.1: The seasonal cycle of (a) Arctic and (b) Antarctic SIE averaged over the years 1979-2000 from six WACCM historical

runs (grey) and observational data from the NSIDC Sea Ice database (NSIDC, 2019) (blue). The shading show the +/ − 2σ

envelope.

Table 5.1: Details of perturbed sea ice experiments using the fully coupled version of WACCM.

Experiment name Length (yrs) Arctic sea ice Antarctic sea ice

CONTROL 350 1955-1969 1955-1969

MELT-A 350 2085-2099 1955-1969

MELT-AA 350 1955-1969 2085-2099

MELT-BOTH 350 2085-2099 2085-2099

outlined in the appendix of Kay et al. (2012). As an input, this calculation requires the net

longwave and net shortwave flux at top of atmosphere, as well as the net shortwave, net

longwave, latent heat and sensible heat at the surface.

84



Figure 5.2: The seasonal of cycle Arctic (a) and Antarctic (b) SIE in the four experiments (dashed lines): CONTROL = Ctrl,

MELT-A = A, MELT-AA = AA and MELT-BOTH = A+AA. The full lines show the target SIE values from the historic

runs, averaged 1955-1969, and the RCP8.5 runs, averaged 2085-2099. We show the zonally averaged atmospheric temperature

response to (c) Arctic sea ice loss, (d) Antarctic sea ice loss and (e) both Arctic and Antarctic sea ice loss. As a comparison

we include the (f) RCP8.5 temperature change, 1955-1969 to 2085-2099, averaged from six WACCM historical and RCP8.5

runs. Note that the colorbar values have been made considerably higher. Stippled regions indicate a significant change at 95%

significance.
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Figure 5.3: Left: (a) The zonally averaged annual mean surface temperature response to Arctic sea ice loss (blue), Antarctic

sea ice loss (red) and both Arctic and Antarctic sea ice loss (green). The black line shows the RCP8.5 change, 1955-1969 to

2085-2099, averaged from six WACCM historical and RCP8.5 runs. The shaded region shows the latitudes of interest for the

panels on the right. Right: The annual mean surface temperature response to (b) Arctic sea ice loss, (c) Antarctic sea ice loss

and (d) both Arctic and Antarctic sea ice loss compared to the projected changes under RCP8.5, 1955-1969 to 2085-2099. Note

that the colorbar values are considerably higher for the lower panel. Stippled regions indicate regions which have a significant

difference at 95% significance.
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5.3 Isolating the tropical response to Arctic and Antarc-

tic sea ice loss

The atmospheric temperature response to Arctic sea ice loss (Fig. 5.2c), similar to the one

found in previous studies (Deser et al., 2015; Blackport and Kushner, 2016; Oudar et al.,

2017; Screen et al., 2018; Sun et al., 2018), features strong warming in the lower parts of the

Arctic atmosphere and a ‘mini global warming’ signal which can even impact the Southern

high latitudes. The tropical response to Arctic sea ice loss is robust across different models

and different sea ice perturbation methods (Deser et al., 2015; Screen et al., 2018; Sun et al.,

2018). This study is the first to demonstrate that the response to projected Antarctic sea

ice loss (Fig. 5.2d) will have a similar structure, except of course from enhanced warming

at the opposite pole, and a larger magnitude than its Arctic counterpart, although this is

likely dependent on the amount of projected Antarctic versus Arctic sea ice loss. When both

Arctic and Antarctic sea ice loss are imposed simultaneously (Fig. 5.2e), the increase in

tropical upper tropospheric temperature is 1-1.5°C which accounts for roughly 20% of the

warming projected under RCP8.5 (Fig. 5.2f). It is important to note that the response to

Arctic sea ice loss and Antarctic sea ice loss are roughly additive (panels c + d ≈ e in Fig.

5.2), a result which also holds for the other quantities examined in this study.

