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Abstract— Mental fatigue in drivers is one of the leading causes 

that give rise to traffic accidents. Electroencephalography (EEG) 

based driving fatigue studies showed promising performance in 

fatigue monitoring. However, complex methodologies are not 

suitable for practical implementation. In our simulation based 

setup that retained the constraints of real driving, we took a step 

closer to fatigue estimation in a practical scenario. We adopted a 

pre-processing pipeline with low computational complexity, which 

can be easily and practically implemented in real-time. Moreover, 

regression-based continuous fatigue estimation was achieved 

using power spectral features in conjunction with time as the 

fatigue label. We sought to compare three regression models and 

three time windows to demonstrate their effects on the 

performance of fatigue estimation. Dynamic time warping was 

proposed as a new measure for evaluating the performance of 

fatigue estimation. The results derived from the validation of the 

proposed framework on 19 subjects showed that our proposed 

framework was promising towards practical implementation. 

Fatigue estimation by the support vector regression with radial 

basis function kernel and 5-second window length achieved the 

best performance. We also provided a comprehensive analysis on 

the spatial distribution of channels and frequency bands mostly 

contributing to fatigue estimation, which can inform the feature 

and channel reduction for real-time fatigue monitoring in 

practical driving. After reducing the number of electrodes by 

75%, the proposed framework retained comparable performance 

in fatigue estimation. This study demonstrates the feasibility and 

adaptability of our proposed framework in practical 

implementation of mental fatigue estimation. 

 
Index Terms— Driving Fatigue Estimation, Wireless 

Transmission, EEG, Dry Electrode, Regression, Dynamic Time 

Warping  

 

I. INTRODUCTION 

ENTAL fatigue is a gradual process that occurs in the 

brain and leads to reduced cognitive effort, attention, 

performance and efficiency. Mental fatigue induced by 

prolonged monotonous driving has been a major contribution 
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to traffic accidents, higher than that of alcohol or drugs [1].  In 

view of the large costs, both human and economic, there is a 

great need to detect driving fatigue effectively and design 

suitable protective measures to prevent accidents.  

 In the literature, three main approaches of fatigue estimation 

can be found, based on: psychometrics, video and physiological 

measurements. Psychometrics based approaches involve 

questionnaires, filled up by subjects at respective intervals 

based on which fatigue level is estimated [2, 3]. This type of 

approach is however less reliable, as it can be biased by the 

subjective nature of questionnaires. Video based measurements 

like facial expressions have also been used as a marker for 

mental fatigue [4]. A more reliable approach is to use 

neurophysiological measures such as electroencephalography 

(EEG) [5-7], electrocardiography (ECG) and 

electrooculography (EOG) [8, 9] to estimate mental fatigue. 

Since brain is the primary source where mental fatigue 

develops, studying fatigue through brain’s electrophysiological 

signature should be more specific and contiguous to the brain 

processes involved, than video-based measurements (which 

may be only measurable when obvious behavioral changes 

appear), thus allowing earlier detection.  

Over the past years, numerous studies of mental fatigue have 

been done using EEG signals, owing to their high temporal 

resolution. Logarithmic power spectrum for several dominant 

frequencies has been shown to exhibit differences between alert 

and fatigue states of human brain [10]. Past studies showed 

different frequency bands relevant to fatigue. For instance, 

EEG spectra in alpha and theta bands [11]; delta, theta, alpha 

and beta bands derived from a single channel electrode [12]; 

delta and theta  bands [13]; alpha burst features were used in 

[14] and shown to be sensitive to mental fatigue. Theta band 

was also shown to be indicative of the effects of fatigue [15, 

16]. Therefore, there is no specific frequency band exclusively 

relevant in mental fatigue and thus it is important to analyze the 

whole EEG spectrum. Apart from using EEG spectral bands, 
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connectivity measures have also been applied to identify the 

changes from alert state to fatigued state in brain connections 

[17-19]. 

Mental fatigue has been classified into two [20, 21]  or 

multiple [1, 12] fatigue states continuously estimated 

throughout the period spanning from alertness to fatigue. 

