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Editors summary 

Nanopore sequencing coupled with a metagenomics framework that effectively 

removes human DNA from samples enables rapid bacterial LRI diagnosis. 
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ABSTRACT 

The gold standard for clinical diagnosis of bacterial lower respiratory infections 

(LRIs) is culture, which has poor sensitivity and is too slow to guide early, targeted 

antimicrobial therapy. Metagenomic sequencing could identify LRI pathogens much 

faster than culture, but methods are needed to remove the large amount of human 

DNA present in these samples for this approach to be feasible. We developed a 

metagenomics method for bacterial LRI diagnosis that features efficient saponin-

based host DNA depletion and nanopore sequencing. Our pilot method was tested on 

40 samples, then optimized, and tested on a further 41 samples. Our optimised 

method (6 hours from sample to result) was 96.6% sensitive and 41.7% specific for 

pathogen detection compared to culture and we could accurately detect antibiotic-

resistance genes. After confirmatory qPCR and pathobiont-specific gene analyses, 

specificity and sensitivity increased to 100%.  Nanopore metagenomics can rapidly 

and accurately characterise bacterial LRIs and might contribute to a reduction in 

broad-spectrum antibiotic use.  
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INTRODUCTION 

Lower respiratory infections (LRIs) caused at least three million deaths worldwide in 2016 

(http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death). They can be 

subdivided into community-acquired pneumonia (CAP), hospital-acquired pneumonia (HAP), 

bronchitis, bronchiolitis and tracheitis 1. Morbidity and mortality rates vary dependent on 

infection site, pathogen and host factors. In the UK, CAP accounts for approx. 29,000 deaths 

per annum and in the US HAP causes approx. 36,000 deaths per annum 2, 3. The most 

common bacterial CAP pathogens are Streptococcus pneumoniae and Haemophilus 

influenzae, and the most common HAP pathogens are Staphylococcus aureus, 

Enterobacteriaceae and Pseudomonas aeruginosa 4-6. However, multiple bacterial and viral 

pathogen, can cause LRIs, which makes diagnosis and treatment a challenge.

 Respiratory tract infections account for 60% of all antibiotics prescribed in general 

practice in the UK 1. Initial treatment for severe LRIs usually involves empirical broad-

spectrum antibiotics. Guidelines recommend that such therapy should be refined or stopped 

after two to three days, once microbiology results become available 7, 8, but this is often not 

done if the patient is responding well or the laboratory has failed to identify a pathogen. Such 

extensive ‘blind’ use of broad-spectrum antibiotics is wasteful and constitutes poor 

stewardship, given that many patients are infected with susceptible bacteria or a virus. 

Antimicrobial therapy disrupts resident gut flora, and can contribute to the emergence of 

resistant bacteria and Clostridium difficile9, 10.  

 Rapid and accurate microbiological diagnostics could enable tailored treatments and 

reduce overuse of broad-spectrum antibiotics. “Gold standard” culture and susceptibility 

testing is too slow, with typical turnaround times of 48-72 hours and low clinical sensitivity 4, 

11. Molecular methods may help overcome the limitations of culture, as highlighted by the UK 

Government 5-year AMR action plan and the O'Neill report 12-14, by identifying pathogens 

and their antibiotic resistance profiles in a few hours, enabling early targeted therapy and 

supporting antibiotic stewardship. Although nucleic acid amplification tests (including PCR) 

are rapid and highly specific/sensitive, there are limits on multiplexing 15-19 and there is also a 

http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
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constant need to update PCR-based methods to include emerging resistance genes and 

mutations 16, 20, 21. 

 Metagenomic sequencing based approaches have the potential to overcome the 

shortcomings of both culture and PCR, by combining speed with comprehensive coverage of 

all microorganisms present 22, 23. Next-generation sequencting platforms, such as Ion Torrent 

and Illumina, are widely used for metagenomics sequencing, but they require the 

sequencing run to be complete before analysis can begin (although LiveKraken, a recently 

described method, enables analysis of raw Illumina data before the run ends 24). Nanopore 

sequencing (Oxford Nanopore Technologies, ONT) has the advantage of rapid library 

preparation and real-time data acquisition 25, 26. Nanopore sequencing has been used to 

identify viral and bacterial pathogens from clinical samples using targeted approaches and in 

proof-of-concept studies using samples with high pathogen loads e.g. urinary tract infection 

26-28.  

Respiratory specimens present a difficult challenge for metagenomics sequencing, 

owing to variable pathogen load, the presence of commensal respiratory tract flora, and the 

high ratio of host:pathogen nucleic acids present (up to 105:1 in sputum). Nanopore 

sequencing has previously been used for samples from two bacterial pneumonia patients 

without host cell/DNA depletion, but the vast majority of reads were of human origin, with 

only one and two reads aligned to the infecting pathogens, P. aeruginosa and S. aureus, 

respectively 29. It seems likely that a metagenomics method would be improved by 

introducing host DNA depletion. Although commercial kits and published methods are 

available for this purpose (which include differential lysis, human DNA removal and microbial 

DNA enrichment methods 30-33), they do not perform well in complex respiratory samples and 

better methods are needed 34. 

 We present an optimised clinical nanopore metagenomics framework for bacterial 

LRIs that can remove up to 99.99% of host nucleic acid from clinical respiratory samples, 

and enables pathogen and antibiotic resistance gene identification within six hours.  
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RESULTS 

Pilot method development 

A pilot method was tested on respiratory samples from 40 patients with suspected bacterial 

LRI. This method was 91.2% sensitive (95% CI; 75.2-97.7%) and 100% specific (95% CI; 

54.07-100%), not counting additional organisms in culture-positive samples as false 

positives (Table 1), and took 8 hours to perform (Figure 1). Up to 99.9% or ~103 fold (median 

352-fold, interquartile range 144-714; maximum 1024-fold) of host DNA was removed using 

saponin depletion, as measured by qPCR. Microorganisms, including potential respiratory 

pathogens (Online methods), were identified in real-time using ONT’s ‘What’s In My Pot?’ 

(WIMP) pipeline. Additional pathogens, not reported by microbiological culture, were 

detected in 5/40 samples: Moraxella catarrhalis was detected in P8; Escherichia coli in P14; 

H. influenzae in P22 and P30; Klebsiella pneumoniae and M. catarrhalis in P29 (Table 1). 

 

Organisms cultured using routine clinical microbiology were not detected in 3/40 sequenced 

samples. 2/3 samples were mixed infections, where one of the two pathogens present was 

missed by our pilot method – specifically, S. pneumoniae and H. influenzae were not 

detected in P3 and P37 respectively. S. aureus was not detected in the third sample, P34. 

 

Metagenomics protocol optimisation 

We sought to increase sensitivity (8.8% false negative rate) by improving bacterial cell lysis. 

