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Resumo

Na área da ecologia, o estudo de populações naturais é feito através de métodos que têm
de ser fundamentalmente precisos e eficazes no que toca à estimação do tamanho e densidade
populacional. É importante atualizar e fornecer dados que refletem a realidade do problema em
questão. As estimativas resultantes destes métodos são ferramentas que levam à diferença entre
uma estratégia de ação que viabiliza a gestão e conservação invertendo o processo de declínio
das populações e uma estratégia de conservação falhada. Dada a sua relevância, é importante
otimizar os métodos existentes e garantir a eficácia das suas previsões. Se os métodos permitirem
a monitorização com a mínima intervenção humana, estaremos a reduzir o esforço, o tempo e os
custos necessários, e por essa mesma razão, estes métodos são considerados uma via alternativa
preferencial.

A baleia-da-Gronelândia (Balaena mysticetus) pertence à família Balaenidae e é tam-
bém conhecida como baleia-da-Gronelândia ou baleia polar. Esta espécie vive em regiões asso-
ciadas ao Oceano Ártico e subártico, não ocorrendo no hemisfério Sul. A baleia-da-Gronelândia
está classificada na Lista Vermelha de Espécies Ameaçadas (IUCN Red List) como Pouco Preo-
cupante (LC – Least Concern). São facilmente identificadas devido ao seu corpo largo, forma
arrendonda e por não possuírem barbatana dorsal. Estas baleias apresentam uma tonalidade
escura em todo o corpo, exceto os padrões brancos na zona inferior dos maxilares, em partes
do corpo da zona ventral e ao redor das suas barbatanas caudais. Os seus padrões brancos
aumentam com a idade. Têm uma cabeça triangular quando vista de perfil e um "pescoço"
resultante de uma indentação entre a cabeça e a zona dorsal (Rugh & Shelden, 2009). O seu
nome comum em inglês, "bowhead whale", surge pela aparência curvada ("bowed") da boca.
Além disso, estas baleias são conhecidas pela sua longevidade, tendo sido registado um indivíduo
com 211 anos de idade (George et al., 1999). Na região do Alasca, as baleias-da-Gronelândia
migram do mar de Bering através do mar de Chukchi para o mar de Beaufort durante o período
de migração da primavera/verão, e retornam em meados do final do verão e outono do mar de
Beaufort para o mar de Bearing. Apesar das rotas de migração serem bem conhecidas, esta
espécie é difícil de ser avistada por passar a maioria do tempo debaixo de água, levando a uma
baixa probabilidade de deteção/avistamento. Quando ignorada, esta baixa probabilidade leva
à subestimação do tamanho das populações. Contudo, esta espécie é conhecida por emitir vo-
calizações que são essenciais para encontrar parceiros durante a época de acasalamento e para
ajudar a navegação através do gelo marinho. As vocalizações são de baixa frequência, entre 50
a 500 Hz, mas muito intensas, propensas a serem detetadas a grandes distâncias (Abadi et al.,
2014). A produção destes sons distintos faz destas baleias um ótimo exemplo para a aplicação
de monitorização acústica passiva.
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O objetivo deste projeto é estimar a densidade populacional das baleias-da-Gronelândia
da região de Bearing-Chukchi-Beaufort através da análise de captura-recaptura espacialmente
explícita (SECR). Contudo, a densidade calculada pode ser referente a: (i) animais (i.e., indiví-
duos); (ii) grupos de animais e (iii) sons. O nosso alvo é estimar inicialmente a densidade (iii)
sonora (D̂s), sendo posteriormente convertida para uma densidade populacional (D̂). A conver-
são é feita através da divisão da densidade sonora por dois fatores: (i) taxa de vocalização (r̂) e
(ii) período de tempo considerado da amostra (T):

D̂ =
D̂s

r̂T
.

Os dados analisados nesta tese pertencem a um projeto de nome DEBACA (Density
Estimation of Bowhead’s off the Arctic Coast of Alaska), e resultam da colaboração entre a com-
panhia americana Greeneridge Sciences Inc e duas instituições académicas – Scripps Institution
of Oceanography e a Universidade de St Andrews. O conjunto de dados resulta da colocação de
cinco conjuntos de sensors acústicos ao longo da costa do Alasca no mar de Beaufort durante a
migração de verão/outono das baleias-da-Gronelândia. Cada um dos conjuntos contém 3 a 13
"DASARs" (Directional Autonomous Seafloor Acoustic Recorders) que gravaram continuamente
os sons emitidos pelas baleias. A disposição dos sensores, mais precisamente hidrofones, permitiu
a recolha de uma base de dados de acústica passiva durante oito anos (2007–2014) em 5 locais.

Os dados foram divididos segundo a sua análise: os sons foram explorados através de
análise manual ou automática. Na análise manual, uma equipa altamente especializada classificou
os sons registados, ouvindo as gravações de aúdio e examinando os seus respetivos espetro-
gramas ao mesmo tempo. Na análise automática, os dados foram processados através de um
algoritmo composto por sete passos, incluindo a classificação e localização dos sons. Contudo,
os dados manuais e automáticos apresentam problemas distintos. Nos dados manuais ocorre a
não-independência entre os sensores causada por intervenção humana. A não-independência não
é consistente com o processo de deteção ao longo dos DASARs, resultando num excesso de sons
detetados na totalidade dos DASARs. A independência deverá resultar num padrão decrescente
no número de deteções em função do número de DASARs nos quais os sons foram detetados.
Os dados automáticos ultrapassam o problema da não-independência, contudo apresentam uma
quantidade excessiva de sons "singulares" ("singletons") em relação aos dados manuais (aproxi-
madamente mais de 15 vezes). Os sons "singulares" são detetados apenas e somente uma única
vez no conjunto de hidrofones. Assume-se que grande parte dos sons "singulares" são, na reali-
dade, falsos positivos. Os falsos positivos são sons classificados como sons "biológicos" da espécie
de interesse, mas na realidade são provenientes de outra fonte irrelevante para o estudo.

Nesta tese, optámos pela análise de dados automáticos uma vez que excluem o proble-
ma da não-independência, além de não ser possível, geralmente, obter dados manualmente em
registos de longa duração. Resta-nos então resolver o problema apresentado pela deteção exces-
siva de sons "singulares", que por sua vez assume-se que contêm falsos positivos. O problema
dos sons "singulares" pode ser abordado das seguintes formas:

1. Analisar todos os dados através de uma análise de captura-recaptura espacialmente explí-
cita (SECR), ou seja, ignorando o problema dos "singulares";
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2. Analisar os dados excluindo os sons "singulares";

3. Ajustar um modelo linear com decaimento exponencial aos sons detetados em 2, 3, ..., todos
os DASARs de modo a prever o número de sons "singulares". Gerar uma proporção p di-
vidindo o número previsto de "singulares" pelo número original de "singulares". Descartar
1− p de falsos positivos dos sons "singulares";

4. Introduzir uma função de verosimilhança de SECR desenvolvida nesta dissertação que
incorpora a truncatura de sons "singulares".

Os pontos 1 a 3 foram analisados através de métodos de SECR com o package secr em
R. As estimativas de densidade populacional são validadas através da comparação com dados
simulados. O método ad hoc número 3 é considerado o mais fidedigno entre os três, uma vez
que resolve parcialmente o problema dos falsos positivos nos sons "singulares". O ponto 1 leva à
sobrestimação das densidades, dado que todos os falsos positivos contidos nos "singulares" estão
incluídos nos dados analisados. No ponto 2 corremos o risco de subestimar a densidade, uma
vez que os sons "singulares" provenientes de baleias são totalmente descartados. No ponto 3 as
estimativas correm o risco de serem enviesadas, dado que não é possível saber qual a proporção p
de sons "singulares" vindos das baleias-da-Gronelândia. O ponto 4 não foi implementado, no en-
tanto estabelecemos as bases para a análise deste conjunto de dados. No caso de implementação
da verosimilhança com truncatura de sons "singulares", as estimativas resultantes deste método
são apenas referentes a sons detetados em pelo menos dois DASARs. Para trabalho futuro, suge-
rimos a inclusão de informação adicional na formulação de SECR, tais como os níveis recebidos
dos sons e os ângulos dos sons provenientes da fonte sonora.

Palavras-chave: baleia-da-Gronelândia, estimação de densidade, captura-recaptura espacial-
mente explícita, sensores fixos, acústica passiva
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Abstract

Management and conservation of wildlife populations is a major concern. Population
density is a key ecological variable when making adequate decisions about them. A variety
of methods can be used for estimating density. Capture-recapture (CR, also known as mark-
recapture) methods are a popular choice, but ignoring the spatial component of captures has
historically led to problems with resulting inferences on abundance. Spatially explicit capture-
recapture (SECR) methods use the spatial information to solve two key problems of classical CR:
defining a precise study area where captures occur over and reducing unmodeled heterogeneity
in capture probabilities.

Arrays of Directional Autonomous Seafloor Acoustic Recorders (DASARs) recorded
calls from the Bearing-Chukchi-Beaufort (BCB) population of bowhead whales during the au-
tumn migration. The available passive acoustic dataset was collected over 5 sites (with 3–13
sensors per site) and 8 years (2007–2014), and then processed via both automated and manual
procedures. The automated procedure involved computer-processing by a multi-stage detection,
classification and localisation algorithm. In the manual procedure, calls were detected and clas-
sified by trained staff who manually listened to the recordings and examined spectrograms. The
resulting manual data presents some pitfalls for density estimation, including non-independence
among sensors caused by human intervention. The non-independence leads to an excess of calls
being detected in all DASARs on a site. Data from the automated procedure does not suffer the
non-independence issue, but the amount of ’singletons’ is approximately 15 times higher than in
the manual data. ’Singletons’ are calls detected exclusively in one sensor and we assume they
mostly comprise false positives. False positives are sounds classified as coming from the species
of interest, but in reality are something else.

Considering only automated data from 2013 and 2014, several approaches were per-
formed to solve the excess of singletons. Density estimation with a standard SECR analysis was
conducted according to the following approaches: i) ignoring the singletons problem and analys-
ing all calls; ii) removing the singletons; and iii) discarding a proportion of 1− p false positives
from the singletons. Simulated results were compared to verify the best approach. We also dis-
cuss a new approach by developing a SECR likelihood function that accommodates truncation
of certain acoustic cues, specifically singletons.

We have laid foundations for the analysis of this dataset, but there are other possible
research avenues to explore. Our next steps would include embedding additional information
(like received levels and bearing angle) in the SECR formulation.
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Keywords: Bowhead whales, density estimation, spatially explicit capture-recapture, fixed
sensor, passive acoustic
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Chapter 1

Introduction
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1.1 Context of the Problem

The establishment and assessment of management practices concerning wildlife popu-
lations must be supported and justified by reliable population estimates. However, population
change occurs over time, and it is important to know how it increases or decreases and how many
animals of interest are there. One could think population size is enough to support effective ma-
nagement and conservation, but much of the theory and methodology concerning population
size is to assume populations are well-defined so that one could randomly sample animals in an
area and uniquely identify them (Royle, 2011). A popular way to study natural populations
is applying in situ monitoring methods. One could resort to traditional abundance estimation
methods, such as distance sampling. Bowhead whales are difficult to see as they spend most of
their time under the water’s surface. Because a portion of bowhead whales is undetected, this
will result in biased abundance estimates. In the concept of population size, animals in a popu-
lation typically live and move in territories or home ranges – they are spatially distributed – and
the territories or home ranges are, naturally, not accounted in traditional estimation methods.
This project seeks to estimate the population density of bowhead whales. This can be achieved
with a spatially-explicit capture recapture (SECR) method by juxtaposing in a precisely delin-
eated area an array of sensors capable of detecting the presence of the animals. Compared to
the traditional abundance estimation methods, this will lead to different implications concerning
estimation and interpretation of data. A traditional method, such as capture-recapture, will pro-
duce an underestimated population size when there is heterogeneity in capture probability. One
of the major sources of heterogeneity is due to the location of the animal’s centre of movement
relative to the sensor. The problem of heterogeneity is taken into account in SECR, even though
the home range centre is unknown.

The fact that bowheads produce distinctive sounds makes them a suitable candidate for
Passive Acoustic Monitoring (PAM) (Cummings & Holliday, 1985). Additionally, the deployment
of an array of hydrophones is chosen accordingly to the known migratory routes of bowhead
whales (Braham et al., 1980). There is a lot of potential for fixed PAM in studies of cetaceans
(whales and dolphins) concerning their ecology, conservation, and movement.

The present case study focuses on PAM to detect the acoustic cues produced by bowhead
whales – their sounds – and analyses them with spatially explicit capture-recapture (SECR)
methods to estimate population density of bowhead whales in the Arctic Coast of Alaska, spe-
cifically in the Bearing-Chukchi-Beaufort (BCB), during the autumn migration.

1.2 Study Species

1.2.1 Characteristics, Taxonomy and Life History

The bowhead whale (Balaena mysticetus) is a cetacean and belongs to the Balaenidae
family. Also called Arctic right whale, Greenland right whale or great polar whale, it lives
mostly in northern latitudes associated with sea ice, never occurring in the Southern Hemisphere.
Bowheads have a classification of least concern (LC), by the IUCN Red List of Threatened
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Species. This species is easy to identify due to their large size, rotund shape and lack of a
dorsal fin (figure 1.1). Other unique features such as their triangular head (viewed in profile),
and neck (existence of an indentation between the head and back). Their name comes from
the bowed appearance of the mouth. Bowheads are black with white patterns on their chins,
undersides, around their tail stocks, and on their flukes. Being unique to each individual, these
white patterns, mainly around the tail and on the flukes, expand with age (Rugh & Shelden,
2009).

Figure 1.1: Cluster of bowhead whales (Balaena mysticetus).
Photo by Julie Mocklin

These cetaceans reach a mean length of 18m and a weight of 45,000 to 73,000 kg
(Brownell & Ralls, 1986) and females are larger then males, as in all baleen whale species (Burns
et al., 1993). Length of bowhead whales at birth is estimated to be 4-4.5m, length at one year to
be 8.2m, length at sexual maturity to be 14m in females, and maximum length to be 20m. The
duration of gestation is estimated to be 13-14 months and their sexual activity has been observed
in March through May (Nerini et al., 1984). The head of these marine mammals correspond over
a third of the bulk of the body with 230 to 360 baleen plates on each side of the mouth, instead
of teeth. In order to insulate them, bowheads are protected in blubber 5.5-28 cm thick covered
by an epidermis up to 2.5 cm thick (Rugh & Shelden, 2009).

During the mating season, bowheads are vocally active and can hear each other 5-10 km
away. Breaching (leaping completely out of the water) and fluke slapping (tail smashes down on
the water surface) are usual movements of the mating season that may play a role in attracting
a mate or asserting dominance, but the role of these behaviours is not well understood (Rugh &
Shelden, 2009).

This species is one of the longest living animals, reaching ages exceeding 100 years, and
the oldest individual on record was an astonishing 211 years old (George et al., 1999).

1.2.2 Distribution

There are currently four or five recognized stocks of bowheads which are defined by
geographically distinct segments of the species’ total population: the Western Arctic (or Bering-
Chukchi-Beaufort stock), Okhotsk Sea in eastern Russia, Davis Strait and Hudson Bay in north-
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eastern Canada (occasionally considered separate stocks) and Spitsbergen in the North Atlantic
(figure 1.2) (Heide-Jørgensen et al., 2006; Rugh et al., 2003).

In the Alaskan region, bowhead whales migrate from their Bering Sea wintering grounds
through the Chukchi Sea to the Beaufort Sea during spring/summer. The return migration occurs
during late spring (April-June) and autumn (September-October) (Moore, 1993). Bowhead
whales travel from their eastern Beaufort Sea summering grounds, westward along the coast,
and into the Chukchi Sea.

Whales follow open-water leads far from the shore during spring migration. Conversely,
the autumn migration is generally near shore and mostly in water depths of 20 to 50 m (Würsig
& Clark, 1993).

Figure 1.2: Distribution map of Balaena mysticetus. From East to West: Okhotsk Sea,
Spitsbergen Sea, Davis Strait, Hudson Bay, and Bering-Chukchi-Beaufort Sea.

Source: http://uk.whales.org/species-guide/bowhead-whale

1.2.3 Ecology, Behaviour and Physiology

Bowhead whales are planktivorous – planktonic crustaceans, especially copepods and
euphausiids, were the most important food items found in bowhead whale diet studies, plus
mysids and gammarid amphipods (Lowry et al., 2004). Killers whales (Orcinus orca) are the
only predators of bowheads besides humans.

Bowhead whales are skimmers, as they feed on the surface, and sometimes at or near
the seafloor. They are capable of engulfing large volumes of water, and swim forward keeping
their mouths continuously open when feeding. When closing their mouths, the water is pushed
out, trapping prey inside. Their massive tongue sweeps the food off the baleen into a narrow
digestive tract (Perrin et al., 2009).
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Being air-breathing mammals, their diving abilities are remarkable – bowheads likely
exceed an hour underwater – and they can withstand breaking through ice up to 60 cm thick.
During the autumn migration, there is a record for shorter dives (8.65 ± 2.73 min, n=88) com-
pared to dive duration during spring (1.7 to > 28 min) (Würsig et al., 1984). Their vocalisations
(very-low frequency and very loud calls) are essential to help them find mates or assist in fol-
lowing each other when navigating through sea ice. Although extremely vocal, they are solitary
animals often travelling alone or in small pods of up to six whales (Rugh & Shelden, 2009).

