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Abstract 

In order to shape urban resilience, it is necessary to understand disaster risks to get better 

disaster response. Twitter allows people to collect abundant real-time or historical social media 

data via its API, which gradually make it a repository for disaster-related information collection. 

This study has two research objectives. The first is to evaluate whether Twitter data can 

reflect the emergency and vulnerability and thus aid in disaster response when Hurricane Harvey 

struck Houston in 2017. The second is to evaluate whether Twitter data can be used to perform 

damage assessment after Hurricane Harvey. 

Three new conceptions are defined to perform evaluation: tweet awareness (TAw), tweet 

activity (TAc) and tweet focus (TFo). By comparing with other variables such as normalized 

average proximity (NAP), social vulnerability index (SVI) through spatiotemporal analysis, main 

conclusions are drawn as the following. 

First, the temporal distribution of tweets is periodic: the tweets at night are much more than 

that in the daytime and there exists the “outbreak” time of the tweets.  

Second, when the hurricane is getting closer to the land, the TAw is increasing and vice 

versa, which reflect the emergency situation of hurricane temporally. 

Third, there is no statistically significant relationship between TAw and NAP based on 

county-level data.  

Fourth, the relationship between TFo and SVI is not statistically significant and thus, the 

twitter data could not reflect the social vulnerability.  

Next, there is no significant relationship between them spatially and it is not feasible to 

perform rapid assessment of damage loss.  

Last but not least, the highest clustered point (the points share the same coordinate) of 

hurricane-related tweets is located in the University of Houston Downtown, which indicates that 

main active users of Twitter might be college school students. 
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1. Introduction and Background 

1.1 Urban Resilience to Disasters 

Resilience is the “ability to withstand shocks and recover from the failure” (Yamagata & 

Maruyama, 2016, p.3). Due to a lack of resilience, many problems and crises can emerge in cities 

when disasters strike. The concept of resilience was initially used in ecology, and then in 

economics and social and political science. Urban resilience, as an urban planning terminology, 

has only been proposed in the last few decades. “100RC” (100 resilient cities, a program created 

by the Rockefeller Foundation) defines urban resilience as “the capacity of individuals, 

communities, institutions, businesses, and systems within a city to survive, adapt, and grow no 

matter what kinds of chronic stresses and acute shocks they experience” (Rockefeller 

Foundation, 2016, para.2). Urban resilience to disasters is of great significance as it measures to 

what extent cities, where more than 54.82% of population (World Bank, 2018) on earth dwell, 

could recover after a disaster hits. In order to shape urban resilience, it is necessary to understand 

disaster risks and then perform a good management on risk reduction. According to “Sendai 

Framework for Disaster Risk Reduction (2015-2030)” drafted by the United Nations Office for 

Disaster Risk Reduction (UNISDR) (2015), disaster risk reduction needs “inclusive risk-

informed decision-making” (UNISDR, 2015, p.13) via “real-time access to reliable data” (UN, 

2015, p.15). Thus, attaining real-time data has become a foundational prerequisite to shaping 

urban resilience. However, the collection of timely data is always a big challenge, especially 

when a severe disaster strikes. 
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1.2 Social Media Data 

Fortunately, with the development of information communication technology (ICT), 

nowadays social media can provide public safety institutions with netizen’s real-time personal 

updates, including messages, pictures and reposts, all of which could be obtained legally.  

Twitter is one of the most widely used in the world. Compared to other social media, Twitter 

allows people to collect abundant social media data, including geo-located data via its API 

(application programming interface), a set of communication protocols which enables developers 

to collect open data from other users more easily (Hoffman, 2018). Naturally, such openness 

allows it to be not only a platform for communication, but also a repository for disaster-related 

information collection. Such use of social media in recent disasters (e.g. Hurricane Sandy in 

2012) has been well documented by scholars (Kate, 2014 & Hughes et al., 2014). The 

Department of Homeland Security Science and Technology Center for Excellence (2018) has 

developed a system, Social Media Analytics and Reporting Toolkit (SMART) to enhance the 

real-time decision-making ability based on Twitter and other social media platforms. In the 

future, retrieving real-time Twitter data from the affected areas might play a much more 

significant role in the natural disaster relief management when a natural disaster strikes.  

1.3 Hurricane Harvey 

On the early morning of August 26, 2017, Hurricane Harvey made landfall and, in the 

following several days, people located in Texas suffered storm rain and flood and were desperate 

for instant rescue from the outside. It was a Category 4 storm and the second costliest hurricane 

(NHC, 2018) on record in U.S history (Fig.1). Total damage loss is approximately $125 billion 

(NHC, 2018). More than 56,000 calls into 911 within 15 hours overwhelmed the official 

emergency response system during this crisis (Yang, 2017). According to The Washington Post 
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(Wax-Thibodeaux, 2018), the storm lasted for nearly five days and destroyed more than 300,000 

building structures and 500,000 automobiles (Fig.2), and even worse, nearly 42 percent of the 

residents in affected areas have declared that they have not received any aid to rebuild their 

homes. The reason why people who were trapped in affected areas could not attain on-time 

rescue is not only because of the lack of rescue teams, but also the lack of location information 

of trapped people within the affected areas. Thus, using rapid and real-time response platforms 

such as Twitter is of great imperativeness.  

