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Abstract

This work presents a canonical study on a wedge entering water near a single

piece of ice using computational-fluid-dynamics (CFD) and a Wagner-type the-

oretical model with corrections for non-linear effects. Calculations for a series

of conditions with ice of different sizes and locations relative to the wedge are

conducted. The hydrodynamic force due to impact, the pressure distribution

on the wedge surface, and the pile-up phenomenon are examined to study the

role of ice in the impact process. The theoretical model is shown to be accurate

and can serve as a useful method to assess slamming loads under the influence

of ice. It is shown that even for the case of a small piece of ice, the slamming

force on the wedge can increase by 30%.

Keywords: Water Entry, Wedge impact with ice, Computational fluid

dynamics

1. Introduction

The access to open water in the Arctic is steadily increasing. Expanded

marine operations are certain in the near future in this region due to the con-

siderable interests for multiple industries. International sea transportation can

take advantage of the much shorter sea routes by entering the Arctic (Hong,5

2012). In addition, the Arctic is estimated to contain considerable amount of
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natural resources including oil, gas and minerals (Borgerson, 2008). Challenges

also exist due to the lack of infrastructures along the Arctic region and the harsh

environment (Farré et al., 2014). International Maritime Organization (IMO)

and classification societies have developed specific rules for vessels that intend10

to operate in the polar region. In early 2017, the IMO polar code was put in

force (International Maritime Organization (IMO), 2017).

Transit through the Arctic exposes a ship to different types of icy conditions

and the most severe storms that occur on earth. This requires extension of

traditional naval engineering knowledge to be able to properly account for the15

influence of the unique aspects of the arctic environment. As the ice has receded

in recent years, large waves have recently been recorded in the Arctic due to

the longer fetch for waves to grow. It is expected that stronger sea waves in the

Arctic will be seen in the near future (Thomson and Rogers, 2014). The unique

sea conditions in the Arctic make the ship-wave-ice interaction and water impact20

more relevant than ever. Water impact is an important phenomenon that can

result in large impulsive loads and has important implications for the vessel

operating speed and stability (Korobkin, 1996; Abrate, 2011).

Water impact due to the slamming motion of vessels has been extensively

studied in recent years. Building on the work by von Karman (1929) and Wag-25

ner (1932), significant progress has been made toward understanding the role

of large deadrise angles (Korobkin, 2004; Mei et al., 1999), geometric asymme-

tries (Judge et al., 2004; Semenov and Iafrati, 2006), three-dimensional effects

(Sun and Wu, 2013; Scolan and Korobkin, 2001) and hydroelastic phenomena

(Khabakhpasheva and Korobkin, 2013). In addition to these theoretical mod-30

els, computational models which can provide more detailed data, have been

applied to study water impact problems (Maki et al., 2011; Piro and Maki,

2013; Fairlie-Clarke and Tveitnes, 2008; Facci et al., 2016, 2015). Experiments

have also been conducted to support the theoretical and computational find-

ings (Tveitnes et al., 2008; Wu et al., 2004; Jalalisendi et al., 2015). However,35

there is no previous study on slamming load with the influence of ice (part of

this work has been presented in (Khabakhpasheva et al., 2018)), and as will be
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shown in this work, the presence of ice can have important effect on the impact

load. Previous studies related to ship performance in a sea way with ice have

been mostly focused on the ice load and operation in level ice (Su et al., 2010;40

Zhou et al., 2016), where violent motions such as slamming are not examined.

This work is specifically focused on deepening the understanding of how ice

influences the slamming loads of a ship that is operating in the proximity of

broken ice. We seek to provide insight on the effects of the size and location of

the ice for future research on ships operating in the Arctic environment. This45

paper presents a combined theoretical and numerical study of a wedge entering

the water with constant velocity near a single piece of ice while the ice is fixed

in space. Test cases with ice of different size and location relative to the wedge

are studied.

The rest of the paper is organized as follow. In Section 2, we describe the50

canonical problem studied in this work. The details of the CFD approach and

the theoretical model are described in Section 3. In Section 4, results from both

the CFD and the theoretical model are presented, which include the overall

force experienced by the wedge, the pile-up dynamics, the pressure distribution

on the wedge, and the free-surface evolution. Conclusions of the study and an55

outlook on future work are presented in Section 5.