A sample pre-treatment step was introduced (bead-beating or an enzyme cocktail, Online 

methods) to optimise cell lysis. Two culture-positive sputa were used for optimisation 

experiments, one containing S. aureus (Gram-positive) and one containing P. aeruginosa 

(Gram-negative). Neither pre-treatment affected the bacterial DNA yield in the P. aeruginosa 

sample. The enzyme cocktail increased the amount of bacterial DNA in the S. aureus 

sample by approx. 4-fold, and bead-beating by 21-fold, compared with the pilot method, as 

determined by 16S qPCR (Supplementary Table 1a). The increased bacterial DNA yield in 

the bead-beaten S. aureus sample was likely to have been associated with improved lysis of 
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S. aureus, as the pathogen dominated the bacterial community (approx. 80% of reads) 

present in the sample. We included bead-beating in the optimised method. Removal of the 

second DNase treatment and reducing the number of washes shortened the host DNA 

removal protocol from 90 min to 50 min, without affecting efficiency (Supplementary Table 

1a). Additional time was saved by reducing the library preparation PCR extension time from 

six to four minutes. Comparison of the microbial community profile (organisms with ≥0.5% 

classified reads) between libraries produced with four and six minute extension times 

showed only minor differences in the abundance of minor members of the community and a 

small reduction in average read length for the S. aureus sample (<600bp) (Supplementary 

Table 1b). Altogether these changes reduced metagenomic library preparation to 2.5 hours 

with an overall turnaround time of less than four hours before DNA sequencing.  

 

Limit of detection 

The limit-of-detection (LoD) of the optimised method was determined using uninfected 

‘normal respiratory flora’ (NRF) sputum samples (high and low commensal bacterial 

backgrounds in triplicate) spiked with serial ten-fold dilutions of S. aureus and E. coli cultures 

at known cell densities. Each replicate was defined as positive for the spiked ‘pathogen’ if 

present at 1% classified microbial reads (low quality read alignments with a WIMP 

assignment q-score <20 were removed from the analysis). The LoD (2/3 replicates positive) 

was determined to be 100,000 (105) cells for E. coli and 10,000 (104) cells for S. aureus 

when in a high bacterial background (Supplementary Table 2a). The LoD was lower (103 S. 

aureus and E. coli) in sputum samples with a lower bacterial background (Supplementary 

Table 2b). Hence, the LoD of the method ranges from 103-105 CFU/ml, however, different 

levels of background commensal/human DNA could potentially result in different LoDs. 
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Mock community detection 

Our optimised method was tested in triplicate on a panel of common respiratory pathogens 

spiked into an NRF sputum sample (~103-106 CFU/pathogen) to determine whether the 

saponin human DNA depletion method led to inadvertent loss of any bacterial DNA. We 

observed no bacterial DNA loss (average ΔCq <1) for any organisms (E. coli, H. influenzae, 

K. pneumoniae, P. aeruginosa, S. aureus and S. maltophilia) tested except S. pneumoniae 

where there was a 5.7-fold loss, (average ΔCq 2.52) between depleted and undepleted 

samples (Supplementary Table 3). 

 

Optimised method testing 

The optimised method was then tested on 41 respiratory samples from patients with 

suspected bacterial LRIs. A maximum of 104 fold depletion of human DNA (median 600-fold; 

interquartile range 168-1156 fold; maximum 18,054 fold) was observed between depleted 

and undepleted samples, as measured by qPCR (Table 2). The overall sensitivity of the 

optimised method for the detection of respiratory pathogens was 96.6% (95% CI, 80.4-

99.8%) and specificity was 41.7% (95% CI, 16.5-71.4%), not counting additional organisms 

in culture-positive samples as false positives (Table 2). The turnaround time from sample to 

result was approx. 6 hours, including 2 hours MinION sequencing (Supplementary Table 4). 

 

The pathogenic organism reported by routine microbiology was detected together with an 

additional pathogen (not reported by culture) in eight samples: K. pneumoniae in S5, P. 

aeruginosa in S7, M. catarrhalis in S14 and S39, S. pneumoniae in S8 and S15, S. aureus in 

S29 and S. pyogenes in S27 (Table 2). Up to two potentially pathogenic bacteria were also 

observed in seven samples reported as NRF/no significant growth (NSG) by routine 

microbiology i.e. H. influenzae and S. pneumoniae in S10 and S21; S. pneumoniae in S11 

and S28;  M. catarrhalis and H. influenzae in S12; H. influenzae in S31 and E. coli in S32. 

Only one pathogenic organism reported by routine microbiology was not detected using the 

optimised method i.e. S9. This was reported as a mixed infection with P. aeruginosa and E. 
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coli, whereas only E. coli was detected by metagenomics. There were three other mixed 

infections reported by routine microbiology, S27, S38 and S41, and both organisms were 

detected in all three samples using the optimised method.  

 

Confirmatory qPCR was used to establish the presence or absence of the missed/additional 

pathogens detected by metagenomics in 16 samples (1 sample with a missed pathogen, 15 

samples with additional pathogen/s; total of 19 pathogens) and in matched controls i.e. an 

equal number of samples with no evidence of the pathogen by culture or metagenomics 

(Supplementary Table 5). This analysis was performed on DNA extracted from samples that 

did not undergo the depletion process, to rule out depletion as a potential cause of 

missed/additional pathogen detection. The majority of additional pathogens detected by 

metagenomics (12/19) were confirmed by qPCR, which increased the specificity of the 

optimised method to 50% (95% CI, 21.09-78.91% - not counting additional organisms in 

culture-positive samples as false positives (n=2, S5 positive for K. pneumoniae, likely k-mer 

mis-classification of K. oxytoca. S41 positive for E. coli, likely laboratory/kit contamination)). 

qPCR was negative for P. aeruginosa (S9) increasing the sensitivity to 100% (95% CI, 

88.06-100%). 

 

Species-specific gene analysis was performed on all samples positive for pathobionts 

(potentially pathogenic organisms which may reside as commensals in the lung), i.e. H. 

influenzae and S. pneumoniae, which can have closely related non-pathogenic species 

present in the lungs (18 samples containing 20 pathobionts). This confirmatory analysis was 

used to identify k-mer mis-classification of commensal reads as pathogen reads by WIMP. 

Samples containing >1 H. influenzae (siaT) or S. pneumoniae (ply) specific gene alignments 

were considered positive for that organism. The pathobiont-specific gene analysis confirmed 

the absence of H. influenzae/S. pneumoniae in 5/18 samples (also negative by qPCR - see 

previous paragraph) and resulted in metagenomics test sensitivity of 100% (95% CI, 88.06-
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100%) and specificity of 100% (95% CI, 73.54-100%) compared to the culture+qPCR gold 

standard (Supplementary Table 6).  

 

Antibiotic resistance  

The samples tested using the optimised method had little antibiotic resistance, based upon 

routine testing (Supplementary Table 7).  Across the 33 cultivated organisms, just 43 

instances of resistance and intermediate resistance were recorded (Supplementary Table 7), 

with some of these likely reflecting single underlying mechanisms. Sequencing identified 183 

resistance genes across the 41 specimens (with multiple inclusions when ARMA identified 

multiple variants of e.g. blaTEM). 

