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Abstract

A common explanation for the origins and rising prevalence of
asthma is that they involve complex interactions between hereditary
predispositions and environmental exposures that are incompletely
understood. Yet, emerging evidence substantiates the paradigm that
environmental exposures prenatally and during very early childhood
induce epigenetic alterations that affect the expression of asthma
genes and, thereby, asthma itself. Here, we review much of the key
evidence supporting this paradigm. First, we describe evidence that
the prenatal and early postnatal periods are key time windows of
susceptibility to environmental exposures that may trigger asthma.
Second, we explain how environmental epigenetic regulation may

explain the immunopathology underlying asthma. Third, we
outline specific evidence that environmental exposures induce
epigenetic regulation, both from animal models and robust
human epidemiological research. Finally, we review some
emerging topics, including the importance of coexposures,
population divergence, and how epigenetic regulation may
change over time. Despite all the inherent complexity, great
progress has beenmade toward understanding what we still consider
reversible asthma risk factors. These, in time, may impact patient
care.
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The prevalence of current asthma
continues to rise in the United States.
Recently, the U.S. Centers for Disease
Control and Prevention reported that 7.8%
of the population is diagnosed with current
asthma (8.4% of children and 7.6% of
adults) (1). Of great concern are the
disparities associated with asthma rates,
hospitalization, and death by race and sex,
with Puerto Ricans (13.7%), African
Americans (10.3%), and females (9.1%)
having higher prevalence of current
asthma (2). Both the prenatal and early
postnatal periods have been identified
as key time windows, when specific

environmental exposures increase the
susceptibility for later asthma. Although
thoroughly reviewed in past publications
(3, 4), notable findings document that
prenatal exposure to stress (5) and air
pollution (6) are prime examples of
exposures that heighten the subsequent risk
for asthma development. For the latter,
greater exposure to fine particulate matter
less than 2.5 mm in aerodynamic diameter,
specifically during 16–25 weeks gestation,
and in interaction with male sex, was
associated with early childhood asthma
development (6). Shortly after birth,
another time period of susceptibility to

asthma appears evident, as recently
demonstrated by Barr and colleagues (7).
They found that the estimated prevalence
of self-reported asthma among Hispanics
was higher when the age of immigration
to the four U.S. cities under investigation
(New York, NY; Chicago, IL; Miami, FL;
and San Diego, CA) was within the first
few years of life. This study, therefore,
implicates the urban physical environment
experienced at a young age, more so than
during an older age or during adulthood, as
impacting prevalence rates.

Epigenetic regulation after environmental
exposures prenatally and during very

Miller and Lawrence: Perinatal Environmental Exposures and Epigenetics S103

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/223240691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-4214-3347
mailto:rlm14@cumc.columbia.edu
http://10.1513/AnnalsATS.201706-514MG
http://www.atsjournals.org


early childhood may underlie much
of these observations. Methylation,
post-translational modifications of
histones via acetylation, phosphorylation,
ubiquitination, and the expression of
inhibitory microRNAs are all regulatory
mechanisms that alter gene expression
without changing the coding sequence,
and appear to be affected by external
environmental exposures, as reviewed
elsewhere (8). For example, during DNA
methylation, the covalent addition of a
methyl group to the 59 position of the
cytosine pyrimidine ring, often at CpG
sites, may affect the metabolism of
environmental compounds, degree
of proinflammatory response, efficacy of
pharmacological treatment, or the risk
of disease development. Exposures to
allergens, air pollution, and various dietary
components have been observed to induce
gene-specific epigenetic alterations that
affect the transcription of asthma-related
genes and subsequent phenotypic
expression of asthma or its biomarkers (9).
One demonstration of this phenomenon is
that the presence of maternal asthma is
a greater risk factor for offspring asthma
than paternal asthma, implicating the
importance of the intrauterine environment
(10). In addition, uncontrolled maternal
asthma has been observed recently to
increase the risk of childhood early-onset
persistent or transient asthma (11). Also
in recent related work, maternal asthma
was associated with neonatal methylation
of a gene called mothers against
decapentaplegic homolog 3, which was
previously linked to asthma in genome-
wide association studies (12), corroborating
the epigenetic paradigm.