2. Formulation of the problem

The hydrodynamic problem due to a two-dimensional wedge entering the

water surface is studied in this work. The fluid is considered to be incompress-

ible. The geometry of the problem and the important parameters are defined60

in Fig. 1. A fixed Cartesian reference frame is defined with the y-axis along the

vertical direction and x-axis along the horizontal direction. The origin of the

reference frame is located at the intersection of the wedge apex and the calm

water surface at the initial impact time. The width and the deadrise angle of the

wedge are defined respectively as B and β. The vertical distance between the65

chine and the apex of the wedge is ych. The distance travelled by the wedge is
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designated as ycw. The horizontal distance between the centerline of the wedge

and the jet root on each side of the wedge is defined respectively as cl and cr.

The subscripts l and r denote respectively the values of the left and right side of

the wedge. c∗ is the horizontal reference length measured from the wedge cen-70

terline to the intersection of the calm water surface and the wedge. It is related

to the wedge deadrise angle and the distance that the wedge has travelled as

c∗ = ycw tanβ. A pile-up coefficient Cw can be defined as: (Facci et al. (2016))

Cw =
c

c∗
(1)

The length and thickness of the ice are defined respectively as L and τ . The

distance between the ice and the centerline of the wedge is denoted as xs. The75

top surface of the ice is aligned with the calm water surface.

The impact takes place at time t = 0. The wedge travels with a constant

vertical velocity V . The fluid is considered to be laminar and incompressible.

The flow field is assumed to be governed by the incompressible Navier-Stokes

equations:80

∇ · u = 0 (2)

D(ρu)

Dt
= −∇p+∇ ·

[
µ
(
∇u +∇uT

)]
, (3)

where u is the fluid velocity, ρ and µ are the fluid density and dynamic viscos-

ity; p is the fluid pressure and D(·)/Dt represents the material derivative. In

the current work, the gravity and turbulence are neglected because the impact

studied in this paper occurs over a time scale that is much shorter in duration

than the time scale over which gravity acts on the flow. The flow field can be85

seen as laminar, since there is not enough time for turbulence to develop within

such a short duration of time.

3. Solution methods

3.1. Computational-Fluid-Dynamics approach

The interDyMFoam solver from the open-source CFD library OpenFOAM90

(The OpenFOAM Foundation, 2017) is used to numerically solve the problems
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Figure 1: Schematic representation of the problem.

in this work. A finite-volume discretation is used with arbitrary Lagrangian-

Eulerian(ALE) formulation (Jasak, 2009) to allow for moving and deforming

grids. The air-water interface is captured by using the volume-of-fluid (VOF)

technique (Ubbink and Issa, 1999; Rusche, 2003). The free-surface evolution is95

calculated by numerical integration of the scalar transport equation Eq. (4) of

the phase indicator variable α.

Dα

Dt
+∇ · [urα(1− α)] = 0 (4)

The second term of Eq. (4) is introduced to limit the numerical smearing of the

fluid interface. ur is the free-surface compression velocity that is only active at

the free-surface. For more details about the free-surface compression term, the100

reader are referred to Rusche (2003). The temporal discretization is achieved

through an implicit Euler scheme. The convective term in Eq. (3) is integrated

using the Gauss integration. A second-order central scheme is applied with

the Sweby limiter (Sweby, 1984) to interpolate the variable from cell centre to

cell face. The convective term in Eq. (4) is calculated using the same method105

except the Van Leer limiter is applied (Van Leer, 1974). For the diffusion term

in Eq. (3), a second-order central scheme is used. An explicit non-orthogonal

correction is applied when it is needed.

The computational domain is discretized using the snappyHexMesh applica-

tion in OpenFOAM. A snapshot of the coarse mesh in a small domain is shown110

in Fig. 2. The size of the computational domain used for cases with semi-infinite

ice in this study spans from x ∈ [−5B : 5B] and y ∈ [−5B : 2B]. A domain

dependence study has been conducted to determine the appropriate computa-

tional domain size (details can be found in Appendix A). The grids used in all
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Figure 2: Illustration of the computational domain and the ACMI (Arbitrarily Coupled Mesh

Interface) interface.

the cases have similar resolution. A grid refinement study is conducted to de-115

termine the grid resolution (details can be found in Appendix B). For example,

the mesh for the case with semi-infinite ice, 2τ/B = 0.01, 2xs/B = 1.05 and

β = 10◦ has 665, 351 cells in total and 534 cells on the wedge bottom. Due to the

different movement of the ice and the wedge, a sliding mesh technique, ACMI

(Arbitrarily Coupled Mesh Interface), is used to account for the relative motion120

between the ice and the wedge. The computational domain is divided into two

cell zones by the sliding mesh interfaces (Sf and Sg). The sliding-mesh interface

is located at the mid-way between the wedge and the ice (highlighted in Fig. 2).