However, the methodologies used in these approaches have 

certain drawbacks with respect to practical implementation. 

Firstly, simple classification of alert and fatigue states is not 

enough to take preventive measures when the driver is fatigued 

in real driving. Reaction time (RT) [9] to a certain assigned task 

has been used as a feature to predict fatigue level [22]. 

However, in real conditions, it is impractical and risky to let 

driver conduct additional specified task for collecting RT. In 

addition, the pre-processing and feature extraction steps 

involved in such analysis are complex and time consuming  

[23], which is not desirable for practical implementation.  

In this study, continuous fatigue estimation with a feasible 

methodology for practically implementation is achieved for 

subjects performing a driving task in a simulated driving 

environment. We incorporate the real driving constraints in our 

driving simulation and adopt a simplistic framework that is 

more feasible towards practical implementation in real driving 

conditions. The pre-processing and feature extraction steps are 

selected with low computational complexity for fast fatigue 

detection. The performance of the proposed framework is 

evaluated using Dynamic Time Warping (DTW) distance 

which is robust to small differences between the measured and 

observed fatigue level.  To select an optimal window length and 

regression model, we conduct a comparative study for different 

time window lengths used for signals analysis, as well as 

various regression models. Further, fatigue estimation 

performance with reduced number of electrodes is evaluated in 

order to facilitate the practical implementation. 

The paper is organized as follows. Section II discusses the 

methodology followed by Section III, where the results are 

given. The discussion is provided in Section IV. Finally, 

conclusion is drawn in Section V. 

II. METHODOLOGY 

A. Experimental Protocol 

In this study, 22 healthy participants (12 males and 10 

females; age: 23 ± 2.7 years, mean ± standard deviation) were 

recruited through advertising on the campus of the National 

University of Singapore (NUS). Approval for the experiment 

protocol was obtained from the Institutional Review Board 

(IRB) of NUS and written consent forms were obtained from 

all the subjects. The driving simulator consists of 3 large LCD 

screens and the Logitech G27 Racing Wheel (driving wheel, 

pedals and gear box). City Car Driving 1.5 was employed to 

virtualize cars and roads, forming a simulated country side 

scenario [24, 25]. The multi-screen display provided a wide 

view matching to the field of sight of a human eye. Subjects 

were instructed to continuously drive the controlled car for 90 

mins [24]. The experiment comprised 2 sessions, where in each 

session, the subjects were instructed to follow a guiding car and 

brake whenever the tail red lights of the guiding car were lit, 

signaling the guiding car started to brake. RT is thus defined as 

the time interval between the moment tail red lights are lit and 

the moment at which the participant applies the brake. The last 

five minutes of the experiment were excluded from analysis 

due to change of the driving mode of the simulator to free 

driving. The interval between the two sessions was 

approximately 1 week. Based on RT, subjects who did not 

experience fatigue, were excluded from analysis. Based on this 

criteria, 3 subjects were excluded and a total 19 subjects were 

used for analysis. All the subjects were monetarily 

compensated for their participation after experiment 

completion. Fig. 1 shows the experimental setup used in this 

study. 

B. EEG Data Acquisition 

EEG data was recorded using a Cognionics 24-channel EEG 

headset (Cognionics, Inc., San Diego, USA) equipped with dry 

electrodes. The dry electrodes comprised flex electrodes used 

Fig. 1: Experimental setup developed to mimic real driving scenario. A multi-screen display was used to provide a wide view of sight. The setup also includes 

a driving controller and a wireless dry EEG recording equipment.  
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for haired area and dry-pad electrodes used for bare skin like 

forehead and mastoids. The acquired EEG data was transmitted 

wirelessly to a recording computer. Cognionics data acquisition 

software was used to measure the impedances between the 

scalp and the electrodes and the impedance was kept below 20 

KΩ. The sampling rate of data acquisition was 250 Hz.  

