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Warming increases the metabolic demand of consumers1, strengthening their feeding 1 

interactions2. This could alter energy fluxes3-5 and even amplify extinction rates within 2 

the food web6-8. Such effects could simplify the structure and dynamics of ecological 3 

networks9,10, although an empirical test in natural systems has been lacking. Here, we 4 

tested this hypothesis by characterising ~50,000 directly observed feeding interactions 5 

across 14 naturally heated stream ecosystems11-15. We found that higher temperature 6 

simplified food web structure and shortened the pathways of energy flux between 7 

consumers and resources. A surprisingly simple allometric diet breadth model10,16 8 

predicted 68-82% of feeding interactions and the effects of warming on key food web 9 

properties. We used model simulations to identify the underlying mechanism as a 10 

change in the relative diversity and abundance of consumers and their resources. This 11 

shows how warming can reduce the stability of aquatic ecosystems by eroding the 12 

structural integrity of the food web. Given these fundamental drivers, such responses 13 

are expected to be manifested more broadly and could be predicted using our modelling 14 

framework and knowledge of how warming alters some routinely measured 15 

characteristics of organisms. 16 

All natural systems contain complex food webs, whose stability is shaped by non-17 

random structural properties17, e.g. the strength of consumer-resource interactions18,19 and the 18 

flow of energy from many abundant small species into progressively fewer large species, 19 

especially in the aquatic realm20. Global warming could disrupt these patterns, yet we lack 20 

high quality field data to test and validate predictive models of temperature effects on food 21 

webs. In theory, consumers should exert stronger feeding pressure on the biomass stocks of 22 

lower trophic levels in warmer environments3,4, but may struggle to meet their rising energy 23 

demands7,8. This could lead to shorter food chains6, simpler food webs9, less efficient energy 24 

flux5, and an altered distribution of biomass through the food web21. 25 
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To test these expectations, we exhaustively characterised food web interactions for 14 26 

geothermally heated streams in Iceland using dietary analysis (see Methods). The streams 27 

occur within 1.5 km of each other in a pristine mountain landscape (Fig. S1), free from 28 

anthropogenic influences apart from occasional sheep grazing. The streams are very similar 29 

in their physical and chemical properties and yet vary in temperature from 5-25 °C due to 30 

indirect heating of groundwater through the bedrock (Tables S1-S3). Since the streams occur 31 

in the same catchment, they avoid the biogeographical differences associated with other 32 

natural gradients in temperature (e.g. latitude or altitude)22. This study system thus acts as a 33 

space-for-time proxy, where temperature effects on food web structure can be investigated in 34 

a wild setting with all the complexity and realism of natural ecosystems22. 35 

We used an allometric diet breadth model (ADBM)10,16, parameterised with data on the 36 

average body mass and population abundance of species sampled in each stream in August 37 

2008 (i.e. no a priori information on feeding links), to predict the structure of each food web 38 

(see Methods). We then examined how several properties of the ADBM-predicted food webs 39 

varied with stream temperature, finding significant linear relationships for four key metrics 40 

related to food chain length, complexity, energy flux, and biomass distribution (Fig. S2). This 41 

allowed us to formulate four hypotheses (H1-4) that could be tested with an empirical 42 

quantification of feeding links in the system. We anticipate that, as stream temperature 43 

increases, there will be: (H1) a reduction in mean trophic level; (H2) a decrease in 44 

connectance; (H3) shorter pathways of energy flux through the food web; and (H4) an 45 

increasing biomass of consumers relative to their resources. 46 

We tested our predictions by characterising the actual food web structure of each 47 

stream based on almost 50,000 gut content observations (see Methods). There was a 48 

simplification of food web structure as stream temperature increased, from a diffuse, 49 

reticulate network (Fig. 1a) to one with fewer and shorter chains (Fig. 1b). In support of H1, 50 
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mean trophic level was lower in the warmer streams (Fig. 1c), with herbivorous interactions 51 

becoming increasingly dominant. This appeared to be driven by a disproportionate loss of 52 

consumer species, relative to resources, as stream temperature increased (Fig. S3). Consumer 53 

losses likely occurred as they were unable to meet the greater metabolic demands of the 54 

warmer environment1,7 and/or withstand increased predation by an apex predator, brown 55 

trout, which cannot persist in the coldest streams due to its own metabolic constraints13,14. 56 