 

Fig. 1 Top 5 costliest hurricanes in US history (inflation-adjusted to 2017 USD) 

Data Source: National Centers for Environmental Information (2017) 

 

Fig. 2 Physical Damage loss in Hurricane Harvey 

Data Source: Washington Post (2018) 
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Fig. 3 Affected areas during the Hurricane Harvey 

Data Source: NOAA (2017) 
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1.4 Study Area 

Figure 3 mainly shows the route of Hurricane Harvey and the position of each point in this 

figure (both dark and light purple) represents the location of the hurricane center. The location of 

the hurricane center is estimated by National Ocean and Atmospheric Administration (NOAA) 

every six hours. The index of intensity and severity was becoming larger when it was marching 

towards the land from the Mexico Gulf.  Not until the hurricane arrived in Barton Rouge did the 

radius of it become 0. During the process from landing on to arriving at Barton Rouge, Houston 

area was totally covered within the buffer of the hurricane based on radii. As is known, Houston 

is the most populous city in Texas and the fourth most populous city in the U.S., with a census-

estimated population of 2.328 million in 2017 (City of Houston, Planning and Development 

Dept., 2018). Considering the current data sources and the statistical approach, Houston-

Galveston Area Council (H-GAC) is selected as my study area. H-GAC is used instead of 

‘Houston-Galveston Area Council’ in the following for convenience. H-GAC is a 13-county 

region with an area of 12,500 square miles and 6,862,641 people. 

Geographically, H-GAC is located on a costal prairie in Texas (Fig.4) and the soil on the top 

of the ground is clay-based, which causes the city to be prone to flooding (USDA, 2008). As the 

rapid urbanization continues (Fig.5), the impermeable roads, mainly asphalt and concrete, 

diminish the run-off ability of the surface.  The light red area in Figure 5 is the urban area. 
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Fig. 4 Elevation of Houston  

Data Source: H-GAC (2018) 
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Fig. 5 Change of Urbanized Area from 1990 to 2010 

Data Source: H-GAC (2018) 

Some of the roads that were designed to drain rain and storm-water are now actually 

landfills, obstructing the evacuation of people inside the affected areas and the rescue of people 

coming from outside.  

Grossman and Maclean (2018, para.2) point out that Houston has especially weak zoning 

rules and regulations. Scott (2017, para.1) argues that deregulation, has led Houston to a chaotic, 

even ugly, city and its people to be vulnerable. Twitter data generated during and after the 

hurricane might remind people of the places that are most serious and are in need of help most, 

thus guiding to lower these places’ vulnerability in the future planning. 

1.5 Research Question 

This paper examines if and how Twitter data will be beneficial in the disaster management 

during and after a natural disaster, using Hurricane Harvey as a study case. More specifically, 

three research questions will be focused in this paper: 

1. Could Twitter data reflect the emergency and vulnerability to aid in disaster response 

during Hurricane Harvey? 

2. Could Twitter data be used to perform damage assessment after Hurricane Harvey? 
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3. If the answers of previous two questions are negative, how can we mine the value of 

twitter data? 

Compared to other researchers (Yury et al., 2016; Yuan & Liu, 2018) who focus purely on 

using Twitter data to improve disaster response and perform damage assessment, this paper also 

uses data to offer recommendations for the future resilience planning. The goal ultimately is to 

promote what Yamagata and Maruyama (2016, p. v) prefer to call “transformation” rather than 

simply recovery, which means a city will regenerate itself to become stronger after the strike 

based on proper resilience strategies. 

2. Literature Review 

The literature review for this thesis is organized into four subsections: urban resiliency in 

relation to natural disaster management, innovative use of social media data in disaster 

management, social vulnerability and resilience-oriented planning. 

2.1 Urban Resilience in Relation to Disaster Management 

Generally, disaster management can be measured as the efficiency, effectiveness and 

seamlessness of managing various resources and multi-source information when a disastrous 

incident happens (Modh, 2010). The concept of resilience has emerged in the literature related to 

disaster management since the 1980s (Wildavsky, 1988).  ‘Resilience’ used to be one of 

important criteria to measure sustainability. Gradually, huge loss of communities caused by 

disasters such as Hurricane Katrina require it to be an essential one (Boin, Comfort & Demchak, 

2010). Longstaff (2005) contributes to mining the essence of resilience in relation to disaster 

management. She argues that in times of dangerousness, all individuals are eager to obtain 

information on risk and damage assessment to help them reduce uncertainty, implement the 

feasible resistance strategies and thus improve their individual resilience. Dufty (2012) proposes 
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the concept “community disaster resilience” (p.40) to link the urban resilience and disaster 

management. He sets up a framework between resilience and disaster in social aspects, via 

predicting possible prospects for emergency managers to use social media data to build such a 

“community disaster resilience”.  

