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Resumo

As áreas científicas multidisciplinares como a Biomédica, usam normal-
mente redes de ontologias para suportar aplicações como anotação, inte-
gração, pesquisa e análise de dados. Estas redes podem ser construídas
usando técnicas de correspondência de ontologias, no entanto a maioria das
abordagens existentes é limitada a correspondências entre duas ontologias,
sendo a grande maioria das equivalências simples. Em cenários de múltip-
los domínios, é necessário encontrar correspondências mais complexas, que
podem envolver várias ontologias, ou seja, correspondências compostas.
Esta dissertação propõe um novo algoritmo de alinhamentos compostos, ca-
paz de criar correspondências entre uma classe de origem e uma expressão de
classe, relacionando múltiplas classes de múltiplas ontologias alvo. Trata das
limitações de abordagens anteriores, que apenas consideraram duas classes
de duas ontologias alvo. O algoritmo é baseado nas abordagens eficientes de
correspondência léxica do AgreementMakerLight.
Uma avaliação automática foi realizada contra alinhamentos de referência
parciais usando métricas de avaliação clássicas e também novas, mais ade-
quadas para a avaliação do alinhamento composto. Apesar dos resultados
com métricas clássicas serem algo limitados (um facto ao qual não ajuda a
incompletude dos alinhamentos de referência), as novas métricas de avali-
ação, projetadas para medir a utilidade de uma correspondência num cenário
de alinhamento interativo, são promissoras, com menor precisão, mas com
valores de recall entre 80-98%.

Palavras Chave: Alinhamento de Ontologias, Alinhamento Complexo de
Ontologias, Alinhamento Composto de Ontologias, Ontologias Biomédicas





Abstract

Multi-domain areas, such as the biomedical field, routinely employ networks
of ontologies to support applications such as data annotation, integration,
search and analysis. These networks can be built using ontology match-
ing techniques, however most existing approaches are limited to matches
between two ontologies, the large majority being simple equivalences. In
multi-domain scenarios, there is a need to discover more complex mappings,
that may involve multiple ontologies, i.e. compound mappings.
This thesis proposes a novel compound matching algorithm, able to com-
pose mappings between a source class and a class expression relating mul-
tiple classes from multiple target ontologies. It addresses the limitations
of previous approaches that only considered two target classes from two
target ontologies. The algorithm is based on the efficient lexical matching
approaches in AgreementMakerLight.
An automatic evaluation was carried against partial reference alignments
using both classical and novel evaluation metrics more suited to compound
alignment evaluation. Despite results with classical metrics being rather
poor (a fact not helped by the incompleteness of the reference alignments),
the novel evaluation metrics, designed to measure the usefulness of a map-
ping in an interactive alignment scenario are promising, with lower precision,
but recall values in the 80-98% range.

Keywords: Ontology Matching, Complex Ontology Matching, Compound
Ontology Matching, Biomedical Ontologies, Semantic Data Integration





Resumo Alargado

As ontologias são teorias sobre os objetos e as relações entre eles, descrevendo

o conhecimento acerca de um domínio. As ontologias diferem entre si, mas

têm em comum a premissa de que existem objetos e que estes têm pro-

priedades ou atributos a que podem ser imputados valores. Os objetos, por

seu lado, podem dividir-se em partes e podem também combinar-se entre

si através de várias relações. Mais formalmente, as ontologias podem ser

descritas como vocabulários específicos de um domínio com um conjunto de

entidades, os seus atributos e as relações entre elas, para além de restrições,

regras e axiomas. A necessidade de uniformizar o vocabulário específico de

um domínio não é recente, e foi nos anos 70 que foi reconhecida a importân-

cia de padronizar o conhecimento em Ciências da Computação, de modo a

que possa ser interpretado por computadores. Isto levou a que as ontologias

se tornassem uma ferramenta que permite que programas interajam direta-

mente entre si, tornando possível a partilha e o raciocínio computacional.

Assim, as ontologias possibilitam a partilha de um entendimento comum em

relação a um domínio e a partilha de conhecimento, para além de permitirem

criar novo conhecimento sobre o domínio.

O volume e a complexidade dos dados gerados em Ciências da Vida têm

aumentado massivamente nos últimos anos, levando a uma necessidade de

gerir, integrar e analisar os dados disponíveis. As ontologias tornaram-se

cada vez mais comuns e bem-sucedidas na área Biomédica precisamente por

esta ser uma área tão vasta e heterogénea em dados produzidos. Ligar da-

dos biomédicos a ontologias é uma solução promissora para os desafios de

integrar, procurar, obter e resolver ambiguidade dos dados, revolucionando a

tradicional investigação biomédica ao permitir a partilha e o reconhecimento

comum de dados entre a comunidade científica. O alinhamento de ontologias

é um processo complexo que resulta numa série de correspondências entre

classes de duas ontologias, que vai permitir lidar com a heterogeneidade



semântica, especialmente na área Biomédica, onde muitas vezes as ontolo-

gias têm sobreposições entre si. A maioria das abordagens de alinhamento

de ontologias focam-se em correspondências binárias, de um para um, mas

abordagens mais recentes têm-se focado em alinhamentos compostos, entre

mais do que duas ontologias.

O trabalho desenvolvido no âmbito desta dissertação é baseado numa abor-

dagem de longest word sequence, e tem dois pontos principais: a construção

de um léxico de conjuntos de palavras formados a partir dos conceitos da on-

tologia e um algoritmo de filtragem do alinhamento produzido por matchers

léxicos do AgreementMakerLight. O léxico de conjuntos de palavras de-

senvolvido armazena todas as combinações de palavras sequenciais de uma

label de uma classe de uma ontologia. Para além de guardar as combinações

de palavras, guarda também, para cada uma, um valor correspondente à

cobertura destas, ou seja, a razão entre o número de palavras no conjunto

e o número de palavras na label original. O algoritmo criado, que encon-

tra as correspondências, é baseado numa procura linear das entradas no

léxico de conjuntos de palavras da ontologia de fonte sobre o léxico nor-

mal do AgreementMakerLight contruído para as ontologias alvo. Todas as

correspondências são guardadas numa lista de correspondências parciais, às

quais é atribuída uma medida de semelhança. Para cada classe de fonte há

uma lista de correspondências parciais, cada uma equivalendo a diferentes

combinações de palavras. A correspondência é construída ao selecionar uma

combinação apropriada de correspondências parciais. Posteriormente, um

algoritmo de seleção começa por ordenar as correspondências parciais em

ordem decrescente de semelhanças. Para cada classe de fonte, o algoritmo

itera sobre as correspondências parciais e adiciona-as a uma correspondência

intermédia se se verificar que o conjunto de palavras ao qual foram mapeadas

estiver contido na label corrente e se o conjunto de palavras ao qual foram

mapeadas já não tiver uma correspondência de maior semelhança. Final-

mente, uma semelhança final é calculada para esta correspondência como

sendo a média de todas as semelhanças de cada correspondência parcial.

A avaliação da abordagem foi efetuada utilizando oito conjuntos de teste.



