

University of Dundee

A genome-wide association study implicates that the TTC39C gene is associated with diabetic maculopathy with decreased visual acuity

Meng, Weihua; Chan, Brian; Ezeonwumelu, Chinenyenwa; Hebert, Harry; Campbell, Amy; Soler, Vincent

Published in: **Ophthalmic Genetics**

DOI 10.1080/13816810.2019.1633549

Publication date: 2019

Document Version Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

Meng, W., Chan, B., Ezeonwumelu, C., Hebert, H., Campbell, A., Soler, V., & Palmer, C. (2019). A genome-wide association study implicates that the TTC39C gene is associated with diabetic maculopathy with decreased visual acuity. *Ophthalmic Genetics*, *40*(3), 252-258. https://doi.org/10.1080/13816810.2019.1633549

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain.
 You may freely distribute the URL identifying the publication in the public portal.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

A genome-wide association study implicates that the TTC39C gene is associated with diabetic maculopathy with decreased visual acuity.

Journal:	Ophthalmic Genetics
Manuscript ID	NOPG-2019-0055.R2
Manuscript Type:	Research Report
Date Submitted by the Author:	02-Jun-2019
Complete List of Authors:	Meng, Weihua; University of Dundee Medical Research Institute, Division of Population Health and Genomics Chan, Brian; University of Dundee Medical Research Institute, Division of Population Health and Genomics Ezeonwumelu, Chinenyenwa; University of Dundee Medical Research Institute, Division of Population Health and Genomics Hébert, Harry; University of Dundee Medical Research Institute, Division of Population Health and Genomics Campbell, Amy; University of Dundee Medical Research Institute, Division of Population Health and Genomics Soler, Vincent; Universite de Toulouse, Unité "Différenciation Epithéliale et Autoimmunité Rhumatoïde" Palmer, Colin; University of Dundee Medical Research Institute, Division of Population Health and Genomics
Keywords:	Diabetic Maculopathy, Visual Acuity, Genome-wide Association Study, TTC39C, Genetics
	•

SCHOLARONE[™] Manuscripts

2 3 4	1
5 6 7	
8 9	2
10 11 12	
13 14	3
15 16 17	
18 19	4
20 21 22	5
23 24 25	6
23 26 27	7
28 29 30	8
31 32	9
33 34	10
35 36 37	11
38	12
40 41	13
42 43	14
44 45	15
40 47 48	16
49 50	17
51 52	18
53 54	19
55 56 57	
58	
59 60	

genome-wide association study Α implicates that the TTC39C gene is associated with diabetic maculopathy with decreased visual acuity **Ophthalmic Genetics** Weihua Meng¹ (ORCiD: 0000-0001-5388-8494), Brian W Chan¹ (ORCiD: 0000-0002-4614-3483), Chinenyenwa Ezeonwumelu¹, Harry L Hébert¹, Amy Campbell¹, Vencent Soler², Colin NA Palmer¹ ¹ Division of Population Health and Genomics, Medical Research Institute, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, UK, DD2 4BF; ² Retina unit, Ophthalmology department, Hôpital Pierre Paul Riquet, CHU Toulouse, 31059 Toulouse Cedex 9; Unité "Différenciation Epithéliale et Autoimmunité Rhumatoïde", UMR 1056 Inserm - Université de Toulouse; Corresponding Author: Weihua Meng w.meng@dundee.ac.uk Address: Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK, DD2 4BF. Tel.: +44 1382383419; Fax: +44 1382383802

10 23 **25** 17 26 ¹⁹ 27 **28** 24 29 ²⁶ 30 **32** ³³ 33 ₃₈ 35 40 36 ⁴² 37 47 39 ⁴⁹ 40 **42**

ABSTRACT

Background: Diabetic maculopathy is a form of diabetic retinopathy. The visual acuity of one third of patients with diabetic maculopathy will be affected. The purpose of this study was to identify genetic contributors of diabetic maculopathy with decreased visual acuity based on a genome-wide association approach using a well-defined Scottish diabetic cohort.

Methods: We used linked e-health records of diabetic patients to define our cases and controls. The cases in this study were defined as type 2 diabetic patients who had ever been recorded in the linked e-health records as having maculopathy (observable or referable) in at least one eye and whose visual acuity of the eye was recorded to have decreased between the first and the last visual acuity record of that eye in the longitudinal e-health records. The controls were defined as a type 2 diabetic individual who had never been diagnosed with maculopathy or retinopathy in the linked e-health records. Anyone who had laser photocoagulation treatment was also excluded from the controls. A standard genome-wide association approach was applied.

Results: Overall, we identified 469 cases and 1,374 controls within the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) dataset. We found that the P value of rs9966620 in the TTC39C gene was 4.13x10⁻⁸, which reached genome-wide significance.

Conclusions: We suggest that the *TTC39C* gene is associated with diabetic maculopathy with decreased visual acuity. This needs to be confirmed by further replication studies and functional studies.

KEYWORDS

Diabetic maculopathy; Visual acuity; Genome-wide association study; TTC39C; Genetics;

1		
2 3 4	43	
5 6	44	INTF
7 8	45	Мас
9 10 11	46	regio
12 13	47	visio
14 15	48	Мас
16 17	49	Acco
18 19 20	50	for 3
20 21 22	51	there
23 24	52	num
25 26	53	distu
27 28 29	54	(esp
30 31	55	and
32 33	56	mac
34 35	57	inco
36 37	59	Diah
38 39	50	Diau
40	59	and
42 43	60	retin
44 45	61	class
40 47 48	62	stud
49 50	63	patie
51 52	64	haer
53 54		
55 56		
57		
58 59		
60		

Maculopathy is defined as any pathological condition affecting the macula, a highly sensitive region located centrally on the retina which is responsible for sharp, clear, and accurate colour vision (1). It is commonly associated with old age, eye surgery/trauma and diabetes mellitus (1). Maculopathy commonly causes impaired vison but in severe cases can lead to blindness (2). According to a report by the World Health Organization in 2014, maculopathy was responsible for 3.1% of all visual impairment and 6.6% of all blindness in 2010 (2,3). Between 1990 – 2010, there was an 81% increase in the number of visually impaired people and a 36% increase in numbers of blind people due to maculopathy(2). Maculopathy and its subsequent visual disturbances are linked to many adverse health issues. One such example is falls, which (especially in geriatric patients) can result in fractures, subsequent reduction in quality of life, and an increased number of years spent with disability (4). The economic impact of maculopathy is enormous, with an estimated cost of over £100M in 2010 in England alone, incorporating aspects such as screening, management and home care (5).