The sliding-mesh interface enables the two cell zones to move with velocities.

During the simulation, the cell zone that contains the wedge moves with the125

constant velocity while the sub-domain contains the ice is fixed in place. The

solution of the flow variables at the sliding mesh interface Sf are interpolated

based on the ratio of the face areas, while the zero gradient boundary conditions

for both pressure and velocity are applied on the interface Sg. A no-slip bound-
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ary condition for velocity and zero normal gradient condition for pressure are130

applied on the wedge surface, the two side walls and bottom wall of the domain.

On the top boundary, zero pressure and zero normal gradient for velocity are

enforced. The Courant number is set to be less than 0.1 for all simulations.

3.2. Theoretical model of water entry with floating ice

The two-dimensional Wagner model of water entry (Wagner, 1932) is gener-135

alised to account for the presence of an ice floe floating near the place of impact.

At t = 0 the wedge touches the water surface at a single point taken as the origin

of the Cartesian coordinate system, x = 0 (Fig. 3 (a)). The position of the wedge

at t > 0 is described by the equation y = f(x)− h(t), where f(x) = |x| tanβ, β

is the wedge deadrise angle, and h(t) is the penetration depth, h(0) = 0. The ice140

floe and impact region are separated with an interval of free water surface, see

Fig. 3 (b). In the Wagner model, the boundary conditions on the free surface, on

the ice plate and in the impact region are linearized and imposed on the initial

position of the water surface, y = 0, see Fig. 3 (c). Both the ice floe and the

impact region are approximated with flat plates of zero draft on the boundary145

of deep water, y < 0. Before the impact, t = −0, the water and the ice floe are

at rest. The theoretical model is formulated for freely floating ice. However,

in this paper, the model is applied only to fixed ice in order to compare with

results by the CFD approach.

In the theoretical model of this section, it is convenient to use the notation150

(a2, b2) for the impact region and (a1, b1) for the ice floe, see Fig. 3. a2, b2

correspond to cl, cr in Fig. 1 and a1, b1 correspond to xs, xs + L. The contact

region, a2(t) < x < b2(t), expands in time, a2(0) = b2(0) = 0. The coordinates

of the edges of the contact region, a2(t) and b2(t), should be determined as

part of the solution using the Wagner condition that the liquid displacements at155

these two points are finite. The small motion of the ice floe is described by the

equation y = h1(t) + α1(t)(x− xc), where xc = (a1 + b1)/2 is the centre of the

floe, h1(t) is the vertical displacement of this centre, and α1(t) is the inclination

angle of the floe (Fig. 3 (b)). The functions h1(t) and α1(t) are unknown in
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advance and should be determined as part of the solution.160

The linearised problem of water entry is formulated and solved by using the

displacement potential φ(x, y, t) and the complex displacement W (z) = φx−iφy,

where z = x+ iy, φx and φy are the horizontal and vertical components of the

liquid displacement correspondingly. The pressure p(x, y, t) in the liquid is given

by the linearized Bernoulli equation, p = −ρφtt, where ρ is the water density.165

The gravity and surface tension are not included in the Wagner model of water

impact.

Figure 3: Sketch of the problem configuration with floating ice floe: (a) initial positions of the

floe and the wedge, (b) physical plane of the water impact problem, (c) plane of the linearised

hydrodynamic problem.

The complex displacement W (z) is an analytic function in the flow region,

y < 0, and satisfies the boundary conditions φy = h1(t)+α1(t)(x−xc) on the ice

plate, a1 < x < b1, and φy = f(x)−h(t) in the impact region, a2(t) < x < b2(t).170

On the interval of the free surface between the ice plate and the impact region,

the dynamic boundary condition, p(x, 0, t) = patm, provides φ = 0 after double
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integration in time and using the initial conditions. In particular, the liquid

particles of the free surface can move only vertically, φx = 0 (Fig. 3 (c)).