As ontologias de fonte utilizadas foram a Human Phenotype Ontology e a

Mammalian Phenotype Ontology. Para cada uma destas, os alvos eram os

conjuntos das ontologias Uber Anatomy Ontology (UBERON) e Phenotypic

Quality Ontology (PATO) (dois conjuntos HP-UB-PT e dois MP-UB-PT)

ou das ontologias UBERON, PATO e Gene Ontology (GO) (dois conjuntos

HP-UB-PT-GO e dois MP-UB-PT-GO). A um conjunto de cada foi aplicado

um algoritmo de stemming, cujo objetivo é reduzir cada uma das palavras

de cada termo das ontologias ao seu radical, formando assim os oito conjun-

tos. Para a automatização da avaliação, foram gerados quatro ficheiros de

referência, recorrendo ao axioma de Equivalent Classes das ontologias HP e

MP em formato OWL. Os quatro ficheiros de referência correspondiam aos

quatro conjuntos distintos descritos anteriormente.

A primeira abordagem para avaliar os resultados consistiu numa classifi-

cação das correspondências em comparação com os ficheiros de referência

produzidos. Verificou-se que um máximo de 12.9% de correspondências eram

exatamente iguais aos ficheiros de referência.

Considerando que se verifica que uma correspondência parcial também pode

ser útil, fez-se uma avaliação permissiva dos resultados em que se con-

sideraram como corretas, não só as correspondências iguais às referências,

mas também as correspondências que estavam contidas nas referências, as

que continham as referências e também as que fossem diferentes mas que

tivessem termos sobrepostos, ou seja, que tivessem pelo menos uma classe

correspondida na referência. Esta forma de cálculo dos verdadeiros positivos

melhorou as métricas. A precisão variou entre 3.4% e entre 35.4% (e entre

3.5% e 38.2% para os resultados stemmed), enquanto que o recall variou en-

tre 72% e 96.5% (e entre 79.7% e 98% para os resultados stemmed), fazendo

com que a f-measure variasse entre 6.6% e 47.5% (e entre 6.6% e 52.3% para

os resultados stemmed).

A uma dada altura do processamento do algoritmo são encontradas várias

combinações de correspondências, ordenadas de forma decrescente de semel-

hança. Estas combinações foram consideradas para verificar se a corre-

spondência correta (igual à referência) se encontrava presente nas três ou



cinco primeiras correspondências, em vez de na primeira. De facto, uma
quantidade de correspondências corretas não chegava ao alinhamento final.
Contando com estas correspondências, verificou-se um aumento das métricas
de precisão, recall e f-measure, de 2% em média, quando comparadas com as
métricas normais (não permissivas). Quando se lida com grandes ontologias
e com algoritmos que realizam buscas lineares, é esperado que o tempo de
corrida do algoritmo seja elevado. Em comparação com outras abordagens,
no algoritmo desenvolvido o tempo de corrida é bastante reduzido, mesmo
quando a Gene Ontology está em jogo e o tempo de corrida aumenta.

Criar alinhamentos de correspondências compostas é uma tarefa complexa,
dado que é necessário encontrar a melhor correspondência entre imensas
classes de várias ontologias diferentes. As métricas clássicas de precisão,
recall e f-measure verifica-se não serem as mais adequadas para avaliar este
tipo de alinhamentos, uma vez que se baseiam na contagem de verdadeiros
positivos e foi considerado que, mesmo que uma correspondência não esteja
completamente correta, pode ainda ser útil.

Em comparação com outras, nesta abordagem não é necessário ter em conta
a ordem pela qual as ontologias alvo são introduzidas, mesmo quando são
utilizadas mais do que duas, pois o algoritmo cria várias correspondências
possíveis e escolhe a melhor, independentemente da ordem das ontologias
alvo. Permite alinhamentos mais completos ao não restringir o número de
termos correspondidos por ontologia alvo, sem comprometer a relevância
dos resultados obtidos, tendo sido obtidos valores de recall entre os 80 e os
98%. Apesar desta busca alargada, o tempo de corrida é reduzido, tendo
demorado para a tarefa mais morosa menos de cinco minutos.
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Chapter 1

Introduction

Biomedical scientists are producing and recording enormous quantities of data every-

day, due to high-throughput molecular biology studies and also to the increasingly

widespread use of health informatics and electronic health records. This information is

stored in databases, being it a structured or unstructured one, and most of the knowl-

edge acquired through data analysis is documented in scientific papers or other forms

of natural language, making the use of that knowledge to both humans and machines

a challenge, as well as making interoperability between biomedical databases defying

(Smith et al., 2007).

Linking biomedical data to ontologies is a promising solution for these challenges of

integrating, searching, retrieving and resolving ambiguity of data, revolutionizing the

traditional biomedical research by empowering the sharing of data amongst the scientific

community. Ontologies bring a common vocabulary, as they describe the semantics of

the terms used in the domain. This way, ontologies allow researchers to better capture

hidden knowledge from large amounts of original data.

However, linking data to a single ontology is not sufficient in most cases, given

that biomedical research commonly spans multiple domains and topics. For instance,

describing a patient’s record may include using SNOMED-CT for clinical methods em-

ployed, LOINC for laboratory analyses and results, ICD-10 for diagnoses and ATC for

coding any precribed antibiotics. If more than one ontology is necessary to accurately

describe and link the data, to allow true interoperability there is the need to establish

links between the multiple ontologies. However, current ontology matching techniques

are mostly devoted to finding links between two equivalent entities from two distinct
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1. INTRODUCTION

ontologies. When dealing with more complex domains, it may be necessary to establish

more complex mappings or even link more than two ontologies. Complex matching,

i.e., finding correspondences that go beyond equivalence between two ontology entities

and are able to capture more complex relationships between entities or sets of entities,

is a recognized challenge. An example of a complex mapping could be the mapping

between the concept “AcceptedPaper” in one ontology, to the entity “Paper” in a second

ontology, which has the associated property “Accepted” (Ritze et al., 2009). However,

in multi-domain areas, such as epidemiology, healthcare or translational biomedicine,

there is a need to link multiple ontologies to address different perspectives on the un-

derlying data(Ferreira et al., 2012), while maintaining the the inherently distributed

paradigm championed by the Semantic Web (Berners-Lee et al., 2001). This need moti-

vates another type of complex mappings - ‘compound mappings’, i.e. matches between

class or property expressions involving more than two ontologies. A specific case is

the ternary compound matching, (Oliveira & Pesquita, 2018) whereby two classes are

related to form a class expression that is then mapped to a third class. For instance, the

Human Phenotype Ontology (HP) class HP:0000337 labelled “broad forehead” is equiv-

alent to an axiom obtained by relating the classes PATO:0000600 (“increased width”)

and FMA:63864 (“forehead”), from the Phenotypic Quality Ontology (PATO) and the

Foundation Model of Anatomy (FMA) ontologies respectively, via an intersection. Such

mappings allow a fuller semantic integration of multidimensional semantic spaces, sup-

porting more complex data analysis and knowledge discovery tasks.