Warmer food webs were also less connected (Fig. 1d), as expected in H2, suggesting they 57 

will be more sensitive to secondary extinctions23,24 and dominated by more specialised 58 

consumers, with energy channelled through fewer and stronger links9. Similar patterns were 59 

obtained when the same streams were sampled again in April 2009 (Fig. S4a,b). 60 

To assess how these structural changes altered energy flux through the food web, we 61 

calculated the lengths and angles of all pairwise consumer-resource links in log10(body mass) 62 

and log10(abundance) space25 (see Fig. 2a,b for definitions of these terms). The average 63 

pathway of energy flux through the food web was shorter in warmer streams (Fig. 2c,d), due 64 

to a reduction in mean link length as temperature increased (Fig. 2e). This supports H3 and 65 

points to stronger feeding pressure in the warmer streams13,14, with the abundance of 66 

resources suppressed relative to their consumers (Fig. S5b). A link angle of -45° means that 67 

resource biomass equals consumer biomass25 (Fig. 2a) and mean link angle became 68 

progressively smaller than this at higher temperatures (Fig. 2f). This indicates that the 69 

biomass of consumers was on average greater than the biomass of their resources in the 70 

warmer streams (Fig. S5c, S6), as predicted in H4. Inverted biomass pyramids are promoted 71 

by stronger top-down control, generalist feeding, larger predators, and higher trophic transfer 72 

efficiency21,26, all of which have been documented to increase with stream temperature in the 73 

Hengill system12-14. They can only persist, however, if resources are replenished rapidly 74 

enough to meet the metabolic demands of consumers12, i.e. the standing stock of resources is 75 
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low, but production is high enough to maintain consumer biomass through time. Such top-76 

heaviness is increasingly documented in nature when consumer pressure or anthropogenic 77 

disturbance is especially powerful (e.g. in marine fisheries), but these systems are less stable 78 

than their pyramidal counterparts21,27. We found similar patterns for mean link angle, but no 79 

effect on mean link length from the April 2009 sampling (Fig. S4c,d), suggesting that effects 80 

of temperature on the latter in August 2008 should be treated with caution. 81 

 Our model accurately predicted a higher proportion of empirically observed feeding 82 

interactions than previously documented for high quality food webs16: 75 ± 3.9 % (mean ± 83 

standard deviation) across all 14 streams (Fig. S7). This shows that the ADBM can be a 84 

useful tool for predicting ecological networks16, at least for size-structured aquatic 85 

ecosystems like our study streams12, even when interaction data are limited, as is the case for 86 

most studies to date28. Our empirical measures of food web structure and energy flux were 87 

also strongly correlated with the ADBM predictions, although deviation of the slope from the 88 

1:1 line suggests the model did not produce an accurate quantitative prediction of 89 

connectance (Fig. S8). Our results indicate that the ADBM can also predict the impacts of 90 

temperature on natural food webs, using simple information that is routinely collected in 91 

ecological field studies. Further testing of the model with other highly resolved food web 92 

datasets from experiments that have manipulated warming in a controlled fashion would 93 

validate this suggestion more broadly. 94 

As a final exploratory step, we investigated the underpinning mechanisms by using the 95 

ADBM to simulate food webs after changing one of the three major input variables: species 96 

identity, average body mass, and population abundance. By randomly choosing species from 97 

the regional species pool ('sp' scenario), we disrupted the trophic structure of any given 98 

stream and thus the relationship between stream temperature and the ratio of consumer to 99 

resource species richness (Fig. 3a). By randomly choosing a mean body mass ('M' scenario) 100 
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or population abundance ('N' scenario) for each species from the same trophic groups in the 101 

regional dataset, we disrupted the relationship between stream temperature and the ratio of 102 

consumer to resource body mass or abundance, respectively (Fig. 3b,c). For each scenario, 103 