58 Diabetic maculopathy (DM) is a type of diabetic retinopathy and it is a major eye complication 59 and visual impairment amongst people with diabetes (2). According to the latest diabetic 60 retinopathy guidelines by The Royal College of Ophthalmologists in the UK, DM can be 61 classified as either focal oedema, diffuse oedema, ischemic, or mixed (6). An epidemiological 62 study of DM in Germany showed a prevalence rate of 15% in type 1 and 23% in type 2 diabetic 63 patients (7). Environmental risk factors of DM include longer duration of diabetes, high glycated 64 haemoglobin (HbA1C) levels, prior high-risk proliferative diabetic retinopathy, presence of

diabetic neuropathy, hypertension, anaemia, elevated serum lipid (triglycerides and cholesterol) levels and raised creatinine levels (7–9).

The genetic mechanism of DM is poorly understood and only limited numbers of genetic studies have been performed, particularly on diabetic macular oedema, a subtype of DM. One of these studies suggested that three polymorphisms in the nitric oxide synthase 3 (NOS3) gene were associated with an increased risk of developing diabetic macular oedema (10). The C-634G polymorphism in the vascular endothelial growth factor A (VEGFA) gene has also been demonstrated to be associated with development of diabetic macular oedema and diabetic retinopathy, in addition to correlating with macular retina thickness in type 2 diabetics (11). More recently, genetic variations in MicroRNA-146a and the vascular endothelial growth factor C (VEGFC) gene were found to be significantly associated with diabetic macular oedema in patients with type 2 diabetes (12,13). Whilst there have been a few genome-wide association studies (GWAS) performed on diabetic retinopathy across various ethnic groups, no GWAS have yet been performed specifically on DM (14–17). Graham PS et al. has performed a GWAS on diabetic macular oedema although no GWAS significance was generated. (18) Given the fact that people are living longer with diabetes and the increasing prevalence of diabetic eye complications including maculopathy, it is necessary to understand the genetic mechanisms of DM as we seek new ways to relieve the burden of morbidity that DM creates worldwide. Therefore, this study seeks to identify genetic variants for DM using a GWAS

- approach in a well-defined diabetes cohort within Scotland.
- 86 MATERIALS AND METHODS
 - 7 Participants

Page 5 of 31

1

Ophthalmic Genetics

To identify genetic risk factors for diabetes and its complications, the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) project was established in 2005. All participants (including diabetic and non-diabetic individuals, mainly Scottish) completed a lifestyle questionnaire, a baseline clinical examination, and provided their biological samples (blood and/or urine). The participants also gave broad consent to allow their health information and biological samples to be used for future scientific research purposes. In addition, the participants gave permission to have their personal information linked to the National Health Service (NHS) medical records anonymously. This information included their personal health status, their general practice clinic visits, outpatient appointments, prescribing history and hospital admissions. Furthermore, their personal information was also anonymously linked with the Scottish Care Information-Diabetes Collaboration (SCI-DC) database, which is another electronic health record system designed to track local diabetic patients and help health professionals to provide better health care in Scotland. Further information about the GoDARTS project is available in the public domain at https://godarts.org. This study has followed the principles of the Declaration of Helsinki. Ethics approval has been granted by Tayside Committee on Medical Research Ethics (REC reference 053/04).

At the time of this study, the GoDARTS project had recruited 9,439 diabetic patients, 6,927 of which were already genotyped by DNA chips. All GoDARTS participants' health information was anonymously linked with their NHS and SCI-DC medical records from June 1996 until June 2011.

108 Definition of cases and controls

²109 The cases in this study were defined as type 2 diabetic patients who had ever been recorded in the linked e-health records as having maculopathy (observable or referable) in at least one eye

³ 111 and whose visual acuity of the eye was recorded to have decreased between the first and the 112 last visual acuity record of that eye in the longitudinal e-health records. The controls were 8 113 defined as a type 2 diabetic individual who had never been diagnosed with maculopathy or 10114 retinopathy in the linked e-health records. Anyone who had laser photocoagulation treatment 11 ¹²115 was also excluded from the controls. A standard genome-wide association approach was 14 15116 applied. The definition of visual acuity is summarized in Supplementary Table S1. The 16 17117 diagnosis of DM and assessment of visual acuity was performed by ophthalmologists within the 18 ¹⁹118 20 annual national retinal screening service offered to diabetic patients. The diagnostic criteria for 21 22¹19 diabetic retinopathy or DM are summarized in the Supplementary Table S2. 23 24120 Genotyping and quality control 25 ²⁶121 27 The GoDARTS project used two types of DNA chips to genotype its participants with diabetes.

²⁸ 29</sub>122 The SNP6.0 (Affymetrix, Santa Clara, CA, USA) chips were used on 3,673 subjects, and the 30 31123 OmniExpress (Illumina, Inc., San Diego, CA, USA) chips were used on 3,254 subjects. The 32 33124 standard genotyping guality-control protocols were established for the above studies (WTCCC2 34 ³⁵125 and SUMMIT) (19,20).

37 ₃₈126 Statistical analysis

40127 The imputation of non-directly genotyped single nucleotide polymorphisms (SNPs) was carried 41 ⁴²128 out using SHAPEIT and IMPUTE2 software, with reference files from the 1000 genome phase I 44 45**129** datasets (21,22). The cut-off value ($r^2 < 0.3$) recommended by IMPUTE2 was applied to remove 46 47130 poorly imputed SNPs.