2.2 Innovative use of social media data in disaster management 

As social media becomes popular, those who are witnessing or experiencing the disasters 

can timely provide public safety institutions with geo-located information through updating posts 

and reposts. Therefore, as the report “Innovative Uses of Social Media in Emergency 

Management” (DHS, 2013) says, public safety organizations can leverage the power of these 

social platforms to enhance emergency management performance. However, Alexander (2014) 

offers a review of the negative sides of social media in disasters. He points out that rumor 

propagation, dissemination of false or misleading information is a huge problem although this 

might be done unintentionally. 

In recent years more scholars with computer science and information-technology 

background begin to do research in this field with the perspective of big data analytics. It has 

become an interdisciplinary combination of spatiotemporal real-time analysis, machine learning, 

and disaster management. Yury et al. (2016) focuses on whether Twitter data is helpgul in the 

rapid assessment of disaster damage. They analyze the Twitter activity at multiple scales before, 

during, and after Hurricane Sandy, and prove that there exists a strong relationship between 

Twitter activity related to hurricanes and proximity to the routine of Hurricane Sandy. 

Nazer et al. (2017) proposes four stages in disasters: warning, impact, response, and 

recovery. Social media posts during the four periods are dense enough for machine learning 

methods to achieve reliable results. They argue that topics, trend and memes are the three 
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important results of tracking disasters via monitoring changes in data statistics, clustering similar 

messages, and automatic translation. Martín et al. (2017) examine the exchange of hurricane-

related information based on Twitter data through both spatial and temporal analysis and estimate 

the population that are successfully evacuated during Hurricane Matthew. Matthew-related 

Twitter Activity (MTA), the ratio between the number of Matthew-related tweets and the 

Twitter population is adopted in the study. Huang and Xiao (2015) investigate the nature of 

tweet content generated during different disaster phases of Hurricane Sandy and present a new 

coding schema to categorize tweets into 47 themes for establishing geographic situational 

awareness, and a framework that can be applied to separate tweets into those categories. Yuan 

and Liu (2018) do semantic analysis to pick up hurricane-related tweets generated during 

Hurricane Matthew by creating the index dictionary. They also collect insurance claim data from 

the Florida Office of Insurance Regulation and use it as the reference of the damage assessment. 

Both correlation analysis and comparative analysis of the spatial distribution of Twitter data and 

insurance data at the county level are performed to verify the feasibility to adopt social media 

data. Other scholars are interested in finding out how to rescue the affected people based on 

nature language processing (NPL), supporting vector machine (SVM) and priority scheduling 

algorithm, such as Sakaki et al. (2010) and Yang Zhou et al. (2017). 

2.3 Social Vulnerability and Resilience 

U.S. Climate Resilience Toolkit (CRT, 2019) points out that human suffering and loss of 

properties can be mitigated by lowering the “social vulnerability index” (SVI), an approach 

which employs the American Community Survey data to help identify which communities are in 

need of improvement to shape higher resilience.  
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Centers for Disease Control and Prevention (CDC) declares that SVI can help officials and 

planners get better preparedness for and response to the emergency events like hurricanes, 

disease outbreaks, or exposure to dangerous chemicals (CDC & ATSDR, 2018). Generally, SVI 

ranks each county (or census tract) based on four themes (or sectors) (CDC, 2018), 15 social 

factors. Flanagan and Gregory, et al., develops the SVI from those 15 census variables and 

conclude that planners are able to target and aid more effectively community-based efforts to 

mitigate and prepare for disaster events by knowing the location of socially vulnerable 

communities. Cutter, Boruff and Shirley (2003) use the “hazards-of-place” (p. 244) model of 

vulnerability to find out if the dimensions of social vulnerability are of significance. They 

conclude that social vulnerability is a multidimensional concept and it is a feasible approach to 

enabling communities to recover from environmental hazards.  

In this research, SVI is compared with the tweet awareness to find out whether the Twitter 

data can reflect the vulnerability of one place, considering that many elderly and uneducated 

people might not know how to use social media data to save themselves, which may cause a bias 

when rescuing the people within affected areas. The concept of “tweet awareness” is defined in 

the Methodology section.  
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Fig. 6 Composition of Social Vulnerability Index  

Data Source: CDC & ATSDR (2018) 

2.4 Resilience-oriented Planning 

After Hurricane Sandy hit the New York City, the Department of City Planning (2013) 

examined strategies for designing buildings more resilient to the future flooding crisis, including 

changing restrictions on the building elevation, modifying floor area regulations and adjusting 

use requirements of the ground-floor. A set of specific parameters has been taken into 

consideration, such as first-floor elevation and distance from center street line. It should be 

recognized that limited resources forced us to choose them to change based on the urgent level. 
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Adopting social media data could be beneficial to the decision-making process since more 

feedbacks on the current situations will be collected without holding meetings frequently. 

Laundry et al. (2016) hold the view that open data help build knowledge, capacity, and 

outcomes that strengthen urban resilience. They suggest the government and communities 

cooperate together to develop a flexible approach to improving resilience, such as mapping real-

time flooding and launching toolsets to quicken community disaster response. 