Zonally averaged, the tropical (30°S-30°N) surface temperature response to Antarctic

sea ice loss is as large as the response to Arctic sea ice loss (both approximately 0.3°C)

(Fig. 5.3a). Together this 0.6°C accounts for roughly 20% of the tropical surface warming

projected under RCP8.5, a contribution, which is consistent throughout the year. However,

the zonal average masks important regional features of the surface temperature response

(Fig. 5.3b,c,d). There is enhanced warming in the eastern Pacific with warm tongues from

the North American coastline, largely linked to Arctic sea ice loss (Fig. 5.3b), and in the

southeast tropical Pacific, mostly linked to Antarctic sea ice loss (Fig. 5.3c), which are very

similar to the Pacific Meridional Modes (Zhang et al., 2014a,b). Interestingly, sea ice loss

87



Figure 5.4: The seasonal cycle of the zonally averaged tropical precipitation response (shaded) to (a) Arctic sea ice loss, (b)

Antarctic sea ice loss, and (c) Arctic and Antarctic sea ice loss. (d) The projected change in the seasonal cylce of zonally

averaged tropical precipitation under RCP8.5, from 1955-1969 to 2085-2099. Note that the response in panel (d) is scaled by

dividing by three to fit on the same colorbar. The response is overlaid on the climatological values with contours of 1mm/day

and 3 mm/day.

in one hemisphere acts to reinforce the warming pattern from sea ice loss in the opposite

hemisphere (Fig. 5.3d). We note that surface temperature response to Antarctic sea ice

loss resembles the pattern (with the opposite sign) which Hwang et al. (2017) find when

investigating the effect of increased Southern Ocean heat uptake using a GCM coupled to a

slab ocean model. This suggests that the same mechanisms they diagnose, namely the wind-

evaporation-SST feedback and the shortwave cloud feedback, are likely to be important in

determining the structure of the response to sea ice loss in the southern tropics.

Both Arctic and Antarctic sea ice loss are found to significantly increase precipitation

over the equatorial Pacific throughout the year but the response is seasonally dependent

(Fig. 5.4), unlike for surface temperature, with the largest effect occurring in DJF (Fig.5.5).

Interestingly, the months for which the tropical precipitation response is highest (December

and January) are also the months in which the RCP8.5 projected response is weakest (Fig.

5.4, compare panels c and d). We first note how similar the latitudinal structure of tropical

precipitation change is when comparing the response to Arctic and Antarctic sea ice loss with
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Figure 5.5: Same as Figure ?? but for DJF precipitation. Note that the colorbar is the same for the all panels on the right.

The stippled regions show changes significant at 95% significance.

projected RCP8.5 changes (Fig. 5.5a); increases close to the equator and small changes,

possibly a reduction, in the NH off-equatorial regions. The hemispherically asymmetric

precipitation pattern in the Pacific looks nearly identical for both Arctic and Antarctic sea

ice loss (Fig. 5.5b,c). This suggests that Antarctic sea ice loss has important cross-equatorial

effects, consistent with the idea that the north-of-the-equator location of the ITCZ may

preferentially permit cross-equatorial transport from the south (Zhang et al., 2014a,b). Both

Arctic and Antarctic sea ice loss intensify the equatorward edge of the ITCZ in the Pacific

with a combined increase of nearly 1mm/day in DJF (Fig. 5.5d). This is roughly equal to
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the entire change in DJF, and its location, projected under RCP8.5 scenario (Fig. 5.5e) (note

that the colorbar is the same for in all four panels). In the yearly average, the precipitation

response to sea ice loss is roughly one third of the RCP8.5 projected changes. The magnitude

of the precipitation response, and its similarity in regional structure to RCP8.5 projections,

underlines the important impact Arctic and Antarctic sea ice loss will have on the tropics.

The tropical response to both Arctic and Antarctic sea ice loss is largest in magnitude in

the upper troposphere (Fig. 5.2c,d,e). Consistent with results from Deser et al. (2015), sea ice

loss in either hemisphere is found to increase the atmospheric condensational heating in the

upper troposphere, resulting in an upward shift of the climatological heating maxima (Fig.