⁴⁹131 Standard quality control steps were applied during data analysis, such as removal of individuals 50 ⁵¹ 52</sub>132 with more than 5% genotype data missing, SNPs with missing genotype of more than 5%, or 53 54133 SNPs with less than 1% minor allele frequency and SNPs that failed Hardy–Weinberg tests (P <

59 60

39

48

1 2

4 5

6 7

³ 134 4	0.000001). PLINK was used as the primary software for data analysis
⁵ 135	(https://www.cog-genomics.org/plink2) (23). SNPs on sex chromosomes and mitochondria
7 8 136	were also excluded. Detection of population stratification and removal of population outliers
⁹ 10137 11	were performed using the multidimensional scaling (MDS) analysis integrated in PLINK. To
¹² 138 13	indicate the level of stratification, a lambda value was generated by MDS. Samples with pi-hat >
14 15 139	0.125 were removed due to relatedness. P values were calculated by the logistic regression
17 140 18	tests integrated in PLINK with covariates of age, sex, body mass index (BMI), cholesterol,
¹⁹ 141 20	triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and HbA1c (using the
21 22 142 22	latest available health records). A P value of less than 5 x 10^{-8} was considered to be
²⁴ 143	statistically significant.
²⁶ 27144	This study also used many GWAS related software such as FUMA for generating Manhattan
28 29 145 30	plots, LocusZoom for regional visualization, and FUMA for generating a corresponding Q-Q plot
³¹ 146	to evaluate differences between the cases and controls caused by potential confounders (e.g.
³³ 34147	different genotyping laboratories, different DNA extraction methods, etc.) (24,25). SPSS 22
35 36 148	software (IBM Corp., Armonk, NY, USA) was used to compare means of all covariates (except
38 149 39	sex) in cases and controls through the independent sample t-test. Sex difference was
⁴⁰ 150	compared by chi-square test. The whole workflow is shown in Supplementary Figure S1.
42 43 ¹⁵¹	
44 45 152	RESULTS

After excluding type 1 diabetic samples, population outliers, and related samples from 6,927 diabetic patients with genetic information from Affymetrix and Illumina chips, we were left with a study population of 4,852 unrelated type 2 diabetes individuals for further analysis. Among these patients, we identified 1,240 samples with diabetic maculopathy. However, only 469

57 58

56

1

participants had a decreased visual acuity in the corresponding eye and were suitable for inclusion as cases. We also identified 1,374 patients as controls, after excluding patients who had diabetic retinopathy without DM, patients who had previous laser treatment, and patients who were already cases. Therefore, there were 469 cases (males=192, females=277) and 1,374 controls (males=630, females=744) for the further association analysis. The prevalence of diabetic maculopathy with decreased visual acuity in our cohort was 25.4% [469/(469+1,374)]. The means of sex, age, BMI, cholesterol, triglycerides, HDL, LDL, HbA1c were compared between cases and controls. There were statistically significant differences in age, triglycerides, HDL and HbA1c between the cases and controls, but no statistically significant difference in sex, BMI, cholesterol and LDL (Table 1).

Affymetrix SNP6.0 chips contained 704,847 directly genotyped and quality-controlled SNPs and Illumina OmniExpress chips contained 601,394 directly genotyped and quality-controlled SNPs. Overall, 6,717,712 genotyped and imputed SNPs were available for association analysis after standard quality control steps of genotyping and imputation. There was no need to further adjust for population stratification since the lambda value was 1.00, indicating a homogeneous population. We then performed logistic regression tests integrated in PLINK adjusting for sex, age, BMI, cholesterol, triglycerides, HDL, LDL, HbA1c. We found that the SNP rs9966620 in the *TTC39C* gene, reached genome-wide significance (Table 2) with a *P* value of 4.13 x 10⁻⁸ and odds ratio of 1.95 (Confidence interval: 1.53-2.47, Figure 1). This finding was supported by the nearby SNPs (rs7243626 and rs7240470) which also showed encouraging *P* values (*P*= 5.64x10⁻⁸ and 8.05x10⁻⁷, respectively). We calculated the LD among these SNPs using our dataset and these SNPs are highly correlated (R-square>0.8) (Supplementary Table S3). The regional plot around the top SNPs is shown in the Figure 2. The Q-Q plot of the association

2			
3	1	8	Λ
4	· '	0	0
5		~	
5	1	8	1
7			
8	1	8	2
9			
1	Ю	o	2
1	°1 1	0	3
1	2.	_	
י 1	<u>,</u> 1	8	4
י 1	ך ע		
י 1	- -1	8	5
1	ہر ح	Č	U U
1	0 74	~	~
1	/]	8	6
1	8		
1	21	8	7
2	0		
2	1	Q	Q
2	21	0	0
2	3	_	_
2	41	8	9
2	5		
2	61	9	0
2	7'	Č	Ŭ
2	8	~	
2	۶ĵ	9	1
3	0		
3	1 1	9	2
3	2		
3	31	a	З
3	4	9	5
3	5.	_	
3	₆ 1	9	4
ຸ	7		
ຸ	ู้ 2	9	5
ר 2	0. 0	Č	Ū
د م	ע 104	~	c
+ ^	۷I 1	9	O
+ ^	י ר		
+ ^	<u>_</u> 1	9	7
+ ^	د ۸		
4	4 -1	q	8
4	5	0	0
4	6	~	~
4	/1	9	9
4	8		
4	°2	0	0
5	0		
5	1	ሶ	1
5	Z	U	I
5	3		_
5	42	0	2
5	5		
5	6		
5	7		
5	8		
5	9		

60

80 results is shown in the Supplementary Figure S2.

We have moderate power for this GWAS study. Calculated by CaTS, we have 80% power based on 469 cases and 1,374 controls, assuming a minor disease allele frequency of 0.25, a genotypic relative risk of 1.49, a prevalence of diabetic maculopathy with decreased visual acuity in the diabetic population of 25%, and significance level of 5 x 10⁻⁸ (26).

We also ran a GWAS on the phenotype of DM (regardless of visual acuity status, 1,240 cases) against the controls used in this study. The result did not show GWAS significance (Supplementary Table S4).