3. Methodology 

3.1 Definition of critical conceptions 

Considering Yury’s (2016) “Twitter Activity” and Martin’s (2017) “MTA”, to answer the 

question of whether twitter data could aid in the disaster response and the damage assessment, 

the research performs spatiotemporal analysis to investigate the relationship among tweet 

awareness (TAw), tweet activity (TAc), tweet focus (TFo), proximity and damage claim per 

capita (DCPC). Proximity means the Euclidean distance from centroid of the spatial unit (by H-

GAC, county or census tract) to the hurricane center. It is used to measure the emergency 

situation of the hurricane. An assumption is set up that nearer the distance is, more severe the 

situation is. TAw refers to the ratio between the number of hurricane-related tweets and the total 

population, while TAc is the ratio between the number of hurricane-related tweets and twitter 

population within a spatial unit (county or census tract). Here, ‘twitter population’ is defined as 

the number of active twitter users within a spatial unit (county or census tract) during study 

period. TFo focuses on the ratio between the number of hurricane-related tweets and the number 

of general tweets within a spatial unit. DCPC refers to the ratio of number of damage claims and 

the total population within a spatial unit. Twitter data can be retrieved from the server of Twitter 

Inc. via an API. Damage claims can be retrieved from Hurricane Harvey data call (HHDC) 
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released by Texas Department of Insurance (TDI). The selection principle of time period will be 

referred in the following part. 

𝑇𝐴𝑤 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒-𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑤𝑒𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
∗ 100                 (1) 

𝑇𝐴𝑐 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒-𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑤𝑒𝑒𝑡𝑠

𝑇𝑤𝑖𝑡𝑡𝑒𝑟  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
                              (2) 

𝑇𝐹𝑜 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒-𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑤𝑒𝑒𝑡𝑠

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑡𝑤𝑒𝑒𝑡𝑠
                              (3) 

𝐷𝐶𝑃𝐶 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑚𝑎𝑔𝑒 𝑐𝑙𝑎𝑖𝑚𝑠 𝑜𝑛 𝐻𝐻𝐷𝐶

𝑇𝑜𝑡𝑎𝑙  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
                           (4) 

In Yury’s research (2016), “Twitter activity” is defined as “the number of daily messages 

(Sandy-related) divided by the number of local users active on the topic” (Yury, et.al., 2016, p. 

3). They find that Twitter activity has a sharp decline as the distance between Hurricane Sandy 

and urban area increases. They also find that there is a significant relationship between Twitter 

activity and the per-capita economic damage caused by the hurricane. Thus, this conception is 

adopted and here the essence of TAc and “Twitter activity” are actually the same. 

In Guan and Liu’s research (2018), disaster-related ratio (DIRR) is defined as the ratio of the 

number of disaster-related tweets divided by the number of general tweets. It describes the 

percentage of tweets focusing on the hurricane-related topics and the correlation coefficient is 

0.469 between DIRR and DR (Damage Rate). DR is the ratio between the number of claims and 

total population in each county (or other spatial unit). In this paper, TFo and DIRR are the same 

as well as DCPC and DR are. To be specific, TFo is used to replace DIRR, and DCPC is used to 

replace DR. 

The limitation of Twitter makes it hard to collect the entire general tweets within whole H-

GAC, which means it is impossible to obtain all the general tweets with 13 counties. Thus, 
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county-level analysis cannot be finished by TAc and TFo. Some indicators such as DCPC are 

counted by census tract, so TAw is proposed by myself to make sure the county-level can be still 

analyzed. 

3.2 Data preparation 

3.2.1 Basic GIS Datasets 

A direct problem is the level of the spatial unit should be chosen. According to other 

scholars’ findings (Martin, Li & Cutter, 2017), county level is a feasible choice when conducting 

temporal analysis while spatial analysis requires a finer degree of resolution than the temporal one. 

Therefore, both county and census tract will be used as the spatial unit when conducting the spatial 

analysis. But considering that damage claim is investigated based on county level, thus, when 

answering the second research question, the lowest spatial unit level should be the county level. 

There are 1109 census tracts within H-GAC in total. The average area of each census tract is 

12.56 square miles while the standard deviation is 39.24352, which indicate that the there is a 

huge difference among the area of these census tracts. From Figure 7, the average census tract 

area of Colorado and Wharton are much larger than that of Harris County, and Harris County has 

the most census tracts, which means the resolution will be more precise if Harris County is 

selected to do the census-tract level analysis. 
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Fig. 7 Counties and Census Tracts within Houston  

Data Source: H-GAC (2018) 
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3.2.2 Twitter Data 

Then the next step is Twitter data collection for each county in the Houston. Data collection 

and cleansing is evitable. A premium Twitter API has been acquired to collect hurricane related 

tweets within Houston which have “profile geo”. According to the explanation on the platform of 

Twitter developer (Twitter developer, 2019), the ‘profile geo’ (the contents within the purple box 

in Figure 8) provides latitude/longitude coordinates relevant to the user derived location and it is 

one of the privileges of using a premium API.  

