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Resumo

As relações entre fenótipos humanos e genes são fundamentais para entender completamente a origem
de algumas abnormalidades fenotípicas e as suas doenças associadas. A literatura biomédica é a fonte
mais abrangente dessas relações. Diversas ferramentas de extração de relações têm sido propostas para
identificar relações entre conceitos em texto muito heterogéneo ou não estruturado, utilizando algoritmos
de supervisão distante e aprendizagem profunda. Porém, a maioria dessas ferramentas requer um corpus
anotado e não há nenhum corpus disponível anotado com relações entre fenótipos humanos e genes.

Este trabalho apresenta o corpus Phenotype-Gene Relations (PGR), um corpus padrão-prata de ano-
tações de fenótipos humanos e genes e as suas relações (gerado de forma automática) e dois módulos de
extração de relações usando um algoritmo de distantly supervised multi-instance learning e um algoritmo
de aprendizagem profunda com ontologias biomédicas. O corpus PGR consiste em 1712 resumos de ar-
tigos, 5676 anotações de fenótipos humanos, 13835 anotações de genes e 4283 relações. Os resultados
do corpus foram parcialmente avaliados por oito curadores, todos investigadores nas áreas de Biolo-
gia e Bioquímica, obtendo uma precisão de 87,01%, com um valor de concordância inter-curadores de
87,58%. As abordagens de supervisão distante (ou supervisão fraca) combinam um corpus não anotado
com uma base de dados para identificar e extrair entidades do texto, reduzindo a quantidade de esforço
necessário para realizar anotações manuais. A distantly supervised multi-instance learning aproveita a
supervisão distante e um sparse multi-instance learning algorithm para treinar um classificador de ex-
tração de relações, usando uma base de dados padrão-ouro de relações entre fenótipos humanos e genes.
As ferramentas de aprendizagem profunda de extração de relações, para tarefas de prospeção de textos
biomédicos, raramente tiram proveito dos recursos específicos existentes para cada domínio, como as
ontologias biomédicas. As ontologias biomédicas desempenham um papel fundamental, fornecendo in-
formações semânticas e de ancestralidade sobre uma entidade. Este trabalho utilizou aHuman Phenotype
Ontology e a Gene Ontology, para representar cada par candidato como a sequência de relações entre os
seus ancestrais para cada ontologia. O corpus de teste PGR foi aplicado aos módulos de extração de
relações desenvolvidos, obtendo resultados promissores, nomeadamente 55,00% (módulo de aprendiza-
gem profunda) e 73,48% (módulo de distantly supervised multi-instance learning) na medida-F. Este
corpus de teste também foi aplicado ao BioBERT, um modelo de representação de linguagem biomédica
pré-treinada para prospeção de texto biomédico, obtendo 67,16% em medida-F.

Palavras Chave: Literatura Biomédica, Extração de Relações, Corpus Padrão-Prata, Supervisão
Distante, Aprendizagem Profunda.
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Abstract

Human phenotype-gene relations are fundamental to fully understand the origin of some phenotypic ab-
normalities and their associated diseases. Biomedical literature is the most comprehensive source of
these relations. Several relation extraction tools have been proposed to identify relations between con-
cepts in highly heterogeneous or unstructured text, namely using distant supervision and deep learning
algorithms. However, most of these tools require an annotated corpus, and there is no corpus available
annotated with human phenotype-gene relations.

This work presents the Phenotype-Gene Relations (PGR) corpus, a silver standard corpus of human
phenotype and gene annotations and their relations (generated in a fully automated manner), and two rela-
tion extraction modules using a distantly supervised multi-instance learning algorithm, and an ontology-
based deep learning algorithm. The PGR corpus consists of 1712 abstracts, 5676 human phenotype
annotations, 13835 gene annotations, and 4283 relations. The corpus results were partially evaluated by
eight curators, all working in the fields of Biology and Biochemistry, obtaining a precision of 87.01%,
with an inter-curator agreement score of 87.58%. Distant supervision (or weak supervision) approaches
combine an unlabeled corpus with a knowledge base to identify and extract entities from text, reducing
the amount of manual effort necessary. Distantly supervised multi-instance learning takes advantage of
distant supervision and a sparse multi-instance learning algorithm to train a relation extraction classifier,
using a gold standard knowledge base of human phenotype-gene relations. Deep learning relation extrac-
tion tools, for biomedical text mining tasks, rarely take advantage of existing domain-specific resources,
such as biomedical ontologies. Biomedical ontologies play a fundamental role by providing semantic
and ancestry information about an entity. This work used the Human Phenotype Ontology and the Gene
Ontology, to represent each candidate pair as the sequence of relations between its ancestors for each on-
tology. The PGR test-set was applied to the developed relation extraction modules, obtaining promising
results, namely 55.00% (deep learning module), and 73.48% (distantly supervised multi-instance learn-
ing module) in F-measure. This test-set was also applied to BioBERT, a pre-trained biomedical language
representation model for biomedical text mining, obtaining 67.16% in F-measure.

Keywords: Biomedical Literature, Relation Extraction, Silver Standard Corpus, Distant Supervision,
Deep Learning.
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Resumo Alargado

A literatura biomédica é o principal meio que os investigadores utilizam para partilhar as suas descober-
tas, maioritariamente na forma de artigos, patentes e outros tipos de relatórios escritos. Um investigador
interessado num tópico específico precisa de estar atualizado em relação aos trabalhos desenvolvidos
sobre esse tópico. No entanto, o volume de informação textual disponível supera amplamente a capaci-
dade de análise de um investigador, mesmo restringindo a um domínio específico. Não só isso, mas a
informação textual disponível é geralmente apresentada num formato não estruturado ou altamente het-
erogéneo. Assim, a recuperação de informação relevante exige não só uma quantidade considerável de
esforço manual, mas também é uma tarefa que consome demasiado tempo.

Os artigos científicos são a principal fonte de conhecimento para entidades biomédicas e as suas
relações. Essas entidades incluem fenótipos humanos, genes, proteínas, substâncias químicas, doenças e
outras entidades biomédicas inseridas em domínios específicos. Uma fonte abrangente de artigos sobre
este tópico é a plataforma PubMed, que combina mais de 29 milhões de citações, fornecendo acesso
aos seus metadados. O processamento desse volume de informação só é viável através de soluções de
prospeção de texto.

Os métodos automáticos de Extração de Informação (EI) visam obter informações úteis de grandes
conjuntos de dados. As soluções de prospeção de texto usam métodos de EI para processar documentos
de texto. Os sistemas de prospeção de texto geralmente incluem tarefas de Named-Entity Recognition
(NER), Named-Entity Linking (NEL) e Extração de Relações (ER). O NER consiste em reconhecer enti-
dades mencionadas no texto, identificando o seu primeiro e último carácter. O NEL consiste em mapear
as entidades reconhecidas a entradas numa determinada base de dados. A ER consiste em identificar
relações entre as entidades mencionadas num determinado documento. Algumas das relações biomédi-
cas comummente extraídas são as interações proteína-proteína, interações fármaco-fármaco e relações
gene-doença.

A ER pode ser executada por diferentes métodos, a saber, por ordem de complexidade: coocorrência,
baseados em padrões (criados manual e automaticamente), baseados em regras (criados manualmente e
automaticamente) e aprendizagem automática (feature-based, kernel-based, multi-instance (MIL) e re-
current neural networks (RNN)). O método de distantly supervised multi-instance learning utiliza uma
base de dados de relações padrão-ouro do domínio de interesse (supervisão distante) combinada com
um sparse multi-instance learning algorithm (sMIL) para executar a ER. A supervisão distante pres-
supõe que qualquer frase que mencione um par de entidades correspondente a uma entrada na base de
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dados provavelmente descreverá uma relação entre essas entidades. Essas relações candidatas podem ser
usadas para treinar um classificador usando o algoritmo sMIL. Mais recentemente, técnicas de apren-
dizagem profunda, como a RNN, provaram obter excelentes resultados em várias tarefas de Processa-
mento de Linguagem Natural (PNL), entre elas a ER. O sucesso da aprendizagem profunda para a PNL
biomédica deve-se em parte ao desenvolvimento de modelos de vectores de palavras como o Word2Vec
e, mais recentemente, o ELMo, o BERT, o GPT, o Transformer-XL e o GPT-2. Estes modelos apren-
dem representações vetoriais de palavras que capturam as relações sintáticas e semânticas de palavras e
são conhecidos como word embeddings. As Long Short-Term Memory (LSTM) RNN constituem uma
variante de redes neuronais artificiais apresentadas como uma alternativa às RNN. As redes LSTM lidam
com frases mais complexas, sendo por isso mais adequadas à literatura biomédica. Em redes LSTM, é
possível integrar fontes externas de conhecimento, como ontologias de domínio específico. As ontolo-
gias são formalmente organizadas em formatos legíveis por máquinas, facilitando a sua integração em
modelos de extração de relações.

O desafio contemporâneo da análise genética é correlacionar os genes aos seus respetivos fenótipos.
Os sistemas existentes que têm flexibilidade para serem aplicados na identificação e extração de relações
entre fenótipos humanos e genes, oriundos da literatura biomédica, são escassos e limitados. Os principais
desafios que eles enfrentam são a falta de dados anotados; dificuldades na identificação de entidades
fenotípicas, que são compostas de múltiplas palavras, o que torna complexo a identificação das fronteiras
de cada entidade; e uma escassez de especialistas para realizar a correção das relações identificadas.
Todos os problemas acima mencionados geram a necessidade de uma criação automatizada de corpora
e o desenvolvimento de sistemas de aprendizagem automática que possam lidar com a versatilidade das
entidades genéticas e fenotípicas humanas e as suas relações, para melhor identificá-las e extraí-las do
texto.

Este trabalho divide-se em três etapas, o corpus Phenotype-Gene Relations (PGR), um corpus padrão-
prata de anotações de fenótipos humanos e genes e as suas relações (gerado de forma automática), e dois
módulos de extração de relações usando um algoritmo de distantly supervised multi-instance learning e
um algoritmo de aprendizagem profunda com ontologias biomédicas.

Para realizar a primeira etapa, precisamos de um pipeline que realize NER para reconhecer genes
e entidades fenotípicas humanas, e ER para extrair e classificar uma relação entre cada fenótipo hu-
mano e gene identificado. O primeiro passo é coletar resumos de artigos usando a API do PubMed com
palavras-chave definidas manualmente, ou seja, cada nome de cada gene que participa numa relação
(presente numa base de dados), homo sapiens e disease. Em seguida, a etapa NER é realizada usando
a ferramenta Minimal Named-Entity Recognizer (MER) para extrair menções de genes, e a ferramenta
Identifying Human Phenotypes (IHP) para extrair menções de fenótipos humanos, a partir dos resumos
dos artigos. Por fim, usando uma base de dados de relações padrão-ouro, fornecida pela Human Pheno-
type Ontology (HPO), as relações obtidas pela coocorrência das entidades na mesma frase são marcadas
como Conhecida ou Desconhecida. As relacções marcadas com Conhecida são relações presentes na
base de dados e as relações marcadas com Desconhecida são relações que não estão ainda identificadas
ou que não existem. O corpus de teste foi criado selecionando aleatoriamente 260 relações para serem
revistas por oito curadores (50 relações cada, com uma sobreposição de 20 relações), todos investigadores
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nas áreas de Biologia e Bioquímica, obtendo uma precisão de 87,01%, com um valor de concordância
inter-curadores de 87,58%.

Enquanto na primeira etapa se utiliza uma abordagem de supervisão distante para marcar cada relação
extraída como Conhecida ouDesconhecida, na segunda etapa o corpus PGR sem anotações vai ser usado
para aplicar a abordagem de distantly supervised multi-instance learning. Estas duas abordagens de
supervisão distante diferem na forma como são aplicadas, como vai ser possível verificar na descrição
das respetivas metodologias.

Na segunda etapa, o objetivo era usar o corpus gerado na primeira etapa combinado com uma base
de dados (fornecida pelo HPO), que fornece exemplos para a relação que queríamos extrair, para aplicar
distantly supervised multi-instance learning. A melhor característica desta abordagem de aprendizagem
automática é o facto de ela não requerer as anotações de relações, apenas anotações das entidades, neste
caso fenótipos humanos e genes, reduzindo a quantidade de esforço necessário para realizar anotações
manuais.