we then simulated 1,000 food webs for each of our 14 study streams after randomising one 104 

input variable and fixing the values of the other two variables as close to the real stream as 105 

possible (see Methods). 106 

Our 'sp' scenario removed the effect of temperature on mean trophic level and 107 

connectance (Fig. 3d,e), with negligible effects of the other two scenarios. This suggests that 108 

the relative biodiversity of consumers and resources is a key determinant of these food web 109 

properties. We used the 14,000 food webs simulated under the 'sp' scenario to explore this 110 

effect, independent of temperature, and found that both mean trophic level and connectance 111 

increase with the ratio of consumer to resource species richness (Fig. 4a,b). Thus, the 112 

disproportionate loss of consumer species, which is widely predicted in response to 113 

warming6-8, should lead to reductions in these food web properties. 114 

While all three randomisation scenarios disrupted temperature effects on link lengths 115 

and angles, our 'N' scenario had by far the greatest effect (Fig. 3f,g), suggesting the ratio of 116 

consumer to resource abundance is the principal determinant of energy flux. We used the 117 

food webs simulated under the 'N' scenario to explore this effect, independent of temperature, 118 

and found that link lengths and angles become smaller as consumers approach the abundance 119 

of their resources (Fig. 4c,d). Thus, stronger top-down control that alters the shape of trophic 120 

abundance pyramids, which is often reported in warmer environments3,4, will suppress energy 121 

flux through the food web. 122 

Our study is one of the first to show systematic impacts of temperature on wild food 123 

webs (e.g. see also29). Most riverine ecosystems in Europe and North America fall within the 124 

studied temperature gradient of 5-25 °C30 and so our results should be indicative of changes 125 
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in food web structure due to future warming within this range. Our findings highlight the 126 

importance of monitoring species interactions for successful management of ecosystems31, 127 

given that trophic structure is so sensitive to environmental change. For example, mean 128 

trophic level is increasingly used in fisheries management to identify overfishing at the top of 129 

the food web32, while connectance is a useful indicator of resistance to invasion33 and 130 

robustness against biodiversity loss23,24. We identified changes in the relative biodiversity or 131 

abundance of consumers and resources at higher temperatures as key mechanisms driving the 132 

observed effects. Such changes are also elicited by anthropogenic activities like 133 

overexploitation and habitat degradation32,34, emphasising how the structure and stability of 134 

ecological networks may be threatened by a host of stressors. The predictive power of our 135 

model shows how the impact of these stressors could be anticipated and ultimately mitigated 136 

more broadly. These findings now need to be tested in a range of food webs from marine, 137 

freshwater, and terrestrial realms to gauge their potential universality. 138 
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Figure Legends 237 

Fig. 1. Temperature effects on food web properties. Food webs for the (a) coldest and (b) 238 

warmest stream in the system, where circles are species, grey lines are feeding interactions, 239 

and the size of the circles is proportional to the population biomass of each species in the 240 

stream. Note the reduction in the number of consumer species in the food web for the warm 241 

stream and the 'thinning out' of feeding interactions compared to the cold stream. There was a 242 

reduction in (c) mean trophic level (y = 1.536 - 0.0054x, F1,12 = 16.10, p < 0.001, r2 = 0.54) 243 

and (d) directed connectance (y = 0.220 - 0.0023x, F1,12 = 18.93, p < 0.001, r2 = 0.58) as 244 

stream temperature increased (see Methods for definitions of these food web properties). 245 

Fig. 2. Temperature effects on energy flux. a, The length of a trophic link (grey line) is 246 

defined as the sum of the number of orders of magnitude of difference in body mass (L1) and 247 

abundance (L2) between a consumer (C) and a resource (R)25. The angle (A) of a trophic link 248 

measures the rate of change in biomass from a consumer to a resource25. Here, consumer 249 

biomass (mass × abundance = 100 × 100 = 1 mg m-2) equals resource biomass (10-8 × 108 = 1 250 

mg m-2), resulting in a link angle of -45°. b, A decline in resource abundance and an increase 251 

in consumer abundance (relative to panel a) results in a shorter link length and a less negative 252 

link angle. Here, consumer biomass (100 × 102 = 100 mg m-2) is greater than resource 253 

biomass (10-8 × 106 = 0.01 mg m-2), resulting in a link angle of -27°. Trivariate food webs for 254 

the (c) coldest and (d) warmest stream in the system, where circles are species, grey lines are 255 

feeding interactions, and the thick black lines represent the mean link length and mean link 256 

angle of the food web. There was (e) a reduction in mean link length (y = 9.067 - 0.0335x, 257 