The horizontal displacement, φx(x, 0, t), along the solid parts of the bound-175

ary is given by the Hilbert formula (Gakhov, 1966),

φx(x, 0, t)rj(x) =
1

π

2∑
n=1

∫ bn

an

φy(τ, 0, t)rn(τ)dτ

τ − x
+ C1 (aj < x < bj , j = 1, 2),

(5)

where r1(x) = −r(x), r2(x) = r(x), and r(x) = |(x−a1)(x−b1)(x−a2)(x−b2)| 12 .

The constant C1 in Eq. (5) is determined from the condition that φ(x, 0, t) = 0,

where b2(t) < x < a1, ∫ b2

a2

φx(x, 0, t)dx = 0, (6)

and φx(x, 0, t) is given by Eq. (5). The functions h1(t) and α1(t), which describe180

the motion of the ice floe, are governed by the linear equations

Mh′′1 = F (t), Iα′′1 = Q(t), (7)

where M is the total mass of the floe per unit width, I is the moment of inertia

of the floe, I = M(b1 − a1)2/12, the hydrodynamic force F (t) and torque Q(t)

are given by

F (t) =

∫ b1

a1

p(x, 0, t)dx, Q(t) =

∫ b1

a1

p(x, 0, t)(x− xc)dx

and the superscript ′′ represents the second derivative with respect to time.185

Note that the gravity and buoyancy forces are not included in the model. Us-

ing the linearized Bernoulli equation, p(x, 0, t) = −ρφtt(x, 0, t), the condition

φ(x, 0, t) = 0, where x = a1 and x = b1, and integration by parts, we obtain

F (t) = ρ
d2

dt2

(∫ b1

a1

(x− xc)φx(x, 0, t)dx
)
,

Q(t) =
ρ

2

d2

dt2

(∫ b1

a1

(x− xc)2φx(x, 0, t)dx
)
. (8)

The equations of motion (7) with account for (8) are integrated in time twice

using the initial conditions, h1(0) = 0, h′1(0) = 0, α1(0) = 0, α′1(0) = 0, which190

9



leads to the following linear equations,

Mh1 = ρ

∫ b1

a1

(x−xc)φx(x, 0, t)dx, Iα1 =
ρ

2

∫ b1

a1

(x−xc)2φx(x, 0, t)dx. (9)

Equations (6) and (9) form the linear system of three algebraic equations

with respect to three unknown functions of time C1(t), h1(t) and α1(t). The

coefficients and the right-hand sides of this system depend on time t through

the positions of the contact points a2(t) and b2(t) and the penetration depth195

h(t). The coefficients are given by double integrals, which makes their evalua-

tion challenging. Finally the motion of the contact points, a2(t) and b2(t), are

determined by using the Wagner condition that the displacements are finite at

these points and at the ends of the ice foe. This condition and the equation

(5) yield that the right-hand side in (5) is equal to zero at x = a2(t) and at200

x = b2(t). The resulting system of five equations is linear with respect to C1(t),

h1(t) and α1(t) and nonlinear with respect to the positions of the contact points,

a2(t) and b2(t). The system can be solved at each time instant independently

because both the positions of the ice floe and the size of the contact region

do not depend on the history of the flow but only on penetration depth h(t).205

Therefore the time can be considered as a parameter of this system. Note that

the solution of the problem also depends on the initial position of the floe and

the shape of the body.

It is known that the Wagner model overestimates the forces acting on a

body entering water. To correct the predictions of hydrodynamic loads, the210

MLM (Modified Logvinovich Model) can be used (Korobkin, 2004). In this

model, the positions of the contact points, a2(t) and b2(t), and the displacement

potential φ(x, y, t) are the same as in the Wagner model above. However, the

pressure is calculated by the non-linear Bernoulli equation with a correction for

the shape of the entering body.215

For a wedge entering water at a constant speed and without any floating

bodies nearby the Wagner model and MLM, as well as the fully nonlinear po-

tential model, predict linear growth of the hydrodynamic force with time until

the side walls of the wedge are fully wetted. Therefore the ratios of the theo-
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β 2τ/B 2xs/B