Para a última etapa, o objetivo principal foi combinar algoritmos de RNN (aprendizagem profunda)
com ontologias biomédicas para melhorar a identificação das relações entre fenótipos e genes humanos
na literatura biomédica. As ontologias como o HPO e a Gene Ontology fornecem uma representação
confiável dos seus respetivos domínios e podem ser usadas como camadas de representação de dados para
extrair relações do texto. O sistema proposto representa cada par candidato como a sequência das relações
entre as entidades ancestrais na sua respetiva ontologia e combina osword embeddings e aWordNet (uma
ontologia genérica da língua inglesa) para produzir um modelo capaz de extrair as relações do texto.

O corpus de teste PGR foi aplicado aos módulos de extração de relações desenvolvidos, obtendo
resultados promissores, nomeadamente 55,00% (módulo de aprendizagem profunda) e 73,48% (módulo
de distantly supervised multi-instance learning) na medida-F. Este corpus de teste também foi aplicado
ao BioBERT, um modelo de representação de linguagem biomédica pré-treinada para prospeção de texto
biomédico, obtendo 67,16% em medida-F.

O uso de diferentes fontes de informação, como dados adicionais, para apoiar a procura automatizada
de relações entre conceitos biomédicos contribui para o desenvolvimento de farmacogenómica, triagem
de testes clínicos e identificação de reações adversas a medicamentos. A identificação de novas relações
pode ajudar a validar os resultados de investigações recentes e até propor novas hipóteses experimentais.
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Chapter 1

Introduction

This chapter presents the motivation, objectives, general methodology, and contributions of this disser-
tation, as well as the overall document structure.

1.1 Motivation

Biomedical literature is the main medium that researchers use to share their findings, mainly in the form
of articles, patents, and other types of written reports [Hearst, 1999]. A researcher working on a specific
topic needs to be up-to-date with all developments regarding the work done on the same topic. However,
the volume of textual information available widely surpasses the ability of analysis by a researcher even
if restricting it to a domain-specific topic. Not only that, but the textual information available is usually in
an unstructured or highly heterogeneous format. Thus, retrieving relevant information requires not only
a considerable amount of manual effort but is also a time-consuming task.

Scientific articles are the primary source of knowledge for biomedical entities and their relations.
These entities include human phenotypes, genes, proteins, chemicals, diseases, and other biomedical
entities inserted in specific domains. A comprehensive source for articles on this topic is the PubMed1

platform, combining over 29 million citations while providing access to their metadata. Processing this
volume of information is only feasible by using text mining solutions.

Automatic methods for Information Extraction (IE) aim at obtaining useful information from large
data sets [Lamurias and Couto, 2019b]. Text mining uses IE methods to process text documents. Text
mining systems usually include Named-Entity Recognition (NER), Named-Entity Linking (NEL), and
Relation Extraction (RE) tasks. NER consists of recognizing entities mentioned in the text by identifying
the offset of its first and last character. NEL consists of mapping the recognized entities to entries in a
given knowledge base. RE consists of identifying relations between the entities mentioned in a given
document. A detailed definition of these tasks will be provided in Section 2.2.1. Some of the commonly

1https://www.ncbi.nlm.nih.gov/pubmed/
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Chapter 1 Introduction

extracted biomedical relations are protein-protein interactions [Papanikolaou et al., 2015], drug-drug in-
teractions [Lamurias et al., 2019] and disease-gene relationships [Kim et al., 2017].

RE can be performed by different methods, namely, by order of complexity, co-occurrence, pattern-
based (manually or automatically created), rule-based (manually or automatically created), and machine
learning (feature-based, kernel-based, multi-instance, and Recurrent Neural Networks (RNN)). Distantly
supervised multi-instance learning uses a knowledge base of gold standard target relations (distant super-
vision) combined with a sparse multi-instance learning (sMIL) algorithm [Bunescu and Mooney, 2007]
to perform RE. Distant supervision assumes that any sentence that mentions a pair of entities correspond-
ing to a knowledge base entry is likely to describe a relation between those entities [Lamurias et al.,
2017]. These candidate relations can be used to train a classifier using the multi-instance algorithm.
More recently, deep learning techniques, such as RNN, have achieved outstanding results at various Nat-
ural Language Processing (NLP) tasks, among them RE. The success of deep learning for biomedical
NLP is in part due to the development of word vector language models like Word2Vec [Mikolov et al.,
2013], and, more recently, ELMo [Peters et al., 2018], BERT [Devlin et al., 2018], GPT [Radford et al.,
2018], Transformer-XL [Dai et al., 2019], and GPT-2 [Radford et al., 2019]. These models learn word
vector representations also known as word embeddings that capture the syntactic and semantic word rela-
tionships. Long Short-Term Memory (LSTM) networks constitute a variant of artificial neural networks
presented as an alternative to regular RNN [Hochreiter and Schmidhuber, 1997]. LSTM networks deal
with more complex sentences, making them more fitting for biomedical literature.

The knowledge encoded in the various domain-specific ontologies, such as the Gene Ontology (GO)
[Ashburner et al., 2000], the Chemical Entities of Biological Interest (ChEBI) ontology [Hastings et al.,
2015], and the Human Phenotype Ontology (HPO) [Köhler et al., 2017] is deeply valuable for detection
and classification of relations between different biomedical entities. Besides that these ontologies make
available important characteristics about each entity, they also provide us with the underlying semantics
of the relations between those entities, such as is-a relations. For example, neoplasm of the endocrine
system (HP:0100568), a phenotypic abnormality that describes a tumor (abnormal growth of tissue) of
the endocrine system is-a abnormality of the endocrine system (HP:0000818), and is-a neoplasm by
anatomical site (HP:0011793), which in turn is-a neoplasm (HP:0002664) (Figure 1.1).

The information provided by the ancestors is not expressed directly in the text and can support or dis-
prove an identified relation. Ontologies are formally organized in machine-readable formats, facilitating
their integration in relation extraction models.

Using different sources of information, as additional data, to support automating searching for rela-
tions between biomedical concepts contributes to the development of pharmacogenomics, clinical trial
screening, and adverse drug reaction identification [Luo et al., 2017]. Identifying new relations can help
validate the results of recent research, and even propose new experimental hypotheses.
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Neoplasm of the 
endocrine system
(HP:0100568)

Neoplasm by 
anatomical site
(HP:0011793)

Neoplasm 
(HP:0002664)

Abnormality of the 
endocrine system
(HP:0000818)

Figure 1.1: An excerpt of the HPO ontology showing the first ancestors of neoplasm of the endocrine system, using
is-a relationships.

1.2 Objectives

The fundamental challenge of contemporary genetic analysis is correlating genes to their respective phe-
notypes. Existing systems that have the flexibility to be applied for the identification and extraction of
human phenotype-gene relations, from biomedical literature, are scarce and limited. The main challenges
that they face are the lack of annotated data sets; difficulties in the identification of phenotype entities,
that are composed of multiple words, which makes name boundaries complex; and a scarcity of experts
to perform curation of the identified relations. All of the aforementioned creates the need for automated
corpora creation tools and the development of machine learning systems that can deal with the versatility
of the gene and human phenotype entities and their relations, to better identify and extract them from
text. Thus, the main goals of this work are:

1. Create a large and versatile silver standard corpus of human phenotype-gene relations.

2. Develop a distantly supervised multi-instance learning module that combines a knowledge base
for automatic extraction of human phenotype-gene relations (added to the IBRel system [Lamurias
et al., 2017]).

3. Develop a deep learning module for automatic extraction of human phenotype-gene relations, tak-
ing advantage of domain-specific ontologies, like the Human Phenotype Ontology (HPO) and the
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Gene Ontology (added to the BO-LSTM system [Lamurias et al., 2019]).

First, the proposed pipeline should be able to generate a silver standard corpus based on articles
dedicated to human phenotype-gene relations, using existing NER tools, and a gold standard relations
knowledge base, provided by the HPO. Second, both machine learning systems (distantly supervised
multi-instance learning, and deep learning) should be able to use the previous corpus to train a classifier
and compare the classifications against a manually curated test-set.

The hypothesis of this dissertation is that information about human phenotype-gene relations can be
efficiently extracted from biomedical literature using an automatically generated corpus, and machine
learning techniques along with domain-specific ontologies.

1.3 Methodology

The overall methods to accomplish the proposed objectives can be divided into three stages, one for each
objective. The first stage is the creation of a silver standard human phenotype-gene relations corpus (gen-
erated in a fully automated manner) (Chapter 3), the second and third stages are the development of a
distantly supervised multi-instance learning module that combines a knowledge base, and the develop-
ment of a deep learning module that takes advantage of domain-specific ontologies, both for automatic
extraction of human phenotype-gene relations (Chapter 4).

To generate a silver standard for phenotype-gene relations, we need a pipeline that performs NER
to recognize genes and human phenotype entities, and RE to extract and classify a relation between the
identified human phenotype and gene entities. The first step is to gather abstracts using the PubMed
API with manually defined keywords, namely, each gene name that participates in a relation (retrieved
from a gold standard knowledge base of relations), homo sapiens, and disease. Then, the NER stage
is performed using the Minimal Named-Entity Recognizer (MER) tool [Couto and Lamurias, 2018] to
extract gene mentions, and the Identifying Human Phenotypes (IHP) tool [Lobo et al., 2017] to extract
human phenotype mentions, from the abstracts. At last, using a gold standard relations knowledge base,
provided by the HPO, the relations obtained by co-occurrence of the entities in the same sentence are
marked Known or Unknown, and a subset (test-set) of the relations curated by domain experts. The
Known relations are in the knowledge base and the Unknown relations are not yet identified or that do
not exist. The test-set was created by randomly selecting 260 relations to be reviewed by eight curators
(50 relations each, with an overlap of 20 relations), all researchers working in the areas of Biology and
Biochemistry.

While in the first stage a distant supervision approach is used to mark the relations with Known or
Unknown, in the second stage the unlabeled silver standard corpus is going to be used to apply the distantly
supervised multi-instance learning approach. These two distant supervision approaches differ in the way
they are applied, as we are going to see in the following chapters.

In the second stage, the goal is to use the corpus generated in the first stage unlabeled (annotated only
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with entity mentions) combined with a knowledge base (provided by the HPO), that provides examples
for the relations we wanted to extract, to apply distantly supervised multi-instance learning. The best
feature of this machine learning approach is the fact that it does not require the relations annotations,
only the human phenotype and gene entities mentions, reducing the amount of manual effort necessary.

For the last stage, the main goal is to combine RNN (deep learning) algorithms with biological ontolo-
gies to improve the identification of human phenotype-gene relations in biomedical literature. Ontologies
such as the HPO and the Gene Ontology provide a reliable representation of their respective domains and
can be used as data representation layers to extract relations from text. The proposed system is going
to represent each candidate pair as the sequence of the relations between the entities ancestors in their
respective ontology and combine word embeddings and WordNet (generic English language ontology)
to produce a model able to extract the Known relations from text.

1.4 Contributions

Themain contribution of this dissertation was a feasible solution to identify and extract human phenotype-
gene relations from text, that may be applied to other types of biomedical relations. This dissertation
created the first corpus specific to human phenotype-gene relations, in an attainable and reproducible
way, and two different system modules to extract these type of relations from highly heterogeneous text.
Both the silver standard corpus and the developed modules evaluation was done with a test-set curated by
domain experts. This section provides an overview of the contributions related to each of the objectives
initially defined in Section 1.2. One contribution that did not corresponded to the initially defined goals
was a book chapter presenting the base concepts for neural networks using ontologies for RE:

• Book Chapter Submitted [Sousa et al., 2019b]: Using Neural Networks for Relation Extraction
from Biomedical Literature for the book Artificial Neural Networks: Methods and Applications
(Diana Sousa, André Lamúrias, and Francisco M. Couto) in the Springer ”Methods in Molecular
Biology” series.

1.4.1 Objective 1

Chapter 3 presents a pipeline to generate a silver standard human phenotype-gene relations corpus. The
pipeline required the application of two NER tools and the availability of a list of gold standard rela-
tions. The evaluation of the corpus resorted to eight curators obtaining 87.01% in precision with an
inter-agreement of 87.58%. The work developed for this objective resulted in one freely available silver
standard corpus of human phenotype-gene relations2 and one paper accepted for the proceedings of an
international conference (Core A):

2https://github.com/lasigeBioTM/PGR
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• Paper Accepted [Sousa et al., 2019a]: A Silver Standard Corpus of Human Phenotype-Gene Re-
lations (Diana Sousa, André Lamúrias, and Francisco M. Couto) in the Proceedings of the 2019
North American Chapter of the Association for Computational Linguistics.

1.4.2 Objective 2

Section 4.1.1 presents a distantly supervised multi-instance learning module added to the IBRel system,
to extract human phenotype-gene relations from text. The pipeline required a list of gold standard hu-
man phenotype-gene relations, the same as used in Chapter 3. The evaluation of the module resorted
to the PGR test-set obtaining 73.48% in F-measure. The work developed for this objective produced a
high-performance distantly supervised multi-instance learning module that can effectively extract human
phenotype-gene relations from text.