Compound matching need not be limited to ternary mappings, and may in fact

involve multiple concepts from multiple ontologies. This poses additional challenges,

related both to the inherently more difficult task of composing a mapping using an

arbitrary number of concepts coming from multiple ontologies, but also to the compu-

tational complexity behind the task given the large size of biomedical ontologies and

their complex and rich vocabularies.

1.1 Objectives

The main objective of this work was to develop a novel approach for compound ontology

matching that is able to establish mappings between a class in a source ontology and

2



1.2 Contributions

any number of classes from a selected set of target ontologies. This approach needs to
address the challenges of semantic complexity, lexical variability and ontology size.

These issues were addressed by exploring the computational efficient approaches for
purely lexical matches developed by AgreementMakerLight (Faria et al., 2013), and a
lexical-based approach to select the best target classes combination.

Additionally, this work also addresses the challenge of evaluating compound align-
ments, by proposing alternative definitions for well-known performance metrics that are
able to produce more useful outputs based on lexical evaluations.

1.2 Contributions

This work has produced several contributions:

• a novel compound matching approach for aligning a source ontology to multiple
target ontologies

• the implementation of these algorithms in the open-source ontology matching
system AML

• a novel approach for evaluating compound alignments based on a lexical evaluation
of mappings.

• a poster in The Thirteenth International Workshop on Ontology Matching1 titled
"Complex matching for multiple ontologies: an exploratory study".

1.3 Overview

This dissertation is divided into six different chapters.
The present Chapter is a contextualization of this dissertation and presents the

motivations and objectives, as well as the contributions of the developed work.
Chapter 2, Concepts and Related Work, presents some notions relevant to this dis-

sertation about ontologies, more specifically of the biomedical domain, as well as some
related work in the areas of complex and compound matching.

Chapter 3, Methods, presents the complex matching approach, detailing the algo-
rithms of the new lexicon and of the filter.

1
http://om2018.ontologymatching.org/
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1. INTRODUCTION

Chapter 4, Evaluation and Results details the evaluation of the approach, namely,
the construction of reference alignments, the evaluation metrics employed and the per-
formance obtained in different alignment tasks.

After presentation of the results in the previous chapter, Chapter 5, Discussion,
discusses the obtained results from the automatic evaluation performed against the
reference alignments, referring to each aspect of the obtained results.

Chapter 6, Conclusions and Future Work concludes the work of this dissertation
with some remarks on this exploratory study and avenues for future research.

4



Chapter 2

Concepts and Related Work

This chapter describes a few concepts necessary to contextualize this work, namely

biomedical ontologies and ontology matching, as well as some related work in complex

matching.

2.1 Biomedical Ontologies

Ontology is, in philosophy, the study of things that exist. In computer science, the

most popular definition of ontology was proposed by Gruber in the early 1990’s: “an

explicit specification of a conceptualization” (Gruber, 1993). In both cases, ontologies

are theories about objects and the relations among them in a given domain, describing

the knowledge about the domain. Ontologies differ among them but there is a general

agreement on several points, such as that there are objects in the world, objects have

properties or attributes that can take values, objects can exist in various relations with

each other and objects can have parts (Chandrasekaran et al., 1999).

The need for standardizing domain vocabulary is not recent and it was around

the 70’s when the need to standardize knowledge in computer science in a manner

that could be read by computers was recognized. This lead to the development of

ontologies as a tool that enables programs to interact directly with information produced

by other programs, allowing information sharing and computer reasoning. Tim Berners-

Lee took these ideas into World Wide Web, turning it into the Semantic Web, where

Internet servers are able to interoperate with each other and build upon each other’s data

5
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(Robinson & Bauer, 2011). This made ontologies become part of the W3C standards1

for the Semantic Web, as one of the constituents of Semantic Technologies, considering

that ontologies bring a way to link pieces of information together on the Web of Linked

Data (Ontotext, 2019).

More formally, ontologies can be described as domain-specific vocabularies with a

set of entities, their attributes and relations, which describe interactions between the

entities, as well as restrictions, rules and axioms (Ontotext, 2019). Thus, ontologies

allow the sharing of common understanding of the knowledge regarding a specific domain

and also the reuse of knowledge. They make domain assumptions explicit, avoiding

ambiguity even between generic and shared concepts (Euzenat et al., 2007).

Structure-wise, ontologies are usually organized as Directed Acyclic Graphs (DAG),

where the graph nodes are entities and the edges are the relationships (links) between

them. In figure 2.1 can be seen an excerpt of the Gene Ontology (GO), showing the

ancestry for the term GO:0005739 - mitochondrion.

Subsequently, besides introducing shareable and reusable knowledge, ontologies also

allow to add new knowledge about the domain they represent by expressing relation-

ships and enabling the linking of concepts in a variety of ways, unlike other methods

with formal specifications of knowledge, such as vocabularies, taxonomies, thesauri and

logical models (Ontotext, 2019).

The volume and complexity of data generated in the past years in the field of life

sciences has massively increased, leading to the need for managing, integrating and

analysing the available data. In the “post-genomic era”, the focus of the biomedical

community has shifted from just making new discoveries to deal with the information

resultant of the genomic research (Bodenreider et al., 2005). The start of the use of

ontologies in this field dates to 1998 with the development of one of the most known

biological ontologies, the Gene Ontology (GO) (Ashburner et al., 2000).

From there, ontologies became more common and successful in the biomedical field

due to its characteristics, namely the large quantity and heterogeneity of produced

data. This is exactly what ontologies aim to solve, by providing standard identifiers for

classes and relations, representing phenomena within a domain; providing a vocabulary;

1
https://www.w3.org/standards/semanticweb/
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Figure 2.1: Graph representation of Gene Ontology adapted from QuickGO.
1

providing metadata; providing machine-readable axioms and definitions, allowing com-

putational access to some aspects of the meaning of classes and relations (Hoehndorf

et al., 2015). Hence, the main characteristics of biomedical ontologies are:

• Large size: biomedical ontologies usually have thousands of classes, or more,

which can be computationally challenging.

• Complex vocabulary: biomedical ontologies encode several names for the same
1
https://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005739

7

https://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005739


2. CONCEPTS AND RELATED WORK

class, including a main label and several synonyms.

• Rich axioms: biomedical ontologies establish different kinds of relations between

classes, leading to a greater semantic richness.

Biomedical ontologies can be tools for annotation and data integration, facilitat-

ing the communication of results among communities of scientists. In a way, they can

standardize the research findings. On another hand, they can be used in the develop-

ment of bioinformatics tools with several endings, such as analysis of microarray data

and network modelling. More specifically in health care, ontologies can be used in

knowledge-based systems like decision support, highly dependent on large amounts of

domain knowledge (Musen et al., 2014).

Bioportal (Whetzel et al., 2011), developed by the National Center for Biomedical

Ontology (NCBO), is nowadays the largest repository of biomedical ontologies, com-

prising over 768 ontologies at this date. In this repository there are ontologies in several

formats, being the two main OWL and OBO.