89 **DISCUSSION**

In Scotland, patients with diabetes are invited to attend a free annual retinal screening service. This screening service aims to identify diabetic eye complications at an early stage to prevent or delay subsequent visual loss. During the screening, if an eye falls within the diagnosis criteria of diabetic retinopathy or DM (Supplementary Table S2), then the relevant information will be recorded in the e-health linked records. The status of macula is then categorised and recorded as either: no maculopathy, observable maculopathy, or referable maculopathy. Diabetic retinopathy is further classified and recorded based on the Scottish diabetic retinopathy grading scheme (27). Because of the lack of more detailed classification info, it was not possible to phenotype the subtypes of DM (as outlined by The Royal College of Ophthalmologists guidelines) when using population e-health linked records such as GoDARTS (6), Decreased visual acuity is a well-recognised symptom associated with maculopathy. 22% of diabetic patients with decreased visual acuity have maculopathy, compared to 1% in diabetic patients with normal visual acuity (28). It is also estimated that 6 months after laser treatment, the visual

acuity of 34% of DM patients became worse, 22% became better, and 44% remained the same (29). These statistics were similar for DM patients who did not undergo laser treatment. In this study, 37.8% of patients (469/1240) who had DM also had a decreased visual acuity, which is only slightly higher than the above post-laser treatment statistics, however this could be attributed by the fact that we had a longer follow-up period. A national UK audit also found that a poor baseline visual acuity was associated with a poorer visual prognosis in DM patients (30). In this study, we defined the cases as DM with decreased visual acuity based on the hypothesis that these patients might share common genetic components. We tried to identify the genetic factors which contribute to decreased visual acuity among DM patients. Though this narrow definition will reduce case numbers and the study power, it allows us to generate a more homogeneous case population. A similar approach has been applied when we were defining diabetic neuropathic pain (the cases should not only have evidence of pain provided by prescription records, but also positive evidence of neuropathy provided by a medical test) (31). We also acknowledge that 'decreased visual acuity' in the cases was defined as any visual loss, including both major and minor visual loss, which may be an additional confounding factor. Because there is no literature which indicates if diabetic retinopathy and DM share the same genetic components, we also excluded individuals with diabetic retinopathy with and without DM from the controls to maintain a homogeneous population as we wanted to exclude genetic influence from diabetic retinopathy. The duration of diabetes is an important risk factor for many diabetic complications. However, the GoDARTS dataset does not include a high-quality record of this information. Hence, duration of diabetes therefore could not be adjusted for in our analysis. We also noticed that there were statistical differences of some covariates between cases and controls. For example, the mean HbA1c value was higher in cases than controls,

Ophthalmic Genetics

which suggest that the controls may have had better controlled diabetes and/or a longer duration of diabetes (32).

We have identified the SNP rs9966620, which has achieved GWAS significance (P=4.13 x 10⁻⁸, Odds ratio=1.95). This was supported by 2 nearby SNPs which showed encouraging *P* values. The 3 SNPs are located in the intronic areas with no clear functional roles. The SNP cluster was in the tetratricopeptide repeat domain 39C gene (TTC39C), which is a protein-coding gene located on the long arm of chromosome 18. The TTC39C gene is expressed in the eyes, and encodes a protein named as TTC39C (33). However, the physiological functions of both the gene and the protein are not known. The protein contains a relatively well-characterized structural motif called the tetratricopeptide repeat (TPR). The TPR is known to be involved in cell cycle regulation, mediating protein-protein interactions, assisting in protein folding and translocation, assembly of multi-protein complexes. The TPR structure also shows flexibility in the mediation of biological activities (34,35). In particular, it has been proposed that this structure plays a role in anaphase: the stage of mitosis when replicated chromosomes are split and the daughter chromatids are moved to opposite poles of the cell (36). Anaphase has been suggested to play an essential role in regulating cell fate of the vertebrate retina (37). Some studies have suggested that central macular thickness, a highly heritable trait with no specific gene identified, is associated with visual acuity (38,39). However, this parameter was not recorded our e-health linked records and so it is still unknown if the TTC39C gene is linked with central macular thickness. It has been suggested that the TTC39C protein interacts with the protein from the heat shock protein family B (small) member 1 (HSPB1) gene (40). HSPB1 is reported to be upregulated in the rat retina upon optic nerve injury (41). The TTC39C protein has 2 paralogs: TTC39A and TTC39B, although their functions are not clear. Next to TTC39C

³ 249 are the laminin subunit alpha 3 gene (LAMA3) and the calcium binding tyrosine phosphorylation م 6 250 regulated gene (CABYR). Of note, the protein of LAMA3 is laminin subunit alpha-3 and laminins 8 251 are essential for formation and function of the basement membrane and have additional 10252 functions in regulating cell migration and mechanical signal transduction, which suggests it is a $^{12}_{13}$ 253 possible candidate gene for diabetic maculopathy (42).

14 15**254** We also investigated the top SNPs suggested by other candidate gene studies for diabetic 17255 macular oedema. However, none reached statistically significant P-values: rs2070744 18 ¹⁹256 (P=0.286, NOS3), rs429358 (P=0.59, APOE), rs7412 (P= 0.35, APOE), rs2010963 (P=0.30, ²¹ 22**257** VEGFA), rs17697515 (P=0.47, VEGFC). Rs2910164 (MicroRNA-146a) was not present in our 24258 datasets. 25

²⁶259 ₂₇ There are limitations in using population level e-health records, especially in differentiating 28 29**260** age-related maculopathy from diabetic maculopathy as this information (as well as lens opacity) 30 31261 is not always included. However, the prevalence of age-related maculopathy in a diabetic 32 33262 population is typically low, indicating that this limitation may have had a lessened effect on the ³⁵ 36²63 study (43). As visual deterioration is associated with foveal oedema, further investigation in a 37 38264 dataset with Optical Coherence Tomography (OCT) data characterising foveal oedema would 39 40265 be valuable to further investigate the findings. A better phenotyping approach of DM for the 41 ⁴²266 purposes of research is also required.

44 45**2**67 In conclusion, we propose that the TTC39C gene is associated with DM with decreased visual 47268 acuity in a Scottish diabetic cohort using a GWAS approach. Replication studies and functional ⁴⁹269 studies will help to confirm its role in DM.

54271 ACKNOWLEDGEMENTS

1 2

4 5

7

9

11

16

23

34

46

48

⁵¹ 52<mark>270</mark> 53

60

1:

Page 13 of 31

1 2		
³ 272 4	The	authors of this manuscript would like to thank all the participants recruited in the GoDARTS
⁵ 273	proj	ect. We are also grateful for the support from the Health Informatics Centre in the School of
7 8 274	Med	licine, University of Dundee, for their help in data linkage.
¹⁰ 275		
¹² 276	DIS	CLOSURE
14 15 277	All a	authors declare no financial interests or benefit.
16 1 7278		
18 19 279 20	FUN	IDING
²¹ 22 <mark>280</mark>	1.	This study was supported by the Tenovus Scotland under Grant 2015-T15/40.
23 2 4281	2.	The Affymetrix SNP6.0 chips were funded by the 'Wellcome Trust Case Control
²⁵ ²⁶ 282 27		Consortium 2' (WTCCC2) project.
²⁸ 29 283	3.	The Illumina OmniExpress chips were funded by the 'Surrogate markers for Micro- and
30 31 284		Macro-vascular hard endpoints for Innovative diabetes Tools' (SUMMIT) project.
32 3 3285 34	4.	The GoDARTS project is jointly funded by DIABETES UK and The Wellcome Trust.
³⁵ 36 ² 86		
37 38 287	REF	ERENCES
39 40 288 41	1.	Cummings TJ. Ophthalmic Pathology. Ophthalmic Pathology. New York, NY: Springer
⁴² 289 43		New York; 2013. 113–132 p.
44 45 2 90	2.	Bourne RRA, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, Jonas JB, Keeffe
46 47 291 48		J, Leasher J, Naidoo K, et al. Causes of vision loss worldwide, 1990-2010: a systematic
⁴⁹ 292 50		analysis. Lancet Glob Heal. 2013 Dec;1(6):e339-49.
⁵¹ 52 293		doi:10.1016/S2214-109X(13)70113-X. Cited in Pub Med; PMID:25104599.
53 5 4294 55 56	3.	Jonas JB, Bourne RRA, White RA, Flaxman SR, Keeffe J, Leasher J, Naidoo K,
57 58 59		1:
60		UKL: http://mc.manuscriptcentral.com/nopg E-mail: ophthalmicgenetics@yahoo.com

1 2		
- ³ 295 4		Pesudovs K, Price H, Wong TY, et al. Visual impairment and blindness due to macular
⁵ 296		diseases globally: a systematic review and meta-analysis. Am J Ophthalmol. 2014
7 8 297 9		Oct;158(4):808–15. doi:10.1016/j.ajo.2014.06.012. Cited in Pub Med; PMID:24973605.
¹⁰ 298	4.	Köberlein J, Beifus K, Schaffert C, Finger RP. The economic burden of visual impairment
¹² 299		and blindness: a systematic review. BMJ Open. 2013 Nov 7;3(11):e003471.
14 15 300 16		doi:10.1136/bmjopen-2013-003471. Cited in Pub Med; PMID:24202057.
17 301 18	5.	Minassian DC, Owens DR, Reidy A. Prevalence of diabetic macular oedema and related
¹⁹ 302 20		health and social care resource use in England. Br J Ophthalmol. 2012 Mar;96(3):345–9.
²¹ 22 303		doi:10.1136/bjo.2011.204040. Cited in Pub Med; PMID:21602478.
23 24 304 25	6.	Ghanchi F, Diabetic Retinopathy Guidelines Working Group. The Royal College of
²⁶ 305 27		Ophthalmologists' clinical guidelines for diabetic retinopathy: a summary. Eye (Lond).
²⁸ 29306		2013 Feb 11;27(2):285-7. doi:10.1038/eye.2012.287. Cited in Pub Med;
30 31 307		PMID:23306724.
32 33308 34	7.	Zander E. Maculopathy in patients with diabetes mellitus type 1 and type 2: associations
³⁵ 36309		with risk factors. Br J Ophthalmol. 2000 Aug 1;84(8):871-6. doi:10.1136/bjo.84.8.871.
³⁷ 38 ³ 10		Cited in Pub Med; PMID:10906094.
39 40311	8.	Leese G. Longitudinal study examining the risk factors for proliferative retinopathy and
⁴² 312		maculopathy in type-I diabetes: The Royal College of Physicians of Edinburgh Diabetes
44 45313		Register Group. Eye (Lond). 2004 Aug 30;18(8):814-20. doi:10.1038/sj.eye.6701337.
46 47 314 48		Cited in Pub Med; PMID:14752505.

- ⁴⁹315 9. Davis MD, Fisher MR, Gangnon RE, Barton F, Aiello LM, Chew EY, Ferris FL, Knatterud GL. Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss:
 ⁵³54317 Early Treatment Diabetic Retinopathy Study Report #18. Invest Ophthalmol Vis Sci. 1998

Page 15 of 31

59

60

1 2		
³ / ₄ 318		Feb;39(2):233–52. Cited in Pub Med; PMID:9477980.
⁵ ₆ 319	10.	Awata T, Neda T, Iizuka H, Kurihara S, Ohkubo T, Takata N, Osaki M, Watanabe M,
7 8 320		Nakashima Y, Sawa T, et al. Endothelial nitric oxide synthase gene is associated with
¹ 0321		diabetic macular edema in type 2 diabetes. Diabetes Care. 2004 Sep;27(9):2184-90.
¹² 13 322		Cited in Pub Med; PMID:15333482.
14 15 323	11.	Awata T, Kurihara S, Takata N, Neda T, Iizuka H, Ohkubo T, Osaki M, Watanabe M,
16 1 7324 18		Nakashima Y, Inukai K, et al. Functional VEGF C-634G polymorphism is associated with
¹⁹ 325		development of diabetic macular edema and correlated with macular retinal thickness in
²¹ 22 326		type 2 diabetes. Biochem Biophys Res Commun. 2005 Aug 5;333(3):679-85.
23 2 4327		doi:10.1016/j.bbrc.2005.05.167. Cited in Pub Med; PMID:15963467.
²⁵ 26 328 27	12.	Kaidonis G, Burdon KP, Gillies MC, Abhary S, Essex RW, Chang JH, Pal B, Pefkianaki
²⁸ 29329		M, Daniell M, Lake S, et al. Common Sequence Variation in the VEGFC Gene Is
30 31 330		Associated with Diabetic Retinopathy and Diabetic Macular Edema. Ophthalmology.
32 3 3 331		2015 Sep;122(9):1828-36. doi:10.1016/j.ophtha.2015.05.004. Cited in Pub Med;
³⁵ 36332		PMID:26072347.
³⁷ 38 333	13.	Kaidonis G, Gillies MC, Abhary S, Liu E, Essex RW, Chang JH, Pal B, Sivaprasad S,
39 4 0 834		Pefkianaki M, Daniell M, et al. A single-nucleotide polymorphism in the MicroRNA-146a
$^{42}_{43}335$		gene is associated with diabetic nephropathy and sight-threatening diabetic retinopathy in
44 45336		Caucasian patients. Acta Diabetol. 2016 Aug 21;53(4):643–50.
46 47 337		doi:10.1007/s00592-016-0850-4. Cited in Pub Med; PMID:26997512.
48 49 338	14.	Meng W, Hebert H, Palmer C. A genome-wide association study suggests that the
⁵¹ 52 339		NADPH Oxidase 4 (NOX4) gene is associated with severe diabetic retinopathy in a
53 54 340		Scottish diabetic population. Acta Ophthalmol. 2017 Sep;95.
55 56 57		
57 58		

1:

2 ³ 341

1

4

16

doi:10.1111/j.1755-3768.2017.02182.