10◦ 0.01 1.05, 1.1, 1.25, 1.5, 2.0, 3.0

20◦ 0.01 1.05, 1.1, 1.25, 1.5, 2.0, 3.0

30◦ 0.01 1.05, 1.1, 1.25, 1.5, 2.0, 3.0

Table 1: Case matrix for the study on the effect of ice location.

retical forces calculated by different models are functions of the wedge deadrise220

angle only. The ratio for the fully nonlinear potential model and MLM is close

to unity for a wide range of the deadrise angles. The ratio between the MLM

prediction and the force provided by the Wagner model is equal to 0.839 for

β = 10◦. It is suggested to use this reduction coefficient also in the problems

with floating ice. Even this simple scaling significantly improve the agreement225

between the theoretical predictions and the CFD force time history, as it will

be shown in the next section.

4. Results and discussion

4.1. Effect of the ice location

A summary of the test cases for the investigation of the effect of the ice230

location is shown in table 1. A wedge with three different deadrise angles (β =

10◦, 20◦, 30◦) is considered. For each deadrise angle, the location of the ice

2xs/B is varied from very close to the wedge (2xs/B = 1.05) to far away from the

wedge (2xs/B = 3). The ice thickness 2τ/B is set to 0.01. The ice is considered

to be semi-infinite. However, the semi-infinite ice can not be achieved exactly235

in the numerical model, the actual length of the ice modelled in the simulation

is determined by conducting a domain dependence study (details can be found

in Appendix A). It is found that 2L/B = 10 is sufficient to model the effect of

a semi-infinite ice for the purpose of this study.

4.1.1. Hydrodynamic force240

The time history of the hydrodynamic force on the wedge is shown in Fig. 4.

For all three deadrise angles, it is evident that as the wedge moves closer to the
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ice, the force increases. The increase in force is greatest as the jet root passes

the chine. Moreover, the time to reach the maximum force is decreased. As

discussed later in this section, this is related to the modified pile-up behaviour245

due to the presence of ice. The results from the theoretical model are very similar

to the ones calculated by CFD before the wedge become fully wet. For clarity,

the theoretical-model results are not shown in Fig. 4 (a)-(c). The maximum

force from each case is nondimensionalized by the force of the ice-free CFD case

and plotted in Fig. 4 (d). The result generated by the theoretical model is shown250

in solid line. As can be seen, it agrees very well with the results from the CFD

calculations. Note that the theoretical line does not depend on the deadrise

angle. As can be seen, the maximum force increases rapidly as the wedge move

closer to the ice. As can be seen in Figures 4 (a)-(c), the force increases rapidly

as the wedge moves closer to the ice. The maximum force is more than twice255

the force of the ice-free case for 2xs/B = 1.1 and 1.05.

4.1.2. Hydrodynamic pressure

The pressure profile on the wedge surface at the instant of maximum force

is shown in Fig. 5. As seen in Fig. 5, the pressure on the side of the wedge that

is closer to the ice is much larger compared to the one for ice-free case. The ice260

also increases the pressure on the entire wedge.

In Fig. 6 - Fig. 8, the free-surface profile and the pressure-coefficient (Cp)

contour around the wedge are shown. Each column corresponds to a case with

the ice in a different location. The plots in each row correspond to four different

time instances. According to the Wagner theory, the jet root should reach the265

chine of the wedge around ycw/ych = 2/π ≈ 0.64 for symmetric wedge impact.

In Fig. 6 - Fig. 8, for the case without ice, the spray root reaches the chine

around ycw/ych = 0.66 which is similar to the Wagner theory. On the other

hand, it can be seen that as the wedge moves closer to the ice the jet root rises

faster due to the presence of ice, which results in the jet root reaching the chine270

earlier. In Fig. 6 - Fig. 8, for the cases of 2xs/B = 1.05, the chine becomes

wet before ycw/ych = 0.60. Moreover, Cp becomes much larger on the side of
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Figure 4: Hydrodynamic force time histories for cases with ice in different locations (a) β = 10◦

(b) β = 20◦ (c) β = 30◦; (d) maximum force

the flow field where the ice is located. The faster rise-up of the water and the

increase in Cp explain the force trend shown in Fig. 4.

