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Neglected tropical diseases caused by parasitic infections are an ongoing and increasing concern 

that have a devastating effect on the developing world due to their burden on human and animal 

health. In this work, we detail the preparation of a focused library of substituted-tetrahydropyran 

derivatives and their evaluation as selective chemical tools for trypanosomatid inhibition and the 

follow-on development of photo-affinity probes capable of labeling target protein(s) in vitro. 

Several of these functionalised compounds maintain low micromolar activity against 

Trypanosoma brucei, Trypanosoma cruzi, Leishmania major and Leishmania donovani. In 

addition we demonstrate the utility of the photo-affinity probes for target identification through 

preliminary cellular localisation studies. 
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 3 

Trypanosomatids are a family of parasites which cause life threatening, debilitating disease in 

humans.1 The three major parasitic forms Trypanosoma brucei, Trypanosoma cruzi and 

Leishmania spp. are the causative agents of African sleeping sickness, Chagas disease and 

Leishmaniasis respectively.2,3,4 Combined, these parasites are responsible for a huge global health 

burden for millions of people in the worlds poorest countries. Unfortunately, the current 

treatment options are generally antiquated and many exhibit toxic side effects whilst being 

largely ineffective.5,6 Perhaps more significantly there are very few well-documented drug targets 

for these diseases.7,8,9 

The use of natural products in traditional medicinal practices dates back thousands of years and 

today natural products remain at the forefront of pharmaceutical discovery.10 While the structural 

diversity of natural products is remarkable, they frequently contain significant stereochemical 

complexity and a high degree of saturation (low Fsp3 count) - properties which are not well 

reflected in modern HTS screening libraries.10b Annonaceous acetogenins are a series of fatty 

acid-derived natural products that have attracted interest as potential anti-cancer agents via their 

known inhibition of mitochondrial Complex I.11,12 Despite the common use of acetogenin-

containing Annonaceae plant extracts as traditional medicines in trypanosomatid affected areas,13 

acetogenins have only been tentatively explored as potential anti-parasitic agents, with initial 

promising results in several kinetoplastid cell lines.14,15 

Chamuvarinin (1, Figure 1), an acetogenin first synthesised by our group in 2011, was found to 

exhibit low micromolar activity towards bloodstream T. brucei.16,17 Using the chamuvarinin 

framework as a template, we designed chiral building blocks that mimic key structural features 

of chamuvarinin (stereochemical complexity, high degree of saturation) and can be rapidly 

combined to generate simplified non-natural analogues such as 2,  incorporating a 1,4-triazole 
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heterocyclic motif as a mimic of the central cis-substituted tetrahydrofuran moiety in 

chamuvarinin (Figure 1). These simplified structural analogues maintained anti-parasitic activity 

with increased, though modest, selectivity compared to mammalian cells.18 Herein, we detail 

further optimization of lead compound 2 using new tetrahydropyran building blocks with 

substitution on the flanking tetrahydropyran ring systems, as in 3.19 We also report extended 

phenotypic screening of the related kinetoplastids T. cruzi, L. major and L. donovani.20 

Furthermore, as part of efforts to identify the protein target and establish the mode of action, we 

have adapted our core inhibitor scaffold to incorporate both a photo-reactive diazirine unit and an 

orthogonal reporter alkyne tag to produce photo-affinity labelling inhibitors.21 Direct 

incorporation of a small photo-affinity label was viewed as advantageous in terms of minimising 

disruption of ligand-protein binding interactions in vitro, and reducing non-specific labelling by 

retaining the structural features identified by phenotypic screening, thereby increasing the 

likelihood of successful target protein labelling.18 
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Figure 1. Chamuvarinin and simplified analogues 

 