 

Fig. 8 Illustration of profile geo  

Data Source: Twitter developer (2019) 

Python 3 (Jupyter notebook) is used in this study. The main packages that are imported to 

python include ‘searchtweets’ (Jeffakolb & Binaryaaron, 2013) and ‘pandas’ (Pydata, 2018).  

The study period spans from August 25, 2017 to September 6, 2017, from right before the 

beginning of Harvey’s land on to a week after the completeness of official rescue task. Due to 

the limitation of Twitter, including the rate limit per minute, total requests per month and tweets 
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per call, while obtaining the general tweets, the total requests are easy to overflow when trying 

the entire Houston and at most one county can be considered in the study. That is to say, 

according to the definition of tweet activity and tweet focus, they cannot be calculated in a 

county-level but census tract level. Harris County is selected in this research because it has the 

top 3 largest urbanized rate (The ratio between urban area and total area within each county, 

Fig.9) as well as the largest population (Fig.10). Also, as mentioned in 4.1, it has more refined 

spatial resolution. 

Figure 11 shows the tweets that retrieved from the server, including the five variables 

pertinent to this study. The field “name” is used to calculate the number of twitter population and 

“date” helps to do the temporal analysis. Based on “lon” and “lat”, feature points of each tweet 

can be generated in ArcMap. The user name of each tweet in Figure 11 is covered for the privacy 

policy. 

 

Fig. 9 Urbanized Rate of each county 

Data Source: H-GAC (2018) 
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Fig. 10 Total population in each county 

Data Source: H-GAC (2018) 

 

Fig. 11 The sample tweets  
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3.2.3 Census Data 

To calculate the SVI, it is necessary to collect American Community Survey data from 

American Factfinder according to Figure 6. After selecting all the census tracts within the Harris 

County, topics Age Group, Disability, Employment, Poverty, Language and Housing. are selected 

to support the calculation of SVI. 

3.3 Spatiotemporal Analysis 

From the methodology framework (Fig. 12), temporal hurricane-related dataset contains the 

13 counties within Houston during and after the Hurricane Harvey while the spatial hurricane-

related dataset also contains all the census tracts. 

 

Fig. 12 Methodology Framework 
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3.3.1 Temporal Analysis 

Through inspecting the temporal trend of the number of hurricane-related by hour and tweet 

awareness by day, when is the peak hour for twitter users is shown to find out when people are in 

need of help the most, and it is also helpful to see if tweet awareness will gradually fall off or 

continue growing after the hurricane leaves.  

3.3.2 Spatial Analysis 

Firstly, in order to verify whether twitter data could reflect the emergency situation, scatter 

plots graphs are output to see the general trend of the point and check if tweet awareness 

increases and declines with the proximity. In this part, according to Figure 8, there are too many 

census tracts, to be specific, 1109, in Harris County, which means distance between the centroid 

of some census tracts and the centroid of the hurricane are very close, which might cause 

skewness. Thus, county-level data are used. Correlation and covariance analysis then are 

conducted to figure out to what extent the proximity can be of significance to the tweet 

awareness. The correlation output is between -1 and 1. The negative result indicates an inverse 

relationship while the positive means closer relationship. Covariance measures the strength of 

the correlation between two or more random variates. Another important index, p-value, is also 

adopted to analyze the relationship. If the significance (p-value) is below than 0.05, then it can 

be concluded that twitter data could reflect the emergency situation spatially and thus will be 

beneficial to rescue response.  

Then, to verify whether social media data can reflect the vulnerability, on the census tract 

level, the relationship between tweet activity, tweet focus and SVI will be analyzed. Similarly, 

correlation, covariance analysis will be conducted and p-value of the result will be checked. To 

reduce bias, census tracts with at least 10 tweets are selected to do the analysis. In Martin, Li & 

Cutter’s study (2017), those with more than ten tweets in the same city represents as “active”. 
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Next, how could we verify that these tweets can be useful in damage assessment? 

Tweet awareness in Houston at the county level and Hurricane Harvey data call released by 

Texas Department of Insurance (TDI) are used. In this study, the number of reported claims 

based on personal lines will be used. Personal lines contain homeowners’ insurance, residential 

dwelling insurance, mobile owners’ insurance and personal automobile insurance (TDI, 2017). 

 

Fig. 13 The Hurricane Harvey Data Call (TDI, 2017. p.50)  

Image source: TDI (2017) 

With the number of reported claim it is easy to obtain DCPC per county and it is shown in 

the Figure 14. Galveston County has the highest DCPC (0.134) while Walker has the smallest 

(0.012).  
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Fig. 14 DCPC by county 

Data Source: H-GAC (2018) 

Correlation between Twitter awareness and damage per capita in H-GAC, at the county level 

will be examined. 

Maps of Spatial distribution of the tweet awareness, tweet activity, tweet focus, SVI, and 

DCPC are exported in ArcMap. The results will show which census tract has the highest Taw, 

TAC and TFo. If there is a significant relationship between TAw and DCPC, top 5 census tracts 

with the highest TAw will be selected and be considered as the “critical area”, where should be 

set as the priority rescue area.  

If there exists the critical areas, suitable sites will be selected to build more LID 

measurements, such as permeable roads, roof gardens and rain gardens and retrofit the local 

buildings using land suitability analysis.  