The Web Ontology Language (OWL) is a Semantic Web language designed by the

W3C as a computational logic-based language, allowing computer programs to exploit

knowledge. OWL documents, or ontologies, are Resource Description Framework (RDF)

graphs, i.e., a set of RDF triples. (McGuinness et al., 2004). An OWL ontology is com-

posed of Individuals, the objects of the domain, Properties, relations among the indi-

viduals, and Classes, groups of individuals that share something in common. (Horridge

et al., 2009). On the other hand, the Open Biomedical Ontologies (OBO) language has a

simpler format and is more human readable than OWL. An OBO ontology is composed

of a set of stanzas, each of them describing one element in the ontology, which have

an unique identifier and a human readable description. The rest of the stanza consists

on a series of tags representing other properties of the element (Golbreich et al., 2007).

Although these are different representations of the same domain, the semantic meaning

is the same among formats.

Essentially, the existence of distinct modelings of the same domain obeys to the

natural human instinct to have different perspectives and hence to model problems

differently. When these domains are represented using ontologies, the solution typically

involves the use of ontology matching techniques to solve the problem of semantic

heterogeneity. Ontologies and ontology matching techniques are an increasing trend
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as ontologies provide probably the most interesting opportunity to encode meaning of
information. The last decades have born witness to a period of extensive research in
this field (Otero-cerdeira et al., 2015).

2.2 Ontology Matching

Ontology matching is a complex process that results in the generation of an alignment,
i.e., a series of correspondences between ontology classes (Euzenat et al., 2007; Thiéblin
et al., 2018a). This alignment is the culmination of the main goal of ontology matching,
which is to deal with the semantic heterogeneity of ontologies when used by computer
systems (Euzenat et al., 2007). Especially in the biomedical field, ontologies often over-
lap and the process of ontology matching can help reducing the semantic gap between
ontologies of the same domain (Otero-cerdeira et al., 2015).

More formally, the matching process can be defined as a function f that returns an
alignment A’ from a pair of ontologies o and o’ (Euzenat et al., 2007), process that can
be extended with an input alignment A and other parameters p, such as weights and
thresholds, and external knowledge r :

A
0 = f(o, o0, A, p, r)

The process of ontology matching is performed by algorithms called matchers.
Matchers use different strategies to compute similarity between two different ontology
classes, and when the similarity is associated to the classes, a mapping, i.e., a corre-
spondence, is created. Matchers usually try to find equivalence mappings, in which two
entities from different ontologies that represent the same concept, but there are other
kinds of mappings, such as mappings of consequence, subsumption and disjointness.

Most of the approaches focus on generating binary correspondences, i.e., one entity
of one ontology linked to one entity of another ontology. However, these simple matches
are not sufficiently meaningful to entirely overcome ontology heterogeneity, requiring
the relationships between the entities to be more expressive. For this, complex, or com-
pound, ontology matching approaches generate mappings between entities of more than
two ontologies, better expressing relationships between them (Thiéblin et al., 2018a).

Pesquita et al. (2014) define a ternary compound mapping as a tuple <X,Y,Z,R,M>,
where X, Y and Z represent classes from three different ontologies. The relation R be-
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tween Y and Z generates a class expression, which is mapped to X through a mapping

relation M. Here X is considered as a source ontology and Y and Z as target ontolo-

gies. It is possible to broaden this vision, saying that a compound mapping is a tuple

<Cs,[Ct0,...,Ctn],[Pt0,...,Ptn],M>, where Cs is a class from a source ontology, [Ct0,...,Ctn]

and [Pt0,...,Ptn] are a set of target classes extracted from multiple target ontologies and

a set of properties that related each target class to the others, while M is a mapping

relation established between the source class and the set of target classes. An example

of a compound mapping can be seen in 2.2.

imune system
UBERON:0002405

abnormal
PATO:0000460

cell
GO:0005623

morphology
PATO:0000051

abnormal imune system 
cell morphology

MP:0000716

+

+

+
=

Figure 2.2: Example of a possible complex mapping between the Mammalian Phenotype, Uber-

anatomy, Phenotypic Quality and Gene Ontology ontologies.

2.3 Ontology Matching Tools

There are over 60 different ontology matching systems (Otero-cerdeira et al., 2015), of

which several still receive updates and enhancements frequently. In this section, five

popular and high-performance systems, following recent results of Ontology Alignment

Evaluation Initiative, will be described.
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2.3.1 AgreementMaker

Developed by Cruz et al. (2009), AgreementMaker is a schema and ontology matching

tool that comprises several kinds of matchers. This tool allows for different inputs,

which can be not only ontologies but also the output of the application of one or

more matchers. It is also possible to combine several matchers using the same input,

combining the results after. What differentiated this tool from others at the time of its

development was the fact that it integrates the evaluation of the quality of the mappings

with a sophisticated graphical user interface. Therefore this is a very versatile tool with

a flexible and extensible framework.

2.3.2 AgreementMakerLight

Derived from AgreementMaker, AgreementMakerLight (AML) was developed by Faria

et al. (2013) as a novel ontology matching tool, able to handle very large ontologies

(with more than thousands of concepts). Similarly to AgreementMaker, AML is also a

flexible and an easy to extend tool and has been in continuous development since it was

created. One of these extensions was developed by Oliveira & Pesquita (2015) to allow

for compound matching. AML is currently the best performing system for Biomedical

ontology matching.

2.3.3 LogMap

LogMap is a tool developed by Jiménez-Ruiz & Cuenca Grau (2011), based on an

initial set of anchor mappings (i.e., ’almost exact’ lexical correspondences), produced

from structures that keep lexical and structural information. Starting from the initial

anchors and using the ontologies’ extended class hierarchy, the algorithm alternates

between mapping repair and mapping discovery steps. LogMap has also an ontology

reasoner and a greedy diagnosis algorithm.

Since its creation in 2011, some variations were introduced: LogMapLt, the lightweight

variant, which applies only string matching techniques, and LogMapBio which includes

an extension to use BioPortal as a dynamic provider of mediating ontologies instead of

relying on a few preselected ontologies (Jiménez-Ruiz et al., 2016).

11
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2.3.4 XMap

The algorithm proposed by Djeddi & Khadir (2010) takes advantage of features of
the OWL language to deduct the similarity between ontology entities. It exploits the
common linguistic and structural elements between the entities to measure the similarity
between two OWL classes.

2.3.5 YAM++

The YAM++ tool proposed by Ngo & Bellahsene (2012) as an extension of the originally
developed tool, YAM (Yet Another Matcher) (Duchateau et al., 2009), uses machine
learning techniques to match ontologies when learning data is available. If this is not
the case, YAM++ uses textual features of ontologies to provide similarity metrics. It
uses element and structural level matchers to discover new mappings, which are then
revised by a semantical matcher in order to remove inconsistencies. YAM++ is also
able to deal with multilingual ontology matching by first discovering the language in
which the ontology is and then translating all labels to English with Microsoft Bing
Translator tool.