F1,12 = 5.04, p < 0.001, r2 = 0.24) and (f) a smaller (i.e. less negative) mean link angle (y = 258 

-52.30 + 0.797x, F1,12 = 37.28, p < 0.001, r2 = 0.74) as stream temperature increased. 259 
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Fig. 3. Effect of randomisations on temperature dependence of food web properties. The 260 

mean (± standard deviation) of linear regression slopes between food web properties and 261 

stream temperature for 1,000 randomisations are shown in the plots. The black dashed line 262 

represents a regression slope of zero between a food web property and temperature, i.e. the 263 

property is independent of temperature. The solid and dashed grey lines represent the 264 

empirical and ADBM-predicted regression slope of each food web property against 265 

temperature, respectively. a, The 'sp' scenario randomises the species found in a stream and 266 

thus the ratio of consumer to resource species richness. b, The 'M' scenario randomises the 267 

average body mass of species in the stream and thus the ratio of consumer to resource body 268 

mass. c, The 'N' scenario randomises the population abundance of species in the stream and 269 

thus the ratio of consumer to resource abundance. The effect of temperature on (d) mean 270 

trophic level and (e) connectance is removed by the 'sp' scenario. The effect of temperature 271 

on (f) mean link length and (g) mean link angle is removed by the 'N' scenario. In all other 272 

cases, even if the randomisation scenario disrupts the empirical and ADBM-predicted 273 

patterns, it maintains the directionality of the temperature effect on the food web property. 274 

Fig. 4. Key determinants of food web properties. Effect of the ratio of consumer to 275 

resource species richness (independent of temperature) on (a) mean trophic level (y = 0.847 + 276 

1.4044x, r2 = 0.94) and (b) connectance (y = 0.227 + 0.1952x, r2 = 0.35) in 1,000 food webs 277 

simulated for each of the 14 streams under the 'sp' scenario (cf. Fig. 3). Effect of the log ratio 278 

of consumer to resource abundance (independent of temperature) on (c) mean link length (y = 279 

6.284 - 0.5105x, r2 = 0.32) and (d) mean link angle (y = -20.37 + 3.297x, r2 = 0.13) in 1,000 280 

food webs simulated for each of the 14 streams under the 'N' randomisation scenario (cf. Fig. 281 

3). Parameter estimates are the mean intercept, slope, and r2 values from 1,000 linear 282 

regressions of the relationship across streams (i.e. one regression for each randomisation). 283 

284 
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Fig. 1 285 

286 
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Fig. 2 287 

288 
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Fig. 3 289 

290 
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Fig. 4 291 

 292 

293 
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Methods 294 

Stream sampling 295 

Streams were sampled in August 2008 and April 2009 to quantify the three major 296 

trophic groups in the system: benthic diatoms (three stone scrapes per stream), 297 

macroinvertebrates (five Surber samples per stream), and fish (three-run depletion 298 

electrofishing). Yield-effort curves were constructed to verify the efficiency of sampling13. 299 

We focus on the August 2008 data throughout because they represent the height of the 300 

growing season, whereas the April 2009 data are from a time of the year when the streams are 301 

in transition. Thus, we only use the latter to determine how consistent the observed patterns 302 

are through time. Diatoms and macroinvertebrates were identified to species level under the 303 

microscope and counted to estimate population abundance, which was scaled to number of 304 

individuals per m2 based on sampling areas. Average body mass (in milligrams of dry 305 

weight) was estimated from linear measurements for at least ten individuals of every species 306 

and published length-weight relationships (Tables S4 and S5). Note that diatoms could only 307 

be reliably identified to genus level in gut contents, so we calculated the total abundance and 308 

abundance-weighted mean body mass of each diatom genus from the species-level data. 309 