3.3.3 Approaches to Calculate SVI  

In this research, how to obtain more precise SVI is not the key part. CDC’s method (CDC, 

2016) is adopted to calculate the SVI of each census tract. First is to calculate the index of each 

sector (theme). To calculate each theme, it is essential to find data from the ACS data to calculate 



24 

 

each indicator (15 in total). For example, institutionalized group quarters can be calculated as the 

following: 

 

MOE Persons in group quarters and other parameters can all be found directly in the ACS 

data. 

4. Findings and Discussions 

4.1 Temporal Analysis 

In total, 52010 hurricane-related tweets within H-GAC and 30420 general tweets within 

Harris County are obtained from the Twitter. 

Only tweets with coordinates are collected. Many twitter users refuse to share their exact 

location so results might be biased because of the incompleteness of the tweet collection. On the 

other hand, collecting tweets with coordinates ensures that the tweets are generated within the 

study area and exclude those from beyond the study area. 

 

Fig. 15 The temporal distribution of hurricane-related tweets by hour 
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Figure 15 shows how the number of tweets changes by hour during Hurricane Harvey from 

August 25 to August 3 within H-GAC. From the figure, it can be obtained that hurricane-related 

tweets started to emerge in the evening of August 25th, as the consequence of the landfall of the 

hurricane. Based on Harvey’s route data, it landed on the continent on the midnight of August 26 

(00:00), which is one hour after the “outbreak” of the tweets. This implies local people’s scare 

and also good awareness when the hurricane strikes. A possible scenario is that people were 

sharing their geolocations to warn their friends. Later, the number of tweets suddenly decreased. 

One hypothesis is that most twitter users could not do anything useful so they fell asleep and 

waited for the new day and the coming rescue. Most of them did not realize, or underestimate the 

severity of this hurricane might bring. Another speculation is that people realized that it was a 

hurricane and Twitter posting is not a priority when a disaster strikes. 

From Figure 15, it can also be obtained that the temporal distribution of tweets is periodic 

and the tweets at night are much more than that in the daytime. Some of high points are more 

than 1000 tweets. Then all the time periods when the number of tweets are more than 1000 is 

shown in Figure 16 to inspect the most active periods of Twitter using. 

 

Fig. 16 The hours that hurricane-related tweets are above 1000 
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From Figure 16, the result shows that all of them are at night between 21-23pm. Without 

considering the bias (e.g. incompleteness of tweets), it can be inferred that people do not post 

hurricane-related tweets frequently during daytime for that they might be dealing with its impact, 

which would be during the days of the storm and while they are trying to reach help of cleanup 

during the day. Also, people may care more about local news on government rescue agencies in 

the daytime during the disaster. 

The relationship between the change of the TAw and the proximity is also examined. Since 

temporal analysis is analyzed in the scale of H-GAC, according to the definitions of four 

indicators given before and the limitation of a premium API, tweet awareness (TAw) is the only 

one which allows to make analysis in a large scale, i.e. in the scale of whole H-GAC. Here, 

proximity is defined as the Euclidean distance from the centroid of H-GAC to the hurricane 

center. From Figure 17, temporal distribution of tweet awareness is similar to Gaussian 

distribution that the highest point is almost in the middle (on August 28) and the distribution is 

symmetrical around its highest point. Considering the route of the hurricane Harvey, whether the 

temporal distribution is correlated with the proximity is examined. 

The position of hurricane center is recorded every six hours by NOAA. NAP (normalized 

average proximity) is adopted to measure the average distance from the hurricane center 

changing every six hours to the centroid of Houston in a single day. In order to see the 

relationship between TAw and proximity more clearly, proximity is normalized by 100,000 to 

make sure all of values of proximity are smaller than 1 so that the value of both tweet awareness 

and NAP are located between 0 and 1. Figure 17 tells that when the proximity is closer, the tweet 

awareness is increasing and vice versa. This distribution implies that the tweet awareness, during 
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a large-scale disaster, can reflect the proximity of the hurricane, which means it could reflect the 

emergency situation of hurricane temporally.  

 

Fig. 17 Tweet Awareness of Houston and normalized average distance 

4.2 Spatial Analysis 

Firstly, based on county, the map is drawn to show the spatial distribution of TAw (Fig. 18). 

The Harris county and Walker county has the highest tweet awareness while Matagorda, 

Colorado and Liberty have the lowest. Considering that Harris County has the largest population 

among all the counties, it is reasonable to have the highest TAw while it is interesting to see that 

Walker County also has the highest TAw.  

Secondly, the scatter plot of TAw and NAP and that of –log (TAw ) and –log(NAP) are also 

drawn based on each county. Here, proximity is defined as the Euclidean distance from the 

centroid of each county to the hurricane center and thus NAP is different from the previous one 

because of the change of the spatial unit. According to the trend line in Figure 19, the slope on 

the left figure is almost 0 while the slope on the right indicates that there might be a positive 

relationship between them. However, the R-square is only 0.0703, which means the –log(TAw) 
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can only 7.03% explain the result of –log(NAP). This is too weak to prove that there is a 

significant relationship between them. 