1.4.3 Objective 3

Section 4.1.2 presents a deep learning module added to the BO-LSTM system, able to extract human
phenotype-gene relations from text. The pipeline required the ontologies available for both type of entities
(HPO and Gene Ontology). These were added to the module as data representation layers to feed the deep
learningmodel. The evaluation of themodule resorted to the PGR test-set obtaining 55.00% in F-measure.
The work developed for this objective resulted in one journal publication (Q1 Scimago):

• Paper Published [Lamurias et al., 2019]: BO-LSTM: Classifying Relations Via Long Short-term
Memory Networks Along Biomedical Ontologies (André Lamúrias, Diana Sousa, Luka A. Clarke,
and Francisco M. Couto) in BMC Bioinformatics.

1.5 Document Structure

Additionally to the present introductory chapter, this document is structured in four chapters as follows:

• Chapter 2 (RelatedWork) introduces the basic concepts and resources that support RE techniques,
namely, Natural Language Processing (NLP), text mining primary tasks, initial approaches for RE,
distant supervision for RE, neural networks for RE, and evaluation measures.

• Chapter 3 (A Silver Standard Corpus of Phenotype-Gene Relations) presents the work developed
to create a silver standard corpus of human phenotype-gene relations, including methods, evalua-
tion, results and discussion.

• Chapter 4 (Extracting Phenotype-Gene Relations) presents the system modules developed (dis-
tantly supervised multi-instance and deep learning modules) to accommodate human phenotype-
gene RE, with methods, evaluation, results and discussion, for each module, and a detailed com-
parison between the two.
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• Chapter 5 (Conclusion) discusses the main conclusions of this work, and indicates some directions
for future work.
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Chapter 2

Related Work

This chapter presents the basic concepts and resources that support Relation Extraction (RE) deep learning
techniques, namely, Natural Language Processing (NLP), text mining primary tasks, initial approaches
for RE, distant supervision for RE, neural networks for RE, and evaluation measures.

2.1 Natural Language Processing

Natural Language Processing (NLP) is an area in computer science that aims to derive meaning from un-
structured or highly heterogeneous text written by humans. NLP covers several techniques that constitute
pre-processing steps for the tasks described in Section 2.2. These NLP techniques have different goals
and are often combined to obtain higher performance.

• Tokenization: has the purpose of breaking the text into tokens to be processed individually or as
a sequence. These tokens are usually words but can also be phrases, numbers and other types of
elements. The most straightforward form of tokenization is breaking the input text by whitespaces
or punctuation. However, with scientific biomedical literature, that is usually descriptive and for-
mal, we have to account for complex entities like human phenotype terms (composed of multiple
words), genes (represented by symbols), and other types of structured entities. These entities tend
to be morphological complex and need specialized tokenization pipelines. Some researchers use a
compression algorithm [Sennrich et al., 2015], byte pair encoding (BPE), to account for biomed-
ical vocabulary variability. BPE represents open vocabularies through a fixed-size vocabulary of
variable-length character sequences, making it suitable for neural networks models, for instance.

• Stemming and Lemmatization: aims at reducing the variability of natural language by normaliz-
ing a token to its base form (stem) [Manning et al., 2008]. It can also take into account the context
of the token, along with vocabulary and morphological analysis to determine the canonical form of
the word (lemma). The stem can correspond only to a fragment of a word, but the lemma is always
a real word. For instance, the stem of the word having is hav and the lemma is have.
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• Part-of-Speech Tagging: consists of assigning each word of a sentence to the category where
it belongs taking into account their context (e.g., verb or preposition). Each word can belong to
more than one category. This feature is useful to gain information on the role of a word in a given
sentence.

• Parse Tree: represents the syntactic structure of a sentence. There are two different types of
parse trees: constituency-based parse trees and dependency-based parse trees. The main difference
between the two is that the first distinguishes between the terminal and non-terminal nodes and the
second does not (all nodes are terminal). In constituency-based parse trees, each node of the tree
is either a root node, a branch node, or a leaf node. For each given sentence there is only one
root node. The branch node connects to two or more child nodes, and the leaf node is terminal.
These leaves correspond to the lexical tokens [Aho et al., 1986]. Dependency-based parse trees are
usually simpler because they only identify the primary syntactic structure, leading to fewer nodes.
Parse trees generate structures that are used as inputs for other algorithms and can be constructed
based on supervised learning techniques.

2.2 Text Mining Primary Tasks

Text mining has become a widespread approach to identify and extract information from unstructured or
highly heterogeneous text [Westergaard et al., 2018]. Text mining is used to extract facts and relationships
in a structured form that can be used to annotate specialized databases and to transfer knowledge between
domains [Fleuren and Alkema, 2015]. We may consider text mining as a sub-field of data mining. Thus,
datamining algorithms can be applied if we transform text to a proper data representation, namely numeric
vectors. Even if in recent years text mining tools have evolved considerably in number and quality,
there are still many challenges in applying text mining to scientific biomedical literature. The main
challenges are the complexity and heterogeneity of the written resources, which make the retrieval of
relevant information, i.e., relations between entities, a non a trivial task. Text Mining tools can target
different tasks together or separately. Some of the primary tasks are Named Entity Recognition (NER),
Named-Entity Linking (NEL) and Relation Extraction (RE).

• Named Entity Recognition (NER): seeks to recognize and classify entities mentioned in the text
by identifying the offset of its first and last character. The workflow of this task starts by spliting
the text in tokens and then labeling them into categories (part-of-speech (POS) tagging). Some
tools that perform NER, used in this dissertation, are the Identifying Human Phenotypes tool (IHP)
[Lobo et al., 2017] and the Minimal Named-Entity Recognizer tool (MER) [Couto and Lamurias,
2018] tools. IHP is a NER tool, specifically created to recognize HPO entities in unstructured
text. It uses Stanford CoreNLP [Manning et al., 2014] for text processing and applies Conditional
Random Fields trained with a rich feature set, combined with hand-crafted validation rules and
a dictionary to improve the recognition of human phenotypes. MER is a NER tool which given
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any lexicon or ontology (e.g., an OWL file) and an input text is able to return a list of recognized
entities, their location, and links to their classes.

• Named-Entity Linking (NEL): maps the recognized entities to entries in a given knowledge base.
For instance, a gene can be written in multiple ways and mentioned by different names or acronyms
in a text. NEL links all these different nomenclatures to one unique identifier. There are several or-
ganizations dedicated to providing identifiers, among them the National Center for Biotechnology
Information (NCBI)1 for genes, and the Human Phenotype Ontology (HPO) [Köhler et al., 2017]
for phenotypic abnormalities encountered in human diseases. Also, the HUGO Gene Nomencla-
ture Committee (HGNC) at the European Bioinformatics Institute2 is responsible for approving
unique symbols and names for human loci, including protein-coding genes, ncRNA genes, and
pseudogenes, with the goal of promoting clear scientific communication. All approved symbols
are stored in the HGNC database.

• Relation Extraction (RE): identifies relations between entities (recognized manually or by NER)
in a text. Tools mainly consider relations by the co-occurrence of the entities in the same sentence,
but some progress is being made to extend this task to the full document (taking into account a
global context) [Singhal et al., 2016].

The workflow of a typical RE system is presented in Figure 2.1.

2.3 Initial Approaches for Relation Extraction

Through the years, several approaches have been proposed to extract relations from biomedical literature
[Lamurias et al., 2017]. Most of these approaches work on a sentence level to perform RE, due to the
inherent complexity of biomedical literature.

• Co-occurrence: assumes that if two entities are mentioned in the same sentence (co-occur), it
is likely that they are related. Usually, the application of this approach results in a higher re-
call (most of the entities co-occurring in a sentence participate in a relation), and lower precision.
Some methods use frequency-based scoring schemes to eliminate relations identified by chance
[Zweigenbaum et al., 2007]. Nowadays, most applications use co-occurrence as a baseline against
more complex approaches [Bunescu et al., 2006].

• Pattern-based: uses manually defined and automatically generated patterns to extract relations.
Manually defined patterns require domain expertise knowledge about the type of biomedical en-
tities, their interactions, and the text subject at hand. Initial systemsmade use of regular expressions

1https://www.ncbi.nlm.nih.gov/
2http://www.genenames.org/
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Input Text

The CRB1 gene is a key target in the fight against blindness.

Tokenization

The_CRB1_gene_is_a_key_target_in_the_fight_against_blindness.

Part-of-speech (POS) Tagging

The_CRB1_gene_is_a_key_target_in_the_fight_against_blindness.

Named-Entity Recognition (NER)

CRB1, blindness

Named-Entity Linking (NEL)

CRB1 – 23418 (NCBI), blindness – HP:0000618 (Human Phenotype Ontology)

Parsing (Shallow/Full)

Relation Extraction (RE)

CRB1targets blindness

DET NP NP VP DET AD NP PP DET NP PP NP

VP

NP

NP

PP

blindness

S

NP

NP

PPThe CRB1 gene is

a key target in

the fight

against

Figure 2.1: Workflow of a simplified RE system. DET is a determinant, NP is a noun, VP is a verb, AD is an
adjective, and PP is a preposition. Text obtained from Alves and Wijnholds [2018].

to match word patterns that reflected a relation between two entities [Zhou et al., 2008], making
use of a dictionary of words that express a relation, such as trigger and stimulate. Later systems
introduce part-of-speech (POS) tagging, but this proven to be too naive, especially when applied
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to complex sentences, such as the ones that we typically find in biomedical literature [Hao et al.,
2005]. Opposite to the co-occurrence approaches, manually defined patterns frequently achieve
high precision but tend to have poor recall. This approach does not generalize well, and therefore
is difficult to apply to new unseen data. Automatically generated patterns encompass two main
approaches, bootstrapping with seeds [Wang et al., 2011] and leveraging of the corpora [Liu et al.,
2011]. The bootstrapping method uses a small set of relations known as seeds (e.g., gene-disease
pairs). The first step is to identify the seeds in the data set and map the relation pattern they de-
scribe. The second step is to try to apply the mapped patterns to the data set to identify new pairs
of relations that follow the same construction. Finally, expanding the original set of relations by
adding these new pairs. When repeating all previous steps, if no more pairs are found, the process
ends. Some systems apply distant supervision techniques to keep track of the validity of the added
patterns. Distant supervision uses existing knowledge base entries as gold standards to confirm or
discard a relation. This method is susceptible to noisy patterns, as the original set of relations grows.
On the other hand, the leveraging of the corpora method makes immediately use of the entire data
set to generate the patterns. This method requires a higher number of annotated relations and pro-
duces highly specific patterns, that are unable to match new unseen data. Automatically generated
patterns can achieve a higher recall than manually defined patterns, but overall the noisy patterns
continue damaging the precision. Nevertheless, there are a few efforts to reduce the number of
noisy patterns [Nguyen et al., 2010].

• Rule-based: also uses manually defined and automatically generated rules from the training data
to extract relations. Depending on the systems, the differences between pattern-based and ruled-
based approaches can be minor. Ruled-based approaches not only use patterns but also additional
restraints to cover issues that are difficult to express by patterns, such as checking for the negation
of the relations [Koike et al., 2004]. Some ruled-based systems distance themselves from pattern-
based approaches by replacing regular expressions with heuristic algorithms and sets of procedures
[Rinaldi et al., 2007]. Similarly to pattern-based, ruled-based approaches tend to have poor recall,
even though rules tend to be more flexible. The trade-off recall/precision can be improved using
automatic methods for rule creation [Xu et al., 2012].

• Machine Learning (ML)-based: usually makes use of large annotated biomedical corpora (su-
pervised learning) to perform RE. These corpora are pre-processed using NLP tools and then used
to train classification models. Beyond Distant Supervision and Neural Networks, described in de-
tail in Sections 2.4 and 2.5, respectively, it is possible to categorize ML methods into two main
approaches, Feature-based and Kernel-based. Feature-based approaches represent each instance
(e.g., sentence) as a vector in an n-dimensional space. Support Vector Machines (SVM) classifiers
tend to be used to solve problems of binary classification, and are considered black-boxs because
there is no interference of the user in the classification process. These classifiers can use differ-
ent features that are meant to represent the data characteristics (e.g., shortest path, bag-of-words
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(BOW), and POS tagging) [Kim, 2008]. Kernel-based approaches main idea is to quantify the
similarity between the different instances in a data set by computing the similarities of their rep-
resentations [Giuliano et al., 2006]. Kernel-based approaches add the structural representation of
instances (e.g., by using parse trees). These methods can use one kernel or a combination of kernels
(e.g., graph, sub-tree (ST), and shallow linguistic (SL)).