  

Among the 183 resistance genes, 26 were inherent to the species cultivated (e.g. oqxA/B for 

K. pneumoniae or blaOXA-50 in P. aeruginosa), leaving 157, of which 24 matched the 

phenotype seen (Table 3). These comprised of mecA in both MRSA (S16 and S40), sul1 

and dfrA12 or dfrA17 in both co-trimoxazole-resistant E. coli (S1 and S9), aac(3’)-IIa (and 

IIc) in a tobramycin-resistant E. coli (S9) and a total of 13 blaTEM variants spread recorded 

across two amoxicillin-resistant E. coli (S1 and S35 and two amoxicillin-resistant H. 

influenzae (S18 and S36). A caveat regarding this is that although ARMA flagged multiple 

blaTEM genes, it did not flag blaTEM-1, which was the likeliest variant, given (i) that it is 

considerably the most prevalent type and (ii) that the isolates remained susceptible to 

oxyimino- cephalosporins whereas many of the variants flagged should encode extended-

spectrum variants. Depending on their strength of expression blaTEM or blaOXY may have 

explained non-susceptibility to penicillin/-lactamase inhibitor combinations in 

Enterobacteriales (4/183 genes), but expression is not quantified by ARMA. A blaTEM4 gene 

(1/183) was also found in a ceftazidime- and piperacillin/tazobactam- resistant P. aeruginosa 

(S37); this could explain the phenotype but is unlikely in this species, where -lactam 

resistance most often reflects up-regulation of chromosomal ampC or efflux. There were 
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14/183 genes where any associated resistance could not be confirmed because no relevant 

drug(s) was tested by the clinical laboratory e.g. tet genes were identified in several samples 

(S2, S8, S9, S16, S30, S35, S38 and S39) but tetracycline was not tested against the 

isolates cultured. Sixteen genes detected by ARMA did not match the phenotype of isolates 

cultured, which remained susceptible to relevant antibiotics, and 42 genes were unlikely to 

be from species grown by the laboratory. Finally, multiple genes (56/183) likely originated 

from the normal flora: thus tet(M) and blaTEM-4, each was found in 8/12 NRF/NSG specimens 

whilst mefA and mel were each found in 9/12, as well as in many where the isolates grown 

were unlikely to have hosted these genes. 

 

There were nine samples where phenotypic resistances remained unexplained by resistance 

genes found by ARMA. This included two amoxicillin-resistant M. catarrhalis (S8 and S26), 

where the BRO -lactamase genes were likely to be responsible but were not represented in 

the ARMA database. The remaining seven samples included ampicillin- and co-trimoxazole- 

resistant H. influenzae (S7, S18, S36, S39 and S41), trimethoprim-, ciprofloxacin- 

gentamicin- and fusidic acid- resistant S. aureus (S16) and a K. pneumoniae (S2) resistant 

to both co-amoxiclav and piperacillin/tazobactam but lacking any acquired -lactamase 

gene.   

 

The specificity and sensitivity of the developed method for resistance gene detection was 

not determined as this would have required isolating and sequencing all bacteria (pathogens 

and commensals) present – a prohibitive task.  

 

Reference-based genome assembly 

Two samples containing antibiotic resistant bacteria were chosen as examples to generate 

reference-based genome assemblies directly from the metagenomic data. This analysis was 

performed to illustrate that whole pathogen genomes can be generated directly from 
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respiratory samples for public health and infection control applications. Assemblies were 

generated for an MRSA (S16) and an E. coli resistant to amoxicillin, co-amoxiclav and co-

trimoxazole (S1). The results were compared with those for undepleted controls after two 

and 48 hours of sequencing. Within the first two hours of sequencing the human DNA 

depleted MRSA sample had 47.9x genome coverage with an assembly of 28 contigs 

(GCA_900660255: longest contig = 478718 and N50=400kbp). Genome coverage increased 

to 228.7x after 48hrs of sequencing, with a final assembly consisting of 22 contigs 

(GCA_900660245: longest contig = 481kbp and N50=403kbp). In contrast, the undepleted 

MRSA sample had an assembly of 69 contigs with 3.9x coverage (GCA_900660235: longest 

contig = 47kbp and N50=146kbp) after 2hrs and 33 contigs (17.5x coverage) after 48 hours 

(GCA_900660205: longest contig = 416kbp and N50=263kbp) (Figure 2a). 

 

For the sample positive for resistant E. coli there was 33.5x genome coverage within two 

hours for the depleted sample, with an assembly of 83 contigs (GCA_900660265: longest 

contig = 437kbp and N50=165kbp). Genome coverage increased to 165.7x after 48 hrs with 

the final E. coli assembly having 72 contigs (GCA_900660275: longest contig = 474kbp and 

N50=178kbp). The undepleted sample only produced 0.2x coverage after 2hrs, which 

increased to 1.1x  after 48 hrs of sequencing (Figure 2b). 

 

Time-point analysis 

Using the same sample set as for genome assembly, data from the first two hours of 

sequencing were compared over time for depleted samples and undepleted controls to 

highlight the importance of host depletion for turnaround-time to result. Within 5 min of 

sequencing the depleted MRSA sample (S16) had 1.6x genome coverage compared with 

0.2x coverage for the undepleted control (Figure 2c). The mecA gene was not detected in 

the undepleted sample after 5 min whereas two mecA gene alignments were detected in the 

depleted sample by the same time point (Figure 2d). 
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The depleted E. coli sample (S1) had 5.7x genome coverage within 20 min of sequencing 

compared to 0.06x for the undepleted control (Figure 2e). This E. coli was resistant to 

amoxicillin (blaTEM gene), co-amoxiclav (possibly owing to blaTEM if strongly expressed) and 

co-trimoxazole (sul1 and dfrA17 genes). The blaTEM and dfrA17 genes were not detected in 

the undepleted sample within two hours of sequencing and only one alignment was detected 

for sul1. Conversely, all three resistance genes were detected within 20 min of sequencing 

in the depleted sample and, after two hours, 47 blaTEM, 37 sulf1 and 21 dfrA17 alignments 

were detected (Figure 2f). 

 

Discussion  

Culture-based diagnostics and susceptibility testing, in use for 70 years 35, have limitations 

as guides for the appropriate clinical management of acute infections, mainly because of 

their slow sample-to-result turnaround. Rapid, accurate diagnostics would enable treatment 

with appropriate antibiotics and improve health outcomes and antimicrobial stewardship 

alike. We developed a method to prepare respiratory samples for metagenomics sequencing 

and incorporated it into a nanopore metagenomic sequencing protocol for bacterial pathogen 

and antibiotic resistance gene identification in LRIs within 6h of sample receipt. 

 Our metagenomics workflow for respiratory samples includes host DNA depletion, 

microbial DNA extraction, library preparation, MinION sequencing and real-time data 

analysis. A pipeline was developed (pilot method) and tested on 40 respiratory samples. We 

then optimised our method by shortening the depletion protocol, introducing bead-beating for 

improved microbial lysis, and reducing the library preparation time. Mock community 

analysis demonstrated that the saponin based human DNA depletion method didn’t 

inadvertently remove DNA from common respiratory pathogens, except for S. pneumoniae 

(mean 5.8 fold loss – Supplementary Table 3). It is possible that S. pneumoniae cells may 

have lysed during the host DNA depletion process 36 or might have lysed when grown to 

stationary phase for our mock community experiments. S. pneumoniae was correctly 

identified by metagenomics in five of six culture-positive patients, but it may have been 



 13 

underrepresented in these samples. The time from sample collection to bacterial DNA 

extraction may be crucial for accurate detection of S. pneumoniae. 