RESULTS AND DISCUSSION 

Synthesis of Functionalised Inhibitors. Our original triazole-based inhibitors were limited as 

lead compounds due to the limited scope for substitution, preventing further exploration of 

structure-activity relationships and probing of three-dimensional fragment space.18 In order to 

expand the number of strategic attachment/diversification points we viewed that additional 

chemical handles could be incorporated on either of the tetrahydropyran (THP) ring systems.  In 

particular modification of the 4-position in the tetrahydropyran rings was attractive as these two 

sites are directed spatially away from the central tri-heterocyclic core that is most likely to be 

involved in crucial inhibitor-protein binding interactions (Figure 2). 
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Figure 2. Functionalisation points on original inhibitors compared to new inhibitors 

 

Access to substituted building block 7 was established by application of a Jacobsen hetero-

Diels-Alder reaction with excellent diastereo- and enantioselectivity (Scheme 1).22 This 

intermediate was key to the synthesis of a series of substituted THP building blocks. Alcohol 

functionality was installed by reduction with NaBH4 to give equatorial alcohol 8 with high 

diastereocontrol.23 TIPS protection, followed by selective TBS deprotection gave alcohol 9, 

which could be independently elaborated to the azide 10 under Mitsunobu condition or to alkyne 

11 by Swern oxidation and Ohira-Bestmann homologation.24,25,26 To install the desired triazole 

heterocycle the Cu(I)-mediated Huisgen cycloaddition was utilized with combinations of suitable 

azide and alkyne fragments followed by fluoride deprotection to rapidly access 13 and 15, 

respectively, in excellent overall yields.27  
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Scheme 1. Synthesis of inhibitors 13 and 15 

 

Reagents and conditions: a) Cr(III) cat. 4, 4Å MS, MTBE, 0 °C – rt, 24 h, then acidified CHCl3, 

20 min, b) NaBH4, MeOH, 0 °C, 2 h, c) TIPS-triflate, 2,6-lutidine, CH2Cl2, -78 °C, 4 h, d) CSA, 

CH2Cl2, MeOH, 0 °C, 4 h, e) PPh3, DIPEA, DIAD, DPPA, 0 °C – rt, 16 h, f) (COCl)2, DMSO, 

Et3N, CH2Cl2, -78 °C – rt, 2 h, g) dimethyl diazo-2-oxopropylphosphonate, K2CO3, MeOH/THF, 

21 h, h) CuSO4.5H2O, sodium ascorbate, tBuOH, H2O, 20 h, i) TBAF, THF, 0 °C – rt, 2 h. 

aSynthesis of THP azide 12 and alkyne 14 are detailed in our previous publication.18 
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With these modified inhibitor scaffolds in hand, a range of alkyl ethers were prepared (Scheme 

2) in order to probe the tolerance for substitution on individual THP rings whilst maintaining 

anti-parasitic activity. Williamson etherification of 13 with the specified alkyl halides (NaH, 

THF) proceeded smoothly to provide ether derivatives (3 and 16 – 26). 

 

Scheme 2. Synthesis of alkylated derivatives  

 

Reagents and conditions: a) NaH, RI, THF, 0 °C – reflux, 24 – 48 h.  Note: Reaction time varied 

depending on length of alkyl substituent being added. bAlkyl bromide was used.  

 

Biological Screening. Following the synthesis of 3, 16-26 we screened against our selected 

parasite cell lines: T. brucei (bloodstream and procyclic form), T. cruzi (epimastigotes) and L. 

major (promastigotes) in the first instance and counter-screened against the mammalian cell lines 

HeLa and Vero (Table 1). Addition of a substituent on the alkyne THP ring was well tolerated 

with alcohol 13 having no loss of potency across all cell lines when compared to the activity of 

the parent compound 27 and only a small decrease from our previously reported lead compound 
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2.8 Results for the analogous alcohol 15 (with the alcohol on the azide side) were very similar to 

that of 13 and this proved to be a general result for this series of compounds with inhibition 

largely independent of which ring the substituent was located on.  