2.4 Distant Supervision for Relation Extraction

Distant Supervision (or weak supervision) heuristically assigns labels to the data in the training corpus
based on a provided knowledge base. This technique considers that a pair of entities in any sentence
corresponding to a knowledge base entry is likely to describe a relation between those entities. For
instance, in the sentence the CRB1 gene is a key target in the fight against blindness, the CRB1 and
blindness entities correspond to an entry in the gold standard human phenotype-gene relations knowledge
base, provided by the HPO, and therefore we assume that these entities participate in a relation. This
creates a large number of false positives, because not necessarily all sentences that mention an entity pair
express the target relation [Jiang et al., 2018]. Nevertheless, this allows us to use a training corpus of
any size, an advantage that we do not have in supervised machine learning approaches, that require an
annotated corpus.

Distant supervision is not a viable RE system by its own, but the pseudo-relations inferred using this
method can be used to train a classifier through machine learning algorithms [Lamurias et al., 2017].

2.4.1 Multi-instance Learning

Multi-instance learning [Dietterich et al., 1997] can solve some of the limitations of distant supervision.
This supervised machine learning method uses labeled bags instead of labeled instances. These bags
contain many instances and are suited for when there is a limited amount of knowledge of the labels. The
simplest case of multi-instance learning is binary classification. In this case a bag is labeled negative if
all the instances in the bag are negative and positive if at least one of the instances in the bag is positive.
Then, these labeled bags are fed to a learning algorithm. The algorithm that is going to be used in this
dissertation is the sparse multi-instance learning (sMIL) algorithm [Bunescu andMooney, 2007]. The
instance-level (x) classifier f(−→x ; θ), where θ corresponds to the parameters learned by the classifier, is
learned by using a set of instances I = I+ ∪ I− that we can define as follows [Amores, 2013]:

I+ = {µ(X) : X ∈ B+}
I− = {−→x : −→x ∈ B−}

(2.1)

where I+ and I− are the sets of instances considered positive and negative, respectively. µ(X) is the
average of instances inside X , and B+ and B− are the sets of positive and negative bags, respectively.
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The idea of the sMIL algorithm is to learn a classifier with a relaxed constraint on the classification
of the positive instances in I+. The goal is to avoid forcing the classifier to provide a positive value for
all the instances of a positive bag but only to at least one of the instances. To achieve this, the sMIL
algorithm applies two sets of constraints:

f(−→x ; θ) ≤ −1 + ξ−, ∀−→x ∈ I− (2.2)

Equation 2.2 forces the f(−→x ; θ) function to provide a negative value when applied to negative in-
stances, allowing for some degree of misclassification with the ξ− variable.

f(µ(X); θ) ≥
(

2

| X |
− 1

)
− ξ+, ∀X ∈ B+ (2.3)

Equation 2.3 provides a more relaxed condition for positive instances, depending on the size of the
bag X from where µ(X) is extracted. If the bag X only contains one instance, we use the standard
condition f(µ(X); θ) ≥ 1 − ξ+ (maintaining the slack variable, ξ+). Else, if the bag X contains many
instances, the threshold imposed on the classifier is gradually more and more relaxed.

The sMIL algorithm assumes that the positive bags are sparse. An abstract maymention each entity in
the candidate pair multiple times, but due to the limitation of the number of words the relation is usually
stated only once. Non-biomedical RE systems already applied similar techniques to extract Freebase
relations from newspaper articles [Riedel et al., 2010], and to reduce the number of incorrectly labeled
relations (by distant supervision methods) [Min et al., 2013].

2.5 Neural Networks for Relation Extraction

Artificial neural networks have multiple different architectures implementations and variants. They often
use data representations as additional sources of information to perform text mining tasks, and can even
use ontologies as external sources of information to enrich the model.

2.5.1 Architectures

Artificial Neural Networks are a parallel combination of small processing units (nodes) which can ac-
quire knowledge from the environment through a learning process and store the knowledge in the connec-
tions between the nodes [Haykin, 1998] (represented by direct graphs [Guresen and Kayakutlu, 2011])
(Figure 2.2). The process is inspired by the biological brain function, having each node corresponding to
a neuron and the connections between the nodes representing the synapses.

Recurrent Neural Networks (RNN) is a type of artificial neural network where the connections
between the nodes are able to follow a temporal sequence. This means that RNN can use their internal
state, or memory, to process each input sequence (Figure 2.3). Deep learning techniques, such as RNN,
aim to train classification models based on word embeddings, part-of-speech (POS) tagging, and other

15



Chapter 2 Related Work

A B C D

x0

h0 h1 h2 ht

x1 x2 xt...

Figure 2.2: Architecture representation of an artificial neural networks model, where x0-t represents the inputs and
h0-t the respective outputs, for each module from A to D.

features. RNN classifiers have multilayer architectures, where each layer learns a different representation
of the input data. This characteristic makes RNN classifiers flexible to multiple text mining tasks, without
requiring task-specific feature engineering.

A A A A

x0

h0 h1 h2 ht

x1 x2 xt

A

ht

xt ...

Figure 2.3: Architecture representation of a recurrent neural networks model, where x0-t represents the inputs and
h0-t the respective outputs, for the repeating module A.

Long Short-Term Memory (LSTM) networks are an alternative to regular RNN [Hochreiter and
Schmidhuber, 1997]. LSTMs are a type of RNN that handles long dependencies (e.g., sentences), making
this classifier more suitable for the biomedical domain, where sentences are usually long and descriptive
(Figure 2.4). In recent years, the use of LSTMs to perform Relation Extraction (RE) tasks has become
widespread in various domains, such as semantic relations between nominals [Miwa and Bansal, 2016].
Bidirectional LSTMs use two LSTM layers, at each step, one that reads the sentence from right to left,
and other that reads from left to right. The combined output of both layers produces a final score for each
step. Bidirectional LSTMs have yield better results than traditional LSTMs when applied to the same
data sets [Zhang et al., 2015].
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A A

xt-1

ht-1 ht ht+1

xt xt+1

l0 l1 l2 l3

Figure 2.4: Architecture representation of a long-short-term memory networks model, where x0-t represents the
inputs and h0-t the respective outputs, for the repeating module A, where each repeating module has four interacting
layers (l0-3).

2.5.2 Data Representations

The combination of multiple and different language and entity related data representations is vital for the
success of neural network models dedicated to RE tasks. Some of these features were already described
in Section 2.1, such as POS tagging and parse trees.

Shortest Dependency Path (SDP) is a feature that identifies the words between two entities men-
tioned in the text, concentrating the most relevant information while decreasing noise [Xu et al., 2015].

Word Embeddings are fixed-sized numerical vectors that aim to capture the syntactic and semantic
word relationships. These word vectors models use multiple different pre-training sources, for instance,
Word2Vec [Mikolov et al., 2013] uses English Wikipedia, and BERT [Devlin et al., 2018] uses both
English Wikipedia and BooksCorpus. Early models, such as Word2Vec, learned one representation per
word, but this proved to be problematic due to polysemous and homonymous words. Recently, most
systems started to apply one embedding per word sense. One of the reasons why BERT outperforms
previous methods is because it uses contextual models, meaning that it generates a unique representation
for each word in a sentence. For instance, in the sentences fragments, they got engaged, and students
were very engaged in, the word engaged for non-contextual models would have the samemeaning. BERT
also outperforms other word vector models that take into account the sentence context, such as ELMo
[Peters et al., 2018] and ULMFit [Howard and Ruder, 2018], due to being an unsupervised and deeply
bidirectional pre-trained language representation.

WordNet Hypernyms are a feature that helps to hierarchize entities, structuring words similar to
direct acyclic graphs [Fellbaum and Miller, 1998]. For example, vegetable is a hypernym of tubers,
which in turn constitutes a hyponym of vegetable. This feature is comparable to an ontology in the sense
that a hierarchy relation is identified, but is missing the identification of the relations between the different
terms.
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Using different features as information sources feeding individual channels leads to multichannel
architecture models. Multichannel approaches were already proven to be effective in RE tasks [Xu et al.,
2015].

Regarding biomedical RE, LSTMs were successful in identifying drug-drug interactions [Wang et al.,
2017], gene-mutation relations [Song et al., 2018], drug-mutation relations [Peng et al., 2017], among
others. Some methods use domain-specific biomedical resources to train features for biomedical tasks.
BioBERT [Lee et al., 2019] is a domain specific language representation model pre-trained on large-
scale biomedical corpora, based on BERT [Devlin et al., 2018] architecture. BioBERT, using minimal
task-specific architecture modifications, significantly outperforms previous biomedical state-of-the-art
models in the text mining primary tasks of Named-Entity Recognition, Named-Entity Linking, and RE.
The BR-LSTM [Xu et al., 2018] model uses a multichannel approach with pre-trained medical concept
embeddings. Using the Unified Medical Language System (UMLS) concepts, BR-LSTM applies a med-
ical concept embedding method developed by De Vine et al. [2014]. BO-LSTM [Lamurias et al., 2019]
uses the relations provided by domain-specific ontologies to aid the identification and classification of
relations between biomedical entities in biomedical literature.

2.5.3 Ontologies

An ontology is a structured way of providing a common vocabulary in which shared knowledge is repre-
sented [Gruber, 1993]. Word embeddings can learn how to detect relations between entities but manifest
difficulties in grasping the semantics of each entity and their specific domain. Domain-specific ontolo-
gies provide and formalize this knowledge. Biomedical ontologies are usually structured as a directed
acyclic graph, where each node corresponds to an entity and the edges correspond to known relations
between those entities. Thus, a structured representation of the semantics between entities and their re-
lations, an ontology, allows us to use it as an added feature to a machine learning classifier. Some of the
biomedical entities structured in publicly available ontologies are genes properties/attributes (Gene On-
tology (GO)), phenotypes (Human Phenotype Ontology (HPO)), diseases (Disease Ontology (DO)), and
chemicals (Chemical Entities of Biological Interest (ChEBI)). All of these entities participate in relations
with different and same domain type entities. Hence, the information about each entity on a semantic
level adds a new layer of knowledge to increase the performance of RE classifiers. For that end, this
work uses the HPO and GO ontologies. The HPO is responsible for providing a standardized vocab-
ulary of phenotypic abnormalities encountered in human diseases, using biomedical literature [Köhler
et al., 2017]. The goal of this ontology is to facilitate medical documents readiness and exchange of
medical information between medical professionals and researchers. The HPO entities are often long
and descriptive, not following a specific nomenclature, making it hard to identify in unstructured text.
The HPO currently contains over 13.000 terms and over 156.000 annotations to hereditary diseases. The
GO defines a universe of concepts regarding gene functions (GO terms) and their relations [Ashburner
et al., 2000]. The GO encompass three categories (sub-ontologies): molecular function (11.110 terms),
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cellular component (4.206 terms), and biological process (29.687 terms), and three types of relations,
is a, part of and regulates. As in HPO terms, GO terms are usually long and descriptive. The primary
goal of this ontology is to create a dynamic controlled vocabulary that can be applied to all eukaryotes,
allowing for inferences regarding gene function by connecting different organisms.

Non-biomedical models using ontologies as an added source of information to neural networks is
becoming widespread for several tasks. Li et al. [2016] propose using word sense definitions, provided by
the WordNet ontology, to learn one embedding per word sense for word sense disambiguation tasks. Ma
et al. [2017] focus their work on semantic relations between ontologies and documents, using the DBpedia
ontology. Some researchers explored graph embedding techniques [Goyal and Ferrara, 2018] that convert
relations to a low dimensional space which represents the structure and properties of the graph. Other
researchers have combined different sources of information, including ontological information, to do
multi-label classification [Kong et al., 2013] and used ontology concepts to represent word tokens [Dasigi
et al., 2017].

However, few authors have used biomedical ontologies to perform RE. Textpresso [Müller et al.,
2004] is a text-mining system that works as a search engine of individual sentences, acquired from the
full text of scientific articles, and articles. It integrates biomedical ontological information (e.g., of genes,
phenotypes, and proteins) allowing for article and sentence search a query by term. The integration of the
ontological information allows for semantic queries. This system helps database curation by automati-
cally extracting biomedical relations. The IICE [Lamurias et al., 2014] system uses kernel-based support
vector machines along with an ensemble classifier to identify and classify drug-drug interactions, linking
each chemical compound to the ChEBI ontology. Tripodi et al. [2017] system focus on drug-gene/protein
interaction discovery to aid database curation, making use of ChEBI and GO ontologies. BO-LSTM
[Lamurias et al., 2019] is the only model until now that incorporates ancestry information from biomed-
ical ontologies with deep learning to extract relations from the text, specifically drug-drug interactions
and gene-phenotype relations.