The LoD of our optimised method (103-105 cfu/ml) is within the range of culture-

based clinical thresholds applied to respiratory samples. Our optimized method was 96.6% 

sensitive and 41.7% specific compared to culture. Discordant results were investigated using 

pathogen specific probe-based qPCR assays (Supplementary Table 5) which increased 

sensitivity (100%) and specificity (50%). Five of seven remaining discordant samples were 

positive for pathobionts, specifically H. influenzae and/or S. pneumoniae, by metagenomics. 

These false positive detections can be caused by misclassification of reads by WIMP, as k-

mer based read classification can be unreliable at the species level, particularly where 

species in a genus are highly related or share genes 37, 38. To overcome this problem we 

introduced post-hoc pathobiont-specific gene analysis for all H. influenzae and/or S. 

pneumoniae positive samples (n=20 pathobionts in 18 samples). This analysis confirmed 

that the false positive results (n=5) were caused by k-mer misclassification and resulted in 

metagenomics test sensitivity and specificity of 100% compared to culture+qPCR gold 

standard. This issue highlights the need for new methods to accurately identify bacterial 

species from metagenomic data39.  

 To maximise the impact on patient management, identification of clinically relevant 

antibiotic resistance genes as well as the infecting pathogen/s is necessary. In this regard 

the present pipeline has potential but requires refinement. Both MRSA cases were identified 

by the presence of mecA, with no false positives for this gene.  Co-trimoxazole resistance in 

Enterobacteriaceae was accurately identified with detection of sul and dfr genes and these 

were not found in H. influenzae, for which resistance is largely mutational 40, 41.  However, 

genes such as tet(M), mel, mefA and blaTEM were found in all samples where no pathogen 

was grown, suggesting presence in the normal or colonising respiratory flora.  To overcome 

this issue, it will be necessary to associate resistance genes to particular organisms. This 

can be done by examining flanking sequences 42-45 in the c. 3 kb nanopore reads in cases 

where a gene is chromosomally inserted (not plasmid-borne resistance genes), as is usual 
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for transposon borne tet(M) and mefA in streptococci 46-48, including S. pneumoniae 

(Supplementary Figure 1).  

Clinical metagenomics data could also be used to assemble pathogen genomes for 

reference laboratory typing. The quality/depth of the metagenomic data generated by our 

method could enable monitoring of emergence and patient-to-patient spread of pathogens 

and antimicrobial resistance directly from clinical samples in real-time 49, 50. Using PCR for 

respiratory infection diagnosis must be coupled with microbiological culture, otherwise the 

link to phenotype is lost, whereas clinical metagenomics could replace routine culture 

entirely. As viruses are an important cause of LRIs, they can be tested for using PCR, as is 

current routine practice, or our pipeline could be modified to detect viral nucleic acid by 

processing the supernatant fraction after centrifugation of the respiratory sample (Figure 1, 

step 1).  

In conclusion, we report the first rapid clinical metagenomics pipeline for the 

characterization of bacterial LRIs. Pathogens and antibiotic resistance genes can be 

identified in six hours. With additional sequencing time (up to 48 hrs), it provides sufficient 

data for public health and infection control applications. Our protocol is being evaluated in a 

clinical trial (INHALE - http://www.ucl.ac.uk/news/news-articles/1115/181115-molecular-

diagnosis-pneumonia) to evaluate the rapid diagnosis of hospital-acquired and ventilator-

associated pneumonia in comparison with culture and multiplex-PCR. 
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Figure legends 

Figure 1: Schematic representation of the metagenomic pipeline with a turnaround time of approx. six hours (optimised) and approx. eight 

hours (pilot) from sample collection to sample result. 

 

Figure 2:  Bacterial genome assembly, genome coverage and antibiotic gene detection with depleted versus undepleted samples. 

A: MRSA after 48 hours of sequencing. 

B: E. coli after 48 hours of sequencing. 

C: MRSA genome coverage of depleted versus undepleted during two hours of sequencing*. 

D: mecA gene alignment of depleted versus undepleted during two hours of sequencing*. 

E: E. coli genome coverage of depleted versus undepleted during two hours of sequencing*. 

F: blaTEM, sul1 and dfrA17 gene alignment of depleted versus undepleted during two hours of sequencing*. 

*Three independent clinical samples were analysed (an example of a Gram positive and a Gram negative are respresented). 
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Table1: Pilot metagenomic pipeline output compared to routine microbiology culture results. 

 
 
 
 

*Coliform not further identified by culture

Sample Pathogen cultured 
by microbiology 

Pathogen identified from 
metagenomic pipeline 

P22 
 

P. aeruginosa P. aeruginosa 

H. influenzae 

P23 S. aureus S. aureus 

P24 H. influenzae H. influenzae 

P25 H. influenzae H. influenzae 

P26 M. catarrhalis M. catarrhalis 

P27 H. influenzae H. influenzae 

P28 
 

S. pneumoniae  
H. influenzae 

S. pneumoniae 

H. influenzae 

P29 
 

H. influenzae H. influenzae 

K. pneumoniae 

M. catarrhalis 

P30 
 

S. pneumoniae S. pneumoniae 

H. influenzae 

P31 
 

E. aerogenes  
S. aureus 

E. aerogenes 

S. aureus 

P32 P. aeruginosa P. aeruginosa 

P33 S. pneumoniae S. pneumoniae 

P34 S. aureus  

P35 H. influenzae H. influenzae 

P36 S. pneumoniae S. pneumoniae 

P37 
 

H. influenzae  
Coliform* 

 

K. oxytoca 

P38 MRSA MRSA 

P39 S. aureus S. aureus 

P40 H. influenzae  
S. pneumoniae 

H. influenzae 

S. pneumoniae 

Sample Pathogen cultured by 
microbiology 

Pathogen identified from 
metagenomic pipeline 

P1 Coliform* P. mirabilis 

P2 NRF None 

P3 
 

P. aeruginosa 
S. pneumoniae 

P. aeruginosa 

 

P4 NRF None 

P5 Coliform* E. coli 

P6 Coliform* K. pneumoniae 

P7 Coliform* S. marcescens 

P8 H. influenzae H. influenzae 

M. catarrhalis 

P9 H. influenzae H. influenzae 

P10 MRSA MRSA 

P11 Coliform* E. coli 

P12 K. pneumoniae K. pneumoniae 

P13 E. coli E. coli 

P14 
 

K. pneumoniae 
 E. cloacae 

K. pneumoniae 

E. cloacae 

E. coli 

P15 S. aureus S. aureus 

P16 S. aureus S. aureus 

P17 NRF None 

P18 NRF None 

P19 NRF None 

P20 NRF None 

P21 K. pneumoniae K. pneumoniae 



 20 

Table 2. Human and bacterial DNA qPCR results for sputum samples infected by Gram-negative and Gram-positive bacteria with and without 
host nucleic acid depletion 
 
Sample Sample 

type 
Organism cultured 

by microbiology 
 

Organism identified 
from metagenomic 

pipeline 

Sample 
treatment 

Human 
qPCR 

assay (Cq) 

Human 
DNA 

depletion 

(Cq) 