Experimental models in mice have
provided direct evidence of prenatal
environmental epigenetic regulation. In
one study, our group examined CpG
methylation in promoter regions of the
T-helper genes, interleukin (IL)-4, and
interferon-g, in grand-offspring mice
(F2) after prenatal sensitization and
gestational exposure of female mice (F0) to
inhaled Aspergillus fumigatus allergen (13).
Methylation at several IL-4 and interferon-g
CpG sites in lung tissue was lower in
grand offspring of mice dosed with
A. fumigatus during gestation. In another
model, prenatal allergen sensitization
followed by suboptimal sensitization
(considered to make offspring “at risk” for
asthma-like phenotype) induced distinct

patterns of DNA methylation and
transcription in dendritic cells. Most of
the genes with differential methylation in
offspring mice also showed transcriptional
changes after the first encounter with
the allergen, the majority of the genes
identified as involved in asthma or
allergic inflammation (14). Another group
studied the effect of prenatal exposure
to the gram-negative, farm-derived
isolate, Acinetobacter lwoffii F78, to
model the mechanisms of asthma
and allergy prevention and immune
modulation among children raised on
farms (15). The effect of this exposure on
histone 4 acetylation (associated with
transcriptionally active chromatin) and its
mitigation of T-helper cytokine activity
in CD41 T-cells, after ovalbumin
sensitization of offspring, was assessed.
Ovalbumin sensitization and challenge of
the offspring of prenatally sham-exposed
mothers demonstrated lower levels of
histone 4 acetylation at the counter-
regulatory interferon-g promoter when
compared with levels measured among
sham-exposed offspring. This effect was
associated with altered interferon-g
expression, and reversed among
ovalbumin-sensitized and -challenged
offspring of mothers exposed to A.
lwoffii F78. Prenatal A. lwoffii also
reduced histone 4 acetylation levels in
sensitized/challenged A. lwoffii–exposed
offspring at the proallergic IL-4 (but not
IL-5 or conserved noncoding sequence 1)
promoter. Notably, prenatal A. lwoffii did
not induce any changes in the CpG
methylation at these sites (16). The authors
interpreted these results to indicate that
A. lwoffii modulated the allergic immune
response through the transcriptional
control of histone 4 acetylation. Jahreis and
colleagues (17) observed, in the LINA
(Lifestyle and Environmental Factors and
their Influence on Newborns Allergy Risk)
mother–child cohort, an increased risk of
asthma in children of mothers having an
elevated level of mono-n-butyl phthalate, a
major, butyl benzyl phthalate metabolite. A
coordinating mouse model demonstrated
that prenatal and perinatal exposure to
butyl benzyl phthalate exacerbated the
airway hyperreactivity associated with
elevated ovalbumin-specific immunoglobin
E and proallergic T-helper cell type 2
cytokines, IL-5 and IL-13. Isolation of
differentially methylated and differentially
expressed genes revealed three

hypermethylated CD41 T-cell genes,
including fatty acid desaturase 1, fanconi
anemia complementation group A,
and zinc finger protein 1. Specifically
highlighted was the GATA binding protein
3–regulating zinc finger protein 1 gene,
the decreased expression and increased
enhancer methylation of which was
observed in the prenatally phthalate-
exposed children of the LINA cohort.

Robust human studies also suggest
that environmental exposures induce
epigenetic outcomes relevant to asthma.
These include ex vivo studies, such as one
that isolated airway epithelial cells from
adults with asthma versus those without
asthma and cultured them in the presence
of IL-13 as a cellular model of the
proallergic external environment. After
discovering an IL-13 epigenetic signature
in culture, validation experiments were
performed on the airway epithelial cells
isolated from subjects with and without
asthma. Epigenetic findings clustered
into one distinct module that correlated
with asthma severity and lung function,
and another distinct module that
correlated with eosinophilia, suggesting
environmental epigenetic regulation of
distinct asthma endotypes (18). Also
supportive of the importance of the
childhood environment was recent work
from a study of monozygotic twins, a
cohort that allows natural controls for the
genetic background and, presumably, the
intrauterine, and to some extent, early
postnatal environment. Murphy and
colleagues (19) examined numerous
differences in genome-wide DNA
methylation patterns by the presence
or absence of childhood asthma at age
10 years, when the external environments
have started to diverge. The data also
suggested that some of these differences
may persist through age 18 years, in
contrast to measures among healthy twins
or those with remitted disease; however,
statistical corrections for multiple comparisons
were less supportive. In addition,
environmental influences on epigenetic
regulation were suggested from observations
derived from 6- to 12-year-old children
participating in the Inner-City Asthma
Consortium. Presumably, these children
with asthma have airway disease that is
affected by urban environmental exposures
when compared with health control
subjects. A subset of their genes discovered
on genome-wide analyses exhibited
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high correlations between DNA
methylation and expression levels that
were replicated in a second independent
urban cohort (20).