2.6 Evaluation Measures

The evaluation of machine learning systems is done by applying the trainedmodels to a gold standard test-
set, manually curated or annotated by domain experts and unseen by the system. For a Relation Extraction
(RE) task, the gold standard test-set should correspond to the list of pairs of entities (e.g., phenotype-gene
or gene-disease pairs) that co-occur in the same sentences and their relation (Known or Unknown). To
any given information extraction system it is necessary to define what constitutes a positive and negative
result. In RE tasks the types of results possible are shown in Table 2.1.

The primary goal of a given information retrieval system is to maximize the number of TP and TN.
To compare results obtained with different data sets or different tools we have three distinct evaluation
metrics: recall, precision and F-measure. Precision represents how often the results are correct, recall the
number of correct results identified and F-measure is a combination of both metrics to express overall
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Table 2.1: Types of results obtained with an information extraction system for a RE task.

Annotator (Gold Standard) System Classification

Relation
Relation True Positive (TP)

No Relation False Negative (FN)

No Relation
Relation False Positive (FP)

No Relation True Negative (TN)

performance, being the harmonic mean of precision and recall:

Recall =
TP

TP + FN
Precision =

TP

TP + FP
F −measure =

2× Precision×Recall

Precision+Recall
(2.4)

The performance of the most recent systems dedicated to biomedical RE, described in Section 2.5.2,
is shown in Table 2.2. These systems are not comparable, since each system is focused on the relations
between different biomedical entities, and even addresses more than binary relations, such as the Graph
LSTM (GOLD) system.

Table 2.2: Biomedical RE systems current performance.

System Precision Recall F-Measure

DLSTM [Wang et al., 2017] 0.7253 0.7149 0.7200

Graph LSTM (GOLD) [Song et al., 2018] 0.4330 0.3050 0.3580

BioBERT [Lee et al., 2019] 0.8582 0.8640 0.8604

BR-LSTM [Xu et al., 2018] 0.7152 0.7079 0.7115

BO-LSTM [Lamurias et al., 2019] 0.6572 0.8184 0.7290

For RE tasks a human acceptable performance is usually around 85/90% in F-measure [Aroyo and
Welty, 2015]. To facilitate the creation of gold standards we should strive for semi-automation, that is,
employ automatic methods for corpora annotation (creating silver standard corpora), and then correct
those annotations using domain-specific curators.

The inter-curator agreement metric, that is going to be used in this work to evaluate the quality of the
curation of the silver standard corpus annotations, is calculated through the Cohen’s Kappa Coefficient
(κ) [Cohen, 1960]:

κ =
P (A)− P (E)

1− P (E)
(2.5)

where P(A) corresponds to the percentage of agreement and P(E) the percentage that was expected
inter-curators or inter-annotators to agree by chance.
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Chapter 3

A Silver Standard Corpus of
Phenotype-Gene Relations

The main problem of the systems that perform biomedical Relation Extraction (RE) is a lack of spe-
cific high quality annotated corpora, a gold standard corpus, mostly because this task requires not only a
considerable amount of manual effort but also specific expertise that is not widely available. A solution to
these limitations is to generate the corpus in a fully automated manner, creating a silver standard corpus.

To extract human phenotype-gene relations, both entities, human phenotypes, and genes, have to
be recognized. With genes, as a result of lexical features being relatively regular, many systems can
successfully identify them in text [Leaman andGonzalez, 2008]. Even thoughNamed-Entity Recognition
(NER) research has significantly improved in the last years, human phenotype identification is still a
complex task, only tackled by a handful of systems [Lobo et al., 2017].

Thus, to generate a silver standard for human phenotype-gene relation extraction, we need a pipeline
that performs:

• NER to recognize genes and human phenotype entities.

• RE to classify a relation between human phenotype and gene entities.

There is no corpus available specific to human phenotype-gene relations. This chapter will present
the work developed to overcome this issue, by creating a large and versatile silver standard corpus, able
to be applied to Machine Learning (ML) tools. To assess the quality of the Phenotype-Gene Relations
(PGR) corpus, eight curators manually evaluated a subset of the PGR.

3.1 Methods

The Human Phenotype Ontology (HPO) [Köhler et al., 2017] is responsible for providing a standardized
vocabulary of phenotypic abnormalities encountered in human diseases. The developers of the HPO also
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made available a knowledge base that links these phenotypic abnormalities to genes. These phenotype-
gene relations are regularly extracted from texts in the OnlineMendelian Inheritance inMan (OMIM) and
Orphanet (ORPHA) databases, where all phenotype terms associated with any disease that is related with
a gene are assigned to that gene in the relations knowledge base. In this work, the relations knowledge
base created by HPO was used as a gold standard for human phenotype-gene relations.

The first step was retrieving abstracts from PubMed, using the genes involved in phenotype-gene
relations and homo sapiens as keywords, and the Entrez Programming Utilities (E-utilities) web service1,
retrieving one abstract per gene (Query 1)2 (Example 3.1).

Later, the keyword disease and a filter for abstracts in English were added (Query 2)3. Query 2
represents a more focused search of the type of abstracts to retrieve, such as abstracts regarding diseases,
their associated phenotypes and genes.

For each gene, the system selected the most recent abstract (Query 1) the two most recent abstracts
(Query 2).

Example 3.1 PubMed query 1 result example.

• Keywords: NF2 and homo sapiens

• Abstract Identifier: 30194202

• Abstract Title: Demographical Profile and Spectrum of Multiple Malignancies in Children and
Adults with Neurocutaneous Disorders

The query searched by gene name and not human phenotype or the combination of both terms because
this approach was the one that retrieved abstracts with the higher number of gene and human phenotype
annotations, in the following NER and RE phases. The abstracts that did not check the conditions of
being written in English, with a correct XML format and content, were removed. The final number of
abstracts was 1712 for Query 1 and 2657 for Query 2 as presented in Table 3.1.

The next step was to use the Minimal Named-Entity Regonition (MER) tool [Couto and Lamurias,
2018] for the annotation of the genes and the IHP framework for the annotation of human phenotype
terms.

3.1.1 Gene Extraction

MER is a dictionary-based NER tool which given any lexicon or ontology (e.g., an OWL file) and an
input text returns a list of recognized entities, their location, and links to their respective classes.

To annotate genes with MER it is necessary to provide a file of gene names and their respective
identifiers. To this end, the system used a list created by the HUGO Gene Nomenclature Committee

1https://www.ncbi.nlm.nih.gov/books/NBK25501/
2Query 1, corresponds to the 10/12/2018 release of PGR
3Query 2, corresponds to the 11/03/2019 release of PGR
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Table 3.1: The final number of abstracts retrieved, number of phenotype and gene annotations extracted and the
number of known, unknown and total of relations extracted between phenotype and genes, for Query 1 and 2.

Query Abstracts
Annotations Relations

Phenotype Gene Known Unknown Total

1
(10/12/2018)

1712 5676 13835 1510 2773 4283

2
(11/03/2019)

2657 9553 23786 2480 5483 7963

(HGNC) at the European Bioinformatics Institute4. The HGNC is responsible for approving unique
symbols and names for human loci, including protein-coding genes, ncRNA genes, and pseudogenes,
with the goal of promoting clear scientific communication. Considering that the goal was not only to map
the genes to their names but also their Entrez Gene5 identifiers, the system used the API from MyGene6

with the keyword human in species. The MyGene API provides several gene characteristics, including
the confidence score for several possible genes that match the query. For this work, the choice was the
Entrez Gene identifier with the higher confidence score. The first option was the Entrez Gene identifiers
because of their widespread use in the biomedical research field.

After corresponding all gene names to their respective identifiers, there were three genes that did
not have identifiers (CXorf36, OR4Q2, and SCYGR9). For the first two genes (CXorf36 and OR4Q2), a
simple search in Entrez Gene allowed us to match them to their identifiers. The last gene (SCYGR9) did
not have an Entrez Gene identifier, so the second option was to use the HGNC identifier for that gene
instead.

To the original gene list, were added gene synonyms using a synonyms list file7 (expanding the
original list almost 3-fold). These synonyms were matched to their identifiers and filtered according
to their length to exclude one character length synonyms and avoid a fair amount of false positives.
The number of genes in the original gene list was 19194, and by including their synonyms that number
increased to 56670, representing a total gain of 37476 gene names.

At last, some missed gene annotations were identified using regular expressions. These missed gene
annotations were next to forward/back slash and dashes characters (Example 3.2).

Example 3.2Missed gene annotation because of forward slash.

• Gene: BAX

• Gene Identifier: 581
4http://www.genenames.org/
5www.ncbi.nlm.nih.gov/gene/
6http://mygene.info/
7https://github.com/macarthur-lab/gene_lists
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• Abstract Identifier: 30273005

• Sentence: According to the morphological observations and DNA fragmentation assay, the MPS
compound induced apoptosis in both cell lines, and also cause a significant increase in the expres-
sion of Bax/Bcl-2.

3.1.2 Phenotype Extraction

IHP is aMachine Learning-basedNER tool, specifically created to recognize HPO entities in unstructured
text. It uses Stanford CoreNLP [Manning et al., 2014] for text processing and applies Conditional Random
Fields trained with a rich feature set, combined with hand-crafted validation rules and a dictionary to
improve the recognition of phenotypes.

The IHP system was updated for the most recent version8 of the HPO ontology. The annotations
that originated from the IHP system were matched to their HPO identifier. There were a total of 7478
annotations for Query 1 and 10973 annotations for Query 2 that did not match any HPO identifier. These
annotations were gathered to be confirmed or discarded manually, as some of them are incorrectly iden-
tified entities but others are parts of adjacent entities that can be combined for an accurate annotation.

The MER system was not used for phenotype extraction mainly because a more efficient tool for this
taskwas availablewithout the limitations of a dictionary-basedNER tool for complex terms as phenotypes
are.

3.1.3 Relation Extraction

After filtering abstracts that did not have annotations of both types, gene, and phenotype, the total of
abstracts for Query 1was 1712 and for Query 2was 2656 abstracts as presented in Table 3.1. The abstracts
retrieved by Query 1 were not specific enough for human phenotype-gene relations and therefore about
half of them did not contain entities from both types, which was addressed in Query 2, increasing from
an average of 2.5 relations per abstract to about 3.0 relations per abstract.

Using a distant supervision approach, with the HPO knowledge base that links phenotypic abnormal-
ities to genes, it was possible to classify a relation with Known or Unknown. The Known relations are
relations that are in the knowledge base and theUnknown relations are relations that are not yet identified
or that do not exist. For this end, the system extracted pairs of entities, of gene and human phenotype,
by co-occurrence in the same sentence (Example 3.3). The final number of both Known and Unknown
annotations is also presented in Table 3.1.

Example 3.3 Relation extraction.

• Abstract Identifier: 23669344
809/10/2018 release
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• Sentence: A homozygous mutation of SERPINB6, a gene encoding an intracellular protease in-
hibitor, has recently been associated with post-lingual, autosomal-recessive, nonsyndromic hear-
ing loss in humans (DFNB91).

• Gene: SERPINB6

• Gene Identifier: 5269

• Phenotype: hearing loss

• Phenotype Identifier: HP_0000365

• Relation: Known

3.2 Evaluation

To evaluate the quality of the classifier, 260 relations were randomly selected fromQuery 1 to be reviewed
by eight curators (50 relations each, with an overlap of 20 relations). Curators were researchers work in
the areas of Biology and Biochemistry. These curators had to evaluate the correctness of the classifier
by attributing to each sentence one of the following options: C (correct), I (incorrect) or U (uncertain).
The U option was given to identify cases of ambiguity and possible errors in the NER phase. A true
positive (TP) was a Known relation that was marked C by the curator, a false positive (FP) was a Known
relation marked I, a false negative (FN) was a Unknown relation marked I and a true negative (TN) was
a Unknown relation marked C.

3.3 Results and Discussion

The final results are presented in Table 3.2. The inter-curator agreement score, calculated from a total of
20 relations classified by eight curators, was 87.58%. Besides the fact that there were a few incorrectly
extracted relations due to errors in the NER phase, that were discarded, the inter-curator agreement is not
higher due to the complexity of the sentences where the relations between entities were identified. Even
with highly knowledgeable curators in the fields of Biology and Biochemistry, most of them expressed
difficulties in deciding which mark to choose on complex sentences that did not necessarily imply a
relation between the identified entities (Example 3.4).

Example 3.4 Relation marked with U (Uncertain).