16S rRNA 
gene V3-V4 
fragment 

qPCR assay 
(Cq) 

Bacterial 
gain/loss 

to 
standard 
depletion 

(Cq) 

S1 
 

ETA E. coli E. coli Undepleted 22.62 12.38 
(~104) 

15.60 0.13 

Depleted 35.00 15.73 

S2 
 

Sputum K. pneumoniae 
 

K. pneumoniae 
 

Undepleted 23.73 9.99 
(~103) 

15.63 0.02 

Depleted 33.71 15.65 

S3 
 

Sputum P. aeruginosa 
 

P. aeruginosa 
 

Undepleted 23.05 9.29 
(~103) 

15.46 1.48 

Depleted 32.34 13.98 

S4 
 

Sputum S. marcescens 
 

S. marcescens 
 

Undepleted 26.34 9.93 
(~103) 

16.96 0.52 

Depleted 36.27 17.48 

S5 Sputum K. oxytoca 
 

K. oxytoca Undepleted 22.96 8.58 
(~103) 

12.67 0.64 

K. pneumoniae Depleted 31.54 12.03 

S6 
 

Sputum S. aureus 
 

S. aureus 
 

Undepleted 22.31 9.41 
(~103) 

19.11 1.57 

Depleted 31.72 17.54 

S7 
 

Sputum H. influenzae 
 

H. influenzae Undepleted 25.47 9.53 
(~103) 

21.44 0.43 

P. aeruginosa Depleted 35.00 21.87 

S8 
 

Sputum M. catarrhalis 
 

M. catarrhalis Undepleted 22.72 9.17 
(~103) 

16.9 0.66 

S. pneumoniae Depleted 31.89 17.56 

S9 
 

Sputum P. aeruginosa  
& E. coli 

 

 Undepleted 23.89 11.11 
(~104) 

19.58 3.26 

E. coli Depleted 35 22.84 

S10 
 

Sputum NSG 
 

H. influenzae Undepleted 23.46 8.6 
(~103) 

14.12 2.39 

S. pneumoniae Depleted 32.06 16.51 

S11 
 

Sputum NRF 
 

S. pneumoniae Undepleted 25.77 9.23 
(~103) 

17.96 1.92 

Depleted 35.00 19.88 

S12 
 

Sputum NRF 
 

H. influenzae Undepleted 22.5 8.92 
(~103) 

17.61 0.05 

M. catarrhalis Depleted 31.42 17.56 
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S13 
 

Sputum S. marcescens 
 

S. marcescens 
 

Undepleted 22.48 7.11 
(~102) 

12.77 0.79 

Depleted 29.59 11.98 

S14 
 

Sputum S. aureus  
 

S. aureus  Undepleted 23.17 7.68 
(~102) 

13.83 0.96 

M. catarrhalis Depleted 30.85 14.79 

S15 
 

Sputum S. aureus 
 

S. aureus Undepleted 22.66 8.47 
(~103) 

18.73 0.08 

S. pneumoniae Depleted 31.13 18.65 

S16 
 

Sputum MRSA MRSA Undepleted 25.51 6.43 
(~102) 

15.32 0.24 

Depleted 31.94 15.56 

S17 
 

Sputum NRF 
 

None Undepleted 23.51 9.64 
(~103) 

19.55 1.17 

Depleted 33.15 20.72 

S18 
 

Sputum H. influenzae 
 

H. influenzae 
 

Undepleted 27.14 7.86 
(~102) 

12.89 2.21 

Depleted 35.00 15.10 

S19 
 

Sputum NRF 
 

None Undepleted 22.63 11.18 
(~103) 

19.69 0.69 

Depleted 33.81 19.00 

S20 
 

Sputum H. influenzae 
 

H. influenzae Undepleted 22.44 10.03 
(~103) 

14.99 1.19 

Depleted 32.47 16.18 

S21 
 

Sputum NRF 
 

H. influenzae Undepleted 24.58 10.42 
(~103) 

16.60 0.82 

S. pneumoniae Depleted 35.00 17.42 

S22 
 

Sputum NRF 
 

None Undepleted 22.71 9.22 
(~103) 

14.62 0.39 

Depleted 31.93 15.01 

S23 
 

Sputum H. influenzae 
 

H. influenzae 
 

Undepleted 24.82 10.18 
(~103) 

16.80 1.84 

Depleted 35.00 18.64 

S24 
 

Sputum H. influenzae  
 

H. influenzae 
 

Undepleted 22.24 10.17 
(~103) 

15.70 1.63 

Depleted 32.41 17.33 

S25 
 

Sputum H. influenzae 
 

H. influenzae 
 

Undepleted 25.52 6.26 
(~102) 

16.59 2.67 

Depleted 31.79 19.26 

S26 
 

Sputum M. catarrhalis 
 

M. catarrhalis 
 

Undepleted 23.47 11.53 
(~104) 

19.26 0.74 

Depleted 35.00 20.00 

S27 
 

Sputum H. influenzae  
& S. aureus 

H. influenzae Undepleted 32.74 2.26 
(~5) 

23.19 7.92 

S. aureus Depleted 35.00 15.27 

S. pyogenes 

S28 
 

Sputum NRF S. pneumoniae Undepleted 24.46 10.54 
(~103) 

22.28 2.80 

Depleted 35.00 25.08 

S29 Sputum P. aeruginosa P. aeruginosa Undepleted 24.05 5.11 19.81 2.04 
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  S. aureus Depleted 29.13 (~102) 17.77 

S30 
 

BAL P. aeruginosa 
 

P. aeruginosa Undepleted 29.93 5.07 
(~33) 

22.68 0.00 

Depleted >35.00 22.68 

S31 
 

Sputum NRF 
 

H. influenzae Undepleted 21.57 8.26 
(~103) 

19.79 1.65 

Depleted 29.83 21.44 

S32 
 

Sputum NSG E. coli Undepleted 25.56 8.68 
(~103) 

15.98 0.47 

Depleted 34.24 16.45 

S33 
 

Sputum NRF 
 

None Undepleted 21.73 10.04 
(~103) 

20.69 0.81 

Depleted 31.77 21.50 

S34 
 

Sputum NSG 
 

None Undepleted 25.17 5.40 
(~102) 

22.92 0.01 

Depleted 30.57 22.93 

S35 
 

Sputum E. coli 
 

E. coli 
 

Undepleted 21.11 5.18 
(~102) 

16.49 0.58 

Depleted 26.29 17.07 

S36 
 

Sputum H. influenzae 
 

H. influenzae 
 

Undepleted 22.58 9.70 
(~103) 

16.51 2.00 

Depleted 32.28 18.51 

S37 
 

Sputum P. aeruginosa 
 

P. aeruginosa 
 

Undepleted 21.56 11.69 
(~104) 

15.25 1.80 

Depleted 33.24 13.45 

S38 
 

Sputum S. aureus  
& P. aeruginosa 

S. aureus  Undepleted 20.76 6.87 
(~102) 

23.83 3.17 

P. aeruginosa Depleted 27.63 20.66 

S39 
 

Sputum H. influenzae 
 

H. influenzae Undepleted 23.82 11.18 
(~103) 

14.45 2.79 

M. catarrhalis Depleted 35.00 17.24 

S40 
 

ETA MRSA 
 

MRSA Undepleted 21.69 4.28 
(~19) 