1.2.4 Interaction with Humans

Bowheads were extremely valuable due to their large size, long baleen and thick blubber.
Commercial whalers from the 17th to 19th centuries depleted most stocks of these mammals.
In the mid-1970s the International Whaling Commission (IWC) concluded that the harvest by
Alaskan Eskimos threatened the existence of the bowhead whale, which was still recovering from
a period of open-access exploitation (1848-1914) (Conrad, 1989).

Currently, native Alaskans kill around 40 whales per year through quotas set by the
IWC and the Chukotka Natives of Siberia allotted five bowheads per year from the Alaska quota.
Independent of this quota, the Canadian government allows a limited hunt of these mammals
from the Western Arctic stock and from Davis Strait and Hudson Bay (Rugh & Shelden, 2009).

1.3 Introduction to Density Estimation

Ideally, we would count all the animals of a species of interest from a population in a
defined area, resulting in the animal’s density. Suppose we wanted to count all European honey
bees in Europe. The exercise of such counting is impossible, as animals move around, and the
areas involved are large. So we have to find solutions on sampling approaches and be able to
draw inferences about the total population. For instance, imagine a wildlife survey taking place
in a study area of size A. A team of investigators randomly deploy a large number of sample
plots with total area a, and detect and count n animals. Assuming all animals within the sample
plots are counted, then density D is estimated by:

D̂ =
n

a
, (1.1)

with the estimated abundance being simply density times the size of the study area

N̂ = D̂A. (1.2)

Frequently, when surveying wild animals, not all animals in the covered areas are detected. If we
can estimate the probability p of detecting an animal within a, then density can be estimated as

D̂ =
n

p̂a
. (1.3)
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1.3.1 Existing Methods to Estimate Animal Abundance and Density

This section will guide the reader through the existing methods to estimate animal
population size, in particular animal abundance and density. The primary goal is to give an
outline of the key existing approaches and explain how one obtains abundance/density estimates.

Animal abundance was traditionally obtained through visual observations. As a result,
most methodologies were focused on visually acquired data. Abundance and density estimates
based on visual data were built almost exclusively on one of two inferential methods: capture-
recapture/mark-recapture (CR/MR) and distance sampling (DS). The methods applied in this
dissertation are a combination of the previous two methods, resulting in spatially explicit capture-
recapture (SECR) methods.

The generic term ’detectors’ is used interchangeably throughout this dissertation with
the more specific terms ’traps’, ’sensors’, and more specifically ’DASARs’ in further sections. The
same happens with the term ’detections’ being described as ’captures’ or ’encounters’. Moreover,
’cue’, ’acoustic cue’, ’sound’ and ’vocalisation’ have the same meaning in this context.

Plot Sampling or Strip Transects

Estimating the size of biological populations can be accomplished with counting. In
plot sampling (also known as strip transects), one performs a count of the population of interest
over randomly chosen plots. These plots (or strip transects) are usually long, narrow plots or
quadrats (Burnham & Anderson, 1984).

Frequently, plot sampling leads to incomplete counts, because these methods are being
applied to situations where the key assumption, that all animals in a given area are detected, is
false. This results in an underestimation of density. In this method, one searches a plot/strip of
area 2Lω (L is the length of the transect and ω is one-half the width of the strip transect) and it
is assumed all individuals of interest are detected and counted. These plots may be traversed by
an observer on foot, on terrestrial vehicle, on airplane or helicopter, etc. Under the assumption
that all individuals are detected and counted, then density D is estimated as

D̂ =
n

2Lω
. (1.4)

However, if some individuals are not detected, i.e., the total number of individuals Nω in the
strip of total width 2ω is bigger than the count of detected individuals n (Nω > n), the density
estimate is naturally biased low. Note this is just estimator 1.1 where the area size is explicit.

Bias derived from incomplete counts are usually due to:

1. probability of detecting individuals decreasing with distance, x, from the centerline of the
strip transect;

2. other factors influencing the detection probability. These variables may include: size, shape,
coloration and habits of individuals of interest; level of experience/training of observer;
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variables related to physical setting (e.g., habitat type, time of day, sun angle, among
others).

Distance Sampling (DS)

Distance sampling uses the recorded distances to objects of interest obtained by survey-
ing lines or points to estimate detectability and hence correct detected counts. If line transects
are used, then the perpendicular distances to detected individuals are recorded (figure 1.3); oth-
erwise, in the case of point transects, the radial distances from the point to detected individuals
are recorded. A point transect may be considered as a line transect of zero length, i.e., a point.
The probability of observing an animal decreases as its distance from the observer increases, be-
ing the observer a human operator or a sensor. The area effectively searched in distance sampling
is calculated by: A′ = 2µ L, with L being the kms of transect (or other units of distance), and µ
as a definition for the effective strip width (distance for which unseen animals located closer to
the line than µ equals the number of animals seen at distances greater than µ). Then, density
in the area effectively searched is D = n/A

′ (Buckland et al., 2012).

Figure 1.3: Example of distance sampling performed in a line transect survey of a certain
whale species: a single observer or a team of observers sail in a specified line transect
(centred red line) and record the distances (perpendicular red dashed lines) to detected

whales. Black whales indicate detected individuals and therefore recorded distances. Grey
whales indicate the presence of animals of interest but observers were unable to detect

them.

Distance sampling estimates the area effectively searched, or equivalently the average
probability of detection within some fixed truncation distance (Marques et al., 2013). It is
important to randomly place a sufficiently large number of line or point transects over the area
of interest, so there is a good coverage of the entire area. The recorded distances obtained are
then used to model a detection function: g(y), represents the probability of detecting an animal
given it is at distance y from the transect. Therefore, the average probability p of detecting an
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animal in the survey area is

p =

∫ ω

0
g(y)π(y) dy, (1.5)

where ω is the truncated distance from which it is assumed no more detections occur; π(y)
is the distribution of distances to all animals (either detected or not) (Buckland et al., 2012).
It is assumed that the distribution of animals π(y) is known: uniform for line transects, and
triangular for point transects. This is a consequence of a suitable random design. However, in
poorly designed surveys, transects may be placed along existing landscape features (e.g., roads,
rivers, shorelines, etc). This results in π(y) having an unknown form as animals might present a
density gradient due to those features. This will then lead to biased estimates (Marques, 2007).

Cue counting is a special kind of distance sampling (Hiby, 1985) – one detects cues
produced by animals, instead of counting them directly. Cue counting is a form of distance
sampling with a temporal component (Borchers et al., 2010). In this case, it is not possible
to determine which individuals produced which cue, therefore the density of cues is estimated
alternatively, e.g., whale vocalisations per unit area or per unit of time. This cue estimate is
then divided by an independent estimate of the average cue production rate (cue rate – number
of sounds per unit of time).

As an example, a survey for songbirds comparing point and line transect sampling was
performed in Buckland (2006). Three methods are compared and implemented in both point
and line sampling: 1) an observer records birds detected from a point for several minutes; 2)
an observer records locations of detected birds ’frozen’ at a single location; and 3) an observer
records distances to detected cues (songbursts), rather than birds. The line transect sampling
method was more efficient than the point method. Also, the second method was found to be the
most efficient of the point sampling methods. Another particular type of distance sampling is
suggested in Marques et al. (2013) when animals occur in clusters, hence becoming the object
of analysis. The aim here is to obtain a density of animal clusters and then multiply it by
an estimate of the mean cluster size in the population. A potential problem arises when large
clusters are easier to detect than smaller ones, leading to a potential bias when determining
population mean cluster size.

Based on a set of randomly allocated transects over the study area of interest, unbiased
density estimates require the following assumptions:

1. animals on the line or at the point are detected with probability 1, i.e., g(0) = 1;

2. animals do not move during the observation process, or the observation process is considered
a snapshot, i.e., instantaneous in time;

3. distances are measured without errors;

4. detections are statistically independent events.

Regarding assumption 2), the observation process might happen in a period of time of
negligible length, in such a way that animal movement is negligible within the time interval. If
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an observer is faster than the animals themselves, it is safe to assure that existing bias from
this source can be ignored. In fact, a simulation study revealed that bias was negligible if mean
animal speed was one quarter of that of the observer, but not if animal speed was one half that
of the observer (Glennie et al., 2015), although the ratio of animal speed to observer speed for
low bias depends on the detection function. In the presence of highly mobile animals, we could
face considerable overestimation of density. Moreover, the focus can be directed to unobserved
responsive movement, resulting in the overestimation of density if animals are attracted to the
observer, and underestimation of density if animals avoid the observers.

In assumption 3), the consequence of measurement errors in estimated distances is
similar to the error in animal movement (Marques, 2004). When distances are underestimated
and overestimated, the densities will be overestimated and underestimated, respectively. In
Marques (2004), it is reported that random errors will typically lead to an overestimation of
density.

Finally, assumption 4) is strictly required to estimate the parameters of the detection
function model, g(y), by maximum likelihood. Reassuringly, methods are known to be robust to
the failure of the independence assumption (e.g. Buckland (2006)).

Capture-recapture (CR) or mark-recapture (MR)

Capture-recapture (also designated mark-recapture) is another approach to estimate
abundance. This indirect method involves repeatedly sampling a population of interest over
time. CR is performed by marking individuals so they can be recognised in later recaptures.
One collects a sample of n individuals, marks and returns them to their habitat. The goal is
to obtain their capture history data (also known as individual encounter history data), i.e., a
sequence of binary random variables that indicates whether an individual was captured or not
during one of these sampling occasions (also named trapping occasions) (table 1.1) (Pradel,
1996).

Table 1.1: Example of a capture history data with n successfully captured individuals in
a population with N unknown total animals and 10 sampling occasions. ’1’ represents
presence or successful detection in a given sampling occasion; ’0’ means absence or

unsuccessful capture.

Occasion
Id 1 2 3 4 5 6 7 8 9 10
1 1 0 0 0 1 1 0 0 0 0
2 0 0 1 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 0
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
M 0 0 1 0 0 0 0 0 0 1

Depending on what is best suited for each taxon, the recognition from marking can be
achieved by photo identification, genetic markers, among others, although many species (e.g.,
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tigers, zebras, some cetaceans) possess individually distinctive natural markings that can be used
as markers. The recognition from marking results in an unknown fraction n/N of marked animals,
since N is unknown. n is the total number of animals successfully captured (from individual 1
to M). A second sample is drawn. This leads to a proportion p of marked animals for the new
sample, which is an estimate of the proportion of marked animals in the population. Hence,
we can use the Lincoln-Petersen estimator, one of the oldest and simplest methods based on a
single recapture occasion, so an estimate of population size could be given by N̂ = n/p (Krebs
et al., 1989). However, one needs to meet multiple unrealistic assumptions to obtain reliable
estimates, such as: (i) individuals do not loose marks, (ii) capture does not affect future capture
probability, (iii) the population is closed (i.e., no births, deaths, immigration and emigration
occur between samples) and (iv) all individuals are equally catchable (equal probability of being
detected). This latter assumption has an immense importance, as its failure will produce biased
low estimates caused by heterogeneous capture probabilities. The unmodelled heterogeneity in
detection probabilities is explained by the tendency of sampled animals being more detectable
than others (the opposite of the required iv) assumption), resulting in the overestimation of
animal detection probability and underestimation of abundance. The violation of this assumption
can lead to lower precision, but also substantial bias (Link, 2003).

Estimates derived from CR cannot readily be converted into density estimates, because
there is not a well-defined sampling area. This CR limitation of a non-explicit spatial context
leads to an inadequate conversion to density estimation, because animals move freely through
space and the area containing the animals exposed to the sampling effort is bigger than the area
immediately surrounding the sampling devices. Hence, CR will tend to estimate the size of the
population that would at any one time be potentially detectable from the set of traps used, which
is most often ill defined.

CR presents other limitations, such as the variation of individual exposure to capture
according to the location to their home-range centre and to the location of the sampling devices.
The use of CR to estimate population density does not account for: (i) the location of detect-
ors/traps; (ii) the location of detections/encounters and (iii) the spatial pattern of individual
encounters (or capture history data) (Efford & Fewster, 2013). All this extra information could
boost the accuracy and/or precision of the density estimates. This will be discussed in the
following sub-section with respect to spatially explicit capture-recapture methods.

Spatially Explicit Capture-Recapture (SECR)

Spatially explicit capture-recapture (SECR) methods represent a natural extension of
the CR general framework. The primary goal is to estimate the population density of free-
ranging animals and obtain statistical inferences about spatial structure of populations from
observed detections of a sample of individuals. These methods are aimed to model animal CR
data collected with an array of traps (Efford, 2018).

SECR methods overcome some issues presented by conventional CR, in particular the
unmodelled heterogeneity in detected animals and an ill-defined population. In SECR, the spatial
location of the location of traps that detected an individual are known, reducing the effect of
unmodelled heterogeneity (since part of it is modelled) and making the effective survey area

10



estimable.

The primary data for a conventional SECR analysis is (i) the location of traps, and
(ii) capture histories, i.e., detections of known individuals on one or more trapping occasions
(Efford, 2018). The following table subtly differs from the CR table, since we know the location
of the specific traps where the detections occurred (figure 1.2). Depending on the survey design,
researchers may need to divide the data into discrete trapping occasions. For example, camera
traps sample continuously, so these occasions can be divided in periods of 24 hours (corresponding
to the duration of each occasion (1 to S occasions) exhibited in table 1.3).

Table 1.2: Example of SECR capture histories. Each row corresponds to an object of
interest (for example, animals) and each column a trap. ’0’ indicates no detection at a
certain trap, and ’1’ otherwise. Each trap has an associated x-y coordinates. Our data

presents this matrix format.

Traps
Id 1 2 3 4 5 6 7 8 9 10
1 1 0 0 0 1 1 0 0 0 0
2 0 0 1 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 0
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
M 0 0 0 0 0 0 1 0 0 1

Table 1.3: Example of SECR capture histories with trapping occasions (1 to S), and traps
(1 to 10). Each row corresponds to an object of interest (for example, animals) and each
column a trap. ’0’ indicates no detection at a certain trap, and ’1’ otherwise. Each trap

has an associated x-y coordinates.

Occasion 1
Id Trap 1 Trap 2 Trap 3 Trap 4 Trap 5 Trap 6 Trap 7 Trap 8 Trap 9 Trap 10
1 1 0 0 0 1 1 0 0 0 0
2 0 0 1 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 0
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
M 0 0 0 0 0 0 1 0 0 1

Occasion S
Id Trap 1 Trap 2 Trap 3 Trap 4 Trap 5 Trap 6 Trap 7 Trap 8 Trap 9 Trap 10
1 1 0 1 0 0 1 0 0 0 0
2 0 1 0 0 1 0 0 0 0 1
3 0 0 1 0 0 0 1 0 0 0
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
M 1 0 0 1 0 0 1 0 0 0

Types of Traps

SECR data can be collected with different types of detectors, in addition to physical
traps. Efford et al. (2009) describe three categories (figure 1.4):

a) Multi-catch traps: these hold any number of animals and they stay trapped for the whole
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duration of a sampling occasion. Therefore, animals are only captured in one trap on any occasion
(e.g., mist-nets);

b) Single-trap: these traps hold solely one animal and it stays unavailable to catch other animals
once it caught one (e.g., cage-traps);

c) Proximity detectors: technological development opened new possibilities to study species that
were historically impossible to study as they were extremely difficult to physically capture. Prox-
imity detectors are ’traps’ that record the presence of an animal and leave it free to be detected
in other traps on any occasion (e.g., hair snares, camera traps, microphones, and hydrophones).

Figure 1.4: Example of three different types of traps: A) Mist-net representing a
multi-catch trap. B) Cage-trap exemplifying a single-trap. C) Hydrophone (underwater

microphone) is an example of a proximity detector.
Source A: J. Andrew Boyle. Source B: Julian Drewe.

Source C: http://ambient.de/en/product/ambient-sound-fish-asf-1-mkii-hydrophone/

Proximity detectors are a non-invasive type of sampling since they do not physically
capture an animal. As described further in the sub-section 1.5, we performed acoustic sampling
with proximity detectors in this dissertation.

1.4 Estimating Cetacean Density from Passive Acoustic Data

There are two major ways to collect data for wildlife abundance estimation: visual
observations and trapping. The latter is usually achieved by physically capturing or by photo-
ID. The most common survey method is visually based distance sampling and alternatively,
mark-recapture by trapping. Both methods are explained in detail in the following section.
The problem arises when these methods present limitations in terms of cost, effort and danger
to the observers. Taking that into account, PAM offers an alternative survey mode capable
of producing high-quality data when other methods fail. Consider the following example: the
density estimation of cetaceans. This can be achieved through traditional visual survey methods.
Only a portion of the animals present is detected as a result of visual surveys dependence on
daylight hours and in relatively good weather. Also the survey observers can only see the animals
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during a very short period when they are at the surface. Visual surveys are performed using a
small number of observation platforms with one or a few vessels with a variable survey duration
– a few weeks to a few months of the year (Mellinger et al., 2007).