C. Data Pre-processing 

A pre-processing pipeline that requires low computational 

complexity was used in this work. The acquired EEG data of 

each channel were centered, followed by common average 

reference and de-trending. The data were then band-pass 

filtered using a 5th order Butterworth filter at cutoff frequencies 

of 1Hz and 40Hz. For every epoch, the number of channels for 

which the extreme value of the epoch was more than the sum 

of the mean and 5 times the standard deviation of that epoch, 

was counted. If this number of channels exceeded 12 for an 

epoch, the epoch was discarded. 

D. Feature Extraction 

Power Spectral Density (PSD) was used to extract spectral 

features from the EEG signals using Welch’s method 

(Hamming window and 50% overlap). The obtained spectra 

from the EEG data were divided into five spectral bands 

namely: delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-

30Hz) and gamma (30-40Hz). Based on these bands, five band 

power features (i.e., Pδ, Pθ, Pα, Pβ and Pγ) and two power ratios 

(P(θ+α)/ β and Pθ/β) [26] were extracted from each channel, 

resulting in a total of 168 features ((5 power bands + 2 power 

ratios) × 24 channels).  

It is known, in general, fatigue gradually appears as time 

lapses during driving [20]. Hence, time can be utilized as an 

indicator of mental fatigue level. Based on this assumption, 

features were linearly correlated with time and Pearson 

correlation coefficient was used to identify fatigue-related 

features. Those features with absolute correlation coefficient 

larger than a certain threshold were selected. The threshold was 

sought from a wide range, from 0.05 to 0.5, with incremental 

step of 0.05 and subsequently 0.1 was determined, as the 

performance of fatigue estimation was maximized using that 

threshold. 

E. Regression Analysis 

Based on the selected spectral features, continuous 

estimation of the fatigue level was done using regression 

analysis. Time was used as the fatigue label for training the 

regression model. Based on the past literature, three regression 

models have been widely used: linear, quadratic and support 

vector regression [27-29]. These three regression models have 

been selected to provide a comparative study of their 

performance to estimate driving fatigue.  

Let us consider a variable Y and n number of predictors 

termed as X=(x1(t), x2(t)…. xn(t)). In this study, the independent 

variable 𝑋  refers to the selected spectral features after the 

feature selection. In case of a linear regression model, Y is 

defined as the dependent variable having a linear relationship 

with n number of independent variables. The formula is stated 

as: 

 

  XY                                       (1) 

 

Where β is the linear parameter and ε is the error term. Based 

on the training data and labels, the β for each variable and ε are 

calculated and used as parameters for the regression model. The 

dependent variable 𝑌  refers to time (selected as the fatigue 

label for training the regression model). 

Quadratic regression, or polynomial regression of order 2, 

finds the nonlinear relationship between the independent and 

dependent variables in the form, 
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Support Vector Regression (SVR) originates from Support 

Vector Machines (SVM), originally introduced by Vapnik [30]. 

Unlike a SVM classifier, instead of being used for binary 

classification, SVR aims to estimate a continuous value as 

output [31].  The formula is stated as  

 

      bwXY                         (3) 

 

Where w is the weight and b is the bias. If the data is not 

linearly separable, slack variables (ξ) are added to the model. 

In the case, the predicted value y is more than a certain distance 

ε from the actual value, a penalty factor C is included. The error 

function E can be stated as  
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Minimizing this error function involves different kernel 

functions. Further detailed theory of SVR can be obtained in 

[31]. In this paper, linear and radial basis function (RBF) kernel 

parameters are used for SVR. The tolerance ε, regularization 

term C and γ for RBF kernel were optimized for each subject 

using an exhaustive grid search technique. 

F. Dynamic Time Warping 

Dynamic Time Warping (DTW) was first introduced in [32, 

33] and has found wide application in speech recognition. It is 

used as a measure for estimating similarities between two time 

signals. The data points from the two signals are flexibly 

aligned to find intrinsically invariant distance between them 

[34-36]. The cost for the optimal alignment with DTW can be 

calculated by considering the current distance between two data 

points i and j, and the minimum distance between the previous 

data points as formulated below: 

 

                                        MjidistjiCost  ),(),(                                             (5)                 

         ))1,1(),1,(),,1(min(  jiCostjiCostjiCostM             (6) 

 

In this work, we propose the use of DTW as a similarity 
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measure between the estimated fatigue level obtained from the 

regression output and actual fatigue level considered as the RT. 