Nevertheless, we refer to all taxa as species throughout this paper. Body mass measurements 310 

of the only fish in the system (brown trout, Salmo trutta), were taken on a portable mass 311 

balance and converted to dry weight according to a wet weight to dry weight relationship12. 312 

Precise details of the study system and stream sampling are given in Supplementary Methods.  313 

Overview of food webs 314 

Direct observations of feeding links in nature are preferable to inferences based on 315 

indirect evidence, experiments, or prior publications from other study sites25. Nevertheless, 316 

food web studies are plagued by under-sampling of rare species and links when food webs 317 
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are constructed entirely based on direct observation and by over-estimation of links when 318 

they are entirely inferred from the literature28,35. A yield-effort curve for links as a function of 319 

cumulative sampling effort should be reported for all direct observations35, but this is still 320 

rarely the case in most food web studies28. Here, we performed extensive gut content analysis 321 

on organisms collected from our study system and used yield-effort curves to assess the 322 

completeness of our sampling effort. We supplemented the under-sampled component with 323 

inferences from the literature to achieve the optimum balance between under- and over-324 

estimation of true food web structure. 325 

Gut content analysis 326 

We documented 49,324 feeding interactions from 1,128 individual consumers collected 327 

from the Hengill streams using gut content analysis. We employed three different 328 

approaches: stomach flushing of fish (5,856 interactions from 109 individuals), acid digestion 329 

of macroinvertebrates (25,105 interactions from 289 individuals), and dissection of gut 330 

contents (18,363 interactions from 730 individuals). Organisms flushed from fish stomachs 331 

were immediately stored in 70% ethanol and later identified under the microscope13,14. 332 

Immersion of macroinvertebrates in 62% nitric acid at 65 °C for 18 hours removes all organic 333 

matter except for silicate diatom frustules, enabling accurate identification of diatoms36, the 334 

major primary producers in the streams13. A 1 ml sub-sample of the resulting suspension of 335 

diatom frustules was pipetted onto a glass coverslip and allowed to dry before fixing to glass 336 

slides by adding a drop of naphrax on a 60 °C hotplate. We identified the first 100 diatoms 337 

(where possible) encountered in a continuous, non-overlapping 100 µm-wide transect 338 

following a fixed route across the slide, which was found to be sufficient for accurately 339 

characterising the species present on each slide36. Dissection of gut contents allowed us to 340 

quantify predation on other macroinvertebrates and feeding interactions with basal resources 341 
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other than diatoms, i.e. coarse particulate organic matter (CPOM, which is > 1 mm), fine 342 

particulate organic matter (FPOM, which is < 1 mm), macrophytes, filamentous green algae, 343 

microscopic green algae, cyanobacteria, and terrestrial subsidies. Invertebrates were dissected 344 

at 20× magnification and the gut contents were mounted onto glass slides with Hoyer’s 345 

medium. Gut contents were quantified in three randomly chosen fields of view at 200× 346 

magnification on a compound microscope. 347 

Yield-effort curves 348 

We constructed yield-effort curves using the 'fitspecaccum' function in the 'vegan' 349 

package in R 3.5.0, where our community dataset was a matrix with rows as unique consumer 350 

guts analysed, columns as resource taxa, and values as the number of times each resource 351 

taxon was observed in a consumer's gut. We used 'method = "exact"' and set 'fit' equal to each 352 

of the following models: 'arrhenius', 'gleason', 'gitay', 'lomolino', 'asymp', 'gompertz', 353 