Visual survey results have an additional problem as they may vary dramatically due to
clumping of cetaceans into large groups and to their limited spatial and temporal scales. The
need for more reliable and effective methods led to the development of alternatives to estimate
abundance and/or density. Passive acoustics surpasses those restrictions as many species are
also visually cryptic and not amenable to trapping. Nevertheless, many species have detectable
and unique sounds that can be used to estimate abundance/density.

In recent years, passive acoustic methods have risen and became increasingly widespread
for not only cetacean observation, but also for several other sound producing animals, since:

a) sound propagation in water is more efficient than in air, as energy from light is absorbed more
than that from sound as it passes through water.

b) visual surveys can be very expensive, usually requiring large investments of ship time and
teams of trained observers;

c) many deep-diving cetaceans forage at depths where light does not penetrate well and have to
resort to echolocation for foraging, hence becoming detectable for PAM.

Passive acoustic density estimation relies on the sounds (also referred as cues) naturally
produced by animals that are detected by sensors and used as a tool to estimate animal abund-
ance. In passive acoustic observation, a certain instrument captures cues from the surrounding
environment. It is an alternative survey modality that overcomes constraints imposed by visual
surveys or physical trapping as the information can be gathered in environments challenging for
human observers to work (e.g. deep or polar oceans, presence of fog, recording at night time,
among others). Moreover, many species are visually cryptic, others are not amenable to trapping
due to lack of effective methods (particularly for recapture in traps) or welfare concerns.

A cue is any identifiable sound, such as calls, whistles, echolocation clicks or feeding
buzzes. Acoustic cues are used to identify and/or locate primates (Kalan et al., 2015), birds
(Bardeli et al., 2010), bats (Adams et al., 2012), amphibians (Acevedo & Villanueva-Rivera,
2006), fishes (Rountree et al., 2006), and cetaceans (Mellinger et al., 2007). Ultimately, being
amenable to automated data collection, passive acoustics is also capable of generating large
amounts of data ready to be analysed (Marques et al., 2013).

In passive acoustic monitoring, the object of interest, cue, is used as an indicator of a
presence of an animal. In case of ’no detection’, it is not equivalent to an animal being absent,
but it suggests that the animal did not necessarily produce a sound, or a sound was produced
but not detected. A ’no detection’ may occur if a human operator is not properly listening; if
there is a miscalibration of the sensors detecting the cues, if such instruments are used; among
others. Usually it is not possible to count the number of individuals directly. Instead, we count
the number of vocalisations, although not knowing how many individuals produced them. By
using cue rates (estimated number of cues by the duration of the survey) as an indicator, we
need to consider these ’multipliers’ in the construction of density estimators. These are factors
that convert an indirect estimate into an actual animal density estimate (Marques et al., 2013).
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In passive acoustic surveys, the n in equation 1.3 is the number of detected cues, producing
an estimate of density of sounds. The estimator can be divided by an estimate of cue rate to
produce an estimate of animal density. Another common multiplier is used to account for ’false
positives’ detections, i.e., sounds classified as coming from the species of interest, but in reality
are something else. Both multipliers (cue rate and false positives) are incorporated in the density
estimator as follows:

D̂ =
n(1− f̂)
p̂car̂T

, (1.6)

where n is the number of detected sounds during time period T , f is the proportion of detections
that are false positives, pc is the probability of detecting a cue in area a, and r is the cue rate
that converts density of sounds to animal density.

Obtaining density estimates from passive acoustic data requires: (i) identifying sounds
(those being the object of interest) that relate to animal density; (ii) collecting a sample of sounds,
n, generated by a well-designed survey protocol; (iii) estimating the rate of false positives, f ; (iv)
determining the probability of detection of a cue, pc; (v) obtaining an estimate of the multiplier
r that translates sound density into animal density (Marques et al., 2013).

In this thesis, the population density estimate will be achieved by first acquiring a
density estimate of sounds (D̂s – number of sounds divided by a study area) and then will be
divided by two multipliers: (i) cue rate (r̂) and (ii) time period over which monitoring took place
(T ):

D̂ =
D̂s

r̂T
. (1.7)

1.4.1 Applications and Considerations

Defining the object detected

Depending on the acoustic survey, it is possible to consider different objects of interest:

1. animals (i.e., unique individuals);

2. groups of animals or

3. individual sounds.

The target must be chosen according to what is best suited to the species of interest
and, naturally, the available resources to collect data. Ultimately we are interested in estimating
the density of the first. Note that to transform the second density estimate above (groups) into
the first, one needs to obtain a multiplier (mean group size) from acoustically detected groups
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of animals. Similar to the formula 1.7, we would have:

D̂ =
D̂g ŝ

T
, (1.8)

with D̂g being the density estimate of groups of animals, the multiplier ŝ representing a mean
group size estimate, and T the considered time period.

Species-specific Factors

Several species-specific factors can influence the performance of acoustic surveys. These
factors include:

a) Frequency of the sounds of interest. Bowhead whales frequency ranges from 50 to 500 Hz
(Abadi et al., 2014). Sounds below 1 kHz have significantly less seawater absorption loss than
sounds above 10 kHz (Francois & Garrison, 1982).

b) Vocal behaviour. Not only vocal behaviour varies with age, gender and season, but also some
cetaceans vocalise more frequently or more consistently than others, e.g., male baleen whale
species during the breeding season (Mellinger et al., 2007).

c) Sound source level. Larger cetaceans, such as mysticete whales, produce intense vocalisations
prone to be detected at longer distances. These can be detected at distances of several tens of
kilometers regardless of the arrangement of the hydrophones: on a single hydrophone (Barlow
& Taylor, 2005) and much farther – hundreds of kilometers – on hydrophone arrays (Širović
et al. (2007), Samaran et al. (2010)). It is important to note that the distance at which a sound
is detected is a function of the sound source intensity and also the frequency, because higher
frequency sounds suffer much greater transmission loss than low frequency sounds. For example,
blue whale calls can be detected hundreds of km away, because they are loud and have low
frequency. Sperm whale clicks are also loud, but they are high frequency, so can only be heard
at most tens of km away.

d) Sound directionality. Directionality in acoustic signals is best suited for animals using echo-
location, such as toothed whales. Bowheads (being a baleen whale) do not use echolocation,
but a study suggests the existence of directionality of two types of calls (upcalls and downcalls)
during the spring migration off Barrow, Alaska (Blackwell et al., 2012). This study indicates
calls were slightly stronger ahead of the animals.

1.4.2 Instrumentation Used in Passive Acoustics

There are three types of passive acoustic survey methods:

a) towed acoustic sensors – hydrophones may be attached to a mobile platform (e.g. a ship) to
sample a large area. These include a large areal coverage and are simpler to combine acoustic
detection with other types of detection, in particular visual;

b) fixed acoustic sensors – hydrophones are fixed to the bottom for long time periods. These are
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less expensive and allow longer periods of observation;

c) gliders and drifting sensors are an intermediate between the previous two sensors. Gliders
are free-floating autonomous devices that complete a designed line transect survey (Harris &
Gillespie, 2014). They can be equipped with a digital acoustic monitoring instrument to record
and process in situ frequency audio to characterize marine mammal occurrence (Baumgartner
et al., 2014). These underwater gliders do not require towing (a)) or mooring (b)) and may act
as fixed sensors if they move slowly compared with animal speed (Marques et al., 2013). Drifting
sensors are buoys equipped with acoustic sensing arrays. The drifting buoys measure ambient
noise and detect passive acoustic signals (Pecknold & Heard, 2015).

There are two types of equipment applied in fixed passive acoustic surveys (Mellinger
et al., 2007):

a) cabled hydrophones – normally deployed in permanent or semi-permanent installations,
providing a constant supply of data in near-real time (Bacon, 1982);

b) autonomous recorders – a hydrophone and a battery-powered data-recording system. These
are deployed semi-permanently underwater by mooring, via a buoy or attached to the seafloor.
The recorders can operate up to two years and are typically deployed in arrays of 3 to 10 recorders
to improve areal coverage and allow the localisation of sound sources. Autonomous recorders
must be later retrieved since they store acoustic data internally (Sousa-Lima et al., 2013).

1.5 The Data

1.5.1 Arrays of DASARs

The Shell Exploration and Production Company (SEPCO) commissioned Greeneridge
Sciences, Inc. to deploy arrays of fixed ’Directional Autonomous Seafloor Acoustic Recorders’
(DASARs, see figure 1.5) (Greene Jr et al., 2004) to assess the potential Exploration & Production
activities, including the impact of airgun sounds on bowhead whales during their westward
autumn migration. From 2007 until 2014, Greeneridge Sciences, Inc. deployed, collected, and
analysed an extensive acoustic dataset. More than 13 million bowhead calls were detected and
localised on up to 40 DASARs. The enormous set of high-quality detected calls analysed in this
dissertation was collected by the same autonomous recorders, but only a subset of the recorded
vocalisations were considered (years 2013 and 2014).

Arrays of DASARs were deployed at five sites along the Alaskan Beaufort Sea during
the late summer/autumn migration route of bowhead whales. The shore distance from the
easternmost site to the westernmost was about 280 km – this corresponded from northeast of
Kaktovik to northeast of Harrison Bay. Each site was composed of 3 to 13 DASARs (a normal
configuration considered 7 DASARs) placed at the vertices of the triangles with 7 km sides and
labeled A to G from south to north (up until M if site had 13 DASARs), respectively (figure 1.6).
The southernmost DASARs distanced 15-33 km north from the coast and at a water depth of
22-39 m, whereas the northernmost DASAR at each site was 21 km of the southernmost and at a
depth of 15-54 m. More information can be found in table 1.4. The installation was executed on
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Figure 1.5: Example of one Directional Autonomous Seafloor Acoustic Recorder
(DASAR).

Source: https://www.greeneridge.com/en/

the seafloor with no surface buoy attached and DASARs were retrieved by grappling. DASARs
recorded sound continuously at 1 kHz (1000 samples/s). This sampling rate allowed for 115 days
of continuous recording of sounds in the interval 10–450 Hz frequency band (Blackwell et al.,
2013). Each DASAR’s clock and orientation had to be calibrated to a certain source level and
frequency range, because the orientation of the DASARs on the seafloor was random relative to
true north, and each DASAR’s clock contained a small and constant time drift, although the drift
would become significant over several weeks of deployment. Each site had to be calibrated two
times per season: firstly following DASAR deployments and finally just preceding their retrieval
(Blackwell et al., 2013) (see figure 1.6 for calibration locations).

Table 1.4: Additional DASARs information.

Site, Year Time range of Number of DASARs Other
detections [total days] in operation information

1, 2013 Aug. 08 – Oct. 01 [55] 3 (D–F) Site 1 was reduced to three
of the original seven DASARs

2, 2013 Aug. 09 – Oct. 02 [55] 7 (A–G)
3, 2013 Aug. 07 – Oct. 01 [56] 7 (A–G) DASARs A,B and E

had some bad bearings
4, 2013 Aug. 06 – Sept. 29 [55] 13 (A–M) DASARs K and M

had some bad bearings
5, 2013 Aug. 06 – Sept. 28 [54] 7 (A–G) DASARs C,D and E

had some bad bearings
1, 2014 Aug. 11 – Sept. 27 [48] 3 (D–F) Site 1 was reduced to three

of the original seven DASARs
2, 2014 Aug. 11 – Sept. 28 [49] 7 (A–G)
3, 2014 Aug. 12 – Sept. 29 [49] 7 (A–G)
4, 2014 Aug. 14 – Oct. 02 [50] 13 (A–M) DASARs K and M

had some bad bearings
5, 2014 Aug. 16 – Oct. 01 [47] 7 (A–G) DASAR F had some bad bearings
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(a)

(b)

Figure 1.6: (a) Alaska State map. Red cross with a circle indicates approximate location
of DASARs deployment. (b) Distribution of DASARs’ deployment locations in 2007-2014

field seasons in northern Alaska coast. There are five main sites with seven-DASAR
arrays (red circles), labeled 1 to 5 from west to east. DASARs were labeled A to G from

south to north. In 2008, five extra recorders were deployed south of site 1: DASAR
locations 1H, 1I, 1J, 1K and 1L (red circles). Inset (5) shows calibration locations at site

5 (black dots) representing DASARs’ locations at single array.
Source: Greeneridge Sciences Inc.
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1.5.2 DCL – Detection, Classification, Localisation

Detection and Classification

After DASARs retrieval the data was transferred to computers. Vocalisations can be
detected either manually or automatically, and both approaches will present different me-
thodologies. When manual analysis was performed, the analysis and classification of the whale
calls was done manually by trained staff: specialists listened to recorded calls and looked at
spectrograms to find occurrences of the target species’ vocalisations. Spectrograms of the acoustic
data were examined, 1 minute at a time, for all calls or suspected calls. The spectrograms of
all seven DASARs belonging to one site were displayed simultaneously and analysed together
(Blackwell et al., 2013). For consistency checkup, a lead analyst performed regular checks among
analysts. An example of spectrogram of two main anthropogenic noise contributors (vessel traffic
and seismic surveys) recorded during the monitoring program can be found in figure 1.7.

Figure 1.7: Example of spectrogram corresponding to vessel traffic and seismic surveys.
Source: https://www.niwa.co.nz/coasts-and-oceans/research-projects/acoustic-

monitoring-whales-dolphins-new-zealand-cook-strait-region

The automated data was processed through a seven-stage algorithm (figure 1.8) de-
scribed in detail in Thode et al. (2012). The first four stages were applied independently to each
DASAR’s data, and consisted of:

1. Energy detection: applying an ’event detector’ to flag any potential signal ’events’ not
considered to be whale calls;

2. Interval detection: applying an ’interval filter’ to remove airgun pulses. If an event occurs
at regular intervals from a consistent direction, then it is considered to be an airgun pulse.
This allows the removal of low-intensity, short-duration, airgun pulses from distant airgun
surveys;

3. Feature extraction: creating and equalizing a spectrogram from candidate detections and
running an image processor that extracts 25 descriptive features;
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4. Neural network: exploiting two cascade multilayer feed-forward neural networks to separate
candidate detections based on their feature values. The first network separates ’biologic’
vs ’non-biologic’ signals, while the second network decides if a call is a ’bowhead’ call or
’other biologic’ sound.

Figure 1.8: Scheme of automated analysis with seven stages. The first four stages require
the process over a single DASAR, while the last three produces ’call sets’ in order to

estimate a call localisation, as well as other features.
Source: Thode et al. (2012)

Until this stage each DASAR was processed independently, but at the fifth stage (link-
ing/association) calls from all DASARs at a site were matched to produce ’call sets’ to assess
their final localisation. The sixth and seventh stages, bearing and location estimation, estimated
a bearing for every call in a given set and quantified the uncertainty of the measurement. Fi-
nally, the position of the whale was computed by triangulating the geographic bearings computed
previously from matched call sets.

Various methods can be used to detect and classify vocalisations, but the spectrogram
correlation is a common choice for studies recognising animal sounds consisting of tones and
frequency sweeps (Mellinger & Clark, 2000). Regardless of the method applied, it is important
to consider two issues. The first is determining the type(s) of vocalisations to be detected and
the amount of variability in those. Secondly, configuring the desired accuracy of detection. The
goal is to achieve a trade-off between missed calls (false negatives) and wrong detections (false
positives) by configuring the detector’s sensitivity or threshold.

Localisation

It is possible to assess the location of a vocalising individual if the used instruments
are spaced in a way that two or more can detect it and thus matching time-of-arrival differences.
If the hydrophones are deployed far away from one another, they become several single sensors,
and matching is not possible. DASARs used in this survey include an omnidirectional pressure
sensor and a pair of orthogonal directional sensors. Ultimately, the passive acoustic data collected
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can then be used to locate the sources of the recorded calls via two methods: hyperbolic fixing
and triangulation. The former involves measuring the time-of-arrival of a sound at the pair of
hydrophones with cross-correlation. The latter involves measuring bearings to sound sources
from two or more known locations, and then computing the intersections of the bearings. Only
the latter is applied in the seven-stage algorithm described in page 19 (Thode et al., 2012). This
thesis, however, will not use the localisations assessed by the sensors, but the inclusion of the
calls localisations should be considered in future SECR analysis.