However, the length of the alkyl substituent had a dramatic effect on the type of activity 

displayed. In bloodstream T. brucei the length of the alkyl substituent had a minimal effect on 

potency, an n-butyl substituent (18) maintained activity when compared to 27. Inhibition activity 

is only moderately reduced with a bulky n-octyl substituent (20). The potency in other parasitic 

cell lines (insect forms of T. brucei, T. cruzi and L. major) were more sensitive to alkyl ether 

chain length. However, all tolerated an n-propyl ether (3) with potency being maintained in both 

T. brucei (procyclic) and T. cruzi (epimastigote) with only a small decrease observed in L. major 

(promastigote), when compared to 27. Interestingly, while inhibition activity in mammalian 

HeLa cells was unaffected by an ethyl substituent (17), both the n-propyl and n-butyl substituted 

variants (3 and 18) had no effect at doses of 500 µM. Importantly, this means 3 selectively 

targeted all trypanosomatid cell lines tested with no detrimental activity towards mammalian 

HeLa cells. Additionally, this series of compounds were evaluated in the mammalian Vero cell 

line to gauge their activity in non-cancerous cells. This assay demonstrated an even more 

pronounced effect on cell inhibition activity than that seen for HeLa. The methyl ether variant 

(16) displayed decreased inhibition activity, while the ethyl ether variant 17 had no effect at 500 

µM. An anomalous result was found with compound 24 having an inhibitory effect on Vero 

cells. However, it should be noted that the assay indicated an inhibitory effect on respiration, yet 

the cells were visibly still viable at the highest concentration tested (>500 µM), suggesting static 

rather than cidal activity.  
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Table 1. Biological profiles for substituted inhibitors 

 

ON
N NO

OBn
OBn

ON
N NO

OBn
OBn

2

27

13

16

17

3

18

19

20

15

21

22

23

24

25

26

Nifurtimox

Pentamidine

1.8 ± 0.1a 

4.0 ± 0.1 

8.1 ± 0.5

9.3 ± 0.7

5.7 ± 0.5

7.4 ± 0.4

4.8 ± 0.4

5.0 ± 0.2

33.1 ± 2.1

4.6 ± 0.3

4.5 ± 0.4

5.1 ± 0.3

6.3 ± 0.5

3.8 ± 0.1

5.2 ± 0.5

39.2 ± 5.2

2.4 ± 0.1b

0.0012

0.8 ± 0.1a

3.8 ± 0.2

5.3 ± 0.3

11.6 ± 0.3

10.2 ± 0.3

12.3 ± 0.5

11.2 ± 0.5

72.6 ± 4.9

>500

3.5 ± 0.1

6.7 ± 0.4

10.7 ± 0.3

10.8 ± 0.5

12.0 ± 0.4

84.6 ±5.4

>500

ND

ND

19.7 ± 1.3

28.6 ± 1.3

16.2 ± 0.5

24.4 ± 1.0

13.2 ± 0.9

17.5 ± 1.3

>500

>500

>500

29.8 ± 0.7

17.4 ± 1.6

12.7 ± 0.7

11.2 ± 0.6

>500

>500

>500

1.5 ± 0.0

0.9 ± 0.3

T. brucei  
(BSF) EC50

(µM)
Analogue

T. brucei  
(insect) EC50

(µM)

T. cruzi  
EC50
(µM)

L. major 
EC50
(µM)

11.8 ± 0.7

29.8 ± 3.2

18.8 ± 0.9

31.4 ± 1.3

22.7 ± 1.5

40.6 ± 3.6

58.5 ± 5.5

>500

>500

15.6 ± 0.1

29.3 ± 1.1

15.3 ± 0.4

63.4 ± 8.7

72.0 ± 12.6

>500

>500

0.67 ± 0.1

24.4 ± 0.9

HeLa 
EC50
(µM)

7.0 ± 1.0a

23.0 ± 3.8

9.0 ± 0.8

>40

53.6 ± 5.3
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>500

>500

>500

12.1 ± 0.8

18.9 ± 2.9

21.1 ± 5.3

43.2 ± 7.3
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44.1 ± 5.9c

-

H
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-

a) EC 50 values were determined against bloodstream (BSF) and procyclic (insect) T. brucei brucei, T. cruzi 
(epimastigotes), L. major (promastigotes), mammalian HeLa cells and mammalian Vero cells. Data represents the 
mean ± SD of n = 3 independent experiments performed in triplicate. 2 and 27 shown for comparison. For synthesis of 
2 see Ref.(18). For synthesis of 27 see supplementary information. ND = Not determined. aTaken from Ref.(18). 
bTaken from Ref.(28). cTaken from Ref.(29).