- 5 ح 6 342 Meng W, Shah KP, Pollack S, Toppila I, Hebert HL, McCarthy MI, Groop L, Ahlgvist E, 15. 7 8 343 Lyssenko V, Agardh E, et al. A genome-wide association study suggests new evidence 9 10344 for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy 11 ¹² 13</sub>345 in type 2 diabetes. Acta Ophthalmol. 2018 Nov;96(7):e811-9. doi:10.1111/aos.13769. 14 15346 Cited in Pub Med; PMID:30178632.
- Pollack S, Igo RP, Jensen RA, Christiansen M, Li X, Cheng C-Y, Ng MCY, Smith A V., Rossin EJ, Segrè A V., et al. Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control. Diabetes. 2019 Feb;68(2):441–56. doi:10.2337/db18-0567. Cited in Pub Med; PMID:30487263.
- Awata T, Yamashita H, Kurihara S, Morita-Ohkubo T, Miyashita Y, Katayama S, Mori K, Yoneya S, Kohda M, Okazaki Y, et al. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA. Maeda S, editor. PLoS One. 2014 Nov 3;9(11):e111715.
 doi:10.1371/journal.pone.0111715. Cited in Pub Med; PMID:25364816.
- 40857 18. Graham PS, Kaidonis G, Abhary S, Gillies MC, Daniell M, Essex RW, Chang JH, Lake
 42358 SR, Pal B, Jenkins AJ, et al. Genome-wide association studies for diabetic macular
 444
 45359 edema and proliferative diabetic retinopathy. BMC Med Genet. 2018 Dec 8;19(1):71.
 46
 47360 doi:10.1186/s12881-018-0587-8. Cited in Pub Med; PMID:29739359.
- ⁴⁹361 19. GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group, Wellcome Trust Case
 ⁵¹52362 Control Consortium 2, Zhou K, Bellenguez C, Spencer CCA, Bennett AJ, Coleman RL,
 ⁵³5463 Tavendale R, Hawley SA, Donnelly LA, et al. Common variants near ATM are associated
- 58 59 60

55 56 57

39

48

Page 17 of 31

58 59

60

Ophthalmic Genetics

1 2		
³ 4 364		with glycemic response to metformin in type 2 diabetes. Nat Genet. 2011 Feb
⁵ 365		26;43(2):117–20. doi:10.1038/ng.735. Cited in Pub Med; PMID:21186350.
7 8 366	20.	Fagerholm E, Ahlqvist E, Forsblom C, Sandholm N, Syreeni A, Parkkonen M, McKnight
¹ 0367		AJ, Tarnow L, Maxwell AP, Parving H-H, et al. SNP in the genome-wide association study
¹² 368		hotspot on chromosome 9p21 confers susceptibility to diabetic nephropathy in type 1
14 15 369		diabetes. Diabetologia. 2012 Sep;55(9):2386–93. doi:10.1007/s00125-012-2587-0. Cited
1 7370 18		in Pub Med; PMID:22643932.
¹⁹ 371 20	21.	Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method
²¹ 22 372		for the next generation of genome-wide association studies. Schork NJ, editor. PLoS
23 2 4373 25		Genet. 2009 Jun 19;5(6):e1000529. doi:10.1371/journal.pgen.1000529. Cited in Pub
²⁶ 374 27		Med; PMID:19543373.
²⁸ 29375	22.	Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of
30 31 376 32		genomes. Nat Methods. 2011 Dec 4;9(2):179-81. doi:10.1038/nmeth.1785. Cited in Pub
33377 34		Med; PMID:22138821.
³⁵ 378 36	23.	Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P,
37 38 379		de Bakker PIW, Daly MJ, et al. PLINK: a tool set for whole-genome association and
40 380 41		population-based linkage analyses. Am J Hum Genet. 2007 Sep;81(3):559-75.
⁴² 381 43		doi:10.1086/519795. Cited in Pub Med; PMID:17701901.
44 45382	24.	Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and
46 4 7383 48		annotation of genetic associations with FUMA. Nat Commun. 2017 Dec;8(1):1826.
⁴⁹ 384 50		doi:10.1038/s41467-017-01261-5. Cited in Pub Med; PMID:29184056.
⁵¹ 52 385	25.	Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M,
53 54 386 55		Abecasis GR, Willer CJ. LocusZoom: regional visualization of genome-wide association
56 57		

1 2		
³ 387 4		scan results. Bioinformatics. 2010 Sep 15;26(18):2336–7.
⁵ 388		doi:10.1093/bioinformatics/btq419. Cited in Pub Med; PMID:20634204.
7 8 389	26.	Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than
⁹ 10390		replication-based analysis for two-stage genome-wide association studies. Nat Genet.
¹² 13391		2006 Feb 15;38(2):209–13. doi:10.1038/ng1706. Cited in Pub Med; PMID:16415888.
14 15 392	27.	Liu Y, Wang M, Morris AD, Doney ASF, Leese GP, Pearson ER, Palmer CNA. Glycemic
16 1 7393		exposure and blood pressure influencing progression and remission of diabetic
¹⁹ 394		retinopathy: a longitudinal cohort study in GoDARTS. Diabetes Care. 2013 Dec
²¹ 22 ³⁹⁵		1;36(12):3979–84. doi:10.2337/dc12-2392. Cited in Pub Med; PMID:24170761.
23 2 4396	28.	Corcoran JS, Moore K, Agarawal OP, Edgar DF, Yudkin JS. Visual acuity screening for
²⁵ ²⁶ 397		diabetic maculopathy. Pract Diabetes Int. 1985 Nov;2(6):30–2.
²⁸ 29398		doi:10.1002/pdi.1960020610.
30 31 399	29.	Ang GS, Vusirikala B, Mukherji S, Ram ARR. Visual acuity and diabetic maculopathy.
32 33400		Ann Ophthalmol (Skokie). 2006;38(4):305–10. Cited in Pub Med; PMID:17726217.
³⁵ 36401	30.	Lee CM, Olk RJ. Modified grid laser photocoagulation for diffuse diabetic macular edema.
37 38 402		Long-term visual results. Ophthalmology. 1991 Oct;98(10):1594–602. Cited in Pub Med;
39 40 403		PMID:1961650.
⁴¹ ⁴² 404	31.	Meng W, Deshmukh HA, van Zuydam NR, Liu Y, Donnelly LA, Zhou K, Wellcome Trust
44 45405		Case Control Consortium 2 (WTCCC2), Surrogate Markers for Micro- and
46 4 7406		Macro-Vascular Hard Endpoints for Innovative Diabetes Tools (SUMMIT) Study Group,
48 49 <mark>407</mark>		Morris AD, Colhoun HM, et al. A genome-wide association study suggests an association
50 51 52408		of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur J Pain. 2015 Mar;19(3):392–9.
53 54 409		doi:10.1002/ejp.560. Cited in Pub Med; PMID:24974787.
55 56		