The lower was the DTW distance value, the greater was the 

similarity between the signals. Other traditional similarity 

methods, such as Euclidean distance, correlation, root mean 

square error, have certain drawbacks. An inflated difference is 

usually obtained using the traditional methods when evaluating 

the similarity between two signals with similar trend but slight 

difference in phase or minor momentary fluctuations. It should 

be noted that, although RT is a good indicator of mental fatigue 

in a driving experiment, slight differences between the 

estimated fatigue and the actual fatigue from RT might exist. 

This difference is due to the fact that EEG reflects change in 

mental state earlier than behavioral data like RT. Also, the 

temporal resolution of RT is lower than that of the EEG signals. 

Hence, evaluating the similarity between the estimated and 

actual fatigue level using the traditional methods will result in 

misleading conclusions for fatigue estimation. Instead of 

obtaining an exact value for fatigue, estimating the trend of 

fatigue is more crucial. DTW provides the solution to this issue. 

It is robust to such minor fluctuations and differences between 

the signals and gives a similarity measure of the trends between 

the actual fatigue level and estimated fatigue level. We further 

compared the DTW with the traditional Euclidean Distance 

(ED) method in the performance (see results in the 

supplementary materials). The results demonstrated that DTW 

was able to more accurately assess the extent to which two 

signals were similar compared to the ED. Therefore, DTW is 

more reliable for performance evaluation compared to the 

traditional methods.  

It should be noted that RT cannot be easily and naturally 

obtained during actual driving, because even to install a device 

for measuring RT during real driving will pose distraction and 

risk to the driver. In this study, RT was recorded for indicating 

the actual mental fatigue level and served as a reference for the 

evaluation of the proposed framework. It was not used as a 

feature/label to train the regression models as it was not 

practically available in actual driving.  

    We performed a simulation to demonstrate how DTW 

measured distance between two time series in a few typical 

situations, which served as a reference to interpret the results 

derived from real EEG data. Fig. 2 shows four cases of DTW 

distance measure between two sinusoidal signals. In case (a), 

the two signals are identical, followed by a 90° phase shift 

between them in (b) and 180° phase shift in (c). In case (d), the 

phase is kept same, but for one signal, 3rd harmonic is mixed 

with its fundamental frequency. It can be observed that for (a), 

DTW distance is 0 as the signals are identical. In (b), the two 

signals with slight difference in phase but with similar trends 

has DTW distance of 64.21. In (c), the difference between the 

signals is further increased and therefore, DTW distance also 

increases to 161.98. In (d), the signals have similar trend near 

zero with minor fluctuations near the peaks. DTW distance is 

25.16 which is less than (b) and (c). Based on the comparisons 

between the four cases, it can be seen that similar curves (like 

(b) and (d)) with the similar trend but little differences between 

them still yield low values of DTW distance, retaining the trend 

similarity information. Higher values of DTW distance are only 

obtained when the trend of two signals are different from each 

other (as in (c)). These values give a rough baseline for 

comparing the results of this work.  

To make the estimated and actual fatigue level comparable, 

following procedure was performed: a) first, a 5th order 

polynomial fitting was done to obtain the estimated fatigue 

level curve (based on the EEG power spectral features using 

SV regression with time as fatigue label) and the actual fatigue 

level curve (based on the RT data); b) the two curves were 

normalized to the range [0, 1]. The RT data were much sparser 

than EEG data in the recording. Therefore, both data were 

normalized in time to have identical number of data points. 

Finally, c) the difference between the estimated and actual 

fatigue level was evaluated. 