2.4 Related Work

Compound matching is closely related to complex matching. There have been several
works in the area of complex ontology matching, which is commonly described as a
correspondence between two classes from two different ontologies, where one of them is
a complex concept or property description. The alignment involves only two ontologies,
but each mapping contains more than two entities in those ontologies. An example
of a complex mapping could be the alignment of the concept "AcceptedPaper" in one
ontology, to the entity "Paper" in a second ontology, which has the associated property
"Accepted" (Ritze et al., 2009).

One of the first works mentioning the need for complex matching was the one of
Maedche et al. (2002), where the authors proposed the tool MAFRA for complex on-
tology matching.

Thiéblin et al. (2018b) divided complex matching approaches into four categories:
(1) pattern-based with no instance data: Ritze et al. (2009) and Ritze et al. (2010);
(2) pattern-based with instance data: Bayes-ReCCE (Walshe et al., 2016), Parundekar
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et al. (2010) and Parundekar et al. (2012); (3) non-pattern based with instance data:

Nunes et al. (2013) and Qin et al. (2007); (4) non-pattern based with no instance data:

KAOM (Jiang et al., 2016).

In a survey performed by the same authors (Thiéblin et al., 2018a) is proposed

another classification of the complex matching approaches. It is based on the specificities

of the approaches, namely the type of correspondences (the output), and the structure

used to guide the correspondence detection. In terms of type of correspondence, it

can be of: logical relations (Bayes-ReCCE (Walshe et al., 2016), CGLUE (Doan et al.,

2003)), transformation functions (COMA++ (Arnold, 2013), Nunes et al. (2013)) and

blocks ((Hu & Qu, 2006)). Regarding the guiding structures, the approaches can be

divided into atomic patterns ((Scharffe, 2009), (Ritze et al., 2009), (Ritze et al., 2010)),

composite patterns (CGLUE (Doan et al., 2003), COMA++ (Arnold, 2013)), path ((Hu

et al., 2011a), (Dou et al., 2010)), tree (MapOnto (An et al., 2005b), (An et al., 2005a))

and finally, no structure ((Hu et al., 2011b), (Hu & Qu, 2006)).

There are fewer works in the area of compound matching. Compound ontology

matching is a relatively recent concept, first introduced by Pesquita et al. (2014). They

proposed a way to create benchmarks to test the performance of matching systems, for

which they used OBO cross products to create these reference compound alignments.

Besides that, they also developed a strategy for compound matching, integrated in AML.

First it matches the source ontology to each of the target ontologies individually, with

a using an ‘anchor’-based word-matching algorithm, and then matches only all pairs of

target classes that map individually to the same source class. The way they measured

similarity between source and target was by employing a modified Jaccard index. This

strategy lowered the search spaced but it was still not enough to be successful when

employed to larger sets of ontologies.

Oliveira & Pesquita (2018) developed ternary compound matching algorithms able

to find mappings between a class and a class expression built by the intersection of

two classes from two different ontologies. The algorithm was also developed within

AML and starts by performing a pairwise mapping of the labels of the source ontology

with the labels of the target ontology to match first (target 1) and a similarity is

calculated for each mapping. After, a filter is applied to remove all mappings with

similarity below a threshold and removes all the source classes which were not mapped

to any target 1 classes. It also reduces the number of words of the source labels by

13
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removing from the mapped classes all the words that had a match with a word from a
target 1 class. For each of the remaining mappings, the algorithm performs a pairwise
mapping of the reduced source labels against the labels of the last target (target 2)
and a final similarity is computed for each mapping. Some of the limitations of this
work, namely the constraint imposed by using just two classes from two ontologies to
build the compound equivalent class, and the necessity of identifying one ontology as
the main target, inspired the techniques proposed in this paper.
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Chapter 3

Methods

A compound alignment task receives as input a source ontology and a set of target

ontologies and produces mappings between classes in the source ontology and class

expressions obtained by combining classes from the target ontologies. For the purpose

of this dissertation, the approach is restricted to finding mappings where the relation

between classes is one of equivalence, and simplified by just finding the set of target

classes to map to the source without discovering the accompanying properties.

3.1 Compound Matching Approach

This compound matching approach is based on two main steps: (1) building the internal

structures to support the matching algorithm, i.e. building the word sequence lexicon

and the lexicon; (2) the matching algorithm itself.

The compound matching algorithm is based on a longest word sequence mapping

approach. It is an entirely lexical approach that takes the labels (main and synonyms)

of each source class and finds partial lexical matches between word sequences in the

source class labels and full labels of target classes. A greedy approach is then applied

to select the longest word sequences that provide the highest coverage of a given source

label.

The approach for compound matching was developed within the AgreementMak-

erLight (AML) system (Faria et al., 2013). AML is an easy to extend ontology match-

ing system, that includes several capabilities such as using external knowledge and

performing alignment logical repair.
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3.1.1 Lexicon

AML uses hashmap based structures to store the lexical information (i.e., the labels and

synonyms of each entity) of the ontologies, which are called Lexicons. There are two

lexicons involved in this compound alignment strategy: a word sequence lexicon that is

created for the source ontology, and a lexicon that is created for all target ontologies.

The Word Sequence Lexicon (WordSeqLexicon), developed in the scope of this dis-

sertation, is a structure that stores all word sequence combinations for each ontology

label, and is an extension of AML’s standard Lexicon. As an illustration, let’s take on-

tology term "Duct Salivary Gland System". It will correspond to one entry in the Lexi-

con, "Duct Salivary Gland System", and to 10 entries in the WordSeqLexicon: "Duct",

"Duct Salivary", "Duct Salivary Gland", "Duct Salivary Gland System", "Salivary",

"Salivary Gland", "Salivary Gland System", "Gland", "Gland System", and "System".

In the WordSeqLexicon, for each word sequence, it stores the corresponding coverage as

well, i.e., the ratio between the number of words in the word sequence and the number

of words in the original label (1/4 for "Duct", 2/4 for "Duct Salivary", and so on), as

per Figure 3.1.

coverage =
words in word sequence

words in term

Figure 3.1: Illustration of the Word Sequence Lexicon algorithm.

The algorithm used to create the WordSeqLexicon is detailed in Algorithm 1.
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Algorithm 1 WordseqLexicon algorithm
1: procedure buildWordseqLexicon
2: entities list of classes in source ontology
3: for entity in entities do
4: names list of labels for entity

5: for name in names do
6: wordseqs StringCombinations(name)
7: for wordseq in wordseqs do
8: if wordseq equals name then
9: coverage 1

10: else
11: coverage length(wordseq)/length(name)
12: end if
13: WordSeqLexicon add(wordseq, entity, coverage)
14: end for
15: end for
16: end for
17: end procedure

3.1.2 Compound Matching algorithm

The matching algorithm is based on a linear search of the entries in the WordSeqLexicon

of the source ontology over the standard AML Lexicon built for the target ontologies.