5.6a,b,c). Both Arctic and Antarctic sea ice loss act to intensify the heating maxima near

the equator in the mid-troposphere, associated with the increased precipitation discussed

previously. The reduction in the condensational heating rate at 10°N in response to both

Arctic sea ice loss and Antarctic sea ice loss is consistent with reduced precipitation at this

latitude in the Pacific (Fig. 5.5). Again, we find that the tropical response to Arctic sea ice

loss and Antarctic sea ice loss are remarkably similar (comparing Fig. 5.6a and Fig. 5.6b).

The structure of the response to both Arctic and Antarctic sea ice loss is very similar to

changes projected under RCP8.5 (comparing Fig. 5.6c and Fig. 5.6d). One of the differences

between the response in the two hemispheres is the condensational heating rate increase in

the troposphere of the Southern mid- and high-latitudes (seen in Fig. 5.6b and Fig. 5.6c)

which is not present in the NH. This hemispherically asymmetrical signature of sea ice loss

is clearly present in the RCP8.5 projections.

90



Figure 5.6: The response of annual mean condensational heating rate to (a) Arctic sea ice loss, (b) Antarctic sea ice loss and (c)

both Arctic and Antarctic sea ice loss. (d) The projected change in annual mean condensational heating rate under RCP8.5,

from 1955-1969 to 2085-2099. Note that the response in panel (d) is scaled by dividing by three to fit on the same colorbar.
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5.4 Connecting sea ice loss to the tropics

In the absence of atmosphere-ocean coupling, the climate system is not able to transport

energy to the tropics and the response to sea ice loss is confined to the mid- and high-

latitudes (Deser et al., 2015; Smith et al., 2017; England et al., 2018) (Fig. 5.7b). The

position of the ITCZ responds to changes in the cross-equatorial atmospheric NHT (Kang

et al., 2008; Donohoe et al., 2012). Therefore, how models partition the cross-equatorial

NHT response between the atmospheric and oceanic components (Cabre et al., 2017) has

important implications for changes in the ITCZ position. We find that Arctic sea ice loss

and Antarctic sea ice loss both transport similar amounts of energy away from the pole

and across the equator (Fig. 5.7a). Thus, when both Arctic and Antarctic sea ice loss are

imposed, the net effect is to transport heat to the equator from both hemispheres. The

tropical response to Arctic sea ice loss is solely due to oceanic energy transport (Fig. 5.7c)

because the atmosphere transports energy southwards only to 20°N (Fig. 5.7d). In contrast,

the tropical response to Antarctic sea ice loss is facilitated by both energy transport in the

atmosphere and ocean (Fig. 5.7c,d), although primarily through the ocean. In these model

runs, the atmosphere is able to transport energy cross-equatorially in response to Antarctic

sea ice loss, potentially impacting the ITCZ position, but not in response to Arctic sea ice

loss. The ocean heat transport response to Arctic sea ice loss is partly achieved by the

slowdown of the AMOC. In our runs, the slow-down is approximately 2 Sv which is in line

with similar experiments (Blackport and Kushner, 2016; Tomas et al., 2016), but smaller

than some other estimates (Oudar et al., 2017; Sun et al., 2018). Furthermore, in our runs,

Antarctic sea ice loss has only a small impact on the AMOC and so the ocean heat transport

response must come from other changes in ocean circulation.
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Figure 5.7: The northward heat transport (NHT) in the (a) atmosphere + ocean, (c) ocean, and (d) atmosphere. We plot the

NHT response to Arctic sea ice loss (blue), Antarctic sea ice loss (red) and both Arctic and Antarctic sea ice loss (green). The

green dashed line shows the sum of the response to Arctic sea ice loss and Antarctic sea ice loss. The NHT response found

from atmosphere-only runs from England et al. (2018) using the same model and sea ice loss is shown in (b). The calculation

for NHT is outlined in the methods section.