Fig. 2: Illustration of DTW distances in four simulated cases: (a) both signals 

are similar; (b) 90° phase shift between the signals; (c) 180° phase shift 

between the signals; (d) one signal consists of 3rd harmonic with the 
fundamental frequency and no phase difference between the signals. The 

orange and blue lines represent two simulated signals. DTW distance value is 

shown on the top of each figure. 

Fig. 3: Common electrodes shared after feature selection across 95% of 
the subjects (in green) and 100% of the subjects (in red).   
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G. Evaluation 

The window length used for real-time data analysis may 

influence the performance of fatigue estimation. Given the 

practical feasibility, a short window length is desirable for 

timely fatigue estimation in real-time. Therefore, varying 

window lengths (i.e., 2 sec, 5 sec and 10 sec) were explored in 

this paper. The entire EEG data was segmented into epochs 

based on these window lengths for real-time fatigue estimation. 

Another constraint in actual driving is the unavailability of 

data for training at the time of fatigue estimation and a pre-

trained model is required. Hence, the validation of a model that 

is trained and tested on a single session cannot be directly 

generalized to practical real-time use. Therefore, the first 

session, recorded approximately one week before, was used for 

training the regression model and the trained model was then 

used to estimate fatigue in the subsequent driving session in this 

study. 

III. RESULTS 

Driving fatigue is estimated for all the subjects using the 

proposed framework. After exploring the regression models 

and window lengths, SVR model with RBF kernel and 5 sec 

window was found to give the best fatigue estimation 

performance (average DTW distance for all subjects=22.09). 

We further explored the relevant channels and the spectral 

bands that mostly contributed to the fatigue estimation for this 

5 sec window length. The channels that contributed to fatigue 

estimation for 95% and 100% of the subjects are shown in Fig. 

3. It can be observed that the most shared channels among 

participants are located in the frontal, parietal and especially in 

the occipital region. The frequency bands that were mostly 

selected during the feature selection step, corresponding to 

each of the common electrodes shown in Fig. 3, are listed in 

Table I. It can be observed that the θ/β features relatively 

dominantly contribute to fatigue estimation.  
TABLE I 

      CORRESPONDING FREQUENCY BANDS OF THE COMMON ELECTRODES 

SHOWN IN FIG. 3 

Electrode Frequency Bands 

AFpz θ/β 

AFp4h α 

CCP5h β 

CCP6h γ 

POz θ/β 

PO4 β 

PO7 γ 

O1h β 

Oz δ, α, β, θ/β 

O2h θ/β 

PO8 θ/β 

 

The mean values of the DTW distances between the actual 

and estimated fatigue level are shown in Fig. 4 for different 

regression models and window lengths. It can be observed that 

the variation of linear regression performance across different 

window lengths is negligible. On the contrary, quadratic 

Fig. 4: Average DTW distances for all window lengths and regression 

models. The red dashed box indicates the best performance (obtained by 

using SVR model with RBF kernel and 5 sec window length). 

Fig. 5: The performance based on DTW distance using the SVR model with RBF kernel and 5 sec window length for three different cases. Case 1 represents the 

performance obtained using all the electrodes; Case 2 represents the performance obtained using the selected electrodes which are common across 95% of the 
subjects; and Case 3 represents the performance obtained using the electrodes which are common across 100% of the subjects. (a) Performances of individual 

subjects for three cases. (b) Means and standard errors of the DTW distances for three cases. 
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regression shows maximum variation in performance across 

different window lengths with a highest increase of 46.35% in 

the DTW distance from 5 sec window to 10 sec window. Both 

linear and quadratic regression show a decrease in the 

performance with an increase in window length. For SVR, with 

both linear and RBF kernel, this decreasing trend is not 

observed and best performance is obtained in 5 sec window. 

RBF kernel outperforms linear kernel for all the window 

lengths but the difference in performance with the linear kernel 

decreases with increase in the window length. The worst 

performance is obtained for quadratic regression using 10 sec 

window length (mean DTW distance= 39.44).  