'michaelis-menten', 'logis', and 'weibull'. We chose the best fitting model according to AIC 354 

and used the 'predict' function in the 'stats' package in R to estimate the predicted number of 355 

resource taxa for each consumer, where 'newdata' was the bigger value from twice the 356 

number of guts analysed for that consumer and 50. We carried out this procedure for four 357 

different groupings of consumer diet: (1) every consumer species in each stream; (2) every 358 

consumer family in each stream; (3) every consumer species in the Hengill region; and (4) 359 

every consumer family in the Hengill region. 360 

Food web construction 361 

To construct a food web for a given stream, we started by taking the species list from 362 

sampling of that stream in August 2008. We then added links for each species from gut 363 

content analysis of those species in that stream. If yield-effort curves suggested that <95% of 364 
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the diet was described for any species (Fig. S9), we added links for consumers in the same 365 

taxonomic family from gut content analysis of those families in that stream. If yield-effort 366 

curves suggested that <95% of the diet was described for any family (Fig. S10), we added 367 

links for each species from gut content analysis of those species across all streams in the 368 

Hengill region. If yield-effort curves suggested that <95% of the diet was described for any 369 

species in the Hengill region (Fig. S11), we added links for consumers in the same taxonomic 370 

family from gut content analysis of those families across all streams in the Hengill region. If 371 

yield-effort curves suggested that <95% of the diet was described for any family in the 372 

Hengill region (Fig. S12), we added links described for that species from the literature (Table 373 

S6). Just 12.6% of links were added from the literature, with 43.5% of links directly observed 374 

from the target stream, and the remaining 43.9% of links directly observed from the Hengill 375 

region. From our directly observed links, 74.3% were specific to each consumer species, with 376 

just 25.7% inferred from the family level. This constitutes one of the most comprehensive 377 

food web datasets ever constructed. 378 

Food web properties 379 

Food webs were visualised and properties were calculated using the 'cheddar' package 380 

in R. The triangular food webs in Fig. 1a,b and the trivariate food webs in Fig. 2c,d were 381 

visualised using the 'PlotWebByLevel' and 'PlotMvN' functions, respectively. Mean trophic 382 

level was calculated using the 'ShortWeightedTrophicLevel' function, which is the average of 383 

the shortest trophic level of a consumer and 1 + the mean trophic level of all its trophic 384 

resources. This metric has been shown to closely approximate flow-based trophic level, 385 

where each link is weighted according to its relative energetic contribution to the consumer's 386 

diet37. Connectance was calculated using the 'DirectedConnectance' function, which is the 387 

proportion of possible links in a food web that are realised38. Mean link length and mean link 388 
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angle were calculated from the 'length' and 'angle' columns under the 'links' data frame 389 

returned by the 'NvMTriTrophicStatistics' function. Link lengths describe the distance in 390 

mass-abundance space between every consumer and each of its resources in the food web, 391 

while link angles describe the biomass of every consumer relative to each of its resources 392 

(see Fig. 2a). These metrics are increasingly used to quantify the flux and distribution of 393 

biomass through the food web25,39-42 and provide more precise information than biomass 394 

pyramids, which only describe the total biomass at each discrete trophic level (see Fig. S6). 395 

The ratio of consumer to resource species richness was calculated as the number of consumer 396 

species divided by the number of resource species. The difference in the log10 abundance-397 

weighted arithmetic mean body mass of consumers and of resources was taken as the log 398 

ratio of consumer to resource body mass. The difference in the log10 mean abundance of 399 

consumers and of resources was taken as the log ratio of consumer to resource abundance. 400 

The difference in the log10 mean abundance × body mass of consumers and of resources was 401 

taken as the log ratio of consumer to resource biomass. Temperature effects on food web 402 

properties were analysed with linear regressions using the 'lm' function in the 'stats' package 403 

in R, with each food web property taken in turn as the dependent variable and stream 404 

temperature as the explanatory variable. 405 

Allometric diet breadth model 406 

The allometric diet breadth model (ADBM) is a model of food web structure based on 407 

optimal foraging theory. It predicts the qualitative structure of real food webs, often to a high 408 

degree of accuracy16. By incorporating the temperature dependence of foraging traits, the 409 

model has also been shown as a useful framework for predicting the effects of temperature on 410 

food web connectance10. The ADBM predicts the diet k of each consumer j that maximises 411 

the rate of energy intake: 412 
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where Ni is the density of resource species i, aij is the attack rate of consumer species j on 414 