Then correlation and covariance analysis are conducted. The correlation output should be 

between -1 and 1. Covariance measures the strength of the correlation between two or more 

random variates. The result show that the correlation is 0.168 while the covariance is 0.00132. 

The correlation shows that the relationship between TAw and DCPC are positive. The covariance 

indicates that when the tweet awareness changes, NAP almost remains still. Then from Figure . 

20, the p-value (0.583) shows that there is no statistically significant relationship between TAw 

and NAP. Overall, the conclusion is drawn that there is no statistically significant relationship 

between TAw and NAP spatially based on county-level data. 

Since at county level the result is not satisfying, then how about the situation at the census 

tract level? The relationship between TFo and SVI are used. Spatial distribution of SVI and its 

different sectors are shown in the Figure 21 and Figure 22. 
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Fig. 18 Spatial Distribution of tweet awareness 

Data Source: H-GAC (2018) 
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Fig. 19 Scatter plot of TAw and NAP and of –log(TAw and NAP) 

 

 

 

Fig. 20 p-value test of TAw-NAP 
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Fig. 21 Overall Social Vulnerability Index 

Data Source: H-GAC (2018) 
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Fig. 22 Four distinct sectors to support the SVI 

Data Source: H-GAC (2018) 
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Based on the previous constraints (at least 20 general tweets within the census tract), the 

scatter plot of TFo and SVI and –log (TFo & SVI) (Fig. 23) are drawn to make a comparison. 

Only 12 census tracts meet the constraints so it is not necessary to show the spatial distribution 

of TFo at the Harris county level. On every single day, each tweet has a distinct username and 

twitter population (30409 unique records) is almost the same as the number of general tweets 

(30420 unique records) in H-GAC. Thus, in this study, tweet activity can be regarded equal to 

twitter focus. In the following part, simply twitter focus (TFo) is used to do related spatial 

analysis. 

 

 

Fig. 23 Scatter plot of TFo and SV and of –log(TFo and SVI) 

Correlation result between TFo and SVI is 0.02 and covariance is 0.002, which shows that 

the relationship between them hardly exists. The summary of p-value continues to prove this 

point. 
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Fig. 24 p-value test of TFo-SVI  

How about the correlation, covariance and p-value of –log(TFo) and –log(SVI)? It looks like 

there is some relationship between them according to Figure 23. The correlation is 0.26 and the 

covariance is 0.034. The p-value is 0.41 which indicates the relationship between them is still not 

statistically significant (Fig. 25).  

 

Fig. 25 p-value test of –log (TFo-SVI) 

Therefore, according to the comprehensive analysis, the twitter data could not reflect the 

social vulnerability. 

Then, to answer the second question, relationship between tweet awareness and damage claim 

per capita is examined. Firstly, the spatial distribution of DCPC within Houston is drawn (Fig. 26). 

The largest locates in Galveston area, Matagorda and Liberty. The figure shows the spatial 

divergence between counties. According to the phenomenon, low-elevation coastal areas are more 
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heavily impacted by storm surge flooding than inland areas, and that higher-value areas and higher-

population areas will sustain greater damage loss. 

The correlation result is 0.102 and the covariance is 0.0003. The p-value is 0.740, which 

indicates that there is no significant relationship between TAw and DCPC. Therefore, it cannot be 

used to do rapid assessment of damage loss. 

Different from other research papers that all have an anticipated outcome, here nothing is 

related to each other and p-value is always much larger than 0.1.  

In previous study, only census tract level data within Harris country is selected as the 

research area when conducting the TFo-related analysis while other researchers’ spatial unit are 

either the state-level or county-level. From the perspective of the quantity, the number of tweets 

is much smaller than theirs, which might cause such a different finding. Also, there might be 

something different among people in different cities. For example, people living in the New York 

City use social media much more often than other cities. 

 

Fig. 26 Scatter plot of TAw and DCPC by county and of –log(TAw and DCPC) by county 
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Fig. 27 Spatial distribution of DCPC by county 

Data Source: H-GAC (2018) 
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4.3 Clustered Point Analysis 

Most of the correlation test shows that the relationship is not of significance. One possible 

reason is that the points are too clustered. Here, those share the same coordinate (both latitude 

and longitude) are defined as the clustered point. 21244 feature points (hurricane-related tweets) 

are obtained within H-GAC and it accounts 40.85% of the total hurricane-related tweets. The top 

1 clustered point, whose coordinate is (-95.36327, 29.76328), has 16930 points stacked at this 

location. From Figure 28, it is obtained that the University of Houston-Downtown locates here. 

The active Twitter users here post the most hurricane-related tweets, so it can be inferred that 

college student is mainstream of the active twitter users and they are better at using social media 

data to get support from outside than other age groups.  

Considering the conclusion that the twitter data could not reflect the social vulnerability, 

simply relying on twitter data to rescue people can save active social media users but might not 

save “real vulnerable” population. For instance, those age above 65 years old or below 10 who 

do not know how to post a tweet. 