Vero
EC50
(µM)

ND

ND

14.4 ± 0.6

111.1 ± 45

>500

>500

>500

>500

>500

16.5 ± 0.6

50.6 ± 15.2

>500

>500

16.2 ± 0.7

>500

>500

37.3 ± 4.1

6.4 ± 1.3
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OH
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With these promising results, we evaluated selected compounds in the clinically relevant, 

intracellular forms of T. cruzi and L. donovani cultured in mammalian THP-1 cells (results for 

these compounds with bloodstream T. brucei are also included, Table 2). Interestingly, 

intracellular amastigote T. cruzi (AMA) were more sensitive to the alkyl ether substituent than 

the free swimming epimastigote form, with compounds 21 and 22 displaying good anti-parasitic 

activity, while compounds 3, 17 and 23 showed no inhibitory effect. By contrast, the alkyl ether 

substituent appeared to have negligible influence on intracellular L. donovani amastigote 

(INMAC AMA), with all compounds screened having low to moderate micromolar inhibitory 

activity, compound 21 being particularly potent. Counter-screening against the host THP-1 

mammalian cell line showed that compounds with an alkyl substituent had moderate to no 

observable inhibitory activity – however the SAR of this effect does not hold a clear trend. 

The lack of inhibitory activity in THP-1 cells gave rise to selective compounds towards 

bloodstream T. brucei, in particular compounds 21 and 23 were highly selective when compared 

to host THP-1 cells (>56 and >79 fold, respectively). The same compounds were also highly 

selective towards L. donovani. When considering selectivity towards intracellular T. cruzi, only 

21 displayed good selectivity compared to the host THP-1 cells (>9 fold). Importantly many of 

these compounds also had limited inhibitory activity in Vero/HeLa cells (see Table 1), which is 

significant when considering overall general toxicity towards the host organism.  In sum, these 

results demonstrated that alkyl ether substitution of the THP scaffold was valuable as a method 

to increase selectivity while maintaining anti-parasitic activity. We have now generated a series 

of selective chemical tools, with structures of type 21-23 being, in particular, useful in guiding 

future inhibitor design and development due to their promising activity and selectivity profiles 

towards the clinically relevant parasite forms.  
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Table 2. Biological profiles for selected inhibitors against clinically relevant forms 

 

 

2

17

3

15

21

22

23

Nifurtimox

Pentamidine

26.1 ± 3.2

>250

>100

ND

27.0 ± 3.3

37.2 ± 10.7

>100

4.7 ± 1.2

ND

Analogue
T. cruzi  

AMA EC50
(µM)

-

OEt

OnPr

OH

OMe

OEt

OnPr

-

-

32.5 ± 2.0

20.7 ± 2.5

32.8 ± 5.1

17.7 ± 2.4

3.8 ± 0.8

21.7 ± 2.8

27.3 ± 9.6

ND

0.27 ± 0.18

L. donovani  
INMAC AMA 
EC50 (µM)

ON
N NO

2
OH

ON
N NO

OBn
OBn

ON
N NO

OBn
OBn

T. cruzi  
Selectivity

Indexb

>1.7

-

-

-

>9.2

>1.5

-

>53

-

L. donovani  
Selectivity

Indexc

>1.3

>3.3

>2.6

>1.3

>65

>2.7

>18

-

210

a) EC 50 values were determined against mammalian THP-1 cells,  T. brucei (BSF), amastigote T. cruzi 
(AMA) in host mammalian THP-1 cells, L. donovani (promastigote) and L. donovani (AMA INMAC) in host 
THP-1 cells. Data represents the mean ± SD of n = 3 independent experiments performed in triplicate. aThe 
selectivity index refers to the EC50 values of T. brucei (BSF) compared to mammalian THP-1 cells. bThe 
selectivity index refers to the EC 50 values of T. cruzi  (AMA) compared to mammalian THP-1 cells. cThe 
selectivity index refers to the EC50 values of L. donovani (AMA INMAC) compared to mammalian THP-1 
cells.