• Abstract Identifier: 27666346

• Sentence: FRMD4A antibodies were used to probe 78 paraffin-embedded specimens of tongue
squamous cell carcinoma and 15 normal tongue tissues, which served as controls.
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• Mark: U

The most relevant metric for a silver standard corpus, directed towards ML tools, is precision. ML
tools depend on correct examples to create effective models that can detect new cases, afterwards, being
able to deal with small amounts of noise in the assigned labels.

The precision obtained from the test-set (about 6% of the total of relations), was 87.01%. Although
it is not possible to state that this test-set is representative of the overall data-set, it is still strong evidence
of the effectiveness of the RE corpus creation pipeline, especially between human phenotypes and genes,
and other domains with a gold standard relations knowledge base. The lower recall is mostly due to
incorrectly retrieved human phenotype annotations by IHP, that can be manually confirmed in a future
optimized version of the PGR corpus, as some of them are parts of adjacent entities that can be combined
for an accurate annotation.

Table 3.2: The number ofKnown andUnknown relations selected, the number of true positives (TP), false negatives
(FN), false positives (FP) and true negatives (TN), and the evaluation metrics for the Known relations.

Relations Marked Relations Metrics

Known Unknown TP FN FP TN Precision Recall F-Measure

77 143 67 86 10 57 0.8701 0.4379 0.5826

The PGR corpus was made publicly available to the research community.9

9https://github.com/lasigeBioTM/PGR
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Chapter 4

Extracting Phenotype-Gene Relations
Human phenotype-gene relations described in biomedical literature can be used to annotate specialized
databases and provide a deeper understanding of the origin of some phenotypic abnormalities and their
associated diseases. Most Relation Extraction (RE) approaches use supervised machine learning methods
that require annotated data sets. The work developed in Chapter 3 successfully tackles the lack of data
sets with the creation of the PGR corpus, using a distant supervision approach to extract the human
phenotype-gene relations. However, biomedical RE machine learning systems are not prepared to deal
with the specifics of human phenotype and gene entities, and their relations. This chapter proposes two
different learning approaches (Distantly Supervised Multi-instance Learning and Deep Learning) for
human phenotype-gene RE. These methods were developed based on existing biomedical RE systems
that were modified to accommodate human phenotype-gene RE:

• IBRel [Lamurias et al., 2017] is a biomedical RE system, based on distantly supervised multi-
instance learning, developed to extract miRNA-gene relations in the text. This system uses the
TransmiR database [Qiu et al., 2009] as a knowledge base for gold standard miRNA-gene relations.
The system combines distant supervision with a multi-instance learning approach, based on the
sparse multi-instance learning (sMIL) algorithm [Bunescu and Mooney, 2007], to filter negative
candidate pairs.

• BO-LSTM [Lamurias et al., 2019] is the first biomedical RE system to incorporate semantic and
ancestry information from biomedical ontologies along with deep learning techniques. BO-LSTM
is a system that was developed to detect and classify drug-drug interactions in text. The system
represents each entity as the sequence of its ancestors in an ontology, using the Chemical Entities of
Biological Interest (ChEBI) ontology [Hastings et al., 2015]. In addition to ontologies, it uses word
embeddings and WordNet [Fellbaum and Miller, 1998] data representations to perform biomedical
RE.

This chapter will present a brief overview of the general methods used to create the IBRel and the BO-
LSTM classifiers, and a detailed description of the necessary system adjustments to accommodate human
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phenotype-gene RE. These system modules, dedicated to human phenotype-gene RE, will be evaluated
using the PGR corpus developed in Chapter 3. To further discuss the benefits of each approach, it is
relevant to employ other RE approaches, namely, a co-occurrence (or all-true) baseline method, the state-
of-the-art BioBERT application [Lee et al., 2019], and a bootstrap theoretical approach that leverages of
both developed modules, also using the PGR corpus. Finally, the chapter will end with the presentation
of the results of all the implementations and a comprehensive discussion of the benefits and downsides
of each approach.

4.1 Methods

The main goal of all of the models described in this chapter is to extract relations from unstructured or
highly heterogeneous text. However, each system expects different data format inputs (instances) and
uses resources of distinct external sources of knowledge plus the training data to build them. This section
will provide an overview of these differences, and the necessary steps to successfully perform human
phenotype-gene RE using these learning methods.

4.1.1 Distantly Supervised Multi-instance Learning Module

The resources needed to perform distantly supervised multi-instance learning (the input text and a knowl-
edge base) were already presented in Chapter 3. The knowledge base for the application of this method
was also the HPO gold standard relations knowledge base that links phenotypic abnormalities to genes,
with the added synonyms for the gene entities. Therefore, this section will focus on the bag-of-instances
representations, the model itself, and the necessary changes needed to perform human phenotype-gene
RE. Figure 4.1 shows the IBRel system general workflow, and a model simplification in bold.

The input data is used to generate instances to be classified by the model. Each instance represents a
candidate pair of entities and consists of multiple relevant data representations besides the entities offsets.
For example, using word context windows (of sizes 1, 3, and 5), each word, in each sentence fragment
that encompasses a candidate relation, goes through lemmatization and part-of-speech (POS) tagging.
Then, these instances are converted into bag-of-instances representations, using the scikit-learn library
[Pedregosa et al., 2011].

4.1.1.1 Bag-of-Instances Representations and Model

Multi-instance learning is a particular case of a supervised machine learning method since it uses a
training-set composed of labeled bags instead of labeled instances. The multi-instance learning approach
performed is based on the sMIL algorithm. The sMIL algorithm assumes that the data is sparse, implicat-
ing that for each bag only a few candidate pairs are positive. The general assumption is that if two entities
preserve a relation in a knowledge base, at least one sentence that mentions the entity pair expresses the
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Input	Text

	Distant	Supervision Multi-instance	Learning

Knowledge	Base

Figure 4.1: IBRel workflow. The input text corresponds to sentences retrieved from PubMed abstracts, and the
knowledge base corresponds to the HPO gold standard relations knowledge base. The double arrow represents
a dependency between the multi-instance learning step and the distant supervision step. Each bag created by
the multi-instance learning step is labeled positive if a pair exists in the reference knowledge base, and negative
otherwise.

relation [Surdeanu et al., 2012]. Thus, it is necessary to decide how to represent human phenotype-gene
relations in the form of bags.

In this model, each bag is an instance that can contain multiple entries corresponding to the same
relation candidate, for the entire corpus. Figure 4.2 presents an example sentence retrieved from the PGR
corpus, with five entity annotations. Taking into account that entity E1 and entity E5 are the same, in
this sentence, it is possible to extract four unique candidate pairs, that correspond to four different bags
with the distinct text mentions. A bag is labeled as positive (label 1) if the candidate pair exists in the
reference knowledge base, and negative (label 0) if the candidate pair does not correspond to an entry in
the knowledge base.

After creating the bags, the sMIL algorithm was used to generate the classification model, using the
miSVM package1, with the default values.

The original IBRel system source code was in Python 2.7. For the new human phenotype-gene RE
model the source code was updated to Python 3.62. Most of the original packages were incompatible
with this new version of the system but there were updated versions available. One of the most relevant
packages for this system is the miSVM that did not have an updated version. Therefore, it was necessary
to develop a Python 3 miSVM compatible version to apply to the model.

4.1.2 Deep Learning Module

This section describes the BO-LSTM model with an emphasis on the modifications to allow human
phenotype-gene RE integration. Figure 4.3 shows a simplification of the overall model architecture.

1https://github.com/garydoranjr/misvm
2https://github.com/lasigeBioTM/IBRel/tree/IBRel_Python3.6
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The	CRB1	and	AC02	genes	are	key	targets	in	the	fight	against	blindness	and	optic-nerve	degeneration,	

as	CRB1	provides	instructions	for	making	a	protein	that	plays	an	essential	role	in	normal	vision.

E1

E5

E3 E4

blindness	
CRB1

E3	-	E1
E3	-	E5

optic-nerve
degeneration

CRB1

E4	-	E1
E4	-	E5

E2

blindness
AC02

E3	-	E2

optic-nerve
degeneration

AC02

E4	-	E2

bag	1 bag	2 bag	3 bag	4

Figure 4.2: Multi-instance learning bags. Each bag represents one instance, a representation of a candidate human
phenotype-gene relation, for the corpus. The bags 1 and 4 are positive (labeled 1), and the bags 2 and 3 are negative
(labeled 0).

4.1.2.1 Data Representations

The BO-LSTM model uses a combination of different language and entity related data representations,
that feed individual channels creating a multichannel architecture. The input data is used to generate
instances to be classified by the model. Each instance corresponds to a candidate pair of entities in a
sentence. To each instance, the model is going to assign a positive or negative class. In this case study, a
positive class corresponds to an identified relation between a human phenotype and a gene entity, where
the nature of this relation is always of causality, and a negative class implies no relation between the
different entities.

An instance should condense all relevant information to classify a candidate pair. To create an in-
stance the BO-LSTM model relies on three primary data information layers (Figure 4.3). After sentence
tokenization, these layers are:

• Shortest Dependency Path (SDP) between the entities of the candidate pair. For instance, in the
sentence The CRB1 gene is a key target in the fight against blindness, the shortest path between
the entities would be CRB1 - gene - is - target - in - fight - against - blindness, using the spaCy
software library3. Every word is replaced by a generic string to minimize the impact of specific
words in the model. The model uses pre-trained word embeddings vectors trained on abstracts and
full documents from PubMed (more than 29 million) [Pyysalo et al., 2013], using the Word2Vec
algorithm [Mikolov et al., 2013]. These vectors are more relevant for biomedical tasks than vectors
trained on a generic corpus.

• WordNet Classes, using the tool developed by Ciaramita and Altun [2006], matches each element
3https://spacy.io/
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Word	Embeddings WordNet	Classes Ontology	Embeddings

Dense
(d=50)

Softmax
(d	=	2)

A B C

Shortest	
Dependency	Path

Figure 4.3: BO-LSTM model architecture simplification. (A), (B) and (C) represent the three primary data infor-
mation layers that are fed to the model. d is the dimensionality of each embedding layer, (A) corresponds to the
Word Embeddings, (B) to the WordNet Channel and (C) the Ontology Embeddings.

in the SDP to a WordNet hypernym class. For instance, using the previous sentence, it would be
CRB1noun.e1 - genenoun - isverb - targetnoun - inadverb - fightnoun - 0 - blindnessnoun.e2.

• Ontology Embeddings represents the relations between the ancestors for each ontology concept
corresponding to an entity (Figure 4.4).

The model assumes that the input data already has the offsets of the relevant entities identified and
their respective concept ID, the Named-Entity Recognition and Linking tasks. However, while human
phenotype entities identifiers already corresponded to an ontology concept ID (Human Phenotype On-
tology (HPO) [Köhler et al., 2017]), gene entities had only a National Center for Biotechnology Infor-
mation (NCBI) identifier4. Genes have several designated ontologies, for example the Gene Ontology
[Ashburner et al., 2000] that describes gene properties/attributes. The Gene Ontology provides a compu-
tational representation of our current scientific knowledge about the functions of genes and it is widely
used to support scientific research.

The solution to overcome this problem was to match each gene to their most representative GO con-
cept within the biological process category (sub-ontology). Each gene has a corresponding set of GO
terms inferred from different sources and with different degrees of confidence. NCBI provides a list5 of
genes to GO relations and their evidence codes. There are twenty-six different evidence codes, that fall

4https://www.ncbi.nlm.nih.gov/
5https://ftp.ncbi.nlm.nih.gov/gene/DATA/
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into six general categories: experimental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, HTP, HDA,
HMP, HGI, and HEP), phylogenetically-inferred annotations (IBA, IBD, IKR, and IRD), computa-
tional analysis evidence codes (ISS, ISO, ISA, ISM, IGC, and RCA), author statement evidence codes
(TAS, and NAS), curator statement evidence codes (IC, and ND), and electronic annotation evidence
code (IEA) (Table 4.1). To match the gene to their most representative GO term the priority was given
to concepts inferred from experiments, for having a more sustained background and usually be more de-
scriptive (Example 4.1). For tie-breaking, if we have several GO terms inferred from experiments, the
choice is the one term that is the most specific with the longer ancestry line.

Example 4.1 Selection of the most representative GO term for the CRB1 gene, organized by priority
order of the evidence code.