1.5.3 Problems Associated with Automated and Manual Data

In the observed automated data, there are a lot of calls detected exclusively in one
sensor, i.e., singletons. It is assumed that a large proportion of these singletons are false positives.
In the automated data, the amount of singletons is far higher (figure 1.9 a), approximately ∼15
times, compared to the manual data. The manual data shares the same problem of having false
positives being labeled as true bowhead detections, although to a lesser extent. In addition,
the manual data has a second problem concerning the non-independence among sensors caused
by human intervention. The non-independence leads to an excess of calls being detected in all
DASARs on a site (figure 1.9 b), contrary to the detection pattern in the automated. However,
the automated dataset surpasses the problem of non-independence for density estimation and
allows big volumes of data. For manual data the proportion of calls detected in 1 to all DASARs is
not consistent with the independence of the detection process across DASARs. The independence
should result in a decreasing pattern in the number of detections as a function of the number of
DASARs in which the detections were made (as shown in figure 1.9 a). On the other hand, the
percentage showcased for singletons in 1.9 a) is not assumed to be representative of the decreasing
pattern, as the percentage difference from detections made in 1 DASAR to detections made in
2 DASARs is enormous (83.1% to 7.5%). This difference is explained by the large proportion
of false positives included in the singletons. The pattern we assume that portrays the reality is
best seen in figure 1.10. The visual intuition of this illustrative bar plot, where the singletons are
excluded, indicates an exponential decay fitting across the number of calls detected per increasing
number of DASARs. It is expected that the number of singletons will be higher than the number
of calls detected in 2 DASARs, but not as high as seen in figure 1.9 a). An ad hoc method is
tested in the following section 2.5 to assess the model fitting with linear model.
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(a) (b)

Figure 1.9: Percentage distribution of calls detected for the modelling dataset, ranging
from 1 to 7 DASARs of site 3, year 2013. (a) Proportion of the number of DASARs an
automated call was recorded on. (b) Proportion of the number of DASARs a manual call
was recorded on. The proportion of singletons for the automated data is 15.389 times

higher than the manual data.

Figure 1.10: Example of the number of calls distribution without the singletons, from 2 to
7 DASARs. The red question mark and green bar indicate a possible higher number of

singletons than the one in 2 DASARs according to an exponential decay fitting.
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1.6 Main Objectives

An automated dataset will be explored from passive acoustic monitoring composed
of five sites and two years (2013 and 2014). This thesis targets the estimation of population
density of the BCB bowhead whales with an array of hydrophones recording the detection of
bowhead sounds. These detectors operate independently of each other and, being proximity
detectors, leave the sound free to be detected by other sensors. The density of sounds (calls/100
km2) is estimated using a SECR method, and is subsequently converted to a population density
(whales/100 km2 h) using a sound production rate, as explained in equation 1.7.

1.6.1 Solving the Singletons Problem

Induced by the automated detection and classification system used, this data presents
an unusually large number of singletons, i.e., detections made in a single hydrophone. Given the
hydrophone spacing, and the bowhead call likely sound levels, these are assumed to be mostly
false positives, i.e., detections which do not really correspond to bowhead sounds. This leads to
severely based density estimates if ignored. This thesis overarching goal is to explore the impact
of singletons in SECR density estimates, and to investigate different analysis options that might
mitigate their impact on SECR density estimates. Specifically, we propose to:

1. Perform a SECR analysis of every call, including singletons and calls detected more than
once, leading to the inclusion of false positives. This should lead to an overestimation of
density, as it ignores the underlying problem concerning the singletons;

2. Perform a SECR analysis without singletons, leading to underestimated results, as it re-
moves true bowhead detections;

3. Perform a SECR analysis where a proportion of false positives, 1 − p, is discarded from
the singletons. The expected proportion p of true singletons is obtained by fitting an
exponential regression using a linear model to the calls detected in 2, 3, ..., to all DASARs,
and predicting the expected number of singletons (only calls detected in a single DASAR).
Simply put, the singletons are subsetted with a proportion p. This approach still holds a
risk of producing underestimated or overestimated densities;

4. Develop a new likelihood function that accommodates truncation of singletons;

5. Perform a SECR analysis to simulated capture histories. Compare simulated estimates
to ’true’ estimate to validate which approach (between 1 and 3) is best. Also compare
estimates from the observed automated data with estimates from the simulated capture
histories, therefore checking for consistency in the estimates produced by our data.

The proposed approaches from 1 to 4 correspond to increasing levels of analysis complexity,
but also a priori with an increase in the ability to deal with the singletons problem. The last
proposed approach involves the simulation of capture histories, which is an important step for
the estimates validation method based on the comparison between simulated estimates vs ’true’
estimate.
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In the next section, the statistical background will address the standard SECR method,
the SECR applied to passive acoustics, fitting linear models to the data to execute the 3rd

proposed approach, and it will also present the cue rates to convert call densities into population
density estimates. The methods will introduce a new SECR likelihood function with truncation
of singletons (4th approach), and the data organisation, analysis and estimation of the 1st, 2nd,
3rd and 5th approaches will be thoroughly explained. The estimation of call densities is performed
with a standard SECR analysis. Afterwards, the project’s results are presented, followed by a
discussion and possible ways forward.
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Chapter 2

Statistical Background
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2.1 Standard SECR Model – Key Notation

A standard SECR likelihood, described in Borchers and Efford (2008), consists of a
closed population density being estimated by placing K traps in a region where animals have
their home ranges with fixed centres. An animal is then caught in a trap, and remains there until
released. Traps are checked in previously chosen time intervals, and trapped animals are marked
and released. This is repeated as many times as needed, and after consecutive sampling their
complete capture history is known. The period preceding each trap check is named a trapping
occasion. It is assumed, initially, that animals are equally at risk of being caught on every
trapping occasion.

From a standard survey design, there will be n animals caught in K traps for S trapping
occasions. In figure 2.1, there is a single animal i detected in trap k. The kth trap is located
at Cartesian coordinates xk and traps locations are represented by x = (x1, ...,xK). X is the
location associated to each animal, and this might be called, for simplicity, as its home range
centre.

Figure 2.1: Schematic representation of a trap location (black cross), home-range centre
location (black whale icon) and distance from trap to centre: dk(Xi) is the distance from

the ith animal’s home range centre at Xi to the kth trap at xk.

The capture locations history for the ith animal is ωωωi = (wi1, ..., wis). If wis = k, then
animal i was captured in trap k on occasion s (s = 1, ..., S), and wis = 0 otherwise. Hence,
wi. = 1 if animal i was caught on any of the S trapping occasions and wi. = 0 otherwise. The
probability, pks(X;θθθ), represents the probability of detecting an animal with home range centre
at X captured in trap k on occasion s, where θθθ is the detection probability parameter vector.
As a result, p.s(X;θθθ) is the probability that an animal is caught in any one of the K traps on
occasion s and p.(X;θθθ) is the probability that is caught at all over the S trapping occasions (see
table E.1 in the appendices for a summary of parameters):

p.(Xi;θθθ) = P (wi. = 1|Xi;θθθ). (2.1)
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2.1.1 State and Observation Models

A standard SECR model comprises two submodels: (i) a state model and (ii) an obser-
vation model. The state model describes how animal home range centres are distributed in space
and the observation model (or spatial detection model) describes how animals are observed in
space, conditional on the location of their home range centres. The distances from a particular
detector to each home range centre are not observed directly, as the range centres are not known,
so DS methods do not apply to this particular data.

The state model (or distribution model) assumes that for the duration of trapping the
location of each individual in the population may be summarised by Cartesian x-y coordinates
of a point known as home range centre of an animal. The distribution of range centres in the
population is usually treated as a homogeneous Poisson point process, where density is the only
parameter of interest and is equivalent to the intensity of spatial point process for the home
range centres.

The observation model (or capture model) must take into account the properties of each
type of detector mentioned in the previous section. The probability that a particular animal i
with home range centre Xi is caught in a trap k, located at xk = (x1k, x2k), is assumed to be a
function of the Euclidean distance dk(Xi) between animal and trap (Efford et al., 2009).

2.2 SECR Likelihood Formulation

Likelihood with Homogeneous Poisson Density

The likelihood can be simplified when home range centres occur according to a ho-
mogeneous Poisson process with rate parameter D. Hence, the likelihood can be written as
follows:

L(θθθ,D|n, ω1, ..., ωn) = P (n)×
(

n

n1, ..., nC

) n∏
i=1

∫
R2 P (ωi|X;θθθ)dX

a(θθθ)

=
(Da(θθθ))n exp(−Da(θθθ))

n!
×
(

n

n1, ..., nC

) n∏
i=1

∫
R2 P (ωi|X;θθθ)dX

a(θθθ)
(2.2)

where the first term P (n) is the probability of observing exactly n capture histories (each animal
i with an associated capture history ωi) that follows a Poisson distribution, θθθ is the vector of
detection function parameters (described below), and D is the density parameter. As described
in Efford et al. (2009), we can define an area a as the effective detection area. This assumes the
area presents a uniform distribution of animals:

a(θθθ) =

∫
R2

p.(X;θθθ)dX. (2.3)

The probability P (ωi|X;θθθ) is the probability of the capture history for an animal i with
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home range centre atX and vector of detection function parameters θθθ. Therefore, the probability
of an animal being captured at least once over S occasions depends on the distances dk(X) to
each of the K traps:

p.(X;θθθ) = 1−
S∏
s=1

K∏
k=1

(1− ps(dk(X;θθθ))). (2.4)

The likelihood with inhomogeneous poisson density is described in the appendices in
the section B.

Capture Probability Models – Detection Functions

The vector θθθ contains parameters that control the overall efficiency of detection and
also its spatial scale. It is believed the efficiency will increase with home range size. There are
several suitable detection functions pc – some examples are shown in table 2.1. These detection
functions use the independent parameters g0 for overall efficiency of detection and σ for spatial
scale. The term P (ωi|X;θθθ) is defined by:

P (ωi|X;θθθ) =
S∏
s=1

K∏
k=1

pδiksks (1− p.s)1−δi.s (2.5)

where pks = ps(dk(X);θθθ) is the probability of detection at k trap on occasion s, δiks = 1 if animal
i was caught in trap k on occasion s and δi.s = 1, if

∑K
k=1 δiks > 0, and δi.s = 0 otherwise.

Table 2.1: Example of three candidate detection functions, pc, for SECR models. The
parameter g0 is common to all functions and represents the intercept, i.e., the probability
of detection at a single trap placed in the centre of the home range. d is the distance
between an animal home range centre and a trap. σ is the spatial scale parameter and

their values are not comparable between functions.

Detection function pc Parameters θθθ

Half-normal ps = g0exp(
−d2
2σ2 ) g0, σ

Hazard rate ps = g0[1− exp{−( dσ )
−b}] g0, σ, b

Negative exponential ps = g0exp(
−d
σ ) g0, σ

2.3 SECR applied to Passive Acoustics

In passive acoustics, the notion of home range disappears, and the notion of animal
movement is replaced by sound transmission. Similar to the key notation described previously
with a standard SECR, but now with proximity detectors, we have n calls recorded in K sensors.
The kth sensor is located at Cartesian coordinates xk and sensors locations are represented by
x = (x1, ...,xk). X is the location associated to each vocalisation. The sensors record the
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presence of a vocalisation at or near each sensor (see figure 2.2), leaving the same vocalisation
free to be detected in other sensors.

Figure 2.2: Schematic representation of a spatial trapping grid represented by ’X’
detectors relative to the location of a whale vocalisation pictured by whale icons.

The probability that a particular vocalisation i with location Xi is recorded in sensor k,
located at xk = (x1k, x2k), is assumed to be a function of the Euclidean distance dk(Xi) (Efford
et al., 2009) (see example of figure 2.3). Conditional on the whale location, the detection of
sounds in each sensor is assumed independent. Each recorded vocalisation is attributed its own
capture history from an array of K sensors.

Figure 2.3: Example of a detection function (half-normal distribution). The vertical line
indicates σ of the example model (∼8.7 km), meaning the probability of a call produced
at that distance from a sensor is about 0.6 (horizontal line) and a near zero chance of

detection beyond ∼30 km.

2.4 Idea behind the Likelihood with Truncation of Singletons

Conn et al. (2011) developed an approach that recognises fundamental differences
between individuals of the same population. The ’multi-sample availability’ approach claims
that in the presence of an open system, a superpopulation is consisted of residents and tran-
sients. In a superpopulation, residents are those that used the study area almost exclusively
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during the study, and transients are those that passed through the study area but did not re-
main long. But what defines not remaining long enough? According to the article, it is assumed
that transients are present in the study area for only one sampling period. The difficulty comes
when ensuring the transients are only available to be detected once. This assumption is difficult
to verify, as in some cases transients will likely remain longer in the study area. An estimator
exclusively for resident abundance that conditions on individuals observed at least k times is
presented below.

A SECR dataset has two types of calls: (i) singletons (calls detected in a single sensor)
and (ii) calls detected in more than one sensor. However, singletons contain false positives and
detections coming from the animals of interest. Having both detections labeled as singletons
imposes a restriction not covered in the SECR likelihood functions described previously in the
sub-section 2.2. According to our study, we considered the transients as singletons, and residents
as calls detected in more than one sensor (non-singletons). Hence, the probability of the capture
history should take into consideration a study design where the singletons are truncated. So by
conditioning out calls recorded k − 1 times (if we want to censor singletons, k = 2), it becomes
less restrictive. Nonetheless, inference is exclusive to resident density, i.e., to the density of calls
recorded in more than one sensor. Considering only a capture-recapture approach, the likelihood
function for a population censoring singletons is as follows:

L ∝
Mk∏
i=1

T∏
t=1

(HitPit + (1−Hit)(1− Pit))
P (call i detected at least k=2 times)

, (2.6)

where Mk is the total number of distinct calls encountered at least k times in the CR study; T
is the number of sampling periods; Hit is the indicator variable which takes on a value of 1 if
call i is encountered in sampling period t and 0 otherwise; Pit is the probability that call i is
detected at time t given that it is available to be detected; and P(call i detected at least k = 2

times) = 1−P0−P1. P0 is the probability of recording a call in 0 sensors (in other words, is not
recorded at all), and P1 is the probability of recording a call in only one sensor. P0 is as follows:

T∏
t=1

(1− Pit) (2.7)

and P1 (probablity of being detected 1 time):

Pi1

T∏
t=2

(1− Pit) + (1− Pi1)Pi2
T∏
t=3

(1− Pit) + ...+

T−1∏
t=1

(1− Pit)PiT . (2.8)

2.5 Fitting Linear Models

Fitting a linear model is a solution to fix the problem of having an excessive number
of singletons in our data. By fitting an exponential function to the data, we can reduce the
amount of singletons according to a proportion. The exponential decay is fitted to the number
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of calls recorded in 2, 3, ..., to all DASARs against the number of existing DASARs. A number
of calls recorded in just a single DASAR is then predicted from the fitted model. Afterwards,
this predicted number of singletons is divided by the original number of singletons in our data.
This results in a proportion p of singletons estimated to come from the animal of interest. This
proportion will later be used to discard false positives with a proportion of 1 − p from the
singletons.

A linear model (Rencher & Schaalje, 2008) describes a continuous or categorical depend-
ent variable as a function of one (simple linear model) or more (multiple linear model) discrete
or continuous independent variables. Linear models embody both systematic (β0+β1x1+β2x2+
...+ βkxk) and random (error) components (ε), such as the following model of the form:

y = β0 + β1x1 + β2x2 + ...+ βkxk + ε. (2.9)

In the multiple linear model shown in equation 2.9, y is the dependent or response
variable and x1, x2, ..., xk are the independent or predictor variables. The constant β0 represents
the intercept; βj , j = 1, 2, ..., k, is the regression coefficient and corresponds to the rate of change
in y for one unit change in the respective jth regressor, assuming the remaining k− 1 regression
coefficients are fixed. The random variable ε is the error term, representing random fluctuations,
measurement error, or the effect of factors outside of our control.

As stated on the previous section, there is a high proportion of singletons that we
assume most are false positives. In order to predict how many singletons should actually be
accounted, one can fit an exponential decay to the number of calls recorded in more than one
DASAR, which translates to a simple linear regression model. According to our data, a simple
linear regression model can be written as:

yi = β0 + β1xi + εi, (2.10)

with x being the number of DASARs, y the number of calls detected, and i = 1, 2, ..., n, n being
the total number of DASARs in operation. Site 4 has n = 13 DASARs, and sites 2, 3 and 5
have n = 7. The term ’linear’ indicates the model 2.10 is linear in terms of the expected value
of yi (which is addressed in the assumptions below). It is assumed that yi and εi are random
variables and the values of xi are known constants. The residuals are assumed to follow a normal
distribution.

The model has the following assumptions:

1. E(εi) = 0 for all i = 1, 2, ..., n, or, equivalently, E(yi) = β0 + β1xi;

2. var(εi) = σ2 for all i = 1, 2, ..., n, or, equivalently, var(yi) = E[yi −E(yi)]
2 = E(yi − β0 −

β1xi)
2 = E(ε2i ) = σ2;

3. cov(εi, εj) = 0 for all i 6= j, or, equivalently, cov(yi, ji) = 0.

Under these assumptions, the first implies that yi depends only on xi and that all other
variation in yi is random; assumption 2 that the variance of ε (or y) does not depend on the
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values of xi (number of DASARs), i.e., there is homoscedasticity or, in other words, it has a
constant variance (σ2) at every value of xi. Under assumption 3, the y variables are uncorrelated
with each other, i.e., there is no auto-correlation between the number of calls recorded.