R

R
R

Alkyne-side Azide-side

Alkyne-side

Azide-side

T. brucei  
(BSF) EC50

(µM)

1.8 ± 0.1a

5.7 ± 0.5

7.4 ± 0.4

4.6 ± 0.3

4.5 ± 0.4

5.1 ± 0.3

6.3 ± 0.5

2.4 ± 0.1b

0.0012

T. brucei  
Selectivity

Indexa

25

12

12

5.2

>56

12

>79

>100

47000

THP-1 
EC50
(µM)

44.8 ± 2.9

69.7 ± 10.1

86.7 ± 4.7

23.9 ± 2.6

>250

59.2 ± 6.3

>500

>250

56.7 ± 5.9
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Synthesis of Photo-Affinity Labelling Probes. With lead analogues against our three 

kinetoplastid cell lines, we have initiated investigations into the mode of action of our natural 

product-like inhibitors, particularly the development of suitable photo-affinity labelling probes 

for protein target elucidation. Our SAR studies showed parasite inhibition was sensitive to 

increasing sterics on the core THP scaffolds, particularly in T. cruzi and L. major. Thus, when 

considering established methods30 to incorporate photo-reactive tags we were concerned by the 

additional steric demands and the resultant structural deviation causing a loss of affinity and/or 

selectivity for relevant protein targets. In an effort to minimise such structural changes, 

compound 31 was targeted with the appropriate diazirine and alkyne groups incorporated directly 

onto the inhibitor backbone (Scheme 3).  

Following significant route optimisation it was found that initial deprotection of silyl ether 2831 

with TBAF was preferential prior to the installation of the diazirine unit. With the free alcohol 29 

in hand, installation of the diazirine group could be effected in a one-pot synthesis utilising a 

modified literature procedure.32 Treatment with liquid ammonia in a sealed tube at elevated 

temperature was necessary to form the imine, which after addition of hydroxylamine sulfonic 

acid yielded the intermediate diaziridine. Subsequent oxidation using molecular iodine gave the 

desired diazirine compound 30 in good yield. Mild conditions for installation of the alkyne 

chemical handle were sought due to the temperature sensitivity of the diazirine group. Optimal 

conditions involved sequential Swern oxidation followed by Pinnick oxidation to the carboxylic 

acid.25,33 Alkyne functionality was installed using simple amide coupling with propargyl amine to 

deliver the desired photo-affinity labelling probe 31. The azide-side photo-affinity labelling 

inhibitor 32 was synthesised in an analogous manner.31  
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Scheme 3. Synthesis of photo-affinity labelling probe 31 

 

Reagents and conditions: a) TBAF, THF, 0 °C – rt, 2 h, b) NH3(l), 80 °C, 3 h, then H2NOSO3H, 

18 h, then I2, MeOH, c) (COCl)2, DMSO, Et3N, CH2Cl2, -78 °C – rt, 2 h, d) NaClO2, 

NaH2PO4.2H2O, tBuOH, H2O, 0 °C – rt, 1.5 h, e) Propargylamine, EDCI.HCl, DMAP, CH2Cl2, 

18 h. 

 

As detailed in Table 3, the diazirine containing probes were assessed for trypanocidal activity in 

T. brucei, T. cruzi and L. major. Pleasingly diazirine analogues 30 and 32 maintain good 

inhibition profiles, while 31 and 33 incorporating the alkyne reporter also maintains good levels 

of inhibition in all parasitic cell lines with the exception of T. cruzi which displayed reduced 

levels of inhibition. Photo-affinity probes suitable for interrogation of T. cruzi are currently being 

sought. The minimal structural differences between these compounds and the substituted ether 

inhibitors validate our design principles for the apparent continuation of binding to the target 

protein(s).  
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Table 3. Biological profiles for photo-affinity labelling probes  

 

 

We finally looked to obtain proof of principle that our photo-affinity labelling derivatives were 

capable of selective protein binding through cell localisation studies in T. brucei and L. major. 