• Gene: CRB1

• Gene NCBI Identifier: 23418

• Biological Process Annotations:

– GO:0007009 - IEA - plasma membrane organization (4th)

– GO:0007157 - EXP - heterophilic cell-cell adhesion via plasma membrane cell adhesion
molecules (1st)

– GO:0007163 - TAS - establishment or maintenance of cell polarity (3rd)

– GO:0045197 - IBA - establishment or maintenance of epithelial cell apical/basal polarity
(2nd)

4.1.2.2 Model

The most relevant part of this work is the implementation of the ontology embeddings in the model. An
ontology describes a formal definition of concepts related to a specific subject and can be represented
by a tuple < C,R >, where C represents the set of concepts in an ontology and R the set of relations
between the concepts of the same ontology. The type of ontology relations considered were subsumption
relations, is-a due to its transitive aspect. For instance, if we have (c1, c2) ∈ R, and (c2, c3) ∈ R, we
assume that (c1, c3) is a valid relation within the ontology. The ancestors of each concept c are given by:

Anc(c) = a : (c, a) ∈ T (4.1)

where T is the transitive closure of R. A relation between different ontology concepts can be repre-
sented by (p1, g1), where p1 ∈ P and P represents the set of concepts in the HPO, and g1 ∈ G and G

represents the set of concepts in the Gene Ontology. For instance, if we have (p2, g2) ∈ RA, where RA

is the set of relations between ancestors, and p2 is-a p1, and g2 is-a g1, then we can assume that (p1, g1)
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Table 4.1: Gene Ontology (GO) evidence codes.

Category Evidence Codes

Experimental

Inferred from Experiment (EXP)

Inferred from Direct Assay (IDA)

Inferred from Physical Interaction (IPI)

Inferred from Mutant Phenotype (IMP)

Inferred from Genetic Interaction (IGI)

Inferred from Expression Pattern (IEP)

Inferred from High Throughput Experiment (HTP)

Inferred from High Throughput Direct Assay (HDA)

Inferred from High Throughput Mutant Phenotype (HMP)

Inferred from High Throughput Genetic Interaction (HGI)

Inferred from High Throughput Expression Pattern (HEP)

Phylogenetically-inferred

Inferred from Biological aspect of Ancestor (IBA)

Inferred from Biological aspect of Descendant (IBD)

Inferred from Key Residues (IKR)

Inferred from Rapid Divergence (IRD)

Computational Analysis

Inferred from Sequence or structural Similarity (ISS)

Inferred from Sequence Orthology (ISO)

Inferred from Sequence Alignment (ISA)

Inferred from Sequence Model (ISM)

Inferred from Genomic Context (IGC)

Inferred from Reviewed Computational Analysis (RCA)

Author Statement
Traceable Author Statement (TAS)

Non-traceable Author Statement (NAS)

Curator Statement
Inferred by Curator (IC)

No biological Data available (ND)

Electronic Annotation Inferred from Electronic Annotation (IEA)

is a valid relation. The concatenation of the relations between the ancestors of concepts p2 and g2 can be
defined using:

ConcRA(p2, g2) = Anc(p2) ⋊⋉ Anc(g2) (4.2)
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Figure 4.4 shows an overview of a representation for a candidate pair based on the ancestry of its
elements, using the most representative GO term as shown in Example 4.1.

Blindness
(HP:0000618)

heterophilic	cell-cell	adhesion	via
plasma	membrane	cell	adhesion

molecules
(GO:0007157)

cell-cell	adhesion	via	
plasma-membrane	adhesion	molecules	

(GO:0098742)

biological_process	
(GO:0008150)

Visual	impairment
(HP:0000505)

Phenotypic	abnormality
(HP:0000118)

is	a

is	a

is	a

is	a

relation

possible
relation

root root

Figure 4.4: BO-LSTM ontology embedding illustration based on the HPO and the Gene Ontology, for the candidate
relation between the human phenotype blindness and the gene CRB1 (represented by the GO term heterophilic cell-
cell adhesion via plasma membrane cell adhesion molecules)

Figure 4.5 presents the detailed workflow of the Ontology Embeddings in Figure 4.3. Each concate-
nation of relations between ancestors corresponds to one-hot vector vc, a vector of zeros except for the
position that corresponds to the ID of the concepts. An embedding matrixM ∈ RD×C transforms these
sparse vectors into dense vectors, where D is the dimensionality of the embedding layer and C is the
number of concepts of the ontologies. Then, the output of the embedding layer is given by:

f(c) = M · vc (4.3)

Formerly, the ontology embedding layer, with a dimensionality of 50, initializes its values randomly
so that they could later be tuned, through back-propagation. This size was the one that performed the
best after testing with the sizes 50, 100, and 150, as suggest by Xu et al. [2015]. Then, the sequence of
vectors representing the relations between the ancestors of the terms is fed into the LSTM layer, showed
in detail in Figure 4.5. Finally, the system uses a max pool layer, which is fed into a dense layer through
a sigmoid activation function, and a softmax layer outputs the probability for each class.

Deep learning models map a set of inputs to a set of outputs from the training data. It is not feasible
to calculate the perfect weights for a neural network, because it is not a linear problem. Thus, the issue
of learning assumes the form of an optimization problem. To approach this optimization problem, we
use different optimization algorithms to try to enhance our predictions. In this work, the model was
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LSTM
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Figure 4.5: Ontology embedding workflow, using the sequence in Figure 4.4 as an example. ◦ refers to sigmoid
function, ⊏⊐ to tanh, x to element-wise multiplication, and + to element-wise addition. h is the hidden unit, m̃ the
candidate memory cell,m a memory cell, i the input gate, f the forget gate, and o the output gate.

trained using a stochastic gradient descent optimization algorithm where weights were updated using the
back-propagation of error algorithm. At each iteration, the model with a given set of weights creates
predictions and computes the error for those predictions. The optimization algorithm seeks to alter the
weights to reduce that error in the next evaluation. The relevant configurations of this model are:

• Mini-batch Gradient Descent Optimization Algorithm: RMSprop.

• Learning Rate: 0.001 (default value for RMSprop).

• Loss Function: Categorical Crossentropy.

• Dropout Rate: 0.500 (every layer except the penultimate and output layers).
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The dropout strategy adopted [Hinton et al., 2012] reduced the overfitting on the trained embeddings
and weights.

4.2 Evaluation

The corpus used to evaluate each module was the PGR corpus, described in Chapter 3. The measures
used to evaluate the performance of the RE modules were precision, recall, and F-measure.

To further assess the quality of the developed implementations, it was relevant to employ other RE
approaches, namely a co-occurrence baseline method, the state-of-the-art application BioBERT, and a
bootstrap theoretical approach that leverages both developed modules. These approaches were also eval-
uated using the PGR corpus.

4.2.1 Co-occurrence Baseline Method

The applied co-occurrence approach consists of considering every human phenotype-gene pair in the
same sentence as positive. This approach produces a high number of false positives and results in a recall
of 1. For even distributions of positive/negative pairs, and specifically for abstracts, the co-occurrence
method can achieve, for some data sets, almost state-of-the-art results [Dai et al., 2019].

4.2.2 BioBERT Application

The BioBERT system is a new pre-trained biomedical language representation model for biomedical
text mining based on the BERT [Devlin et al., 2018] architecture. This system, trained on large-scale
biomedical corpora, can perform diverse biomedical text mining tasks, namely Named-Entity Recogni-
tion (NER), RE and Question Answering (QA). The novelty of the architecture is that these systems,
BioBERT and BERT, are designed to pre-train deep bidirectional representations by jointly conditioning
on both left and right context in all layers. This feature allows easy adaption to several tasks without loss
in performance.

The PGR corpuswas trained and tested using the available pre-trainedweights of the BioBERTmodel.
It was necessary to anonymize the test-set entities, using the pre-defined tags @GENE for gene entities
and @DISEASE for human phenotype entities, for being the tags available closest to the case study of
this thesis (human phenotype-gene relations).

4.2.3 Bootstrap Approach (Theoretical)

The bootstrap approach implemented combines the results obtained from the first system (Distantly Su-
pervisedMulti-instance LearningModule, Section 4.1.1) with the second system (Deep LearningModule,
Section 4.1.2). Thus, for each candidate pair, if the classifiers disagree on the classification, and one of
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them classifies the candidate pair with the correct label, that would be the chosen label. Since this ap-
proach requires knowledge of the true labels of the test-set, it cannot be used as a classifier for unlabeled
data. This approach is relevant because it allows us to know where each system fails, i.e., both systems
classify the same sentence in the same way (true positive, false negative, false positive, or true negative)
or if their classification differs, and how much it differs, and why.

4.3 Results and Discussion

Each implementation was evaluated using the PGR corpus, developed in Chapter 3. However, before
presenting the final results it is necessary to mention some evaluation limitations. It is not possible
to dissociate this evaluation from the quality of the NER, Named-Entity Linking (NEL) and RE tasks
performed in the previous chapter. If some entities were poorly identified, not identified at all, or not
linked to the right identifier, then this will reflect on the performance of each different implementation,
when using the PGR corpus. Also, the RE task was performed using a distant supervision approach
resorting to a gold standard knowledge base of relations that is still evolving, growing, and therefore
missing some relations. Thus, it is relevant to keep in mind the silver standard aspect of the PGR corpus,
when interpreting the results. The fact that the classifiers are trained using a silver standard, and not a
gold standard, damages the final performance for each of the implementations.

Table 4.2 presents the human phenotype-gene relation extraction results for each implementation.
Comparing the methods in terms of F-measure, the distantly supervised multi-instance learning module
obtained the best score, while the BioBERT application had the best deep learning performance. In
terms of precision, the deep learning module (without ontology embeddings) obtained a slightly better
score than the deep learning module using the ontology embeddings, while the BioBERT application
outperformed all other implementations, even though all the deep learning-based applications had similar
results. Regarding the recall, the distantly supervised multi-instance learning module clearly outperforms
all other implementations.

The distantly supervised multi-instance learning module relies on the premise that only a few candi-
date pairs in each instance bag are positive. Due to the number of words restriction, is to be expected that
each abstract only mentions a relation one or two times, even if it has more identified domain entities. The
developed system takes into account the sparsity of the positive pairs, by implementing a sparse algorithm
(sMIL). Nevertheless, the model slightly overestimates the number of positive pairs, resulting in a lower
precision when compared to the other implementations. This lower precision/ higher recall is typical for
systems that resort to distant supervision methods, that tend to produce noisy data leading to a higher
number of false positive instances. Not necessarily all sentences that mention an entity pair express the
target relation [Jiang et al., 2018]. When comparing this module with the co-occurrence baseline method,
the difference in precision is 0.3386 in favor of the distantly supervised multi-instance learning module.
The PGR corpus has a lower number of possible candidate pairs per entity when compared to other gold
standards, boosting the performance of distantly supervised multi-instance approaches. In more focused
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Table 4.2: Human phenotype-gene relations extraction results for each implementation, the distantly supervised
multi-instance learning module, and the deep learning module (without ontology embeddings, and using ontology
embeddings). Also, for comparison, the co-occurrence baseline method, the state-of-the-art BioBERT application,
and the bootstrap approach (theoretical).

Implementations
Metrics

Precision Recall F-Measure

Distantly Supervised Multi-instance Learning Module 0.6886 0.7877 0.7348

Deep Learning Module (Without Ontology Embeddings) 0.7564 0.3933 0.5175

Deep Learning Module (With Ontology Embeddings) 0.7333 0.4400 0.5500

Co-occurrence 0.3500 1.000 0.5185

BioBERT Application 0.7895 0.5844 0.6716

Bootstrap Approach (Theoretical) 0.8472 0.8714 0.8592

gold standard data sets, manually annotated, where the manually selected documents are always relevant
for the type of relations annotated, the deep learning approaches usually perform better than for corpora
like the PGR. The original IBRel model best performance was on the corpus that had fewer relations per
entity (more sparse data), also proving this association.

The deep learning module (without ontology embeddings, and using ontology embeddings) was im-
plemented in Keras, a Python-based deep learning library, using the TensorFlow backend. The model
used the data representations layers discussed in Section 4.1.2.1), with the hyperparameters tuned using
the reference values provided by other authors that applied LSTMs to similar data sets [Sahu and Anand,
2018]. At first, the model was implemented using only the word embeddings of the SDP and theWordNet
classes of each candidate pair and then using these two in addition to the ontology embeddings. With
the ontology embeddings, there was an improvement of 0.0325 of the F-measure when comparing with
the model that does not use ontologies. The most relevant contribution for this metric was an increase
in recall, showing that applying ontology embeddings contributes to the identification of more correct
relations.

The co-occurrence baseline method obtained the highest recall because it classified every human
phenotype-gene pair in a sentence as a true relation. However, this resulted in a very low precision
(0.3500), although the corresponding F-measure is comparable to the other implementations. Regarding
the BioBERT application, it significantly outperformed all the other deep learning-based implementations
with an F-measure of 0.6716, proving that is indeed a viable language representationmodel for biomedical
text mining.