2.6 Cue Rates to Achieve Population Density Estimates

A call estimate needs to be divided by a cue rate in order to obtain a density estimate,
as explained in sub-section 1.4.1. This matter is significantly harder as there are no known
bowhead cue rates, neither in the BCB, our geographic interest. The used cue rates are the
output of Susanna Blackwell’s work (unpublished). The cue rates are presented in table 2.2 and
are used later to convert density of cues to density of animals. Because the survey did not cover
the entire migration season, a solution is to assume three different scenarios: that 25%, 35%,
and 45% of the BCB population was missed.

Table 2.2: Cue rates (calls/h) for sites 2, 3, 4 and 5 of year 2013 and 2014 considering a
speed of 4–5 km/h.

Sites
Year Missing percentage of migrating whales 2 3 4 5

25% 4.9 2.5 6.2 2.1
2013 35% 6.0 3.1 7.6 2.5

45% 7.7 4.0 9.8 3.2
25% 2.1 1.8 2.7 2.9

2014 35% 2.5 2.2 3.4 3.5
45% 3.2 2.8 4.3 4.5

32



Chapter 3

Methods
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3.1 SECR Likelihood with Truncation of Singletons – Homogen-
eous Poisson process

The development hereby described is largely based on Efford et al. (2009) already
presented in section 2.2. By incorporating a spatial context, it is assumed calls are distributed in
2-D space according to a homogeneous Poisson process where they are potentially detected on K
sensors. Detection probability is a function of distance between call and sensor, and is denoted
p(dk(X;θθθ)) (equivalently p(dk(X)|θθθ)) where dk(X) is the distance between the kth sensor and
the call located at position X, and θθθ is a vector of parameters.

In this thesis, we will only retain calls that are recorded in more than one sensor (i.e.,
k = 2, analogous to the notation from Conn et al. (2011)). Contrary to the conventional SECR
likelihood of Efford et al. (2009) that had S multiple trapping occasions, in this particular study
a single occasion (S = 1) is considered. Let K be the number of DASARs recording on S = 1

single occasion, n∗ be the number of calls recorded in more than one sensor, so that ω∗ is defined
as the capture history matrix, which has one row for each i call that is recorded in more than
one sensor and one column for each sensor; each cell is a ’1’ if the sensor recorded the call, and
a ’0’ otherwise. ω∗ has n∗ rows and K columns. Let ωi =

∑K
k=1 ω

∗
ik, i.e., the number of sensors

in which a call is detected.

The likelihood is given by:

L(θθθ,D|n∗, ω∗) = P (n∗|θθθ)P (ω∗|n∗, θθθ)
≡ L(θθθ,D|n∗, ω∗

1 > 1, ..., ω∗
n∗ > 1) ≡ P (n∗|θθθ)P (ω∗

1, ..., ω
∗
n∗ |ω1 > 1, ..., ωn∗ > 1, θθθ). (3.1)

The first term in (3.1) is defined as:

(Da∗(θθθ))n
∗
exp(−Da∗(θθθ))
n∗!

, (3.2)

where the effective sampling area, a∗(θθθ), is large enough that no detections can occur outside of
it, and is as follows:

a∗(θθθ) =

∫
R2

p∗(X;θθθ)dX, (3.3)

with

p∗(X;θθθ) = 1− P0 − P1 = 1− P (ωi = 0|X;θθθ)− P (ωi = 1|X;θθθ), (3.4)

where p∗(X;θθθ) is the probability of recording a call in at least 2 sensors, i.e., recording a non-

34



singleton. P0 is described as:

P0 =

K∏
k=1

(1− p(dk(X;θθθ))) . (3.5)

The probability of recording a call in one sensor corresponds to the sum of the probabil-
ities of it being recorded in the first sensor, but not in the remaining sensors, plus the probability
of it being recorded in the second sensor, but not in the others, and so on until all K sensors are
taken into account:

P1 = p(d1(X;θθθ))
K∏
k=2

(1− p(dk(X;θθθ))) + (1− p(d1(X;θθθ)))p(d2(X;θθθ))
K∏
k=3

(1− p(dk(X;θθθ)))

+(1− p(d1(X;θθθ)))(1− p(d2(X;θθθ)))p(d3(X;θθθ))

K∏
k=4

(1− p(dk(X;θθθ)))

+...+
K−1∏
k=1

(1− p(dk(X;θθθ)))p(dK(X;θθθ)). (3.6)

The previous development of the probability can be summarised as:

P1 = P (ω = 1|X;θθθ) =

K∑
k=1

[
p(dk(X;θθθ))

K∏
m=1

{I(m 6= k) (1− p(dm(X;θθθ)))}

]
(3.7)

where I(m 6= k) is an indicator function that has value ’1’ if m 6= k, and ’0’ otherwise.

The second term in (3.1) is defined as:

(
n∗

n1, ..., nC∗

) n∗∏
i=1

∫
R2 P (ω

∗
i |ω∗

i > 1;X;θθθ)dX
a∗(θθθ)

, (3.8)

the observed capture histories ωi for calls i = 1, ..., n∗ ; n1, ..., nC∗ are the frequencies in which
each of the unique recorded calls in at least 2 sensors were detected. Thus, P (ω∗

i |ω∗
i > 1;X;θθθ)

is the probability of occurring a capture history ω∗
i conditional on recording a call i in at least

2 sensors, regarding a location in the habitat mask, X, and also θθθ, a vector of parameters of
interest.

(
n∗

n1,...,nC∗

)
is the associated multinomial coefficient; C∗ represents the number of unique

capture histories and accounts for the frequencies of each 1, ..., C∗ capture histories. As an
example, consider a survey with 3 sensors (A, B and C). For each recorded call there are seven
possible capture histories:
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Table 3.1: Example of a survey with 3 sensors (A, B and C), resulting in seven possible
types of capture history.

ID of capture history (Type of capture history) A B C
1 (Singleton) 1 0 0
2 (Singleton) 0 1 0
3 (Singleton) 0 0 1
4 (Non-singleton) 1 1 0
5 (Non-singleton) 0 1 1
6 (Non-singleton) 1 0 1
7 (Non-singleton) 1 1 1

In this particular case, C∗ = 4 (includes the capture history ID number 4, 5, 6 and 7),
where n1, n2, n3, and nC∗ are the number of recorded calls in more than one sensor with the
fourth, fifth, sixth, and seventh type of capture history, respectively. From the equation 3.8, it
is also defined:

P (ω∗
i |ω∗

i > 1;X;θθθ) =

∏K
k=1 p(dk(X;θθθ))ωik(1− p(dk(X;θθθ)))(1−ωik)

p∗(X;θθθ)
, (3.9)

where ωik is ’1’ if call i was detected in k sensor, and ’0’ otherwise. Since hydrophones operate
independently, we can calculate those probabilities as shown in the numerator. Note once again
that we only have one occasion in the product terms of the equations listed above (3.5,3.7 and
3.9), because we are not segmenting our sampling periods and the PAM survey is continuous from
the day of deployment until the sensors retrieval. Here we truncated singletons, but this could
be made more general. The equations 3.4, 3.5 and 3.7 would change if we truncated differently
– e.g., keeping only recorded calls on more than 2 sensors, 3 sensors, and so forth. Disregarding
calls recorded in increasing number of sensors will reduce the precision on parameter estimates,
because true detections are eliminated from the data.

The likelihood 3.1, although expressed in terms of integrals over a plane, is in practice
approximated by summing over a habitat mask. Each grid cell contained in the habitat mask
has a known area A. The mask has a buffer of 100 km created with the R package secr, and
is constrained at south corresponding to the Alaskan coastline (see figures F.5 and F.6 in the
appendices). The habitat mask corresponds to a grid that extends ‘buffer’ metres north, south,
east and west of the detectors (Efford, 2017). For simplicity, it is assumed D as homogeneous,
meaning each cell has the same weight in the calculation of the likelihood.

The density D and vector of parameters θθθ can be estimated by numerically maximising
the full likelihood 3.1 with respect to the parameters. Because D is assumed homogeneous, an
alternative described in Borchers and Efford (2008) is to maximize the conditional likelihood:
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L(θθθ|n∗, ω∗) ∝ a∗(θθθ)−1
n∗∏
i=1

∫
R2

P (ω∗
i |ω∗

i > 1;X;θθθ)dX (3.10)

to obtain estimates θθθ, and therefore â = a(θ̂θθ). D is then estimated using the Horvitz-Thompson-
like estimator D̂ = n

â (Horvitz & Thompson, 1952).

The likelihood with truncation of singletons with an inhomogeneous Poisson process is
described in the appendices section C. A log-likelihood function with truncation of singletons
was also developed in section D.1 in the appendices.

3.2 Density Estimation with Different Approaches

The estimation of call densities is performed with a standard SECR analysis, assuming
the detection function has a half-normal distribution. Call density, D̂s, from the observed auto-
mated data will be estimated according to three different approaches (terms in bold along this
section are approaches):

1. ’All calls included’ approach, i.e., ignores the singletons problem and evaluates all calls;

2. ’No singletons’ approach, removes all singletons from the data;

3. ’Proportion of singletons’ approach, where a proportion of false positives, 1 − p, is
discarded from the singletons.

These three approaches correspond to the 1st, 2nd and 3rd points listed in the ’Main Objectives’
sub-section 1.6. The automated data was resampled 50 times for each approach.

The dilemma with the first approach is that it completely ignores the singletons problem,
as false positives are included in the analysed data. Looking at figure 1.9 a), singletons represent
the majority of the recorded calls (83.1%). Based on the assumption that the majority of
singletons are false positives, the existence of such high percentage of singletons will certainly
give us inaccurate and overestimated call densities, and consequently produce overestimated
population densities.

The second approach removes most false positives, but at the cost of also removing
good detections – the singletons that really correspond to bowhead sounds. By doing so, we
expect an underestimation of density.

The third approach is a heuristic way of uncovering how many true singletons exist.
After fitting an exponential decay to the number of calls recorded in 2, 3, ..., to all DASARs
against the number of existing DASARs, we can extrapolate the number of calls recorded in just
a single DASAR. Thereafter, it is calculated the proportion of expected singletons by dividing
its predicted value (revealed in the linear model) by the existing number of singletons. This
proportion will be used to randomly discard 1 − p false positives from the singletons without
replacement.
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The first, second and third approaches will be tested and analysed with the function
secr.fit from the R package secr according to the likelihood function in 2.2. The resulting
estimates will be in units of number of calls/100 km2. Sites 2, 3, 4 and 5 were assessed, except
site 1 that only had three DASARs. Site 1 was not subjected to the same analysis, as it was not
possible to fit an exponential decay model to predict singletons, because we would only have two
data points per year, as explained in the following section 4. Between these three approaches,
the ad hoc analysis of the third approach is assumed to be the most reliable.

The fourth approach in the ’Main Objectives’ sub-section 1.6 was not implemented
with the automated data, and therefore no population densities with truncation of singletons
are presented. In case of successful implementation, the resulting population densities would be
the most accurate considering the perils of all approaches previously described. However, the
population densities from truncation of singletons would only reflect the non-singletons density. A
draft R script was compiled and requires some improvement (see sub-section G in the appendices).

The goal of the fifth and last point in the listed objectives is to compare simulated
density estimates according to different approaches, and assess the percentage bias from the
’true’ estimate. The approach that resulted in an estimate with a lower percentage bias serves as
a means to validate which approach is best. Validation means that a model is acceptable for its
intended use (Rykiel Jr, 1996). Validation under this thesis ecological problem is deciding if the
SECR model according to a certain approach is acceptable to produce reliable call densities that
are later used to convert to population densities, i.e., whether the model mimics the ’real world’
well enough and produces density estimates closer to ’reality’, although ’reality’ is unknown.
Fifty simulation runs were completed for each one of the three approaches, as well for the ’true’
scenario. The ’true’ density estimate is set to D = 100 animals/100 km 2, and the parameter
values are set to g0 = 1, σ = 8766.5 m (mean value of the median values in table 4.3 and 4.4
for all sites and years), and 100 km of buffer. Besides the simulations for validation purposes, a
hundred simulated capture histories were also generated for consistency checks between estimated
densities from the automated data and from simulated data. The simulated capture histories
are generated with the sim.capt function from the R package secr, with the intercept, g0 set as
1. The σ for each site is set to be equivalent to the estimated σ̂ from the automated data with
the ’proportion of singletons’ approach.

For comparison purposes, there are two types of simulated data:

(a) data with a large number of singletons and

(b) data without forcing a large number of singletons.

The a) simulated data aims to mimic the detection process across DASARs from our
data that is responsible for the large number of singletons. The b) simulated data aims to produce
’free-of-predefined-constraints’ capture histories, i.e., without forcing an excessive number of
singletons. Besides the two previous approaches (’no singletons’ and ’proportion of singletons’),
a new approach is applied to the simulated data: ’no transformation’. Type a) will be
subjected to the first two approaches, and only type b) to the ’no transformation’. This latter
approach indicates no subset or transformation performed to the simulated data.
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The ’no transformation’ performed to the simulated data can be seen as equivalent to
the ’all calls included’ approach applied to the automated data, since no data manipulation is
executed. However, the approaches are named differently to mark a clear distinction between
the type of data they are applied to. Specifically, the ’no transformation’ is only applied to data
free of limitations (i.e., without forcing the singletons problem), and the ’all calls included’ is
applied to data with an excessive number of singletons.

The process of consistency check relies on the comparison of the mean population den-
sity values from the automated vs simulated data. If the automated data estimates fall between
the upper and lower bound of the simulated confidence interval, then the density estimates are
consistent. The a) type of simulated data is subsetted according to the ’no singletons’ approach
and a 95% confidence interval is constructed. It is verified if the mean from the automated
data with the same approach is contained within the CI. The same procedure is executed to the
’proportion of singletons’ approach. Furthermore, a general comparison can be made regarding
the absolute differences between densities of the automated and simulated data for all approaches.
This general comparison is helpful to provide us some insights into the data. The only consistency
check points can be made as seen in table 3.2.

Table 3.2: Types of data and approaches that are directly compared for consistency
purposes are marked as ’Check for consistency’. Blank spaces are for general comparisons.

Automated data
Simulated data Approach All calls No singletons Proportion of singletons

Type a) simulated data
No singletons Check for consistency

Proportion of singletons Check for consistency
Type b) simulated data No transformation

The call densities are, afterwards, converted to population densities, D̂, with the help
of cue rates of the BCB population of bowhead whales.

3.3 Some Considerations on Data Organisation and Analysis

The raw automated data from site 2, 3, 4 and 5 for each year (2013 and 2014) were
organised in a TSV (tab-separated format) file format. Site 1, with only three DASARs, was not
subjected to the same analysis, as explained in the previous sub-section.

The TSV files were rearranged in matrix tables in a configuration explained in section
A in the appendices. The aim is to organise the raw data into a matrix with each recorded call
per row and three columns associated to it: DASAR ID, x coordinate, and y coordinate. Only
calls recorded in more than one DASAR had the x-y coordinates information. It is not relevant
that the singletons do not have x-y coordinates information, as for the SECR analysis the only
necessary information are the DASAR IDs to construct the capture history for each call. This
matrix is an object named data. The matrix was created and then dissected through a developed
function func_resample (see section D in the appendices) to provide us insightful information
about the calls recorded in each site/year. The input for this function is described in the same
section D. The output is as follows:
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1. Integer object count with the number of calls detected in 1, 2, 3, ..., to all DASARs from
the original automated data (prior to resampling);

2. List with n data objects (n equals the number of resamples the user requested) for the ’all
calls included’ approach;

3. List with n data objects for the ’no singletons’ approach;

4. List with n data objects for the ’proportion of singletons’ approach;

5. Data frame with the mean values, lower CI, and upper CI with the number of calls detected
in 1, 2, 3, ..., to all DASARs for each approach;

6. Data frame with the mean values, lower CI, and upper CI with the number of calls detected
in A, B, C, ..., to all DASARs for each approach;

7. Vector with the total number of recorded calls a resample had. Each vector corresponds
to an approach;

8. Numeric object p, as the proportion of true singletons from the linear model;

9. Saves four ’.png’ graphs in a chosen working directory: linear model to predict the number
of singletons; percentage distribution of number of calls detected per number of DASARs
without applying any approach; percentage distribution of number of calls detected per
number of DASARs with the ’proportion of singletons’ approach; and frequency of calls
detected per day from one resample.

10. Prints the measured execution time of the function, as well as the execution date.

The resampling was performed 50 times for each approach (totaling 150 data objects). Each data
matrix is subjected to a standard SECR analysis to estimate the call density with a half-normal
distribution detection function. Additionally, as explained in the input for this function, only
0.5% of the automated data was analysed for each site/year, since the raw data totaled more
than 13 million recorded calls for all sites/years. However, the population densities presented in
the results section are converted to reflect 100% of the total calls detected.
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Chapter 4

Results
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The automated data contained 13,272,624 calls for sites 1 to 5 and for years 2013
and 2014 (table 4.1). Site 1 only had three DASARs; sites 2, 3 and 5 had seven DASARs;
and site 4 was composed of thirteen DASARs. In site 4, two of the sensors had bad bearings,
and for that reason a call could only be detected in a maximum of 11 DASARs. The spatial
distribution of 0.5% of all calls over the Alaskan coast is portrayed in figure 4.1. Only non-
singletons are displayed in figure 4.1, as it is required at least two DASARs detecting the same
call for localisations to be assessed.