Other cohort studies have measured
exposures in the environment more
directly and related their levels to
altered methylation levels. Our group at
the Columbia Center for Children’s
Environmental Health (New York, NY)
examined prenatal exposure to the
combustion products of polycyclic aromatic
hydrocarbons, and found that these
measures were associated with altered
methylation in cord blood at several sites of
the interferon-g promoter, although, these
differences were not associated with later
parental report of asthma (21). Prenatal
exposure to the pollutant NO2, measured
by land-use regression models, similarly
was associated with a number of altered
methylation sites found using epigenome-
wide meta-analysis from specimens derived
from four studies participating in the
Pregnancy and Childhood Epigenetics
consortium. Moreover, cigarette smoking,
particularly during pregnancy, has been
linked frequently in cohort studies with
altered methylation levels in epigenome-
wide analyses in cord blood. These include
studies that discovered specific genes, aryl-
hydrocarbon receptor repressor, FERM (4.1
ezrin radixin moesin) domain containing
4A, chromosome 11 open reading frame 52,
and c-Jun N-terminal kinase 2, and specific
areas of enrichment, such as CpG island
shores, enhancers, and DNAase
hypersensitivity sites within these
genes (22–24). The links to asthma, via
altered DNA methylation, have been more
elusive, but investigators at Columbia and
University of Cincinnati (Cincinnati, OH)
found parallel links between prenatal
polycyclic aromatic hydrocarbon exposure
and altered methylation of the acyl-
coenzyme A synthetase long-chain family
member 3 gene, and altered methylation of
acyl-coenzyme A synthetase long-chain
family member 3 with parental report of
childhood asthma in the Columbia Center
for Children’s Environmental Health
cohort (25). Exposure to phthalates, also
previously implicated with asthma risk
in the Columbia Center for Children’s
Environmental Health cohort (26), when
assessed using the urinary metabolite as the
biomarker, was associated with altered
methylation in tumor necrosis factor-a.
The group validated this finding in a second

cohort, and then linked the altered
methylation to asthma cases in the
Childhood Environment and Allergic
diseases and Isle of Wight cohorts (27).
Asthma gene–specific altered methylation
was also found after prenatal exposure to
farm living, previously associated with
protection from the development of allergic
immune responses in the Protection against
Allergy: Study in Rural Environment
group. Orosomucoid-like sphingolipid
biosynthesis regulator (known as ORMDL) 1,
an important ORMDL3 paralog sharing
similar metabolic functions, and signal
transducer and activator of transcription 6,
which is important to immunoglobin E
regulation, were demethylated, and RAD50
double strand break repair protein (known
as RAD50) and IL13 were hypermethylated,
in children of farmers compared with
children of nonfarmers (15). Finally,
differential methylation by season of birth
was discovered and separately validated as
associated with altered methylation in
several genes, such as vitamin K epoxide
reductase complex subunit 1, protein
tyrosine phosphatase receptor type N2
(autumn), and brain-specific serine/
threonine-protein kinase 2, Toll-interacting
protein (summer), and pyruvate
dehydrogenase kinase 1 (spring) (28).
Toll-interacting protein is a negative
regulator of Toll-like receptor signaling (29),
and its downregulation has been observed
to result in decreased airflow in
individuals with asthma (30). Informative
human longitudinal cohorts also include
LINA, which demonstrated that high
measures of maternal stress during
pregnancy were associated with genome-
wide differential DNA methylation and
wheeze in children (5).