Also, the location of the campus is adjacent to the rivers, which might be a big problem 

when a hurricane strikes. Thus, it can also be inferred that the site might be one of the most 

influenced places by Hurricane Harvey.  
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Fig. 28 Location of the University of Houston-Downtown  

Data Source: OpenStreetMap 

Then, based on the keyword “University of Houston”, “Downtown”, all the related tweets 

and extract the “urls” in the “text”. Here’s the sample tweets that are obtained (Fig. 29). These 

photos show the severity of the University of Houston-Downtown during the Hurricane Harvey 

and few people managed to evacuate. 

What’s more, 96.27% of the hurricane-related tweets are located within the floodplain. 

There are nine counties where all the tweets within the county are located in the floodplain. They 

are Austin, Chambers, Colorado, Fort Bend, Harris, Liberty, Montgomery, Walker and Waller. 
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Fig. 29 Sample tweet related to University of Houston-Downtown  

Data Source: www. twitter.com 
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5. Conclusions 

5.1 Basic Conclusions 

Generally, Twitter is a pervasive platform where active users create, repost and comment on 

tweets, which makes it easy to be a free tool for monitoring public activities. On the bright side, 

experiences in recent years have shown that it has the potential to support the disaster 

management. According to the spatiotemporal analysis, the main conclusions are drawn as the 

following. 

The first is that the temporal distribution of tweets is periodic and the tweets at night are 

much more than that in the daytime and there exists the “outbreak” time of the tweets.  

The first outbreak implies local people’s scare and also good awareness when the hurricane 

strikes, which means twitter data can be of a mechanism to alert larger population in less time. 

Secondly, when the proximity is closer, the tweet awareness is increasing and vice versa. 

This distribution implies that the tweet awareness, during a large-scale disaster, can reflect the 

proximity of the hurricane, it can reflect the emergency situation of hurricane temporally. 

Thirdly, there is no statistically significant relationship between TAw and NAP based on 

county-level data. Tweet awareness measure the ratio of hurricane-related tweets to the total 

population.  

Fourthly, the relationship between TFo and SVI is not statistically significant and thus, the 

twitter data could not reflect the social vulnerability. It is not difficult to predict, as those who are 

old or young, those who are not good at speaking English or those who cannot afford a 

smartphone, they do not use Twitter or they do not even have a Twitter account. From this 

perspective, active Twitter users seems to be less vulnerable than those who do not use and here 
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comes up with a contradiction, we want to help those with higher vulnerability while twitter 

users are those with lower vulnerability.  

Next, there is no significant relationship between them spatially and it is not feasible to 

perform rapid assessment of damage loss.  

What’s more, the spatial distribution of clustered point of hurricane-related tweets is also an 

aspect that worth noticing. Using the highly-clustered hurricane-related tweets (those who share 

the same coordinates) to guide the rescue is liable. But if we can rank the rescue priority based 

on the number of the clustered points, it is another interesting topic that worth studying.   

Last but not least, main active users of Twitter might be college school students and they are 

usually less vulnerable than those who do not use Twitter.  Those who are not able to own a 

Twitter account might be of higher vulnerability and are more in need of help. 

5.2 Limitation 

5.2.1 Limitation of Research 

In this study, when doing the spatial analysis, only correlation, covariance analysis and p-

value test are conducted. More advanced spatial techniques can be used. For instance, hotspot 

analysis and network analysis shall be adopted to have a deeper insight of the Twitter data. New 

machine learning methods are also worth trying but many technical problems emerged when 

trying to deal with grammatical errors, special characters and emojis.  

5.2.2 Limitation of Twitter Data 

As mentioned before, only a small fraction of the Twitter users is willing to share their geo-

location (coordinates with latitude and longitude) with others. The incompleteness of tweet 

collection leads the potential bias to the final result. Also, when obtaining twitter data there are 

many request and rate limitations, which stop people from getting enough tweets in time.   
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Twitter data itself also has some problems. As each tweet’s coordinates (If it has) have only 

five digit numbers after the decimal point, too many tweets share the same location, which 

causes the cluster of the tweet activity. When spatial joining the feature points to the different 

census tracts, many census tracts do not even have a single general tweet or hurricane-related 

tweet. In this case, it is highly likely that no significant relationship can be found. 

5.3 Recommendation 

First, fewer request limitations in the future are anticipated when retrieving the data from the 

server of Twitter Inc. Compared to traditional emergency management approach, the biggest 

merit of Twitter data is that people can obtain them real-time data. In rescue time, the public 

sectors are often fully scheduled and more common volunteers are needed to join in the rescue. 

Volunteers need Twitter data to do spatial analysis to schedule their rescue planning but not 

everyone are affordable to a premium or an enterprise API. No one would like to see people 

prevented from being saved because vulnerable population don’t use Twitter. 

Also, according to my study, although social media data like Twitter data are very prevalent, 

it cannot be relied on too much when conducting a rescue or designing a resilience-oriented 

planning. It might bring bias and make people overlook those who are more vulnerable than 

others. Facing the several of natural and human-made disasters, shaping urban resilience is still a 

long way to go.  
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