The 95% confidence intervals and mean number of calls detected are presented in tables
E.2, E.3, and E.4 in the appendices with three approaches: ’all calls included’, ’no singletons’,
and ’proportion of singletons’, respectively. The values exhibited in these tables result from 50
resamples of the automated data where only 0.5% of calls were evaluated.

The following sub-sections will guide the reader through the proposed solution to eval-
uate how many calls should be considered as true singletons (fitting linear models); the call
density estimates and population density estimates resulted from the automated data will be
calculated according to three approaches (’all calls included’, ’no singletons’, and ’proportion of
singletons’); and, ultimately, simulated estimates will be compared to validate which approach
is best.
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(a)

(b)

Figure 4.1: Spatial distribution of calls recorded in more than one DASAR for each site.
Estimated call locations are represented by blue dots (in x-y coordinates), DASARs are
represented by red letters (A-G or A-M), and the brown line illustrates the Alaskan coast.
(a) Sites 2, 3, 4, 5, year 2013 (left to right). (b) Sites 2, 3, 4, 5, year 2014 (left to right).

4.1 Fitting Linear Models: How Many True Singletons Are
There?

The proportion of false positives is higher than one would expect with all sites for both
years showing >80% of singletons (see figures 4.2 and 4.3). A reasonable amount of singletons
would be less than 50% of the total data, presenting a smooth drop from the number of detected
singletons to calls detected in 2 DASARs, much like seen in figure 1.10, with the green bar
displayed in the figure being the expected number of singletons. A proposed solution is to
analyse the overall trend from this dataset by reducing the amount of singletons according to
a proportion. This proportion is generated from a regression analysis fitting an exponential
function to our data.
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(a) (b) (c)

(d) (e)

Figure 4.2: Distribution of the number of calls that were detected at exactly k DASARs
(k = 1,..., 11) in each site. (a) Site 1, year 2013. (b) Site 2, year 2013. (c) Site 3, year

2013. (d) Site 4, year 2013. (e) Site 5, year 2013.
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(a) (b) (c)

(d) (e)

Figure 4.3: Percentage distribution of calls recorded at exactly k DASARs (k = 1,...,11).
in each site. (a) Site 1, year 2014. (b) Site 2, year 2014. (c) Site 3, year 2014. (d) Site 4,

year 2014. (e) Site 5, year 2014.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Linear regression model of an exponential relationship between explanatory
variable, number of DASARs (x-axis) and the response variable, number of calls in the
logarithmic scale (y-axis). Each black dot corresponds to an observation and the red line
matches the regression line, where the grey band area is the 95% confidence level interval
for the predicted values. (a) Site 2, year 2013. (b) Site 3, year 2013. (c) Site 4, year 2013.
(d) Site 5, year 2013. (e) Site 2, year 2014. (f) Site 3, year 2014. (g) Site 4, year 2014. (h)

Site 5, year 2014.
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The hypotheses to consider regarding the linear model are:

H0: β1 = 0 vs H1: β1 6= 0

The null hypothesis, H0, is rejected for the usually considered significance values (.1,
.05 and .01) for sites 3, 4 and 5 of year 2013 and 2014, i.e., there is a significant relationship
between the number of DASARs and the number of calls recorded, assuming the residuals follow
a normal distribution. For site 2 of 2013 and 2014, the null hypothesis is rejected at .05 and
0.1 significance levels. More information about these linear models are given in table E.5 in the
appendices.

After validating the exponential fitting, it is calculated the proportion of singletons (p,
see table 4.2) by dividing the expected amount of singletons by the existing number of singletons
contained in the dataset. A random sample without replacement is performed to the automated
singletons data with a proportion of p (simply put, 1 − p false positives are removed from the
singletons data). The percentage distribution of calls after resampling is exhibited in figure 4.5,
4.6, 4.7, and 4.8.

Table 4.2: Proportion of singletons according to predicted values.

Site Year Proportion of singletons Year Proportion of singletons
2 2013 0.1718 2014 0.1600

3 2013 0.1973 2014 0.0601

4 2013 0.1218 2014 0.0714

5 2013 0.2735 2014 0.0882

(a) (b)

Figure 4.5: Percentage distribution of calls recorded at exactly k DASARs (k = 1,...,7) in
site 2. The percentage distribution results from a single sample after subsetting the
number of singletons according to a proportion p. (a) Year 2013. (b) Year 2014.
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(a) (b)

Figure 4.6: Percentage distribution of calls recorded at exactly k DASARs (k = 1,...,7) in
site 3. The percentage distribution results from a single sample after subsetting the
number of singletons according to a proportion p. (a) Year 2013. (b) Year 2014.

(a) (b)

Figure 4.7: Percentage distribution of calls recorded at exactly k DASARs (k = 1,...,11)
in site 4. The percentage distribution results from a single sample after subsetting the

number of singletons according to a proportion p. (a) Year 2013. (b) Year 2014.
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(a) (b)

Figure 4.8: Percentage distribution of calls recorded at exactly k DASARs (k = 1,...,7) in
site 5. The percentage distribution results from a single sample after subsetting the
number of singletons according to a proportion p. (a) Year 2013. (b) Year 2014.

4.2 Call Density and Population Density Estimates from the
Automated Data

The overall call estimates (number of calls/100 km2), in descending order, were pro-
duced according to: i) ’all calls included’ approach, a ii) ’proportion of singletons’ approach,
and iii) ’no singletons’ approach. Site 3 in 2014 was the only site that held similar estimates
between the second and third approaches (23.2596 calls/100 km2 and 25.6214 calls/100 km2,
respectively). The call densities are observed in table 4.3 and 4.4, and were generated from 50
resamples for each site, year and approach combined. The overall mean call density value of the i)
approach is 715.5068 calls/100 km2, of the ii) is 103.8139 calls/100 km2, and of the iii) approach
is 53.7926 calls/100 km2. The estimates from the ’no singletons’ approach were mostly around
half from the ’proportion of singletons’ approach estimates. The mean call density estimate of
the ’all calls included’ approach was around 15 times higher than the ’no singletons’, and 7 times
higher than the ’proportion of singletons’ approach. In 2013, the mean call density was 375.2225
calls/100 km2, and in 2014 was 206.8531 calls/100 km2. The estimates are also illustrated in
figure 4.9. All call density estimates correspond to 0.5% of the total calls in the automated data
per site/year, as explained previously in section 3.

The parameter estimates, sigma and intercept, are shown in tables 4.3 and 4.4, with
the mean and median values of sigma, and the mean values of intercept. Site 2, 2014 (with
’proportion of singletons’ approach), and site 5, 2014 (with ’no singletons’ and ’proportion of
singletons’ approaches) presented excessively high sigma estimates, due to a few resamples (out
of 50 resamples) presenting a higher amount of calls being detected in more DASARs rather
than in less DASARs. For instance, having more calls being detected in 4 to 7 DASARs will
produce higher sigma estimates, whereas having more calls being detected in 1 to 3 DASARs
in the data will produce lower sigma estimates. For that reason, the median values should be
the ones considered for comparison purposes within each site, year and approach. The mean
intercept values of the ’all calls included’ approach are <0.6, while the intercept estimates for
the ’no singletons’ and ’proportion of singletons’ are >0.6. This is explained, once again, by the
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higher number of singletons constituting the samples from the ’all calls included’ approach.

The estimated call densities were only assessed with 0.5% of the automated data, but
the population density estimates were calculated with call density estimates divided by a factor
of 0.005, hence representing 100% of the calls.

Figure 4.9: Call density estimates (number of calls/100 km2) from different approaches:
all calls included (circle icons), no singletons included in the dataset (triangle icons); and
subset singletons according to a proportion (square icons). Estimates from year 2013

(salmon colour), and estimates from year 2014 (blue colour).

The estimated population densities (number of whales/100 km2h) resulted from an
SECR analysis composed of 90,564 recorded calls: 6,696 (site 2, 2013), 11,479 (site 3, 2013),
25,375 (site 4, 2013), 11,469 (site 5, 2013), 4,717 (site 2, 2014), 8,020 (site 3, 2014), 15,668 (site
4, 2014) and 7,140 (site 5, 2014). The call density estimates are the mean values of 50 resamples
calculated according to three approaches (’all calls included’, ’no singletons’, and ’proportion of
singletons’), and according to a percentage of missing migrating whales (25%, 35% and 45%).
The call densities are then converted to population densities. All population density estimates
showcased higher values if the ’proportion of singletons’ approach was used compared to the
’no singletons’, as one would expect, since the automated data contained a vast majority of
singletons. The estimates produced by ’all calls included’ approach were far higher compared
to the remaining approaches, because all singletons were retained in the data. Combining the
estimates from all sites and year, the mean population density of the ’all calls included’ approach
is as follow: 40.4974 whales/100 km2h (25% missing whales), 33.2231 whales/100 km2h (35%
missing whales), and 25.9553 whales/100 km2h (45% missing whales). The mean values of the ’no
singletons’ are: 2.9598 whales/100 km2h (25% missing whales), 2.4258 whales/100 km2h (35%
missing whales), and 1.896 whales/100 km2h (45% missing whales). Finally, the mean population
density of the remaining approach is: 5.8971 whales/100 km2h (25% missing whales), 4.8522
whales/100 km2h (35% missing whales), and 3.7886 whales/100 km2h (45% missing whales).
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4.3 Comparison with Simulated Capture Histories

4.3.1 What is the Best Approach?

Comparing the simulated estimates with different approaches (figure 4.10), the approach
’proportion of singletons’ is validated as the best approach to produce reliable estimates, since
it held the lowest percentage bias to the ’true’ density estimate. The presented percentage bias
are: ’all calls included’ (265.144 %), ’no singletons’ (-57.029%), and ’proportion of singletons’
(-27.505 %). The ’true’ simulated data produced a percentage bias of -3.948 %.

Figure 4.10: Call density estimates (number of calls/100 km2) from simulated data with
different approaches: all calls included (red), no singletons included in the dataset

(green); and subset singletons according to a proportion (blue), and set to ’true’ estimate
(purple). Dashed line represents ’true’ density estimate (100 animals/100 km2).

4.3.2 Consistency Check between Call Density Estimates

In the first type of simulated data, the call density values are estimated under the ’no
singletons’ and the ’proportion of singletons’ approach. The second type of simulated data is
performed with the ’no transformation’ approach. Table 4.5 shows the simulated call density
estimates and their respective coefficients of variation.

After fitting SECR models to the a) and b) simulated data, the produced call densities
and sigma estimates are compared to the estimated values from the automated data (table E.6
in the appendices). Figure 4.11 illustrates a boxplot for each one of the four approaches (’all calls
included’, ’no singletons’, ’proportion of singletons’, and ’no transformation’) and simultaneously
for each year (automated data from 2013 and 2014), as well as for the simulated data.

Table 4.6 exhibits the mean values of the call density estimates for each type of data
and approach. The mean value of the b) type of simulated data (56.050 calls/100 km2) is
compared against the mean values from the automated data. The absolute difference between
the call densities from the simulated data and from the automated data with ’all calls included’
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approach is 659.4571 calls/100 km2; from the ’no singletons’ approach is 2.2571 calls/100 km2;
and from the automated data with the ’proportion of singletons’ approach is 47.7642 calls/100
km2. The ’no singletons’ mean difference is within a reasonable range. Opposite to the ’all calls
included’ approach that had almost 15 times more calls compared to the simulated data, and
the ’proportion of singletons’ presented almost the double amount of calls.

The absolute difference between the a) type of simulated data with the ’no
singletons’ approach, and the automated data excluding singletons is 28.1893 calls/100 km2.
For the automated data with a ’proportion of singletons’ vs a) type of simulated data with the
same approach, it reveals a difference of 10.0868 calls/100 km2. The mean values, standard
deviation, minimum and maximum are presented in table 4.6.

Table 4.5: Call density and sigma estimates from simulated capture histories with
corresponding coefficient of variation (CV).

Site 2
Approach Estimates Simulated data a) Simulated data b) CV(%)

No singletons Call density estimate 18.6417(∗) [347.21(∗)] – 34.39
Proportion of singletons (calls/100km2) 80.9259(∗) [1359.80(∗)] – 35.68
No transformation c) [N calls] – 45.2740(∗) [1277.5(∗)] 44.72

No singletons 9.638(+) – 876.99
Proportion of singletons Sigma estimate (km) 9.322(+) – 851.01
No transformation c) – 11.860(+) 212.77

Site 3
Approach Estimates Simulated data a) Simulated data b)

No singletons Call density estimate 21.6501(∗) [770.57(∗)] – 58.99
Proportion of singletons (calls/100km2) 58.1064(∗) [2105.74(∗)] – 72.57
No transformation c) [N calls] – 15.4172(∗) [1913(∗)] 107.99

No singletons 14.078(+) – 95.13
Proportion of singletons Sigma estimate (km) 14.021(+) – 72.59
No transformation c) – 241.444(+) 63.23

Site 4
Approach Estimates Simulated data a) Simulated data b)

No singletons Call density estimate 37.3398(∗) [881.98(∗)] – 33.05
Proportion of singletons (calls/100km2) 144.3252(∗) [3501.34(∗)] – 42.56
No transformation c) [N calls] – 129.0128(∗) [3594.5(∗)] 37.48

No singletons 8.776(+) – 5.71
Proportion of singletons Sigma estimate (km) 9.532(+) – 5.37
No transformation c) – 9.893(+) 5.56

Site 5
Approach Estimates Simulated data a) Simulated data b)

No singletons Call density estimate 24.7818(∗) [711.75(∗)] – 46.74
Proportion of singletons (calls/100km2) 91.5510(∗) [2167.90(∗)] – 40.30
No transformation c) [N calls] – 34.495(∗) [1791.333(∗)] 51.10

No singletons 12.560(+) – 98.03
Proportion of singletons Sigma estimate (km) 11.403(+) – 5.26
No transformation c) – 18.993(+) 173.15

a) Simulated data with a large number of singletons.
b) Simulated data without forcing a large number of singletons.

c) Simulated data with no subset/transformation performed to it.
(∗) Mean value of 100 simulations; (+) Median value of 100 simulations.
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Table 4.6: Call density estimates statistics for each approach and type of data. The
automated data was composed of 400 resamples per approach; the a) and b) simulated

data were composed of 400 simulations each per approach.

Mean Type of data
Approach Automated data Simulated data a) Simulated data b)

All calls included 715.507 – –
No singletons 53.793 25.603 –

Proportion of singletons 103.814 93.727 –
No transformation c) – – 56.050
Standard deviation Type of data

Approach Automated data Simulated data a) Simulated data b)

All calls included 345.114 – –
No singletons 31.006 57.472 –

Proportion of singletons 13.135 54.074 –
No transformation c) – – 52.166

Minimum Type of data
Approach Automated data Simulated data a) Simulated data b)

All calls included 253.406 – –
No singletons 1.653 3.076 –

Proportion of singletons 0.807 3.093 –
No transformation c) – – 2.874

Maximum Type of data
Approach Automated data Simulated data a) Simulated data b)

All calls included 1574.256 – –
No singletons 127.842 209.558 –

Proportion of singletons 54.511 279.247 –
No transformation c) – – 179.945

a) Simulated data with a large number of singletons.
b) Simulated data without forcing a large number of singletons.

c) Simulated data with no subset/transformation performed to it.
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4.3.3 Consistency Check between Population Density Estimates

The mean call densities are converted to population densities (whales/100 km2 h) with
the equation 1.7. The population density estimates are presented in figure 4.12, 4.13, and 4.14,
displaying the estimates with 25%, 35%, and 45% of missing migrating whales. The corres-
ponding values can be consulted in table 4.7, for the simulated data and the automated data.
Table 4.8, 4.9 and 4.10 register the absolute differences between population densities for each
approach and year. Some insights can be made by checking the absolute differences, but also by
examining the confidence intervals, and verify if the automated data estimates will fall between
the simulated upper and lower bound.

The values marked as red (table 4.8, 4.9 and 4.10) reveal absolute differences <1
whales/100 km2 h, only for the ’no singletons’ and ’proportion of singletons’ approach. Con-
sidering only the density estimates from a) type of simulated data, the population densities
from the automated data are compared under the ’proportion of singletons’ approach, as the
differences were < 1 for all percentages of missing whales. For the ’no singletons’ approach, the
difference between automated and simulated data was 1.5521 whales/100 km2 h (25% of missing
whales), and 1.2728 whales/100 km2 h (35% of missing whales). However, for the 45% of missing
whales, the difference was closer to 1 (0.9970 whales/100 km2 h). Considering only the density
estimates from b) type of simulated data, the automated data with the ’no proportion’ ap-
proach held lower differences (< 0.4 whales/100 km2 h). The automated population densities
with ’all calls’ approach is overall, and as expected, much higher compared to the estimates of
type a) and b) of simulated data.

Another comparison method is examining the CIs of the simulated and automated data
and check if the automated mean population densities are contained within the 95% CI of the
simulated data. The 95% confidence level interval in table 4.11 reveals that the mean population
density values from the automated data with a ’proportion of singletons’ approach falls
within the CI of the a) type of simulated data with the same approach. Contrary to the ’no
singletons’ approach, where the mean population density from the automated data is higher
than the CI upper limit. Considering the 95% CI of the b) type of simulated data, the only
approach from the automated data that falls within the CI belongs to the ’no singletons’. The
’all calls’ approach estimates are, once again, much higher than the upper limits of the a) and
b) type of simulated data.