All matches are stored on a partial mapping list. A partial mapping corresponds to full

string equality between a source word sequence and a target full label. Each partial

mapping is assigned a score, called similarity, that corresponds to the coverage value

of the word sequence weighted by the lexical weight assigned to the target label. This

lexical weight is an internal weight given by AML that reflects the relevance of the label

(higher for main label, lower for synonyms). This is illustrated in Figure 3.2.

similarity = coverage ⇤ weight

For each source class there is a list of partial mappings, each corresponding to a

different word sequence. The final compound mapping is built by selecting an appro-

priate combination of partial mappings. This process is illustrated in Figure 3.3. The

selection algorithm begins by sorting the partial mappings in descending order of scores

(1). For each label of the source class the algorithm iterates over the partial mappings

and adds each of them to an intermediary mapping if (2): the word sequence to which
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Figure 3.2: Illustration of the matching algorithm.

they were mapped is contained in the current label; the word sequence to which they

were mapped was not already covered by a higher score target class. This allows partial

overlapping of word sets. By adding a partial mapping to the intermediary mapping, a

score is calculated as the average of the similarities of each partial mapping (3). In the

special case of having overlapping word sets, the similarity is divided by the number of

times the word set appears in the target classes.

score =

P similarity
frequency of word set

number of words in the target

In the end, there can be so much as an intermediary mapping per label of a source

class. The intermediary mapping with the highest score is chosen, resulting in one

compound mapping per source class. Algorithm 2 details this process.

3.1.3 Stemming

As mentioned above, this is a lexical approach, thus making it impossible to find matches

between words that have small differences between them, but that do not alter the over-

all meaning of the concept, such as "ear" and "ears", or "abnormality" and "abnormal".

A mapping between these concepts will not be made with this approach if those words

are not expressed in the concept’s synonyms.

To overcome this issue, a stemming algorithm (Snowball stemmer (Porter & Martin,

2009)) was applied when forming both the Lexicon and WordSeqLexicon, which consists

on reducing a word to its stem. For example, by applying the stemmer to "abnormal"
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Figure 3.3: Illustration of the filtering algorithm.

and "abnormality", both words would become "abnorm", and thus allowing the mapping
to be made by the matcher. Taking this to a full HP concept: "abnormality of hind-
brain morphology" (HP:0011282) becomes "abnorm of hindbrain morpholog", and the
mapping goes from "hindbrain + shape" (UBERON:0002028 + PATO:0000052) to "ab-
normal + hindbrain + shape" (PATO:0000460 + UBERON:0002028 + PATO:0000052).
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Algorithm 2 WordseqFilterer algorithm
1: function filter(source,maps)
2: filteredMaps

3: sourceBestMaps

4: sortDescending(maps)
5: labels getAllNames(source)
6: for label in labels do
7: for mapping in maps do
8: target target concept in mapping

9: wordseq  wordseq in mapping

10: if wordseq in label then
11: if wordseq and target not in filteredMaps then
12: sourceBestMaps add(mapping)
13: end if
14: end if
15: end for
16: end for
17: bestMapping  getBest(sourceBestMaps)
18: filteredMaps add(mapping)
19: return filteredMaps

20: end function
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Chapter 4

Evaluation and Results

The evaluation of the proposed approach was carried out using the Mammalian Pheno-
type Ontology (MP) (Smith et al., 2004) and Human Phenotype Ontology (HP) (Köhler
et al., 2013) as source ontologies. It consisted of two tasks for each source ontology:

(1) Compound alignment using two target ontologies: the Uber Anatomy Ontol-
ogy (UBERON) (Haendel et al., 2014) and the Phenotypic Quality Ontology (PATO)
(Mungall et al., 2010);

(2) Compound alignment using three target ontologies: UBERON, PATO and Gene
Ontology (GO) (Ashburner et al., 2000).

The size of the five ontologies is shown in Table 4.1.

Table 4.1: Number of classes in each used ontology.
Ontology Number of classes

HP 14911
MP 16508

UBERON 15070
PATO 2713
GO 49516

Both source ontologies contain equivalent class axioms that refer to several external
ontologies. These were used to produce reference alignments to use in the evaluation.

4.1 Reference alignments generation

The reference alignments were produced following the approach proposed by Pesquita
et al. (2014), by extracting all the Equivalent Classes Axioms of MP and HP OWL files
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using OWL API. For each ontology two references were created:

(1) UB-PT: containing mappings derived from equivalent classes axioms that em-

ploy classes only from the UBERON and/or PATO ontologies;

(2) UB-PT-GO: containing all mappings derived from equivalent classes axioms

that employ only the UBERON and/or PATO and GO ontologies.

These references were created as simple text files in TSV format supported by AML.

Note that these are just partial alignments, since they only cover 28.6% of the classes

in HP and 29.7% in MP for the UB-PT set, and much less for the UB-PT-GO set. The

number of mappings in the reference alignments and respective coverage are represented

in Table 4.2.

Table 4.2: Number of mappings in each reference alignment and respective coverage.
Size of reference (mappings) Coverage

HP UB PT 4261 28.6%
HP UB PT GO 463 3.1%

MP UB PT 4896 29.7%
MP UB PT GO 1301 7.9%

4.2 Results

The algorithm was evaluated using eight test cases: (1) HP as source, UBERON and

PATO as targets; (2) HP as source, UBERON, PATO and GO as targets; (3) MP as

source, UBERON and PATO as targets; (4) MP as source, UBERON, PATO and GO

as targets. The remaining four cases are exactly the same, except the results are the

ones of the algorithm using the stemmer. The number of mappings produced by each

task can be observed in Table 4.3.
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Table 4.3: Alignment size for each test case.
Total

NOT STEMMED

HP UB PT 9859
HP UB PT GO 10134

MP UB PT 24054
MP UB PT GO 27378

STEMMED

HP UB PT 10665
HP UB PT GO 10776

MP UB PT 25748
MP UB PT GO 28205

AgreementMakerLight allows a threshold as an input to the system that filters the

alignment to only present the mappings with the score equal or above the value. The

result of applying three thresholds of 0.3, 0.5 and 0.7 is presented in Table 4.4, where

it is possible to see that great majority of mappings have less than 0.5 in score.

Table 4.4: Alignment size for each threshold value.
0.3 0.5 0.7

NOT STEMMED

HP UB PT 2063 398 54
HP UB PT GO 2300 468 60

MP UB PT 9581 3058 427
MP UB PT GO 13902 5434 736

STEMMED

HP UB PT 2623 579 91
HP UB PT GO 2868 662 99

MP UB PT 10582 3504 633
MP UB PT GO 15011 6028 996

4.2.1 Automatic Evaluation

Given the complexity of tasks, the evaluation of the resulting alignments was performed

by classifying each mapping for each source class into one of six orthogonal categories:

Equal The classes in the produced mapping are an exact match to the ones in the

reference mapping.
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ontology term small lung
result decreased size, lung

reference decreated size, lung

Contained The classes in the produced mapping are contained in the set of classes in

the reference mapping.

ontology term abnormal submandibular gland physiology
result abnormal, submandibular gland

reference functionality, abnormal, submandibular gland

Containing The classes in the produced mapping contain all classes in the reference

mapping.

ontology term abnormal abdominal wall morphology
result abnormal, abdominal wall, morphology

reference abnormal, abdominal wall

Different The classes in the produced mapping are all different from the classes in the

reference mapping.

ontology term decreased body size
result size, decreased amount

reference decreased size, multicellular organism

Overlap The classes in the produced mapping overlap some of the classes in the ref-

erence mapping.

ontology term increased activity of parathyroid
result increased amount, parathyroid gland

reference parathyroid gland, increased rate

Not in results The number of mappings in the results that are not present in the

reference alignment.