19.91 1.62 

Depleted 25.97 18.29 

S41 Sputum H. influenzae  
& S. aureus 

H. influenzae  Undepleted 20.86 14.14 
(~104) 

16.71 6.85 

S. aureus Depleted 35.00 23.56 
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Table 3.  Resistance genes found by ARMA in relation to pathogens grown: Optimised 

pipeline (41 samples; 183 genes detected) 

 

ARMA vs. culture result No. 

genes 

Principal examples 

Gene endogenous in species 26 

Mostly efflux components; also blaOXA-

50, aph(3’)-IIb and catB7 from P. 

aeruginosa and aac(6’)-Ic from S. 

marcescens  

Match to observed R 24 

Variously including mecA in MRSA, 

blaTEM in Enterobacteriaceae and H. 

influenzae, also sul1 and dfr 

determinants for E. coli 

Partial match to observed 

resistances 
4 

Instances where blaTEM was found but 

where MinION flagged an ESBL-

encoding variant, usually blaTEM-4, but 

where the phenotype indicated only a 

classical penicillinase, without oxyimino-

cephalosporin resistance  

Unlikely match to observed 

phenotype 
1 

P. aeruginosa with blaTEM resistant to 

piperacillin/tazobactam and ceftazidime 

– see text 

Possibly present, but relevant drug 

not tested by clinical lab 
14 

Commonly (i) where tet(C) found but lab 

tested doxycycline, which is not a 

substrate for this pump, or (ii) where 

streptomycin, kanamycin and macrolide 

determinants were found in gram-
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negative bacteria but these drugs were 

not tested, as not relevant to therapy.  

Does not match phenotype of 

isolate 
16 

Mostly where blaTEM (as blaTEM-4) was 

recorded but the isolate (commonly H. 

influenzae) was susceptible to 

penicillins as well as cephalosporins, or 

where tet(M) was found together with a 

tetracycline-susceptible S. aureus 

Genes unlikely to be from species 

grown by the laboratory 
42 

Mostly gram-positive-associated genes 

when a gram-negative organism was 

grown, or vice versa: commonly 

including tet(M) and mefA 

Gene recorded in a specimen with 

no pathogen grown 
56 

Mostly tet, mef mel, blaTEM-4 

determinants, likely to be associated 

with normal flora 

Total 183  
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ONLINE METHODS  

Ethics  

This study used excess respiratory samples, after routine microbiology diagnostic tests had 

been performed, from patients with suspected LRIs such as persistent (productive) cough, 

bronchiectasis, CAP/HAP, cystic fibrosis and exacerbation of chronic obstructive pulmonary 

disease (COPD, emphysema/chronic bronchitis). The UCL Infection DNA Bank (REC 

reference 12/LO/1089) approved use of excess respiratory samples for the study. No patient 

identifiable information was collected, hence informed consent was not required. The only 

data collected were routine microbiology results, which detailed the pathogen(s) identified 

and their antibiotic susceptibility profiles.  

 

Definitions 

‘Respiratory pathogens’ or ‘pathogens’ are defined in this study as common causes of 

respiratory infection, in order to differentiate them from commensal organisms. Respiratory 

pathogens identified in this study were: E. aerogenes, E. cloacae complex, E. coli, H. 

influenzae, K. oxytoca, K. pneumoniae, M. catarrhalis, P. mirabilis, P. aeruginosa, S. 

marcescens, S. aureus, S. pneumoniae, S. pyogenes. A list of all microorganisms identified 

in all samples tested using the optimised method (above our thresholds) are listed in 

supplementary table 8. Some of these organisms, not defined as common pathogens here, 

could be considered pathogens in some clinical contexts. 

 

Routine clinical microbiological investigation  

Respiratory samples including sputum, endotracheal secretions and ETAs were treated with 

sputasol (Oxoid-SR0233) in a 1:1 ratio before being incubated for a minimum of 15 min at 37  

C. Sputasol-treated respiratory samples (10 µl) were inoculated into 5 ml of sterile water 

and mixed (hence the limit of detection of culture is 105 CFU/ml). Following this, 10 µl of 

sample was streaked onto blood, chocolate and cysteine lactose electrolyte deficient (CLED) 

agar. BAL samples were not treated with sputasol; instead they were centrifuged to 



 26 

concentrate bacterial cells for a minimum of 10 min at 3000 rpm. BALs did not undergo 

further dilution and were streaked directly onto the agar plate. Depending on clinical details 

and the source of the specimen, other agar plates (including sabouraud, mannitol salt and 

Burkholderia cepacia selective agar) were additionally used. 

 

All inoculated agar plates were incubated at 37 C overnight and then examined for growth 

with the potential for re-incubation up to 48 hours. If any significant organism was grown, 

then antibiotic susceptibility testing by agar diffusion using EUCAST methodology was 

performed. The laboratory’s Standard Operating Procedure is based on the Public Health 

England UK Standards for Microbiology Investigations B 57: Investigation of bronchoalveolar 

lavage, sputum and associated specimens 51. 

 

Sample collection and storage  

The excess respiratory samples (sputa, ETA, BAL) were collected after culture and 

susceptibility testing at Norfolk and Norwich University Hospitals (NNUH) Microbiology 

Department (described above) and stored at 4 °C prior to testing. They were indicated by 

clinical microbiology to contain bacterial pathogen(s), NRF or to have yielded NSG. Forty 

samples (n=34 positive and n=6 NRF samples, comprising 34 sputa, four BALs and two 

ETAs) were used to test the Pilot method and another 41 (n=29 suspected LRI, n=9 NRF 

and n=3 NSG samples, comprising 38 sputa, one BAL and two ETAs) were used to test the 

Optimised pipeline. 

 

Pilot method: Host DNA Depletion 

Respiratory samples (400 µl) were centrifuged at 8000 xg for 5 min, after which the 

supernatant was carefully removed and the pellet resuspended in 250 µl of PBS. The 

saponin-based differential lysis method was modified from previously reported saponin 

methods 33, 52. Saponin (Tokyo Chemical Industry- S0019) was added to a final 

concentration of 2.5 % (200 µl of 5 % saponin), mixed well and incubated at room 
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temperature (RT) for 10 min to promote host cell lysis. Following this incubation, 350 µl of 

water was added and incubation was continued at RT for 30 s, after which 12 µl of 5 M NaCl 

was added to deliver an osmotic shock, lysing the damaged host cells. Samples were next 

centrifuged at 6000 xg for 5 min, with the supernatant removed and the pellet resuspended 

in 100 µl of PBS.  HL-SAN buffer (5.5 M NaCl and 100 mM MgCl2 in nuclease-free water) 

was added (100 µl) with 5 µl HL-SAN DNase (25,000 units, Articzymes - 70910-202) and 

incubated for 15 min at 37 °C with shaking at 800 RPM for host DNA digestion. An additional 

2 µl of HL-SAN DNase was added to the sample, which next was incubated for a further 15 

min at 37 °C with shaking at 800 RPM. Finally, the host-DNA depleted samples were 

washed three times with decreasing volumes of PBS (300 µl, 150 µl, 50 µl). After each 

wash, the sample was centrifuged at 6000 xg for 3 min, the supernatant discarded and the 

pellet resuspended in PBS.  