5.5 Conclusions

In this study we have shown that the tropical response to end-of-century Antarctic sea ice

loss is large and as important as the response to Arctic sea ice loss. We isolated the response

using fully coupled climate model simulations with perturbed sea ice conditions. We find

that Antarctic sea ice loss will have important global effects, as found for Arctic sea ice

loss, with each causing a ‘mini global warming’ signal. Upper tropospheric tropical warming

is consistent among the experiments, and the combined effect amounts to roughly 20% of

the warming projected under RCP8.5. The tropical response to Antarctic sea ice loss is
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remarkably similar to, and hence acts to strengthen, the tropical response to Arctic sea ice

loss. This response involves enhanced warming in the Eastern Tropical Pacific and increased

precipitation over the Pacific ITCZ region. We demonstrate that the tropical impacts of

both Arctic and Antarctic sea ice loss are largely mediated by ocean energy transport. In

some ways, Antarctic sea ice loss may have even further-reaching effects than Arctic sea ice

loss. The north-of-the-equator location of the ITCZ preferentially permits cross-equatorial

transport from the south; in our runs, the signal of Antarctic sea ice loss is clearly seen in

the North Pacific.

Although this study uses only one coupled climate model, its tropical response to Arctic

sea ice loss is very similar to the one found in GFDL-CM3 (Sun et al., 2018) and CCSM4

(Deser et al., 2015; Tomas et al., 2016; Wang et al., 2018) (with two different methods used

to perturb the sea ice) models. We note, however, that Liu and Fedorov (2019), using

CCSM4 in a different configuration, find the tropical effects of Arctic sea ice loss to be

mostly concentrated in the Atlantic sector rather than the Pacific. One possible reason for

this discrepancy could be that their model was run over a different time period at a coarser

resolution, with a less realistic sea ice climatology. As we are the first to investigate the

tropical effects of future Antarctic sea ice loss, we will have to wait to see if the effects we

have identified are robust across different models. The upcoming Polar Amplification Model

Comparison Project (Smith et al., 2019) will offer the invaluable opportunity to explore the

impact of Antarctic sea ice loss, with a standard methodology, across a range of different

climate models.
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CHAPTER 6

SUMMARY

6.1 Summary and Discussion

In Chapters 2 and 3, we investigated the drivers of Antarctic climate change over the ob-

servational period. Specifically, we examined the influence of the stratosphere on the south-

ern high latitude surface climate, through stratospheric ozone depletion (Chapter 3) and

stratosphere-troposphere dynamic coupling (Chapter 2).

The main finding of Chapter 2 is that stratospheric heat flux extremes are linked to

high latitude tropospheric anomalies in the Amundsen Sea region. During extreme negative

(positive) events there is a westward (eastward) shift of the ASL, a warming (cooling) and

increase (decrease) of geopotential height over the Amundsen and Bellingshausen Seas. We

showed that most CMIP5 models are not able to capture this relationship. Models with

biased stratospheric heat flux extremes significantly under-estimate mean sea level pressure

variability over the Antarctic Peninsula. The main limitation of this study was that nearly

all CMIP5 models are biased in the mean circulation and this hindered finding a robust

effect on the mean tropospheric climate, as found for the NH (Shaw et al., 2014).

We demonstrated in Chapter 3 that, since 1965, stratospheric ozone depletion has acted

to deepen the ASL in austral summer by 1 hPa per decade. This result was consistent

across two different comprehensive climate models, each with very different model physics

and climate sensitivity. It must be noted that the ozone depletion signal on the ASL is

small compared to the internal climate variability in this region. Using ensembles of model
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integrations and analysing them over the full period of ozone depletion (which started a

couple of decades before the satellite era) was necessary to detect a robust signal. Therefore,

one may not expect to see this trend in the observed record (which is relatively short and is

only one realisation). These results highlight that, even though stratospheric ozone depletion

is the main driver of recent SH climate change, the ozone signal may be difficult to detect

in regional circulation features.

In Chapters 4 and 5, we investigated the effects of future Antarctic climate change,

specifically the effects of projected sea ice loss over the coming century. Climate model

simulations were used to isolate the effect of end-of-the-century Antarctic sea ice loss which

was compared and contrasted with the effects of projected Arctic sea ice loss.