Page 19 of 31

Ophthalmic Genetics

1 2		
³ 410	32.	Verma M, Paneri S, Badi P, Raman PG. Effect of increasing duration of diabetes mellitus
⁵ 6 411		type 2 on glycated hemoglobin and insulin sensitivity. Indian J Clin Biochem. 2006
7 8 412		Mar;21(1):142–6. doi:10.1007/BF02913083. Cited in Pub Med; PMID:23105586.
¹ 0413	33.	National Center for Biotechnology Information. EST Profile - Hs.128576 [Internet]. 2019
¹² 414 13		[cited 2019 Apr 8]. Available from:
14 15 415		https://www.ncbi.nlm.nih.gov/UniGene/ESTProfileViewer.cgi?uglist=Hs.128576.
¹⁶ 17416	34.	Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target
¹⁹ 417 20		protein recognition and function. Cell Stress Chaperones. 2011 Jul 9;16(4):353-67.
²¹ 22 <mark>418</mark>		doi:10.1007/s12192-010-0248-0. Cited in Pub Med; PMID:21153002.
23 24 419	35.	D'Andrea LD, Regan L. TPR proteins: the versatile helix. Trends Biochem Sci. 2003
²⁵ ²⁶ 420 27		Dec;28(12):655–62. doi:10.1016/j.tibs.2003.10.007. Cited in Pub Med; PMID:14659697.
²⁸ 29421	36.	Blatch GL, Lässle M. The tetratricopeptide repeat: a structural motif mediating
30 31 422		protein-protein interactions. Bioessays. 1999 Nov 11;21(11):932–9.
32 33423 34		doi:10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N. Cited in Pub
³⁵ 424		Med; PMID:10517866.
³⁷ 38 425	37.	Tibber MS, Kralj-Hans I, Savage J, Mobbs PG, Jeffery G. The orientation and dynamics
39 40 426		of cell division within the plane of the developing vertebrate retina. Eur J Neurosci. 2004
⁴¹ 42 43		Feb;19(3):497–504. doi:10.1111/j.1460-9568.2004.03172.x. Cited in Pub Med;
44 45 428		PMID:14984400.
46 47 429	38.	Liew SHM, Gilbert CE, Spector TD, Marshall J, Hammond CJ. The role of heredity in
48 49 43 430		determining central retinal thickness. Br J Ophthalmol. 2007 Sep 1;91(9):1143-7.
51 52 <mark>431</mark>		doi:10.1136/bjo.2007.114215. Cited in Pub Med; PMID:17360735.
53 54 432 55 56	39.	Diabetic Retinopathy Clinical Research Network, Browning DJ, Glassman AR, Aiello LP,
57 58 59 60		URL: http://mc.manuscriptcentral.com/nopg E-mail: ophthalmicgenetics@yahoo.com

1 2		
³ 433		Beck RW, Brown DM, Fong DS, Bressler NM, Danis RP, Kinyoun JL, et al. Relationship
⁵ 434		between optical coherence tomography-measured central retinal thickness and visual
7 8 435		acuity in diabetic macular edema. Ophthalmology. 2007 Mar;114(3):525-36.
¹⁰ 436		doi:10.1016/j.ophtha.2006.06.052. Cited in Pub Med; PMID:17123615.
¹² 437 13	40.	Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH,
14 1 5 438		Chavali G, Chen C, Del-Toro N, et al. The MIntAct projectIntAct as a common curation
17 439 18		platform for 11 molecular interaction databases. Nucleic Acids Res. 2014
¹⁹ 440 20		Jan;42(Database issue):D358-63. doi:10.1093/nar/gkt1115. Cited in Pub Med;
21 22 441		PMID:24234451.
23 24 442 25	41.	Schmidt T, Fischer D, Andreadaki A, Bartelt-Kirbach B, Golenhofen N. Induction and
²⁶ 443 27		phosphorylation of the small heat shock proteins HspB1/Hsp25 and HspB5/ α B-crystallin
28 29444		in the rat retina upon optic nerve injury. Cell Stress Chaperones. 2016 Jan 16;21(1):167-
30 31 445		78. doi:10.1007/s12192-015-0650-8. Cited in Pub Med; PMID:26475352.
³³ 446 ³⁴	42.	National Center for Biotechnology Information. LAMA3 laminin subunit alpha 3 [Homo
³⁵ 447 36		sapiens (human)] - Gene - NCBI [Internet]. 2019 [cited 2019 Apr 8]. Available from:
37 38 448		https://www.ncbi.nlm.nih.gov/gene/3909.
40 449 41	43.	Borrone R, Saravia M, Bar D. Age related maculopathy and diabetes. Eur J Ophthalmol.
⁴² 450 43		18(6):949–54. Cited in Pub Med; PMID:18988167.
44 45 4 51		
46 47		
40 49		
50 51		
52 53		
54 55		
56 57		
58		_
59 60		URL: http://mc.manuscriptcentral.com/nopg E-mail: ophthalmicgenetics@yahoo.com 2°