 

Pilot method: Bacterial Lysis and DNA Extraction 

After the final wash step of the host depletion, the pellet was resuspended in 380 µl of 

bacterial lysis buffer (Roche UK- 4659180001) and 20 µl of proteinase K (>600mAu/ml) 

(Qiagen -19133) was added before incubation at 65 °C for 10 min with shaking at 800 RPM 

(on an Eppendorf Thermomixer). Nucleic acid was then extracted from samples using the 

Roche MagNAPure Compact DNA_bacteria_V3_2 protocol (MagNA pure compact NA 

isolation kit I, Roche UK- 03730964001) on a MagNA Pure Compact machine (Roche UK- 

03731146001).  

 

Optimised method: Host DNA Depletion (Figure 1) 

The optimized method sought to improve and shorten some steps. Specifically, after the first 

5 min centrifugation at 8000 x g, up to 50 µl of supernatant was left so as not to disturb the 

pellet (final saponin conc. 2.2-2.5%). Instead of performing two rounds of host DNA 

digestion, the amount of HL-SAN DNase was increased up to 10 µl and a single incubation 

of 15 min at 37 °C was carried out with shaking at 800 RPM on an Eppendorf Thermomixer. 
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Finally, the number of washes was reduced to two with increasing volumes of PBS (800 µl 

and 1 ml). 

 

Optimised method: Bacterial Lysis and DNA Extraction (Figure 1) 

After the final wash, the pellet was re-suspended in 500 µl of bacterial lysis buffer (Roche 

UK - 4659180001), transferred to a bead-beating tube (Lysis Matrix E, MP Biomedicals -

116914050) and bead-beaten at maximum speed (50 oscillations per second) for 3 min in a 

Tissue Lyser bead-beater (Qiagen - 69980). This ensured the release of DNA from difficult-

to-lyse organisms (e.g. S. aureus). The sample was centrifuged at 20,000 xg for 1 min and 

~230 µl of supernatant was transferred to a fresh Eppendorf tube. The volume was topped-

up with 170 µl of bacterial lysis buffer and 20 µl of proteinase K (>600 mAu/ml, Qiagen -

19133) was added. Samples were then incubated at 65 °C for 5 min with shaking at 800 

RPM on an Eppendorf Thermomixer. DNA was extracted from samples using the Roche 

MagNAPure Compact DNA_bacteria_V3_2 protocol (MagNA pure compact NA isolation kit I, 

Roche UK - 03730964001) on a MagNA Pure Compact machine (Roche UK - 

03731146001).  

 

DNA quantification and quality control 

DNA quantification was performed using the high sensitivity dsDNA assay kit (Thermo 

Fisher - Q32851) on the Qubit 3.0 Fluorometer (Thermo Fisher - Q33226). DNA quality and 

fragment size (PCR products and MinION libraries) were assessed using the TapeStation 

2200 (Agilent Technologies - G2964AA) automated electrophoresis platform with the 

Genomic ScreenTape (Agilent Technologies - 5067-5365) and a DNA ladder (200 to 

>60,000 bp, Agilent Technologies - 5067-5366). 

 

MinION Library Preparation and Sequencing  

MinION library preparation was performed according to the manufacturer’s instructions for (i) 

the Rapid Low-Input by PCR Sequencing Kit (SQK-RLI001), (ii) the Rapid Low-Input 
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Barcoding Kit (SQK-RLB001) or (iii) the Rapid PCR Barcoding Kit (SQK-RPB004) with minor 

alterations as follows. For single sample sequencing runs using the SQK-RLI001 kit, 10 ng 

of the MagNA Pure-extracted DNA were used for the tagmentation/fragmentation reaction, 

where DNA was incubated at 30 °C for 1 min and at 75 °C for 1 min. The PCR reaction was 

run as per the manufacturer’s instructions; however, the number of PCR cycles was 

increased to 20. For multiplexed runs, SQK-RLB001 and SQK-RPB004 kits were used. A 

1.2x AMPure XP bead (Beckman Coulter-A63881) wash was introduced after the MagNA 

Pure DNA extraction and prior to library preparation for multiplexed runs and DNA was 

eluted in 15 µl of nuclease-free water. Modifications for the library preparation were i) 10 ng 

of input DNA and 2.5 µl of FRM were used for the tagmentation/fragmentation reaction and 

nuclease-free water was used to make the volume up to 10 µl, ii) for the PCR reaction, 25 

cycles were used and the reaction volume was doubled. All samples run using the Pilot 

method used a 6 min extension time, whereas the Optimised method used a reduced 

extension time of 4 min. When multiplexing, PCR products were pooled together in equal 

concentrations, then subjected to a 0.6x AMPure XP bead wash and eluted in 14 µl of the 

buffer recommended in the manufacturer’s instructions (10 μL 50 mM NaCl, 10 mM Tris.HCl 

pH8.0). Sequencing was performed on the MinION platform using R9.4, R9.5 or R9.4.1 flow 

cells.  The library (50-300 fmol) was loaded onto the flow cell according to the 

manufacturer’s instructions. ONT MinKNOW software (versions 1.4-1.13.1) was used to 

collect raw sequencing data and ONT Albacore (versions 1.2.2-2.1.10) was used for local 

base-calling of the raw data after sequencing runs were completed. The MinION was run for 

up to 48 hours with WIMP/ARMA analysis performed on the first six folders (~24,000 reads) 

for Pilot method samples and the first two hours of data for all Optimised method samples. 

 

Quantitative PCR (qPCR) assays 

Probe or SYBR Green based qPCR was performed on samples to detect and quantify human 

DNA, DNA targets for specific pathogens (E. coli, H. influenzae, K. pneumoniae, M. 

catarrhalis, P. aeruginosa, S. aureus, Stenotrophomonas maltophilia, S. pneumoniae and S. 
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pyogenes) and the bacterial 16S rRNA V3-V4 gene fragment. All qPCR assays were 

performed on a Light Cycler® 480 Instrument (Roche). Details of primer sequences and 

targets can be found in Supplementary Table 9 (oligonucleotides were supplied by Sigma. 

 

For all probe-based qPCR reactions, the master mix consisted of 10 µl LightCycler 480 probe 

master (2X), 0.5 µl each of reverse and forward primer (final conc. 0.25 µM) and 0.4 µl probe 

(final conc. 0.2 µM). For all SYBR-Green-based qPCR reactions, the master mix consisted of 

10 µl LightCycler 480 SYBR Green I master (2x) and 1 µl of each forward and reverse primer 

(final conc. 0.5 µM). To the PCR mix, 2 µl of DNA template and nuclease-free water to a total 

volume of 20 µl were added. The qPCR conditions were: pre-incubation at 95 °C for 5 min, 

amplification for 40 cycles at 95 °C for 30 sec, 55 °C for 30 sec and 72 °C for 30 sec, with a 

final extension at 72 °C for 5 min. Melt curves analysis (for SYBR-Green qPCR) was 

performed at 95 °C for 5 sec, 65 °C for 1 min, ramping to 95 °C at 0.03 °C/s in continuous 

acquisition mode, followed by cooling to 37 °C. All probe-based confirmatory qPCR used the 

following conditions: pre-incubation at 95 °C for 15 min, amplification for 40 cycles at 94 °C 

for 15 sec and 60 °C for 1 min. 