The bootstrap approach results show us that each system evaluated most of the test-set sentences
differently. Table 4.3 presents one example sentence for each differently marked candidate pair between
the distantly supervised multi-instance learning module and the deep learning module, as well as the
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number of annotations for each combination of classifications. Sentences 2 and 3 were slightly condensed
to improve their readability.

Table 4.3: Performance comparison for the distantly supervised multi-instance learning (DS) and the deep learning
(DL) modules (different classifications). One example for each differently marked candidate pair between the DS
model and the DLmodel, and the number of occurrences for each type of different classifications combination (true
positive (TP), false negative (FN), false positive (FP), and true negative (TN)).

ID Example Sentences Module Mark Occurrences

1
HDAC4, and RUNX2 expression is suspected to be involved in the
epigenetic regulations behind the mandibular prognathism phe-
notype.

DS FN
12

DL TP

2
Collectively, our study uncovers a protein complex, which consists
of FIGNL1 and KIAA0146/SPIDR, in DNA repair and provides
potential directions for cancer diagnosis and therapy.

DS FP
28

DL TN

3
Single nucleotide polymorphism in infant genes in the folate
(MTHFS), and transsulfuration (GSTP1 and MGST1) pathways
are associated with an increased risk of congenital heart defects.

DS TP
64

DL FN

4
These findings support that UNC119 is a regulator of the RASSF6
and functions as a tumor suppressor.

DS TN
2

DL FP

The number of each type of combination pair of classifications reinforces the strengths and weak-
nesses of each classifier. The distantly supervised multi-instance learning module tends to extract a
higher number of false relations, and the deep learning module a lower number of true relations. The
difficulty for both approaches seems to be in longer, more complex sentences, that do not express an
immediate clear relation, as we can see by the second and third sentences in Table 4.3. The distant super-
vision multi-instance learning-based method has this difficulty due to the overestimation of positive pairs
explained previously. In what concerns to the deep learning method, the difficulty in classifying longer
sentences is even more evident with the 0.4400 in the recall. Long short-term memory (LSTM) networks
are a type of recurrent neural networks (RNN) supposedly more suitable for long dependencies, such
as the referred sentences, but they still fail on the classification of the candidate pairs of most of those
sentences. The BioBERT approach performs better in classifying these sentences, by pre-training deep
bidirectional representations by jointly conditioning on both left and right context in all layers. Table
4.4 shows us three sentences where BioBERT was able to detect the positive candidate pairs, that were
missed by the deep learning module. Sentence 1 corresponds to the sentence 3 in table 4.3.

Table 4.5 presents examples of sentences where both developed modules chose the same classifica-
tion. Sentence 1 was condensed to improve its readability.

The numbers of wrongly identified annotations in common, 18 for false negatives and 20 for false
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Table 4.4: Performance comparison for the BioBERT application and the deep learning module. Three example
sentences that BioBERT was able to detect, and that were missed by the deep learning module.

ID Example Sentences

1
Single nucleotide polymorphism in infant genes in the folate (MTHFS), and transsulfuration (GSTP1 and
MGST1) pathways are associated with an increased risk of congenital heart defects.

2
Based upon the development-dependent onsets of these psychotomimetic effects, by using a DNA mi-
croarray technique, we identified the WD repeat domain 3 (WDR3) and chitobiosyldiphosphodolichol
beta-mannosyltransferase (ALG1) genes as novel candidates for schizophrenia-related molecules.

3
Variants of WNK1 (lysine deficient protein kinase 1), ADRB2 (b2 adrenergic receptor), NEDD4L
(ubiquitin-protein ligase NEDD4-like), KLK1 (kallikrein 1) contribute to hypertension, and AKR1C3
(aldo-keto reductase family1 member C3), is associated with preeclampsia.

Table 4.5: Performance comparison for the distantly supervised multi-instance learning and the deep learning
modules (equal classifications). One example for each equally marked candidate pair by both models, and the
number of occurrences for each classification combination (true positive (TP), false negative (FN), false positive
(FP), and true negative (TN)).

ID Example Sentences Mark Occurrences

1
TREM2 protein levels were also negatively correlated with the severity of
symptoms in humans affected by autism.

FN 18

2

In particular, MYH9 mutations result in congenital macrothrombocytopenia
and predispose to hearing loss, and cataracts, whereas thrombocytopenias
caused by ANKRD26, and ETV6 mutations are characterized by predispo-
sition to hematological malignancies.

FP 20

3
Altogether these data demonstrate that mutations in INPP5K cause a congen-
ital muscular dystrophy syndrome with short stature, cataracts, and intellec-
tual disability.

TP 46

4
In T2D patients, PAX4Arg192His was associatedwith earlier age at diagnosis,
and GLP1R Arg131Gln was associated with decreased risk of cardiovascular
disease.

TN 5

positives, for the developed modules were reasonably balanced. Regarding the true negatives, the lower
number of classifications in common indicates that the systems diverge in the way they classify sentences
with negative candidate pairs, which ultimately means that each system identifies different sets of true
negatives. As discussed above, the deep learning module has difficulties in classifying candidate pairs
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in longer sentences. Thus, the same way this system is missing true positives it can also be more eas-
ily catching true negatives in longer sentences, due to the same justification, the inability to accurately
classify relations in those sentences. In the distantly supervised multi-instance learning module, the true
negatives correspond to straightforward, smaller sentences, with less grammatical complexity. Overall
the developed modules tend to classify candidate pairs more differently than equally, as we can see by
Tables 4.3 and 4.5. Leveraging on this information it could be possible to integrate both systems. For
instance, one could divide the training-set, train a distantly supervised multi-instance learning model with
part of that training-set, then use the remaining of the training-set as the test-set, and use the positive can-
didate pairs identified to train a deep learning model, filtering the negative candidate pairs, and providing
the deep learning model with a more accurate training-set.

Example 4.2 presents one sentence example for a relation correctly identified by both developed
modules, that was not present in the knowledge base. This relation is one of the 25 relations that are
not in the current HPO gold standard knowledge base of human phenotype-gene relations, due to the
knowledge base being relatively recent, and is still in construction and updated frequently6.

Example 4.2 Sentence example for a relation identified by the developed modules, that was not in
the knowledge base.

• Abstract Identifier: 26701950

• Sentence: Germline mutations in KCNJ5 and CACNA1H cause FH-III and FH-IV, respectively,
while germline mutations in CACNA1D cause the rare PASNA syndrome, featuring primary al-
dosteronism seizures and neurological abnormalities.

• Gene: CACNA1D

• Gene Identifier: 8912

• Phenotype: seizures

• Phenotype Identifier: HP_0001250

These systems can be used to effectively populate the HPO knowledge base or others within the same
domain. Also, these approaches, can help reinforce or discard relations between human phenotypes and
genes, and learn more about the origin of some phenotypes and their associated diseases. Ultimately, they
can lead to the validation of the results of new research, and the proposal of new experimental hypotheses.

Future directions to outperform BioBERT could be adding to this model an ontological data represen-
tation layer. Table 4.2 already demonstrated the effectiveness of this additional layer to a deep learning
module. The same impact could be achieved with a BioBERT plus ontology embeddings implemen-
tation. Further improvements could be achieved if we could also incorporate the distantly supervised
multi-instance module and semantic similarity measures.

6last update was the 15/04/2019 release
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Conclusion

The main way we communicate scientific knowledge is through scientific literature. At the current rate of
document growth, the only way to process this amount of information is by using computational methods.
The information obtained through these methods can lead to a better understanding of biological systems.
However, as most learning models require a large amount of training data, applying these learning al-
gorithms to biomedical text mining is often unsuccessful due to the lack of training data in biomedical
fields. This work made an important contribution to overcame this issue by creating a large and versatile
silver standard corpus, the Phenotype-Gene Relations (PGR) corpus.

When creating biomedical text mining systems, it is essential to take into account the specific char-
acteristics of biomedical literature. Biological information follows different nomenclatures and levels of
complexity. The distantly supervised multi-instance and deep learning modules, developed in this work,
were successfully built to accommodate the specificities of human phenotype and gene entities. Thus,
this work accomplished the initial objectives (Section 1.2) with highly promising results, fulfilling the
initial hypothesis (Section 1.2.1).

Following the growing tendency of systems targeting different biomedical relations, there is an in-
creasing need for more domain-specific corpora, that can only be accomplished by automated corpus
creation. The PGR corpus consists of 1712 abstracts, 5676 human phenotype annotations, 13835 gene
annotations, and 4283 relations1. Using Named-Entity Recognition tools and a distantly supervised ap-
proach it was possible to effectively identify and extract human phenotype and gene entities and their
relations. These results were partially evaluated by eight curators, obtaining a precision of 87.01%, with
an inter-curator agreement of 87.58%. The PGR corpus was made publicly available to the research
community.2

Automatic biomedical Relation Extraction (RE) still has a long way to go to achieve human-level
performance scores. Over recent years, some innovative systems have successively achieved better re-
sults by making use of multiple knowledge sources and data representations. These systems not only

1Query 1, corresponds to the 10/12/2018 release of PGR
2https://github.com/lasigeBioTM/PGR

43

https://github.com/lasigeBioTM/PGR


Chapter 5 Conclusion

rely on the training data but make use of different language and entity related features, to create mod-
els that identify relations in highly heterogeneous text. Although, even with an optimal combination of
features and the ideal features to perform biomedical Relation Extraction (RE) tasks are still far from
human level performance. Nevertheless, the results achieved by the distantly supervised multi-instance
and deep learning modules developed in this dissertation, were respectively, 73.48% and 55.00% in F-
measure. These modules were able to detect new gold standard relations that were not present in the
reference knowledge base.

This work showed that the knowledge encoded in biomedical ontologies and gold standard knowl-
edge bases plays a vital part in the development of learning systems, providing semantic and ancestry
information for entities, such as genes, proteins, phenotypes, and diseases. Also, it produced one freely
available silver standard corpus of human phenotype-gene relations; a high-performance distantly super-
vised multi-instance learning module that can effectively extract human phenotype-gene relations from
text; and one deep learning module with an ontological data representation layer (Section 1.4).

Integrating different knowledge sources instead of relying solely on the training data for creating
classification models will allow us not only to find relevant information for a particular problem quicker,
but also to validate the results of recent research, and propose new experimental hypotheses.

This work produced three publications including a book chapter about neural networks, a journal
paper describing the ontologies applications to deep learning systems, and a conference paper describing
the creation of the PGR corpus.

5.1 Future Work

For Chapter 3, future work can include manually correcting the human phenotype annotations that did not
match any HPO identifier, with the potential of expanding the number of human phenotype annotations
almost 2-fold and increasing the overall recall. Also, to expand the corpus by identifying more missed
gene annotations using pattern matching, which is possible due to the approach being fully automated.
Another possibility is the expansion of the test-set for more accurate capture of the variance in the corpus.
For example, we can select a subset of annotated documents in which two curators could work to grasp
the complexity of manually annotating some of these abstracts. Further, it is possible to use semantic
similarity to validate the human phenotype-gene relations. Semantic similarity has been used to compare
different types of biomedical entities [Lamurias and Couto, 2019a] and it is a measure of closeness based
on their biological role. For example, if the BRCA1 gene is semantically similar to the BRAF gene and
the BRCA1 has an established relation with the tumor phenotype, it could be possible to infer that BRAF
gene also has a relation with the tumor phenotype, even if that is not evident by the training data. Finally,
the effect of different NER systems applied to the pipeline should be studied.

Regarding the distantly supervised multi-instance learning module, the parameters of the miSVM
package could be optimized using cross-validation on the PGR corpus, and different algorithms imple-
mented (besides the sparse multi-instance learning (sMIL) algorithm [Bunescu and Mooney, 2007]).

44



Chapter 5 Conclusion

For the deep learning module, it is possible to integrate the ontological information in different ways.
For instance, one could consider only the relations between the ancestors with the highest information
content (more relevant for the candidate pair they characterize). The information content could be inferred
from the probability of each term in each ontology or resorting to an external data-set. Also, the already
mentioned semantic similarity measurement could account for non-transitive relations (within the same
ontology).

Future work may also consist in outperforming the BioBERT application by using their model along
with a data representation layer of biomedical ontologies, given that this work already proved to improve
the recall when comparing with an identical model that did not resort to ontological information.

Lastly, combining the techniques developed and presented throughout Chapters 3 and 4, it would be
useful to develop a software tool in which we could annotate documents with human phenotype and gene
entities and their relations. More than that, to employ and adapt these techniques to other combinations
of biomedical entities to further expand our knowledge about biological systems.
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