The automated population densities from the ’no singletons’ and ’proportion of
singletons’ approaches are, therefore, consistent with the simulations, as they were contained
within the CIs for the a) simulated data. The ’proportion of singletons’ ad hoc approach is
assumed to provide more reliable estimates compared to the ’no singletons’ approach, and as
validated in the sub-section 4.3.1. For this reason, the final suggested BCB population densities
of bowhead whales are: 5.8971 whales/100 km2 h (with 25% missing whales); 4.8522 whales/100
km2 h (with 35% missing whales); and 3.7886 whales/100 km2 h (with 45% missing whales).

Table E.7 in the appendices exhibits the reverse comparison, i.e., the CIs are produced
by the automated data and the mean values of the simulated data will/will not fall within their
CIs.
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Figure 4.12: Population density estimates (number of whales/100 km2 h) with 25% of
missing migrating whales and from different approaches: all calls included (circle icon);

no singletons included in the automated data (triangle icons); subset singletons according
to a proportion in the automated data (square icons); and not performing any subset to
the simulated data (cross icons). Estimates from 2013 (salmon colour), and estimates
from 2014 (green colour). The mean estimates generated from 100 simulations are blue

coloured, and have no year associated.
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Figure 4.13: Population density estimates (number of whales/100 km2 h) with 35% of
missing migrating whales and from different approaches: all calls included (circle icon);

no singletons included in the automated data (triangle icons); subset singletons according
to a proportion in the automated data (square icons); and not performing any subset to
the simulated data (cross icons). Estimates from 2013 (salmon colour), and estimates
from 2014 (green colour). The mean estimates generated from 100 simulations are blue

coloured, and have no year associated.
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Figure 4.14: Population density estimates (number of whales/100 km2 h) with 45% of
missing migrating whales and from different approaches: all calls included (circle icon);

no singletons included in the automated data (triangle icons); subset singletons according
to a proportion in the automated data (square icons); and not performing any subset to
the simulated data (cross icons). Estimates from 2013 (salmon colour), and estimates
from 2014 (green colour). The mean estimates generated from 100 simulations are blue

coloured, and have no year associated.
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Chapter 5

Discussion
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The management of wildlife populations is an extremely difficult mission. The trends
of cetaceans populations are alternating, and even dramatically shifting, as they are increasingly
affected by human activities. For those reasons, we, as scientists, must gather teams and apply
methods capable of complementing the existing information and giving valid results on the trends
in population density. Cetacean abundance studies are generally based on visual techniques, such
as line transect surveys (Buckland et al., 2012) (for instance, distance sampling). But visual
methods are restricted to daylight and good weather, many times underestimating the density
values.

Passive Acoustic Monitoring presents itself as a game changer concerning the study of
population densities of sound producing animals. Due to its distinctive characteristics, PAM is
potentially able to accurately obtain those estimates, since it relies on acoustic cues that vary
according to the studied species. Regarding bowhead whales, PAM in the Arctic has been driven
by three main issues concerning bowhead whales (Clark et al., 2015): (i) find how many bowheads
exist in the Bearing-Chukchi-Beaufort (BCB) population; (ii) understand the potential impacts
of offshore oil and gas operations; and (iii) understand how large-scale changes in arctic sea ice
conditions might impact the population. This thesis will only focus on the first topic.

The dataset used was collected within a PAM project active for over eight years in
the Canadian Beaufort sea with five arrays of hydrophones capable of detecting acoustic cues
produced by bowhead whales. The advantage of working with static PAM comes from the sensors
characteristics, DASARs, as they are suitable for long-term deployment, besides the ability of
acoustically locating the detections of bowhead whales.

The survey considered several sites with multiple sensors at each site. Each site was
considered a single SECR array with 7 DASARs for sites 2, 3, and 5; 3 DASARs for site 1; and
13 DASARs for site 4. For many technical and methodological reasons already described in this
thesis, we excluded site 1, and examined the last two years of the dataset (2013 and 2014). The
present dissertation aims to provide insights on the bowhead whale population density over the
Beaufort Canadian sea, more precisely in the BCB. The SECR likelihood functions 3.1 and C.1
were developed based on the SECR methods described in Efford et al. (2009), and combined with
the concept of truncation (Conn et al., 2011) of singletons – acoustic cues only detected in a
single sensor. The problem arises with the singletons containing a presumably high yet unknown
amount of false positives, and for that reason a solution would require the singletons censoring
out of the likelihood functions. The ultimate goal is to estimate the density of bowhead whales’
vocalisations, and then convert to a density estimate of bowhead whales crossing a migratory
corridor in the Alaskan Beaufort sea.

5.1 Underlying Assumptions

It is important to emphasize the automated data hereby analysed was collected in areas
that do not cover the entire width of the migration corridor in the Alaskan Beaufort sea during
2007–2014, although only the last two were analysed. In addition, the time periods do not
correspond to the entire autumn migration season. Currently, there are no known bowhead cue
rates or estimates of population size we could rely on to compare with our estimates. In this work
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we assumed no false negatives (missed detections) that could potentially lead to underestimated
density values. A multiplier could be included in the likelihood function in order to prevent this
phenomenon. More elegant and exhaustive analysis might be conducted to improve our project
by incorporating these factors, and increase the current knowledge of the BCB population of
bowhead whales.

5.2 Conclusions

This thesis aimed to obtain population density estimates of bowhead whales
(whales/100 km2 h) in the BCB by converting the number of detected vocalisations to num-
ber of whales with SECR. This method converts acoustic cues into animal density by accounting
for: (i) the proportion of singletons, (ii) the cue rate, and (iii) the probability of detecting cues
(in this thesis, it was adopted a half-normal distribution). However, the automated PAM data
presented a problem of holding an excess of singletons. We assume a large portion of singletons
are, in fact, false positives. The bowhead whale density estimates were calculated according to
three approaches, intended to deal with the singletons problem in different ways: a) ’all calls
included’ in the dataset, i.e., ignoring the singletons problems, and hence overestimating the
population densities, as false positives are included in the dataset; b) ’no singletons’ approach,
where we eliminate all singletons, therefore excluding potential false positives, but leading to
underestimated densities as all true singletons were removed; and c) ’proportion of singletons’,
i.e., excluding singletons according to a 1 − p of false positives, in other words, p being the
proportion of true singletons, but still risking an underestimation or overestimation of densities.
An additional approach, truncating singletons, can be achieved by implementing the likelihood
in equation 3.1. In this thesis, the likelihood was not implemented, although a draft R script
was developed, and is presented in the appendices. With this last approach, the inferences could
only be made regarding cues recorded at least twice, as explained in the section 2 and 3. As
expected, the overall BCB population densities from the b) approach were lower compared to the
c) approach, and the densities from the a) approach were considerably higher compared to b) and
c) approaches. The results from the ’proportion of singletons’ are closer to reality, whereas the
estimates from the ’no singletons’ approach are considered inadequate. The estimates resulting
from the ’all calls included’ approach are the least adequate of all three, because the problem con-
cerning the amount of singletons is completely ignored. If implemented, the estimates resulting
from truncating singletons would be presumable closest to unbiased.

Call density estimates were simulated according to ’all calls included’, ’no singletons’,
and ’proportion of singletons’ approaches, and compared to a certain ’true’ density estimate.
The ’proportion of singletons’ presented the lowest percentage bias, therefore proving to be the
best approach among all, as expected. Therefore, the suggested 2013 and 2014 BCB population
density estimates of bowhead whales with the ’proportion of singletons’ approach are: 5.8971
whales/100 km2 h (with 25% of missing migrating whales), 4.8522 whales/100 km2 h (with 35%
of missing migrating whales), and 3.7886 whales/100 km2 h (with 45% of missing migrating
whales).

Future work on this dataset would include the use of additional parameters, such as the
estimated locations of the bowhead whale calls, the measured bearing in degrees, and received
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sound levels (Borchers et al., 2015). These parameters could be added to the likelihood developed
in this thesis, consequently resulting in more reliable estimates. Other additional parameters
are described in the appendices (see section A). Moreover, it would be helpful to gather data
from visually confirmed groups of bowhead whales, and compare with our density estimates. If
possible, other sensors should be used, for example gliders , as they do not fall short concerning
spatial coverage, and they also account for animal movement as well, unlike fixed sensors.

Future investigation on this area should focus on studying the species acoustic ecology,
as there are still unanswered questions about the proportion of the population vocalising, and
when. This should bring more clarity to the vocalisation rates. Automated detection and classi-
fication systems also make mistakes usually ignored with visual surveys and could be improved.
At last, more accessible and inexpensive hardware needs to be developed to increase not only
the number of surveys performed, but also the accuracy and precision of the population density
estimates.

5.3 Acquired Competencies

The MSc in Biostatistics allowed the development of this project dissertation at CREEM
(Centre for Research into Ecological & Environmental Modelling) and DEIO – FCUL (Departa-
mento de Estatística e Investigação Operacional – Faculdade de Ciências da Universidade de
Lisboa). The traineeship at CREEM occurred between March and July, 2018. The remaining
thesis was produced and written in the following months until the delivery in March, 2019.

It is worth to list explicitly what this MSc dissertation allowed me to develop and
become more familiar in terms of tools and statistical competencies:

1. Organise and manipulate large datasets;

2. Perform an exploratory data analysis;

3. Compile, run and debug code;

4. Code more efficiently;

5. Work with several R packages: secr, xtable, sp, rgdal, plyr, knitr, ggplot2, tidyr, gmodels,
among others;

6. Being able to implement SECR analysis;

7. Deal with different statistical distributions;

8. Create a bespoke log-likelihood function based on the SECR framework;

9. Use R Markdown to turn analysis into readable reports to be presented during meetings
(in HTML structure);

10. Able to work and compile large documents in LATEX;

11. Create dynamic reports within the spirit of reproducible research.
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5.4 Final Remarks

Statistical procedures were used to obtain practical answers to ecological questions.
In this work, we have estimated bowhead whales densities at BCB for their autumn migration
season in 2013 and 2014 using hydrophones. By defining our unknowns, and comparing our ex-
perimental results (automated data) with simulated data, we have obtained more insight into the
estimates produced that are helpful to complement the current lack of knowledge. Additionally,
we compared results from different approaches and, ultimately, set the foundations for a new
approach by truncating singletons. In the meantime, more follow up questions arose that need
further development. Through this thesis, I learnt many valuable tools on how to do science,
and enjoyed every step that led to the creation of this thesis.
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Appendix A

Output Files

The raw data was organised in a TSV (tab-separated values) file format. Once sys-
tematised and organised, the ouput files resembled the table presented in A.1. The first column
presents call IDs in each row in the format of ’sNyYYcWWW’ where N is the number repres-
enting a site (1,2,3,4 or 5), ’YY’ the year (2013 or 2014) and WWW the number of a call. If a
call is a singleton, the format will be presented as ’sNyYYcsingWWW’. The following 3 columns
exhibited information of the call itself and its location, suchlike:

1. ’atev’: Calculated time of the whale call as a conventional date string (YYYY-MM-DD
hh:mm:ss);

2. ’utmx’: Calculated UTM easting coordinate of the estimated location of the whale call;

3. ’utmy’: Calculated UTM northing coordinate of the whale call.

Table A.1: Example of output file structure. The first column A corresponds to the
column of individual calls; the second group of columns B aggregates 3 columns related to
the call and its location; at last, the third group C aggregates sets of 5 columns, each set

associated with information of a single DASAR where the call was detected.

A) Id B) 3 columns call related C) 5 columns per DASAR
Call 1 Columns concerning the call

itself and its location

Each column associated to
one DASAR where the call
was detected

Call 2
Call 3
...

The following group of 5 columns sets per DASAR may include:

1. ’did’: DASAR ID;

2. ’bgrid’: Measured bearing in degrees of event (whale call) relative to the Northing axis.
This includes ’bref’, the calibrated orientation of the DASAR. If one noted a consistent
offset, one could change ’bref’, then recalculate ’bgrid’ and the location;

3. ’bref’: Reference bearing used for ’bgrid’;

76



4. ’cmt’: Measured arrival time in c-format. The estimated precision is about 1 second
(equivalent to about 1500 meters distance). The arrival time is not presently used in the
location calculation;

5. ’sigdb’: Approximate acoustic level at hydrophone in dB re 1 µPa. This is the root-mean-
square (rms) level in the band measured for the call averaged over the measured length of
the call. The background noise is measured for one second starting two seconds before the
call and is subtracted from the call levels. This process is subject to random errors.

In this thesis, the analysed data only included the ’did’ column, and the additional
information ’utmx’ and ’utmy’ were used for plotting purposes.
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Appendix B

Likelihood with Inhomogeneous Poisson
Density

The state model, as described in sub-section 2.2, is a spatial Poisson process for home
range centres. This Poisson process returns an expected value of the process (home range centres
per unit area) and can be either homogeneous (constant over space) or inhomogeneous (varying
over space). If density is homogeneous, D(X;φ) is a function of location where X represents a
pair of x-y coordinates and its expected value is a flat surface and the parameter φ is one number,
i.e., the density. However, if density is inhomogeneous, then φ is a vector of several parameters.

As described in (Efford et al., 2009), in the event of home range centres occurring
independently in a plane according to an inhomogeneous Poisson process with rate parameter
D(X;φ), we will have a likelihood in terms of:

L(φ,θθθ|n, ω1, ..., ωn) = P (n|φ,θθθ)× P (ω1, ..., ωn|n,θθθ, φ). (B.1)

Assuming independent detections between calls (i.e., DASARs operate independently), the mar-
ginal n is Poisson distributed with rate parameter:

λ(φ,θθθ) (B.2)

that arises from integrating the Poisson process (first term) with the probability of being detected
at least once (second term):

λ(φ,θθθ) =

∫
R2

D(X;φ)p.(X;θθθ)dX. (B.3)

It is sometimes omitted the parameter vectors φ and θθθ in the development below. As-
suming independent detections between detected calls, the conditional distribution for ωi, ..., ωn,
given n unique capture histories is:
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P (ωi, ..., ωn|n, φ,θθθ) ≡ P (ωi, ..., ωn|ω1. > 0, ..., ωn. > 0, φ,θθθ)

=

(
n

n1, ..., nC

) n∏
i=1

P (ωi|ωi. > 0, φ,θθθ), (B.4)

where n1, ..., nC are the frequencies in which each of the C unique detected capture histories
were detected,

(
n

n1,...,nC

)
is the associated multinomial coefficient, and the following equation is

the probability of observing capture history ωi for call i, given it was detected, i.e., ωi. > 0.

P (ωi|ωi. > 0, φ,θθθ) =

∫
R2

P (ωi|ωi. > 0, φ,X)f(X|ωi. > 0, φ,θθθ)dX. (B.5)

The terms inside the previous integral can be expressed in terms of the detection prob-
ability function pks(X;θθθ) and inhomogeneous Poisson process rate D(X;φ). The probability of
observing capture history ωi for call i, given that its home range centre is at X, and that it was
detected is:

P (ωi|ωi. > 0,X) = p.(X)−1
S∏
s=1

K∏
k=1

pks(X)δk(ωis)[1− p.s(X)]1−δ.(ωis). (B.6)

Equally as in the homogeneous Poisson section, δk(ωis) = 1 if ωis = k and is zero
otherwise, δ.(ωis) = 1, if δk(ωis) > 0 for any k = 1, ...,K, and is zero otherwise. Assuming
independence of detection between occasions:

p.(X) = 1−
S∏
s=1

[1− p.s(X)]. (B.7)

The second term in the integral B.5 is the conditional density function of home range
centres X given a call is recorded, and is expressed as follows:

f(X|ωi. > 0, φ,θθθ) =
D(X;φ)p.(X;θθθ)∫

R2 D(X;φ)p.(X;θθθ)dX

=
D(X;φ)p.(X;θθθ)

λ(φ,θθθ)
. (B.8)

The parameters φ and θθθ of the model can be estimated by maximizing the likelihood
equation B.1.

N̂ =

∫
D(X; φ̂)dX (B.9)
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Appendix C

SECR likelihood with Truncation of
Singletons – Inhomogeneous Poisson
process

Considering a inhomogeneous Poisson process, the likelihood is given by:

L(θθθ, φ|n∗, ω∗) = P (n∗|θθθ, φ)P (ω∗|n∗, θθθ, φ), (C.1)

with φ defined previously in the appendices section B, and the remaining terms θθθ, n∗, and ω∗

are explained in section 3.1.

The first term is the Poisson probability mass function

P (n∗|θθθ, φ) = λ (θθθ, φ)n
∗
exp (−λ(θθθ, φ))
n∗!

, (C.2)

where
λ(θθθ, φ) =

∫
R2

D(X;θθθ)p∗(X;θθθ)dX, (C.3)

and p∗(X;θθθθθθθθθ) is already defined in 3.4.