We evaluated the fatigue estimation performance using 

reduced number of electrodes to increase feasibility in practical 

implementation [37]. Based on results shown in Fig. 3, we 

selected two sets of reduced number of electrodes (electrodes 

common to 95% of the subjects and electrodes common to 

100% of the subjects) and compared their performance with the 

performance obtained using all the electrodes. Therefore, three 

cases were analyzed: (1) performance with all the electrodes, 

(2) performance with electrodes common to 95% of the 

subjects and (3) performance with electrodes common to 100% 

of the subjects (Fig. 5). The performance for the three cases was 

evaluated using the optimal combination of SVR with RBF 

kernel and 5 sec window for all the subjects. One-way ANOVA 

results showed no significant difference between the three 

cases. Therefore, similar performance was obtained using 

reduced number of electrodes. It is worth noting that the 

performance under electrode reduction was better than the use 

of all electrodes for about 40% of the subjects (8 out of 19),  

Fig. 6 shows the estimated fatigue (red line) and the actual 

fatigue (blue line) averaged across all the subjects using SVR 

with RBF kernel and 5 sec window length (only the polynomial 

line fit is shown for better visualization). It can be observed that 

the estimated fatigue level follows the trend of the actual 

fatigue level.  

IV. DISCUSSION 

The main objective of this work was to develop a fatigue 

monitoring framework which orients towards the practical 

scenario of realistic driving. Real world driving posits several 

constraints which demand elaborate experimental paradigms. 

Therefore, the experimental protocol and the fatigue estimation 

framework for this work were designed to facilitate their 

implementation in the practical situation. An EEG headset with 

wireless data transmission and dry electrodes was used in this 

work. The wireless data transmission allows mobility so as not 

to restrict movements of the driver. The majority of papers 

employed wet electrodes for EEG acquisition [13, 15, 17, 18] 

which has several drawbacks in terms of practical 

implementation in actual driving. Using wet electrodes 

demands additional effort to apply gel to the contact surfaces 

of electrodes and therefore additional preparation time is 

required compared to using dry electrodes. Additionally, wet 

electrodes are not suitable for long-term recording, as drying 

gel may result in poor signal quality. To overcome these 

drawbacks, dry EEG electrodes were utilized in this work as it 

is more suitable for real-time fatigue monitoring in actual 

driving conditions. Pre-processing steps that require low 

computational time were used in this study. Higher 

computational complexity would result in a delay in fatigue 

estimation which can lead to failure in preventing accidents in 

actual driving implementation.  

Based on the results as shown in Fig. 3, the common 

channels that were shared across the majority (>95%) of the 

subjects were located in the frontal, parietal and occipital 

regions, which is consistent with the relevant regions for mental 

fatigue estimation identified in the previous papers (i.e.,  frontal 

region reported in [1, 12, 19], parietal region reported in [10, 

19] and occipital region reported in [1, 11, 13, 14, 23, 38]). All 

aforementioned brain regions have also been detected by recent 

work [18]. In addition, even after reducing the number of 

electrodes by 75% for feature extraction, we still obtained 

similar performance compared to using all the electrodes. 

Therefore, effective fatigue estimation can be achieved by 

using few electrodes in the frontal, parietal and occipital 

regions (as shown in Fig. 3). Moreover, a head band can be 

developed with mounted electrodes that collects EEG signals 

only from the outer-ring region. Instead of a full headset, such 

a head band will be more practical to implement in a realistic 

scenario. Regarding the power bands, all the five bands i.e. 

delta [12, 13, 17-19, 39], theta [11-13, 15, 17-19, 40], alpha 

[11-14, 17-19, 23, 39, 40], beta [12, 13, 17, 19, 40] and gamma 

[18] band have been extensively used to extract spectral and 

connectivity features and measure mental fatigue. Hence, it can 

be concluded that there is no unique band which is dominant 

for distinguishing alertness from fatigue. Our current work also 

supports this point of view. All the spectral bands including the 

power ratios were found to be related to fatigue, and this was 

observed in at least 95% of the subjects. 