These categories aim at providing a more fine-grained evaluation of the results. It is
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based on a purely lexical view of mapping correctness, which although possibly missing
some matches, is easily automated.

Table 4.5 show the number of mappings in each of the six categories. Only a max-
imum of 12.9% of the mappings found are considered equal to a reference mapping, in
the case of the stemmed HP-UB-PT set. The majority of mappings falls into either the
Different or the Equal categories. Most of the considered correct mappings (Equal,
Contained and Containing) fall into the category of Equals, except in the case of Not
Stemmed HP UB PT and HP UB PT GO. The results of these sets significantly improve
when the Stemmer algorithm is applied during the generation of the lexicons. Similarly
there are good improvements when applying the Stemmer to all the other cases.

Table 4.5: Number of mappings in each of the categories.
Equals Contained Contains Different Overlap Not in results Total Reference

NS

HP UB PT 754 1023 55 2191 1234 234 9859 4261
HP UB PT GO 43 149 6 208 145 53 10134 463

MP UB PT 2641 736 205 1217 1140 93 24054 4896
MP UB PT GO 554 87 41 598 468 17 27378 1301

S

HP UB PT 1375 441 132 2177 1572 132 10665 4261
HP UB PT GO 115 65 11 277 177 41 10776 463

MP UB PT 2813 585 222 1195 1177 77 25748 4896
MP UB PT GO 567 70 30 615 485 15 28205 1301

4.2.1.1 Performance metrics

Using the first three categories, two versions of true positive mappings were computed
in order to account for partial matching. These two versions of true positive mappings,
represent partially correct mappings that are still considered useful. In compound
matching, the complexity and difficulty of the task is such, that an interactive alignment
scenario where potentially correct mappings are shown to a user for editing or validating
is highly likely. As such, evaluating the approach considering partially correct mappings
more accurately measures the usefulness of the proposed matching approach.

(1) permissive TP, where a mapping is considered positive if it is equal to or con-
tained by a reference mapping;

permissive TP = Equal + Contained

(2) fuzzy TP, where a mapping is considered positive if it has at least one matched
class contained in the reference mapping:
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fuzzy TP = Equal + Contained+ Containing +Overlap

Using the classical true positive and the two true positive variants, precision, recall

and f-measure scores were calculated, shown in Figures 4.1, 4.2 and 4.3, respectively,

for both stemmed and not stemmed sets:

precision =
TP

TP + FP

recall =
TP

TP + FN

f-measure = 2 ⇤ precision ⇤ recall
precision+ recall

Using the classical version of true positive evaluation, i.e., considering only the

Equal mappings, the metrics are significantly lower than when using the permissive

true positives. Comparing the latter to the fuzzy evaluation, the metrics present lower

values also. Using the more permissive evaluation, all three metrics increase. In general,

when the stemming algorithm is applied, the performance increases.

In general, precision is higher for HP sets than for MP sets, but when GO ontol-

ogy is present, this metric is more or less similar between the HP and MP sets. The

fuzzy precision was calculated taking into account not only the mappings in the Equal

category, but also in the Contained, Contains and Overlap categories, and improved

especially for HP tasks.
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4.2 Results

Figure 4.1: Permissive, fuzzy and normal precision for not stemmed and stemmed sets.
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4. EVALUATION AND RESULTS

Figure 4.2: Permissive, fuzzy and normal recall for not stemmed and stemmed sets.

Regarding the recall, the general situation is the same as the results improve from

the normal recall to the permissive recall, and from this to the fuzzy recall. There

are improvements from not stemmed sets to the stemmed sets in all cases, except in

permissive recall when GO is introduced, where this value slightly lowers. The lowest

recall is normal recall of 9.5% for not stemmed HP-UB-PT-GO and the highest is fuzzy

recall of 98% for stemmed MP-UB-PT.

28



4.2 Results

Figure 4.3: Permissive, fuzzy and normal f-measure for not stemmed and stemmed sets.

The f-measure was calculated as an average of the previous two statistics. For the

normal metric results vary between 0.8% for not stemmed HP-UB-PT-GO and 18.4%

for Stemmed HP-UB-PT. The permissive f-measure shows values between 3.4% for

stemmed HP-UB-PT-GO and 26.1% for stemmed HP-UB-PT and the fuzzy f-measure

has its minimum at 6.5% for both stemmed and not stemmed HP-UB-PT-GO and its

maximum at 47.2% for stemmed HP-UB-PT.

4.2.2 Top mappings analysis

During the algorithm processing, at a given step, several different combinations of map-

pings are produced and sorted by score, from the highest to the lowest. These were
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taken to perform an analysis and see in which cases the correct mapping (i.e. the map-

ping in the reference) was present on the first, three or five first mappings. This analysis

was performed in order to simulate an interactive matching process, where the users are

shown the best mappings for a given source class and are able to select the correct one.

The results are displayed in Table 4.6, where TOP 1 corresponds to the Equals

category from before. The graphics show that indeed there are correct mappings that

are formed and are scored from second to fifth and do not reach the final results.

Table 4.6: Number of mappings in Top 1, Top 3 and Top 5.
TOP1 TOP3 TOP5 Total Reference

NS

HP UB PT 754 847 901 9859 4261
HP UB PT GO 43 50 50 10134 463

MP UB PT 2641 2725 2905 24064 4896
MP UB PT GO 554 556 576 27378 1301

S

HP UB PT 1375 1580 1652 10665 4261
HP UB PT GO 115 129 131 10776 463

MP UB PT 2813 2853 3053 25748 4896
MP UB PT GO 567 564 585 28205 1301

As expected, more correct mappings are found when increasing the range from 1 to

3 and to 5. However, the improvement is still modest.

From the previous results, the precision, recall and f-measure metrics were calculated

for the TOP 3 and TOP 5 mappings and can be seen in Figures 4.4, 4.5 and 4.6,

respectively. The pattern is the same in the three cases, showing an increase from TOP1

to TOP 5. Adding GO to the test sets, the precision and f-measure are significantly

lower in all sets. In the same situation, recall also presents lower values but not as low.

In general, when the stemmer algorithm is applied, the results improve for the three

metrics.
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4.2 Results

Figure 4.4: Precision of the TOP analysis.
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Figure 4.5: Recall of the TOP analysis.
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4.2 Results

Figure 4.6: F-measure of the TOP analysis.