 

Example Limit of detection 

The LoD of the Optimised method was determined for the detection of one Gram-positive 

and one Gram-negative bacteria in sputum using serial dilutions (10 –105 cfu/ml) of cultured 

E. coli (H141480453) and S. aureus (NCTC 6571) spiked into NRF sputum samples with 

high and low bacterial commensal backgrounds (as determined by 16S qPCR). The serial 

dilutions were made in sterile PBS and plated in triplicate on LB agar to determine colony 

forming units (CFU) per ml. The same dilutions were used to spike an NRF sputum sample 

for LoD experiments. Detection and quantification of bacterial DNA was performed using 

probe-based qPCR assays and MinION sequencing. 
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Mock community experiments 

Clinical isolates from respiratory samples were used to generate a mock community consisting 

of S. pneumoniae, K. pneumoniae, H. influenzae, S. maltophilia and P. aeruginosa. E. coli 

and S. aureus strains were also included (H141480453 and NCTC 6571 respectively). 

Pathogens (E. coli and S. aureus in 10 ml Luria-Broth and K. pneumoniae, P. aeruginosa and 

S. maltophilia in 10 ml Tryptic Soy Broth (TSB)) were cultured overnight at 37 °C with shaking 

at 180 RPM. H. influenzae (in 10 ml TSB) and S. pneumoniae (in 10 ml Brain Heart Infusion 

Broth) were cultured statically at 37 °C with 5% CO2 in an aerobic incubator. Cultured 

pathogens were then spiked into an NRF sample (~103-106 CFU/pathogen). The spiked 

samples were then tested in triplicate with the Optimised method, to determine if saponin 

depletion resulted in any inadvertent lysis of pathogens and loss of their DNA. All spiked 

samples were processed alongside undepleted controls. Probe or SYBR Green-based qPCR 

assays were used to determine the relative quantity of each spiked pathogen in depleted and 

undepleted spiked sputum samples.  

 

Human read removal 

Human reads were removed from basecalled FASTQ files using minimap2 to align to the 

human hg38 genome (GCA_000001405.15 “soft-masked” assembly) prior to Epi2ME 

analysis. Only unassigned reads were exported to a bam file using Samtools (-f 4 parameter). 

Non-human reads were converted back to FASTQ format using bam2fastx. These FASTQ 

files were processed for pathogen identification using WIMP and antibiotic resistance gene 

detection with ARMA. Further downstream analysis for genome coverage was performed 

using minimap2 with default parameters for long-read data (-a -x map-ont) and visualised 

using qualimap (used for time-point analysis). 

 

Pathogen identification and antibiotic resistance gene detection  

The EPI2ME Antimicrobial Resistance pipeline (ONT, versions 2.59.1896509) was used for 

initial analysis of MinION data for the identification of bacteria present in the sample and any 
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associated antimicrobial resistance genes. Within this pipeline, WIMP (What’s in my Pot – 

rev. 3.3.1) supports the identification of bacteria, viruses, fungi, archaea and human reads 

and was used for respiratory pathogen identification. WIMP utilises ‘Centrifuge’, a k-mer-

based read identification tool based on a Burrows-Wheeler transform and the Ferragina-

Manzini index,  to identify reads using the RefSeq database 53. ARMA (Antimicrobial 

Resistance Mapping Application – rev. 1.1.5) is also included in the Antimicrobial Resistance 

pipeline. ARMA utilises the CARD database for antibiotic resistance gene detection and 

identification by aligning input reads using minimap2 (alignments reported at >75% accuracy 

and >40% horizontal coverage 54). Full manuals are publicly available for WIMP and ARMA 

on the ONT website (https://nanoporetech.com/EPI2ME-amr). NanoOK/NanoOK RT 45, 55 are 

publically available tools which identify microbes and antimicrobial resistance using 

basecalled nanopore data, providing similar outputs to those from ONTs WIMP and ARMA 

software.  

 

Initial analysis of respiratory metagenomic data revealed that thresholds would be required 

to improve the accuracy of results. Thresholds, in terms of number of bacteria per ml of body 

fluid, are applied in clinical microbiology laboratories for some infections including those of 

the urinary and respiratory tracts. The same approach was required for metagenomics. The 

clinical thresholds used for respiratory samples is typically 105 pathogens/ml (range 103-

105/ml dependent on sample type) and is achieved by sample dilution 51. We routinely 

applied thresholds at ≥1% of classified reads, with a WIMP assignment q-score ≥20 (within 

.csv files). We chose these thresholds to: censor reads arising from pipeline contaminants; 

remove barcode leakage between samples on multiplexed runs (ONT’s Flongle 

(https://nanoporetech.com/products/comparison), an adapter for single use flowcells 

designed for diagnostic applications, should overcome this issue) and; remove low quality 

WIMP alignments, which result in misclassified reads. Antibiotic resistance genes were 

reported if >1 gene alignment was present using the ‘clinically relevant’ parameter within 

https://nanoporetech.com/EPI2ME-amr
https://nanoporetech.com/products/comparison


 33 

ARMA. This parameter currently reports resistance genes, acquired and chromosomal, but 

not resistance mutations/SNPs. 

 

Pathobiont-specific gene analysis 

Species-specific gene alignments were performed on samples positive for H. influenzae or S. 

pneumoniae by metagenomics (above our thresholds). Reads (after human DNA removal) 

were aligned to pathobiont-specific genes (siaT, ply – chosen from a literature search for 

species-specific genes in H. influenzae56 and S. pneumoniae15, respectively) using minimap2 

with default parameters for long-read data (-a -x map-ont) and the number of mapped reads 

visualised using qualimap. If a sample contained >1 copy of the specific gene it was 

considered positive for the species.  

 

Bacterial genome assembly 

Genome assembly was performed first using Fast5-to-Fastq to remove reads shorter than 

2000 bp and with a mean quality score lower than seven (https://github.com/rrwick/Fast5-to-

Fastq). Porechop was used to remove sequencing adapters in the middle and/or the ends of 

each read, and re-identification of barcodes was carried out for each multiplexed sample 

(v0.2.3) (https://github.com/rrwick/Porechop). Filtered reads were aligned to a reference 

genome (chosen based on WIMP classification of pathogen reads) using minimap2 with 

default parameters for ONT long-read data (v2.6-2.10) 57. Finally, Canu was used to 

assemble mapped reads into contigs using this long-read sequence correction and 

assembly tool (v1.6) 58, 59. BLAST Ring Image Generator (BRIG) was used for BLAST 

comparisons of the genome assemblies generated 60.  

 

Data availability 

All clinical sample sequence data and assemblies are available via European Nucleotide 

Achive (ENA) under study accession number PRJEB30781.  

 

https://github.com/rrwick/Fast5-to-Fastq
https://github.com/rrwick/Fast5-to-Fastq
https://github.com/rrwick/Porechop
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