4.1.3. Pile-up dynamics275

The pile-up phenomenon on each side of the wedge behaves differently as

shown in Fig. 6 - Fig. 8. To examine this more closely, the pile-up coefficient

Cw is plotted in Fig. 9. The jet root on each side of the wedge is tracked by

locating the point of maximum pressure. It should be noted that this approach

is likely to slightly underestimate the pile-up coefficient, because it neglects the280
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Figure 5: Pressure profile on the wedge at the instance of maximum force (a) β = 10◦ (b)

β = 20◦ (c) β = 30◦.

short distance between the point of maximum pressure and the jet root. As

can be seen in Fig. 9, Cw remains the same for the both sides of the wedge

for the ice-free case and is smaller than the value that Wagner theory predicts

(Facci et al. (2015)). As the gap between the ice and the wedge decreases, the

difference between the Cw for each side of the wedge becomes more apparent.285

4.2. Effect of the ice length

A summary of the conditions for the investigation of the effect of the ice

length is shown in table 2. Wedge with deadrise angle β = 20◦ is considered.
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Figure 9: Pile-up coefficient time history for cases with semi-infinite ice (a)β = 10◦ (b)β = 20◦

(c)β = 30◦
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β 2τ/B 2xs/B 2L/B

20◦ 0.01 1.1 0.5, 1, 2, 3, 6

Table 2: Cases for the study on the effect of ice length.

The location of ice relative to the wedge is fixed at 2xs/B = 1.1, and the

thickness is 2τ/B = 0.01. The length of the ice 2L/B varies from 0.5 to 6.290

4.2.1. Hydrodynamic force

The time history of the hydrodynamic force experienced by the wedge is

shown in Fig. 10(a). It is shown that as the length of the ice increases, the

vertical force experienced by the wedge increases and the time it takes to reach

the maximum force decreases. The force time history for the cases with no ice295

and semi-infinite ice are also plotted in Fig. 10(a). The semi-infinite-ice result

is that from Section 4.1 with β = 20◦, 2xs/B = 1.1. The results from the cases

with no ice and semi-infinite ice are shown to be the lower and upper bounds.

The maximum force for cases with different ice length 2L/B is plotted in

Fig. 10(b). The maximum force Fmax is nondimensionalized by the maximum300

force F ∗max of the ice-free case. As the ice length 2L/B increases, the maximum

force approaches that from semi-infinite-ice case. Even when the ice length is

small 2L/B = 0.5, there is about 30% increase in maximum force. The results

from the theoretical model are also plotted in Fig. 10. As can be seen, although

there are some differences, they generally agree with the CFD results.305

4.2.2. Hydrodynamic pressure

The pressure profile on the wedge surface at the instant that the maximum

force occurs is shown in Fig. 11. The pressure profile for the case without ice is

also shown as reference. It is shown that as the ice becomes longer, the pressure

on the side of the wedge near the ice increases substantially.310

In Fig. 12, the free-surface profiles and the pressure-coefficient (Cp) contours

around the wedge are shown. Each column corresponds to a case with the ice

of a different length. As seen in Fig. 12, as the ice becomes longer, the contour
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Figure 10: (a)Hydrodynamic force time histories (the results from the theoretical model are

in thick solid lines and indicated by arrows and labels); (b) maximum force; for cases with

different ice lengths 2L/B.
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Figure 11: Pressure profile on the wedge at the instant of maximum force for cases with

different ice length 2L/B

of Cp becomes more asymmetric with a peak in the area between the ice and

the wedge.315

4.2.3. Pile-up dynamics

It can be see in Fig. 12, the pile-up phenomenon on each side of the wedge

behaves differently. Similar to Section 4.1.3, the pile-up coefficient Cw is plotted

in Fig. 13. As 2L/B increases, the difference between the Cw for each side of

the wedge becomes more apparent. Cw on the side of the wedge closer to the320

ice (right) increases faster than the one of left side and reaches a larger value.

5. Conclusions

In this work, the effect of ice on impact loads is studied using both CFD and

a Wagner-type theoretical model. The canonical problem of a wedge entering

water with a constant velocity near a single piece of fixed ice is considered.325

For the theoretical model, the two-dimensional Wagner model for water entry

is generalised to account for the presence of the ice near the impact region.