So, what topics are emerging in this
rapidly evolving field? As this field advances,
the relatively simple model that tests one
exposure at one time point for epigenetic
events has evolved to more granular
research that examines coexposures, and
the ensuing dynamics of the epigenetic
responses (Figure 1). This was evident in
research that re-examined the previously
observed priming of diesel exposure on
allergic sensitization (31). Growing
literature continues to suggest that early-
childhood exposures to multiple toxicants
may impact the risk for asthma (32). Yet
studies on their epigenetic regulation of
combined exposures are more limited. In
one, Rider and colleagues (33) conducted a

double-blind, randomized, cross-over–
controlled study of 2 hours of filtered air or
diesel exhaust (300 mg particulate matter
less than 2.5 mm in diameter per m3)
exposure, followed by saline-controlled
segmental bronchial allergen challenge,
on 18 adult volunteers with atopy.
Interestingly, they reported significant
effects of diesel and allergen coexposure
on both microRNA and messenger RNA
expression without evidence for an
interaction between them. This compares
with recent work by Clifford and colleagues
(34) among 17 adult volunteers. Here, in
a randomized, cross-over–controlled
exposure study design, diesel exhaust (also
300 mg particulate matter less than 2.5 mm
in diameter per m3) or filtered air was
administered for 2 hours, followed 1 hour
later by allergen extract (vs. saline control),
at a concentration 10-fold lower than the
minimal dose producing a positive wheal,
instilled in a lower-lobe bronchial segment.
Four weeks later, the process was repeated
with opposing exposures. At 48 hours after
both, bronchial epithelial cells were
collected from brushings during
bronchoalveolar lavage and used to
measure DNA methylation. They found
that an initial allergen exposure primed
DNA methylation of a set of CpG sites that
differed from those first exposed to diesel.
Furthermore, although only a relatively
small number of CpG sites exhibited altered
methylation 48 hours after initial exposure,
upon repeat exposure 4 weeks later, there
were large alterations in DNA methylation
manifested. The authors interpreted these
findings to indicate that, although the lung
was highly sensitive to the effects of short-
term exposure, the consequences required
a second toxic exposure to manifest
substantially. Clearly, controlled and cross-
over exposures will be important in sorting
out the effects of mixed exposures on
epigenetic regulation, and remain a
significant current research gap, in large
part due to barriers inherent in pediatric
research.

Another area of complexity gaining
greater presence in the published literature
is the impact of population divergence
on patterns of DNA methylation and
presumably other epigenetic indicators.
For example, Fraser and colleagues (35)
measured DNA methylation near the
transcription start sites of over 14,000 genes
in 180 cell lines derived from one West
African and one Northern European
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population. Studying 30 mother/father/
offspring trios from each group, they found
population-specific patterns of DNA
methylation in over one-third of all genes.
Upon further analyses of trios, they also

found that the heritability of CpG
methylation differed by population. The
impact of these findings is large, because it
uncovers additional variability at the level
of DNA methylation that should be

considered, perhaps, in all clinical studies
of genetic-by-environment-by-epigenetic
relationships.

Finally, environmental exposures are
constantly changing in the short term, and
there are genuine concerns about our
changing climate, and of known asthma
environmental triggers, such as allergens
and air pollutants, in the long term (36, 37).
The epigenetic consequences of the latter
can only be speculated from the limited
studies available on the former. These
include cell studies that used time-lapse
microscopy to discern targeted chromatin
regulator recruitment and tracked its acute
effects on reporter gene activity and cell
silencing. Wide variations in silencing
events were observed among cells, and even
between sister cells. In addition, the rate
of silencing depended largely on the
chromatin regulator involved (38). Human
cohort studies that measured epigenetic
responses over time also are scant.
However, the Protection against Allergy:
Study in Rural Environment group
conducted pooled analysis of German
discovery samples and Austrian and Swiss
samples from a replication data set at
two time points. Early-childhood asthma
was associated with a change in blood
methylation between birth and age 4.5 years

Exposure Time Window
• Prenatal
• Early Postnatal
• Adolescence
• Elderly

Environmental Exposure
• Mixed components
• Sequential exposure
• Protective exposure
  (i.e. microbiome)

Population Divergence
• Study design
• Interpretations

Dynamics of Epigenetic Response
• Acute
• Long-term
• Sustained across generations

Figure 1. Emerging concepts in environmental epigenetic regulation in asthma. Emerging concepts
include assessing a greater understanding of the importance of individual versus mixtures and
sequential environmental exposures, both toxic and protective; their time course may affect the
timeline of epigenetic regulation. Although the perinatal time-window of susceptibility has emerged as
key, others, such as adolescence and elderly periods, are under investigation. Studies may need to
consider epigenetic patterns in the setting of divergence of whole populations over time, and examine
the dynamics of the epigenetic responses, including over generations of individuals.