Incubation of 31 with L. major was followed by cross-linking with UV irradiation (365 nm) to 

label target protein(s) within the cell. Subsequent cell permeabilisation and ‘click’ reaction with 

commercially available Cy5.5 azide fluorescent tag allowed visualization of inhibitor-protein 

conjugates by fluorescence microscopy (Figure 3a). Co-localisation with MitoTracker 

RedCMXros indicated that inhibitors primarily target the mitochondrion. Similar mitochondrial 

labelling was obtained with procyclic T. brucei cells and compound 33 (Figure 3b). Control 

experiments with cells exposed to compound 2, lacking the diazirine group and therefore unable 
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3 independent experiments performed in triplicate.
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to UV-crosslink to its target(s), showed no protein labeling, suggesting that the labeling with 

Cy5.5 reporter is specific to the photo-affinity probe. Further details of the isolation and 

identification of the mitochondrial target as the F1α/F1β subunits of TbATPase (Complex V) in 

procyclic T. brucei using 31 are detailed elsewhere.34 Ongoing studies are underway to establish 

whether the ATPase is a common target in bloodstream T. brucei, intracellular T. cruzi and 

Leishmania sp. using 31 and details will be reported in due course. 

 

 

Figure 3. a) Co-localisation between MitoTracker Red CMXros (red) stained L. major cells 

labelled with compound 31 and Cy5.5 fluorescent tag (green). DMSO is shown as a negative 

control, b) Co-localisation between MitoTracker Red CMXros (red) stained procyclic T. brucei 

cells labelled with compound 33 and Cy5.5 fluorescent tag (green). Cells exposed to compound 2 

(not capable of photo-crosslinking) shown as a negative control. 
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CONCLUSION 

Building on our initial natural product based T. brucei inhibitors, a novel series of bis-

terahydropyran compounds were synthesised and screened against a panel of trypanosomatids. 

Members of this novel class of compound display broad-spectrum kinetoplastid inhibition with 

minimal toxicity towards several mammalian cell lines. A systematic investigation of alkyl 

substitution on the tetrahydropyran rings revealed the key steric demands across each cell line, 

creating a ‘window of selectivity’ where low micromolar parasite inhibition can be maintained 

and mammalian cells remain viable. Extension into the clinically relevant forms of T. cruzi and 

L. major also showed promising activity and selectivity profiles. We have successfully 

functionalized our chemical probes with dual photo-affinity and reporter capabilities and shown 

that they target the mitochondria in both T. brucei and L. major.34 Identification and analysis of 

the mitochondrial protein target in conjunction with further biological validation will now enable 

further structural simplification and lead optimization in terms of potency and selectivity, with 

the view to the development of natural product-inspired therapies for trypanosomatid associated 

diseases.  
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ABBREVIATIONS 

MS, molecular sieves, TIPS triisopropylsilyl, CSA, (±)-camphorsulfonic acid, DIPEA, N,N-

diisopropylethylamine, DIAD, diisopropyl azodicarboxylate, DPPA, diphenyl phosphoryl azide, 

EDCI.HCl, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, RI, alkyl iodide 

[where R = respective alkyl substituent], spp., species, TBDPS, tert-butyldiphenylsilyl, dr, 

diastereomeric ratio, cat., catalyst, SD, standard deviation, BSF, blood stream form, ND, not 

determined, PBS, phosphate-buffered saline, SDS, sodium dodecyl sulfate, SDS-PAGE, sodium 

dodecyl sulfate polyacrylamide gel electrophoresis, AMA INMAC, amastigote in macrophages.  
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