species i, εi is the net energy gained by consumption of an individual of species i, and hij is 415 

the time taken for species j to handle an individual of species i. 416 

The body mass and temperature dependence of aij can be described as: 417 
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where a0 is a normalisation constant for attack rate, Mi is resource body mass (in mg), Mj is 419 

consumer body mass (in mg), ai and aj are allometric exponents, Ea is the activation energy of 420 

attack rate (in eV), T is environmental temperature (in K), T0 sets the intercept of the 421 

temperature relationship at T0 rather than at zero Kelvin, and k is the Boltzmann constant 422 

(8.618 × 10-5 eV K-1). The value of Εi is determined by the proportion of dry-to-wet mass in 423 

each organism43,44, εi, and may vary with temperature45, but for simplicity, we assumed here 424 

that it would be directly proportional to body mass in all streams10,16, i.e. Εi = εiMi. See Table 425 

S7 for a list of all parameter values used in the current study and Figs. S13-S16 for an 426 

exploration of the sensitivity of key food web properties to the chosen parameter values. 427 

The body mass and temperature dependence of hij can be described as: 428 
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where h0 is a normalisation constant for handling time, hb is a critical mass ratio, and Eh is the 430 

activation energy of handling time (in eV). Note that hij = ∞ if Mi / Mj ≥ hb. We let hb = 431 

0 j

bb M , where b0 = 1 with dimensions that cancel those of Mb, because resource body mass 432 
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has been shown to vary with consumer body mass according to a power-law46. Note that we 433 

used a ratio handling time function in Equation 3, rather than a power handling time function 434 

because the latter is generally shown to have weaker predictive power16 and was found to be 435 

a poor predictor of empirical food web structure in the Hengill streams. The values for each 436 

parameter that were used in the current study are listed in Table S7. 437 

It is important to note that the estimates of food web structure based on the ADBM are 438 

independent of the empirical quantification of food web structure using dietary analysis. The 439 

former relies solely on the body mass and abundance information for each species to 440 

determine food web links, whereas the latter determines the links from direct observation in 441 

gut contents (>87% of cases) or inference from the literature. Thus, empirical measurements 442 

of mean trophic level and connectance are completely independent of the ADBM predictions 443 

of these metrics. While mean link length and mean link angle incorporate body mass and 444 

abundance information, their values are determined by how consumers and their resources 445 

are distributed in mass-abundance space, i.e. there is a major contribution of independent 446 

trophic link data to these metrics. 447 

Randomisation scenarios 448 

We used the ADBM framework to simulate 1,000 food webs for each of our 14 study 449 

streams according to three different randomisation scenarios. In the 'sp' scenario, we 450 

randomly selected n species from the regional species pool (where n is the number of species 451 

in a given stream), with the actual body mass and abundance for each species per stream, or 452 

the body mass and abundance from the stream of closest temperature when a species was not 453 

found in a stream. This scenario destroyed the ratio of consumer to resource species richness 454 

by changing the number of species belonging to each major trophic group (i.e. diatoms, 455 

macroinvertebrates, or fish) in each stream, but approximately maintained the ratios of 456 
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consumer to resource body mass and abundance within each stream (Fig. 3a-c). In the 'M' 457 

scenario, we maintained the species found in a stream and their population abundances in that 458 

stream, but randomly chose body masses from the same major trophic groups in the regional 459 

species pool. This scenario destroyed the ratio of consumer to resource body mass, but 460 

approximately maintained the ratios of consumer to resource species richness and abundance 461 

within each stream (Fig. 3a-c). In the 'N' scenario, we maintained the species found in a 462 

stream and their mean body masses in that stream, but randomly chose abundances from the 463 

same major trophic groups in the regional species pool. This scenario destroyed the ratio of 464 

consumer to resource abundance, but approximately maintained the ratios of consumer to 465 

resource species richness and body mass within each stream (Fig. 3a-c). 466 

Data and Code Availability: 467 

The data and R code that support the findings of this study are available from the first 468 

author upon reasonable request. 469 
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