In Chapter 4, we studied the effects of projected Antarctic sea ice loss using atmosphere-

only simulations with WACCM. As for the Arctic, results indicated that Antarctic sea ice

loss will act to shift the tropospheric jet equatorward, an internal negative feedback to

the poleward shift associated with increased greenhouse gases. Antarctic sea ice loss was

shown to have an important effect throughout the year whereas Arctic sea ice loss had more

seasonally varying impacts.The obvious limitation of this study was that no coupling to a

dynamic ocean was included in the experiments and so the response to sea ice loss was largely

confined to the high latitudes. This limitation was the motivation for Chapter 5.

Building upon the results from Chapter 4, in Chapter 5 we used the same model (WACCM)

but in a fully coupled setup to study the effects of projected Antarctic sea ice loss on the

climate system. We showed that both Arctic and Antarctic sea ice loss will have important

global effects, causing a ‘mini global warming’ signal. In this Chapter, we demonstrated that

the tropical response to Antarctic sea ice loss is remarkably similar to that of Arctic sea ice

loss, with warming in the Eastern Tropical Pacific and increased precipitation throughout

much of the equatorial Pacific. One potential criticism of the method we applied to perturb

sea ice conditions is energy isn’t conserved (although water is conserved). However, methods

which do conserve energy, give very similar results for Arctic sea ice loss experiments (Screen

et al., 2018). Furthermore, we are adding substantially less energy into the system than the
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energy of the total response so there must be some feedbacks involved which amplify the

response.

Diagnosing the response solely to sea ice loss might seem like an academic exercise.

After all, the climate system is a complex, fully coupled system so why is it important to

understand the role of individual components? Firstly, in Chapter 5 we have demonstrated

how connected Antarctic climate change will be to the rest of the globe. Secondly, much of

the attention has been on the effect of Arctic sea ice loss on the lower latitudes. For those

interested in tropical climate change, however, these results suggest that Antarctic sea ice

loss will be just as important as Arctic sea ice loss. Finally, the RCP projections already

include the effects of Antarctic sea ice loss. If, in fact, the pace of Antarctic sea ice loss is

much slower than projected, then these results give us a way of understanding and adjusting

the full projections accordingly.

6.2 Future Work

Using output from the perturbed sea ice experiments outlined in Chapters 4 and 5, the next

step will be to directly compare how coupling to an interactive ocean mediates the response

to Antarctic sea ice loss. This has only previously been examined for the case of Arctic sea

ice loss (Deser et al., 2015, 2016). Preliminary results suggest that including ocean coupling

is vital to get the correct strength of the high-latitude response to Antarctic sea ice loss.

Polar warming is roughly 50% greater in the fully coupled runs compared to the atmosphere

only runs. The assumption is that this extra warming is due an enhanced poleward transport

of water vapour from the lower latitudes. We also have the tools available to compare results

from the two hemispheres using one climate model in a clean and precise way. It seems likely

that ocean coupling may be even more important for the response to Antarctic sea ice loss,

given that the continent is entirely surrounded by the Southern Ocean.

We also need to improve our understanding of the processes which are facilitating the

tropical response to Antarctic. In Chapter 5, we demonstrated that Antarctic sea ice loss will
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drive important changes in the tropics, however the mechanisms linking the southern high

latitudes to the tropics need to be elucidated. It seems likely that the wind-evaporation-SST

feedback is important in driving the zonally asymmetric response seen in the tropics. One key

issue which remains relates to how the tropics responds to high latitude forcing: Wang et al.

(2018) find that a dynamic ocean is necessary to simulate this zonally asymmetric warming

pattern in the Pacific whilst Hwang et al. (2017) are able to simulate this asymmetry with

only a slab ocean model. Therefore, we plan to investigate this potential discrepancy and

explore the role of ocean dynamics further. We also aim to provide a mechanistic explanation

of why the tropical response to Arctic and Antarctic sea ice loss are so similar.
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