The second term in the equation C.1 is given by:

P (ω∗|n∗, θθθ, φ) = P (ω∗
1, . . . , ω

∗
n∗ |ω1 > 1, . . . , ωn∗ > 1, θθθ, φ)

=

(
n∗

n1, . . . , nC∗

)
P (ωi|ωi > 1, θθθ, φ), (C.4)

with
P (ωi|ωi > 1, θθθ, φ) =

∫
R2

P (ωi|ωi > 1, θθθ, φ,X)f(X|ωi > 1, θθθ, φ)dX, (C.5)
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where

P (ωi|ωi > 1, θθθ, φ,X) =

∏K
k=1 p(dk(X;θθθ))ωik(1− p(dk(X;θθθ)))(1−ωik)

p∗(X;θθθ)
(C.6)

and where

f(X|ωi > 1, θθθ, φ) =
D(X;φ)p∗(X;θθθ)∫

R2 D(X;φ)p∗(X;θθθ)dX

=
D(X;φ)p∗(X;θθθ)

λ(θθθ, φ)
. (C.7)

81



Appendix D

R code development

We needed to develop a system capable of reading and processing the original files with
the automated data. For that purpose, the following functions were developed:

1. func_check_sites: Checks which site and year were selected and saves in a vector all
possible DASARs. For example, if the user chooses to analyse site 2 of year 2013, the
elements of the created vector would be: S213A, S213B, S213C, S213D, S213E and S213G.

2. func_one_row_one_call : Creates a matrix with one call per row with additional inform-
ation in other columns, as explained in A section in the appendices.

3. func_unique_detection_per_row : Labels each single detection (not call) per row by reor-
ganising the previous matrix. For example, if a call was recorded by DASARs A, B and D,
there will be 3 rows, one for each DASAR detecting such call.

4. func_exp_lm: Fits an exponential regression using a linear model by accounting the num-
ber of DASARs a call was recorded on. The exponential decay is fitted to the number of
calls recorded in 2, 3, ..., to all DASARs against the number of existing DASARs. The
number of singletons is then extrapolated and divided by the original number of singletons
in the automated data, resulting in a proportion p of true singletons. This function returns
objects of class ’lm’.

5. func_ggplotregression: Saves a ggplot image according to the linear model considered pre-
viously.

6. func_prop_sing : Resamples singletons without replacement according to the proportion p
of singletons.

7. func_fusion_sing_others: The resampled singletons data is added to the data with calls
recorded in more than one DASAR (non-singletons). A subsequent resampling without
replacement is performed to the data (with singletons and non-singletons) according to
an assigned proportion. The recommended proportion is 0.005 to reduce the CPU usage.
Analysing 0.5% of the total data is necessary, as the original automated data holds more
than 13 million calls.
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8. func_organise_all : Suchlike function func_unique_detection_per_row, the output will be
a matrix with a detection per row.

9. func_prop_final : Calculates the proportion of DASARs recording each call for a single
resample.

10. func_plot_final : Saves a ggplot with the proportions calculated in the previous function
for a single resample.

11. func_resample: Combines every function listed from 1 to 10 and prints all objects created.

The func_resample has five arguments: site, y, pathtosave, nrsimul, p_subset. To
start, choose the desired site (site) and year (y). Sites must be 2, 3, 4, or 5, and year must
be equal to 2013 or 2014; choose a directory, for example, "C:/Users/Gisela Cheoo/Desktop"
(pathtosave) where all images with a ".png" file extension will be saved; nrsimul must be an
integer number of resamples the user requires; p_subset is the proportion chosen to sample all
detections and must be a value between 0 and 1 (as previously mentioned, the recommended
proportion is 0.005).

D.1 Log-likelihood function with Truncation of Singletons

The function loglikelihood was created regarding the calculation of the maximum log-
likelihood estimate:

n∗log(D) + n∗log(a∗(θθθ))−Da∗(θθθ)− log(a∗(θθθ)) +
n∗∑
i=1

log

[∫
R2

P (ω∗
i |ω∗

i > 1;X;θθθ)dX
]
. (D.1)

Its computation was extremely arduous, and it still needs to be adjusted. We start with
three objects when evaluating the log-likelihood: (i) capture histories of calls, (ii) habitat mask,
and (iii) DASARs. The object (i) capthist is a matrix with each call per row and each DASAR
per column where it is registered a positive detection with ’1’ and no detection with ’0’ for each
call. The object (ii) mask includes all points in a habitat mask excluding the areas where one
believes there is no detection (such as land areas) and object (iii) traps, DASARs with their ID
and respective location.

Four arguments are required to implement this log-likelihood: (i) par, starting values
of a set of parameters (density, D; intercept, g0; and sigma, σ), (ii) data.set, which matches
with capthist as an object truncated of singletons, (iii) traps, and (iv) mask. The starting
values were set according to the estimates calculated previously with the package secr using
values resulted from using a proportion of singletons. D is in number of calls/100 km2 and σ is
in km.

The function optim was used to calculate the log-likelihood maximum with the R pack-
age stats. The draft R script of the function loglikelihood is presented in section G in the
appendices.
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Table E.2: Mean and confidence interval of number of calls detected in 1 to 11 DASARs,
in 2013 and 2014, from 50 resamples including all calls (singletons and non-singletons).

Site Year Nr DASARs Mean Lower CI Upper CI Year Mean Lower CI Upper CI

2 2013

1 4,197.24 4,189.78 4,204.70

2014

2,660.30 2,653.77 2,666.83
2 285.96 281.85 290.07 186.06 182.36 189.76
3 198.42 194.49 202.35 126.16 122.68 129.64
4 159.56 155.73 163.39 103.48 101.11 105.85
5 122.36 119.56 125.16 68.74 66.56 70.92
6 85.08 82.60 87.56 49.42 47.21 51.63
7 9.38 8.51 10.25 7.84 7.13 8.55

3 2013

1 6,361.06 6,352.52 6,369.60

2014

4,739.94 4,732.26 4,747.62
2 574.74 568.51 580.97 285.62 282.11 289.13
3 311.18 306.11 316.25 191.40 187.07 195.73
4 238.72 234.45 242.99 146.96 143.62 150.30
5 106.30 103.13 109.47 130.58 126.87 134.29
6 29.34 27.72 30.96 128.06 125.30 130.82
7 26.66 25.12 28.20 116.44 113.41 119.47

4 2013

1 15,008.74 14,995.89 15,021.59

2014

9,476.30 9,466.35 9,486.25
2 1,269.82 1,259.94 1,279.70 836.60 829.05 844.15
3 455.60 449.39 461.81 293.84 289.08 298.60
4 300.56 296.23 304.89 200.06 196.24 203.88
5 229.20 224.34 234.06 140.20 137.58 142.82
6 182.84 178.80 186.88 105.16 102.47 107.85
7 158.26 154.91 161.61 79.32 76.93 81.71
8 130.26 127.16 133.36 65.80 63.70 67.90
9 96.96 94.16 99.76 55.10 53.24 56.96
10 12.82 11.83 13.81 44.56 42.69 46.43
11 6.94 6.25 7.63 20.06 18.95 21.17

5 2013

1 6,018.32 6,010.61 6,026.03

2014

4,193.72 4,186.85 4,200.59
2 664.72 658.88 670.56 270.16 265.34 274.98
3 343.58 338.92 348.24 185.26 181.44 189.08
4 175.62 172.18 179.06 140.66 137.75 143.57
5 48.28 46.42 50.14 121.86 119.05 124.67
6 22.58 21.39 23.77 86.50 83.65 89.35
7 13.90 13.09 14.71 50.84 49.03 52.65
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Table E.3: Mean and confidence interval of number of calls detected in 1 to 11 DASARs,
in 2013 and 2014, from 50 resamples with singletons excluded.

Site Year Nr DASARs Mean Lower CI Upper CI Year Mean Lower CI Upper CI

2 2013

1 – – –

2014

– – –
2 283.72 279.99 287.45 186.16 182.93 189.39
3 201.70 198.06 205.34 127.74 125.28 130.20
4 159.52 155.98 163.06 102.60 99.93 105.27
5 124.20 121.12 127.28 70.96 68.63 73.29
6 86.10 83.46 88.74 49.34 47.28 51.40
7 8.76 7.94 9.58 8.20 7.38 9.02

3 2013

1 – – –

2014

– – –
2 572.12 566.72 577.52 283.10 278.58 287.62
3 312.86 308.27 317.45 190.54 187.53 193.55
4 237.74 233.83 241.65 151.72 148.92 154.52
5 107.22 104.65 109.79 134.88 131.93 137.83
6 30.24 28.69 31.79 128.00 125.19 130.81
7 27.82 26.61 29.03 109.76 106.63 112.89

4 2013

1 – – –

2014

– – –
2 1,269.08 1,261.36 1,276.80 838.80 833.08 844.52
3 457.42 451.94 462.90 293.88 289.19 298.57
4 306.42 302.09 310.75 198.56 195.16 201.96
5 227.66 223.68 231.64 137.98 134.71 141.25
6 184.32 180.55 188.09 103.76 101.04 106.48
7 155.70 152.12 159.28 81.46 78.76 84.16
8 131.82 129.12 134.52 64.34 61.90 66.78
9 96.58 94.12 99.04 52.44 50.37 54.51
10 12.42 11.40 13.44 45.16 43.55 46.77
11 6.58 5.85 7.31 20.62 19.21 22.03

5 2013

1 – – –

2014

– – –
2 667.68 662.99 672.37 278.42 275.41 281.43
3 343.82 340.17 347.47 182.68 179.16 186.20
4 171.68 168.43 174.93 140.76 138.02 143.50
5 48.32 46.39 50.25 119.52 116.89 122.15
6 23.28 21.84 24.72 87.88 85.16 90.60
7 13.22 12.08 14.36 51.74 49.40 54.08
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Table E.4: Mean and confidence interval of number of calls detected in 1 to 11 DASARs,
in 2013 and 2014, from 50 resamples with a proportion of singletons included.

Site Year Nr DASARs Mean Lower CI Upper CI Year Mean Lower CI Upper CI

2 2013

1 722.94 716.82 729.06

2014

424.88 420.54 429.22
2 279.64 274.95 284.33 185.76 181.88 189.64
3 203.56 199.93 207.19 129.96 126.37 133.55
4 161.16 157.59 164.73 104.16 101.80 106.52
5 123.62 120.89 126.35 67.22 65.31 69.13
6 84.84 81.72 87.96 49.24 46.98 51.50
7 9.24 8.40 10.08 8.78 7.91 9.65

3 2013

1 1,253.54 1,245.51 1,261.57

2014

283.74 279.47 288.01
2 576.82 570.21 583.43 284.00 280.50 287.50
3 312.86 308.07 317.65 194.38 190.62 198.14
4 236.92 233.07 240.77 147.68 144.60 150.76
5 105.40 102.63 108.17 132.62 129.31 135.93
6 30.34 28.89 31.79 128.12 125.16 131.08
7 27.12 25.69 28.55 112.46 109.10 115.82

4 2013

1 1,834.90 1,825.19 1,844.61

2014

677.98 671.23 684.73
2 1,260.62 1,251.87 1,269.37 841.92 834.76 849.08
3 456.84 451.18 462.50 296.04 292.65 299.43
4 307.22 302.62 311.82 195.26 191.57 198.95
5 224.40 219.81 228.99 139.18 136.50 141.86
6 183.00 179.45 186.55 102.64 99.42 105.86
7 158.14 154.39 161.89 80.98 78.17 83.79
8 134.84 131.67 138.01 63.44 61.20 65.68
9 96.32 93.54 99.10 53.82 51.83 55.81
10 11.90 10.90 12.90 42.08 39.89 44.27
11 6.82 6.20 7.44 20.66 19.35 21.97

5 2013

1 1,640.46 1,632.86 1,648.06

2014

370.58 365.88 375.28
2 670.48 664.63 676.33 277.10 272.95 281.25
3 345.48 340.11 350.85 182.32 178.92 185.72
4 171.74 167.50 175.98 140.94 137.98 143.90
5 48.66 46.55 50.77 121.10 118.00 124.20
6 22.64 21.50 23.78 87.04 84.04 90.04
7 14.54 13.33 15.75 50.92 48.45 53.39
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Appendix F

Figures

(a) (b)

(c) (d)

Figure F.1: Percentage of calls detected from 2 to 11 DASARs on a single resample with
no singletons included. (a) Site 2, year 2013. (b) Site 3, year 2013. (c) Site 4, year 2013.

(d) Site 5, year 2013.
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(a) (b)

(c) (d)

Figure F.2: Percentage of calls detected from 2 to 11 DASARs on a single resample with
no singletons included. (a) Site 2, year 2014. (b) Site 3, year 2014. (c) Site 4, year 2014.

(d) Site 5, year 2014.
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(a) (b)

(c) (d)

Figure F.3: Frequency of calls detected per day from one resample. (a) Site 2, year 2013:
3691 detections from a total of 1585 calls detected in 54 days. (b) Site 3, year 2013: 5290
detections from a total of 2543 calls detected in 54 days. (c) Site 4, year 2013: 12337
detections from a total of 4675 calls detected in 55 days. (d) Site 5, year 2013: 5136

detections from a total of 2914 calls detected in 49 days.
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(a) (b)

(c) (d)

Figure F.4: Frequency of calls detected per day from one resample. (a) Site 2, year 2014:
2259 detections from a total of 970 calls detected in 40 days. (b) Site 3, year 2014: 4206
detections from a total of 1283 calls detected in 47 days. (c) Site 4, year 2014: 7609
detections from a total of 2514 calls detected in 49 days. (d) Site 5, year 2014: 3599

detections from a total of 1230 calls detected in 46 days.
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(a)

(b)

(c)

(d)

Figure F.5: Distance from the points of a habitat mask (all points inside the dark blue
circle) to the coastline (brown line) with a buffer of 100 km. (a) Site 2, year 2013. (b)

Site 3, year 2013. (c) Site 4, year 2013. (d) Site 5, year 2013.
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(a)

(b)

(c)

(d)

Figure F.6: Distance from the points of a habitat mask (all points inside the dark blue
circle) to the coastline (brown line) with a buffer of 100 km. (a) Site 2, year 2014. (b)

Site 3, year 2014. (c) Site 4, year 2014. (d) Site 5, year 2014.
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Appendix G

Log-likelihood function R script
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The R code for the log-likelihood formulation with truncation of singletons is as follows:

loglikelihood<-function(par,data.set,traps,mask,debug=FALSE){
prop_grid<-attr(mask, 'area')# weight for each grid cell,
#as D is homogeneous, each cell has the same weight
# which is equal to maskarea(mask)/nrow(mask) (in ha)

clip<-as.matrix(mask)
nsensors<-ncol(data.set) # number of traps
ncalls<-nrow(data.set) # number of calls
grid<-nrow(clip) # number of points in habitat mask

D<-par[1] # density (animals per hectare)
g0<-par[2] # magnitude (intercept) for detection function
sigma<-par[3] # spatial scale of detection function (in meters)

index_traps<-1:nsensors
index_mask<-1:grid

P<-matrix(0,nrow=grid,ncol=nsensors) # matrix with probabilities of
# detection that depends on k sensor and X location
distance<-function(clip,traps){

d<-pointDistance(c(as.numeric(traps[1]),as.numeric(traps[2])),
c(as.numeric(clip[1]),as.numeric(clip[2])),lonlat=FALSE)

P<-g0*exp(-d^2/(2*sigma^2))
}
vecInside<-Vectorize(function(x,y) distance(clip[x,],traps[y,]))
P<-outer(index_mask,index_traps,vecInside)
# each row is a point in habitat mask, each column a sensor
# P corresponds to P*(X; theta) for each X location

P2<-invlogit(P)
logL<-0
for(icall in 1:ncalls){

integration<-0
div.p<-c()
all.theta<-c()
for(ipoint in index_mask){

CurP<-P2[ipoint,]
log.p.num<-0
never<-0
once<-0

p.num<-0
p.denom<-0
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for(isensor in index_traps){
log.p.num<-log.p.num+data.set[icall,isensor]*log(CurP[isensor])
+(1-data.set[icall,isensor])*log(1-CurP[isensor])
never<-never+log(1-CurP[isensor])
once<-once+CurP[isensor]*prod(1-CurP[-isensor])

}
all.theta<-c(all.theta,(1-exp(never)-once)*prop_grid)

p.num<-p.num+exp(log.p.num)
p.denom<-p.denom+(1-exp(never)-once)

div.p<-c(div.p,p.num/p.denom*prop_grid)
}
theta<-max(all.theta)+log(sum(exp(all.theta-max(all.theta))))
newdiv<-max(div.p)+log(sum(exp(div.p-max(div.p))))
logL<-logL+ncalls*(log(D)+log(theta))-D*theta-log(theta)+log(newdiv)

}
return(-logL)

}

D<-0.5
g0<-1
sigma<-8e+03
inits<-c(D,g0,sigma)
start.time <- Sys.time()
opt<-optim(par=inits,fn=loglikelihood,data.set=data.set,

traps=traps,mask=clippedmask,debug=TRUE)
end.time <- Sys.time()
time.taken <- end.time - start.time
time.taken # Time difference of
opt$par
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