Within the CFD framework, the problem is solved by numerically integrating
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Figure 13: Pile-up coefficient time history

the Navier-Stokes equations and the VOF method is used to capture the free-

surface. A sliding mesh technique is used to model the motion of the wedge330

while keeping the ice fixed in place. To study the effect of ice location, a single

piece of semi-infinite ice is considered and the ice is placed at different distances

away from the wedge. To study the effect of ice length, the distance between

the ice and the wedge is fixed while the ice length is varied.

The hydrodynamic force, pressure profile and free-surface profile are exam-335

ined to understand the effect of the ice. The maximum forces are also stud-

ied. The results calculated by the theoretical model have been compared with

the CFD results. An excellent agreement has been shown in the comparison.

The model predicts well the evolution of the vertical force acting on the wedge

but overpredicts its magnitude. A simple correction for non-linear effects by340

the MLM significantly improves the theoretical prediction of the hydrodynamic

loads. It is found that when the semi-infinite ice is placed very close to the

wedge, the impact load can be increased more than twice compared to the one

from a ice-free case. When the finite ice is considered, the impact load on the

wedge is increased for about 30%, even when the ice is small. The pile up of345

water increases due to the presence of ice. A pile-up coefficient is used to study

the wetted width on each side of the wedge. It is found that the presence of ice

increases the wetted width for both side of the wedge.

In this study, the ice floe is modelled as a rigid stationary plate, and the

flow is two-dimensional. This model can be used to estimate the hydrodynamic350
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forces acting on a body entering water near an ice floe. The actual forces are

expected to be smaller than these estimates because of the motions of a real

floe, its elastic deflection and three-dimensionality of the flow. The future work

will be focused on improving the estimates taking into account more realistic

characteristics of ice floes and their motions, as well as the three-dimensional355

effects on ice/water/body interaction. The sliding mesh technique of this paper

can be readily extended to the problems with freely floating ice floes. Extension

of the theoretical model to three-dimensional problems of water impact with

floating ice is more challenging.
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Appendix A. Domain dependence study

To ensure that the computational domain is large enough so that the block-

age effect can be minimized, a domain dependence study is conducted. This375

study is also used to determine a sufficient ice length to model the semi-infinite

ice for cases studied in Section 4.1
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Figure A.2: (a) Force time histories (b) pressure profile on the wedge at the instant of maxi-

mum force

The case with a wedge of deadrise angle β = 10◦ and a piece of semi-infinite

ice (2xs/B = 1.05, 2τ/B = 0.01) is selected for the domain dependence study.

The sketch of the computational domain is shown in Fig. A.1. The distance380

between the top boundary and the calm water surface is fixed at 2xU/B = 4.

The distance xD varies from 2xD/B = 10 to 2xD/B = 40.

The force time history and the pressure profile on the wedge at the instant of

maximum force are plotted in Fig. A.2. As can be seen in Fig. A.2, the results

of different domain size are mostly indistinguishable. Hence 2xD/B = 10 is385

selected for all the cases in this paper.
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Grid N Nl

coarse 179,424 266

med 347,857 380

fine 665,351 534

vFine 1,306,614 762

Table B.1: Summary of grids used in the grid refinement study.

Appendix B. Grid refinement study

A grid refinement study is conducted to ensure sufficient spacial resolution.

The details of the grid are shown in table B.1, where N is the total number of

cells in the domain, Nl is the number of cells on the wedge.390

The force time history and pressure profile on the wedge at the instant of

maximum force are plotted in Fig. B.1. As can be seen in Fig. B.1, as the

resolution increases, the maximum force and the pressure peak increase. The

pressure profile of the fine grid matches well with the one from vFine grid, except

for the pressure peak. The force time history of the fine grid closely matches395

with the one from vFine grid. It should be noted that it is computationally

expensive to fully resolve the pressure peak, yet the complete resolution of the

pressure peak does not significantly affects the solution in the rest of the domain.

Hence the fine grid is selected for all the cases in this paper. The pressure profile

for the case of a 10 degree wedge with no ice is calculated using the fine grid.400

As seen in B.1(c), the fine grid pressure profile matches well with the BEM data

of Zhao and Faltinsen (1993).
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Figure B.1: (a) Force time histories (b) pressure profile on the wedge at the instant of maxi-

mum force (c) pressure profile for case with a 10 degree wedge and no ice (symbols are from

Zhao and Faltinsen (1993))
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