Table 1. Recent experimental versus epidemiological evidence of perinatal exposures and epigenetic regulation

Exposure Outcome Reference

Epidemiological studies
Prenatal stress Subsequent wheeze and genome-wide differential DNA methylation

patterns
5

Maternal asthma Neonatal SMAD3 methylation 12
Asthma discordant twins Genome-wide differential DNA methylation patterns 19
Inner city Correlated changes in DNA methylation and expression in select

genes
20

Prenatal cigarette Epigenome-wide and gene-specific altered methylation (C11orf52
and JNK2)

22–24

Prenatal PAH Altered ACSL3 methylation and subsequent asthma 25
Prenatal phthalates Altered TNF-a methylation and subsequent asthma 27
Prenatal farm living Altered ORMDL1, STAT6, RAD50, and IL-13 methylation 15
Season of birth Genome-wide differential DNA methylation patterns 28

Experimental studies
Prenatal Aspergillus fumigatus Altered lung IL-4 and IFN-g methylation in grandoffspring 13
“At risk” neonatal mice allergen challenge Differential methylation and transcription 14
Prenatal Acinetobacter lwoffii F78 Increased H4ac at INF-g and reduced H4ac at IL-4 promoters 16
IL-13 Epigenetic signature associated with asthma severity or eosinophilia 18
Diesel exhaust and subsequent allergen challenge Altered microRNA and messenger RNA expression 33
Diesel exhaust and subsequent allergen challenge Altered DNA methylation in bronchial epithelial cells 34

Definition of abbreviations: ACSL3 = acyl-coenzyme A synthetase long-chain family member; C11orf52 = chromosome 11 open reading frame 52; H4ac =
histone 4 acetylation; IL = interleukin; IFN = interferon; JNK2= c-Jun N-terminal kinase 2; ORMDL1 = orosomucoid-like sphingolipid biosynthesis regulator 1;
PAH= polycyclic aromatic hydrocarbon; RAD50 =RAD50 double strand break repair protein; SMAD3=mothers against decapentaplegic homolog 3 gene;
STAT6 = signal transducer and activator of transcription 6; TNF = tumor necrosis factor.
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in the RAD50 double strand break repair
gene and CpG island 59 of the transcription
start site of IL-13 (15). In addition, in the
intronic region of the orosomucoid-like
sphingolipid biosynthesis regulator 3 gene,
previously linked to asthma in a genome-
wide association study (39), a significant
decrease in methylation over time was
observed in children with asthma exposed
prenatally to farm living in contrast to
an increase in methylation in children
with asthma not exposed prenatally to
farm living and to children without
asthma (15). Human cohort studies that
measure responses over changing
environmental exposures are also scarce.
Our group conducted one such randomized
intervention study with a cohort of
children and adolescents aged 5–17 years.
We investigated the effect of mouse

allergen–targeted integrated pest
management and education (versus
education only) on asthma morbidity.
Although no significant difference was
observed in asthma morbidity between the
two groups after intervention, a decrease in
buccal DNA, Forkhead box P3 promoter
methylation was observed in the mouse-
specific integrated pest management
group (40).

Conclusions

So what are the lessons learned regarding
our investigation of root causes of
asthma? Despite all the inherent complexity,
several themes do emerge. For one, the
prenatal and early postnatal time periods
appear to be vulnerable time windows

of susceptibility to epigenetic regulation
(Table 1). Other periods, such as
adolescence and during older adulthood,
warrant further investigations. Second,
epigenetic regulation, in both controlled
laboratory experiments and rigorous
cohort studies, is linked to asthma-related
outcomes. Factors, such as mixed
exposures, dynamic timeline of epigenetic
responses to changing environmental
conditions, and population divergence,
should not be underestimated in study
designs or in the interpretation of their
results. Still, great progress has been made
toward understanding what we still
consider reversible asthma risk factors.
These, in time, may impact patient care. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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