4.2.3 Running time analysis

When dealing with big ontologies and with algorithms that perform linear search, it

can be expected the process takes some time. In this sense, a running time assessment

was performed for three phases: All, the running time of all the process; Match+filter,

corresponding to the time it takes to run the matching and filtering algorithms; Filter,

the time it takes to filter the final mappings. These results can be observed in Figure 4.7

for both stemmed and not stemmed sets. The analysis was performed in a machine with

the following characteristics: operating system Windows 10 64bits, processor Intel®

Core™ i5-6200U CPU @ 2.40GHz and 8.00GB of RAM.

33



4. EVALUATION AND RESULTS

Figure 4.7: Running time of the three main phases of the AML algorithm.

The running time is always higher for tasks in which the source ontology is MP.
However, during matching and filtering, the time does not vary much between tasks
with same source ontology. When GO ontology is involved, the overall running time
increases considerably.
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Chapter 5

Discussion

Performing a full compound mapping can be a rather complex task, given that it in-

volves multiple classes from multiple ontologies which need to be matched, and the best

combination between the various partial mappings needs to be found. In this work,

the generated alignments were compared in an automatic evaluation against reference

alignments and it was considered that even if a mapping is not fully correct, it may

still be useful. Partial matching has been found to be useful in the biomedical con-

text (Dhombres & Bodenreider, 2016). Given the complexity of performing compound

matching, a scenario where it is performed in a semi-automated version with human

input is highly likely. As such, we have followed an evaluation based on partially correct

mappings, under the assumption that these could then be shown to a user for a final

decision.

However, automated evaluation is further hindered by the fact that the reference

alignments used for evaluation are not complete. This makes it impossible to evaluate

the mappings that were created for a source class not contained in the reference. This

is reflected in the performance metrics that were computed, with precision always being

lower than recall. Even when using fuzzy performance metrics, values for precision in

the best task fall short of 40% whereas recall hits 98%. Using the proposed evaluation

metrics allows a better understanding of the potential usefulness of the proposed ap-

proach, with precision tripling in some cases (from classical to fuzzy definitions), and

recall nearly doubling (or more) in all cases.

All performance metrics significantly improve when the Stemmer algorithm is ap-

plied during the generation of the lexicons, which suggests that especially in HP there
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were a lot of terms not being matched that had small differences between the source

and the target, such as plurals or spelling variants.

While using these relaxed metrics, illustrates the usefulness of the approach in an

interactive scenario where a partially correct mapping is shown to the user for editing,

another possibility is showing the user multiple options of target class expressions that

map to a single source class for the user to select the correct one. The TOP 3 and 5

analysis was performed in order to test this scenario. The results show that indeed the

top scoring mapping is not always the "right" mapping, but in a few cases it can be

found in the top scoring mappings set.

The MP ontology performs better in general than HP, this is likely due to the

fact that MP uses vocabulary that is more similar to the one employed in PATO and

UBERON. In fact, while HP is restricted to human anatomy, MP covers all mammalian

anatomy and UBERON is species-agnostic.

When GO is present as a target ontology, the number of mappings increases in the

alignment. The precision and f-measure are much lower when GO is present but the

recall is practically the same. This is unsurprising given that adding a third ontology

increases the search space and the probability of creating a mapping increases. However,

given the incompleteness of the reference alignments, a higher number of mappings also

results in lower precision. Moreover, when creating the reference alignments with GO,

only equivalent classes that comprised GO were taken into account, producing much

smaller reference alignments.

One of the biggest problems faced when matching ontologies, and in particular

Biomedical ontologies, is the running time when large ontologies are used. Here, the

running time is short comparing to the approach developed by Oliveira (2015), where,

when using an Intel® Core™i7-2600 CPU 3.40GHz and 16GB of RAM and only two

target ontologies, the running time was of over 15h when the threshold was set to 0.1,

even when using large ontologies such as GO, and in this approach, the longest running

time was of less than five minutes. It is, in comparison, an algorithm of simpler use,

given that it’s not required to take into account the order of the ontologies to use as

targets, neither does it restrict the number of terms matched per target ontology, as the

algorithm will first match all the available terms in all the ontologies and then create the

mappings, allowing for more complete alignments. For example for the set MP-UB-PT

this algorithm got 24054 mappings against 1413 in Oliveira & Pesquita (2018), where
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the matching is restricted. On the other hand, this is a purely lexical approach and by
keeping not only the labels and the synonyms but also their combinations in dedicated
structures, it is more memory intensive.
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Chapter 6

Conclusions and Future Work

This MSc project proposed, developed and evaluated a novel compound matching algo-

rithm, able to compose mappings between a source class and a class expression relating

multiple classes from multiple target ontologies. It addresses the limitations of previous

approaches that only considered two target classes from two target ontologies. The al-

gorithm is based on the efficient lexical matching approaches in AgreementMakerLight,

and was evaluated on a set of partial compound alignments.

When using classical performance metrics, the obtained results were poor, with a

top f-measure of 24%. The difficulties in performing complex alignments are well known,

and a recent evaluation of complex matching approaches revealed that all techniques

produced f-measures below 20% (Thiéblin et al., 2018b). This difficulty is easily trans-

lated into compound alignments as well, since they share many of the same challenges.

The somewhat low results obtained can also, at least partially, be explained by the fact

that the built reference alignments can only be considered partial references. Not only

do they cover less than 30% of the ontologies, it has been previously shown that between

60 and 90% of ternary compound mappings found are not captured in the equivalent

class axioms (Oliveira & Pesquita, 2018). There are recent efforts in building reference

alignments for complex matching (Thiéblin et al., 2018b) that highlight the growing

interest in promoting complex matching. However, building these references is a highly

time-consuming task.

However, an evaluation that focuses on measuring the usefulness of the proposed

approach for an interactive alignment scenario revealed more promising results with

recall values between 80 and 98%.
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6. CONCLUSIONS AND FUTURE WORK

There are several future work endeavors in this area. For instance, improving the
lexicon algorithm to allow for more efficient data structures, integrating the approach
in the graphical user interface of AML to support alignment with human interaction,
and producing a scoring function for mappings that better reflects their similarity to
human users.

Finally, the current version of the algorithm is focused on finding the classes involved
in the equivalent class axioms, however such axioms also contain several property re-
strictions, and thus to be able to fully reproduce the axiom, both the classes and the
properties involved would need to be mapped. This represents another layer of com-
plexity, since properties present specific challenges for ontology matching algorithms
(Cheatham & Hitzler, 2014).

Compound ontology matching has been proposed as a technique to enrich ontolo-
gies with equivalence class axioms (Oliveira & Pesquita, 2018). It could also be adapted
to the integration of multidimensional semantic spaces (Berlanga et al., 2012), or to
enrich the Linked Open Vocabularies (Vandenbussche et al., 2017) with more complex
mappings. The impact of compound in the field of biomedical ontologies can be con-
siderable, regarding the heterogeneity of biomedical data and the number of existing
biomedical ontologies.
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