To the best of our knowledge, this is the first work to 

Fig. 6. Overall comparison between estimated fatigue level (obtained from 

SVR) and actual fatigue level (obtained from RT). The estimated fatigue 

level was obtained by using SVR with RBF kernel and 5 sec window length. 
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introduce DTW distance for performance evaluation of fatigue 

estimation. Unlike other similarity measures, DTW is flexible, 

as it is not based on exact data point mapping. This allows a 

more suitable comparison by providing the similarity measure 

in the trend between the signals. 

We compared different regression models and window 

lengths and found that the SVR model with RBF kernel and 5 

sec window length resulted in the best performance in 

estimation of the mental fatigue. For linear regression model, 

the window length did not significantly alter the performance 

and was least sensitive to window length compared to other 

regression models. On the contrary, quadratic regression was 

highly sensitive to the window length and gave the worst 

performance in terms of fatigue estimation performance. From 

Fig. 5, high variation was observed across subjects using all the 

electrodes with a standard deviation of 12.86. It is worth noting 

that these relatively high values of DTW distance for some 

subjects do not directly signify poor performance of the model. 

A slightly higher value could be obtained in some cases due to 

the difference in magnitude. This difference in magnitude 

persists because mental fatigue can be qualitatively measured 

and quantitative approximation of fatigue is not yet fully 

understood. Therefore, in this work, instead of finding a 

quantitative value of fatigue, the variation of the fatigue level 

from the alertness was observed. Hence, small differences in 

magnitude can give a slightly higher DTW value. However, the 

fatigue trend can be estimated correctly. As illustrated in Fig. 

2(c), the signals are completely different and yielded a high 

DTW distance value of 161.98. Also, from Fig. 2(b) and 2(d), 

slight differences in phase and presence of local fluctuation 

give distance values less than 70. Taking these values as a 

reference, it can be concluded that, for all the subjects (as 

shown in Fig. 5), the estimated fatigue level from the regression 

model closely matches the actual fatigue level using the 

proposed framework.  

In this study, we only employed spectral power features for 

fatigue estimation. Other features, such as functional 

connectivity [40, 41] and entropy [20, 42], could be used in the 

proposed framework as these features have been proven to be 

of discriminative power in the differentiation between alertness 

and fatigue. Most recently, high-order functional connectivity 

in both static and dynamic representations was found to have 

complementary information to low-order functional 

connectivity in fatigue detection [43]. These diverse kinds of 

features can be fused to improve fatigue classification [44]. In 

addition, transfer learning can be integrated with the proposed 

framework to enhance robustness of the performance across 

subjects and sessions [45].     

V. CONCLUSION 

In this work, we proposed a framework for practical real-

time implementation of continuous fatigue estimation 

considering all the constraints associated with realistic driving. 

Unlike previous studies, we considered those constraints in our 

simulated driving environment so that the proposed framework 

can be seamlessly employed for fatigue estimation in real 

driving conditions. In this context, we used a wireless EEG 

headset with dry electrodes in this study, to reduce the 

preparation time and facilitate the practical use for drivers. 

Simple pre-processing steps were adopted to avoid high 

computational burden. Time was considered as the fatigue label 

and linearly correlated with the extracted features to select the 

relevant ones contributing to fatigue estimation. We proposed 

DTW distance as a similarity measure to evaluate the fatigue 

estimation performance due to its advantage of capturing the 

similarity in trend, neglecting minor local fluctuations and 

small differences between the estimated and actual fatigue 

level.  RT was used only as a fatigue level indicator to validate 

our results and not as a feature to estimate fatigue level. Based 

on the comparative study of different regression models and 

window lengths, a combination of SVR with RBF kernel and 5 

sec window achieved the best performance. Performance 

comparison with reduced number of channels showed similar 

performance and even better for about 45% of the subjects 

compared to that of using all electrodes. Our study showed that 

the proposed framework can be easily implemented in practical 

driving scenario to estimate fatigue level of drivers. This could 

help prevent potential traffic accidents caused by driving 

fatigue.  
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