1 ว	
² 4 4 4 52	TABLES
⁵ 453	Table 1
7 8 454	Table 2
¹ 0455 11	Supplementary Table S1
¹² 456 13	Supplementary Table S2
14 15 457	Supplementary Table S3
17 458 18	Supplementary Table S4
¹⁹ 459 20	
²¹ 22460	FIGURES
23 24461 25	Figure 1
²⁶ 462 27	Figure 2
²⁸ 29463	Supplementary Figure S1
30 31 464 32	Supplementary Figure S2
³³ 465 34	
³⁵ 466	FIGURE CAPTIONS
37 38 467 39	• Figure 1. Manhattan plot of the GWAS on diabetic maculopathy with decreased visual
4 0 468 41	acuity (469 cases and 1,374 controls).
⁴² 43 469	 Figure 2. Regional plot around top SNPs of the TTC39C gene area.
44 45 470 46	 Supplementary Figure S1. Workflow of the GWAS on diabetic maculopathy with
47471 48	decreased visual acuity in GoDARTS.
49 50 <mark>472</mark>	 Supplementary Figure S2. Q-Q plot compared expected and observed –Log10(P)
51 52 473	values.
53 54 55	
56 57	
58 59 60	2 URL: http://mc.manuscriptcentral.com/nopg E-mail: ophthalmicgenetics@yahoo.com

3
4
5
6
7
/ 0
ð
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58

1 2

Table 1. Covariates information between cases and controls.

	Cases (mean+SD)	Controls (mean+SD)	Р
Age , y	67.20 <u>+</u> 9.50	65.27 <u>+</u> 10.39	0.0003
Sex, n	192/277 (m/f)	630/744 (m/f)	0.068
BMI , kg/m ²	31.25 <u>+</u> 4.99	31.77 <u>+</u> 5.84	0.082
Cholesterol, mmol/L	4.36 <u>+</u> 0.85	4.40 <u>+</u> 0.88	0.372
Triglycerides,	2.07 <u>+</u> 1.10	2.29 <u>+</u> 1.30	0.002
mmol/L			
HDL, mmol/L	1.37 <u>+</u> 0.36	1.33 <u>+</u> 0.34	0.018
LDL, mmol/L	2.09 <u>+</u> 0.67	2.10 <u>+</u> 0.72	0.870
HbA1c, %	8.00 <u>+</u> 1.46	7.27 <u>+</u> 1.20	< 0.0001
Cases= 469			
Controls= 1,374			
SD: standard deviation			
BMI: body mass index			
HDL: high-density lip	oprotein		
LDL: low-density lipo	protein		
	-		

Table 2. SNPs of the GWAS on diabetic maculopathy with decreased visual acuity (p<1.0x10⁻⁶).

SNPID	Chromosome position (GRCh37)	Gene	Minor Allele	MAF in cases: controls	<i>P</i> value (no adjustment)	P value	OR <u>+</u> SE
rs9966620	18:21680735	TTC39C	A	16.33%:9.64%	7.23x10 ⁻⁸	4.13x10 ⁻⁸	1.95+0.12
rs7243626	18:21679950	TTC39C	Т	16.17%:9.51%	8.84x10 ⁻⁸	5.64x10 ⁻⁸	1.95+0.12
rs7240470	18:21681516	ТТС39С	Т	16.86%:10.33%	3.20x10 ⁻⁷	8.05x10 ⁻⁷	1.80+0.12
rs11706588	3:126448513	CHCHD6	C	20.98%:13.05%	6.99x10 ⁻⁷	4.43x10 ⁻⁷	1.89+0.13
rs11718070	3:126448560	CHCHD6	Т	20.98%:13.09%	8.01x10 ⁻⁷	5.13x10 ⁻⁷	1.88+0.13
SNP: single nucleotide polymorphism MAF: minor allele frequency OR: odds ratio							
SE: standard error							
TTC39C: tetratricopeptide repeat domain 39C							
CHCHD6: coiled-coil-helix-coiled-coil-helix domain containing 6							
rs11706588 and rs11718080 are included in the table for readers' interest although the <i>P</i> values of these 2 SNPs did not a significance.							

OR: odds ratio

rs11706588 and rs11718080 are included in the table for readers' interest although the P values of these 2 SNPs did not reach GWAS significance.

Listed covariates in the Table 1 were used for adjustments.

2	
5	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
1.0	
14	
15	
16	
17	
18	
10	
עו 20	
20	
21	
22	
23	
21	
24 25	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
3/	
25	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
ΔΔ	
15	
40	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	

1 2

Table S1.	The definition	of visual	acuity in	GoDARTS.
		01 100000		000111101

Visual acuity coding	Description
1	6/4
2	6/5
3	6/6
4	6/9
5	6/12
6	6/18
7	6/24
8	6/36
9	6/60
10	3/60
11	Counting fingers
12	Hand movements
13	Perception of Light
14	No perception of Light

Visual acuity of 6/12 means a testing eye can see at six metres while an eye with normal vision can see at 12 metres away.

eliez Oni

Individuals with coding 11 to 14 were removed from study.

Maculopathy	Description	Outcome
M0	No features ≤ 2 disc diameters from the	Rescreen in 12 months
(No maculopathy)	centre of the fovea, enough to classify it	
	as M1 or M2 from definitions below	
M1 (Observable)	Any hard exudates within a radius of > 1	Rescreen in 6 months or
	but ≤ 2 disc diameters of the fovea centre	refer to ophthalmology if no
		feasible
M2 (Referable)	Any hard exudates or blot haemorrhages	Refer to ophthalmology
	within a distance of ≤ 1 disc diameter of	(these patients will not
	the fovea centre.	definitely receive immediate
		laser treatment and may be
		kept under surveillance
		· ·
	RETINOPATHY GRADING	
Retinopathy	Description	Outcome
RO (No visible	No diabetic retinopathy anywhere	Rescreen in 12 month
retinopathy)		
R1 (Mild)	Background Diabetic Retinopathy (BDR) –	Rescreen in 12 month
	Mild	
	Presence of any one of these:	
	Dot haemorrhages, micro-aneurysms,	
	hard exudates, cotton-wool spots, blot	
	haemorrhages, flames shaped	
	haemorrhages	
B2 (Observable	Background Diabetic Retinopathy (BDR) –	Rescreen in 6 month
Background)	Observable	
	Four(4) or more blot haemorrhages in one	
	hemi-field*	
R3 (Referable	Background Diabetic Retinopathy (BDR) -	Refer to ophthalmology:
Background)	Referable	
	Presence of any of the following:	
	• Four(4) or more blot	
	haemorrhages in both superior	
	and inferior hemifields	
	Venous beading	
	• IrMA	
R4 (Proliferative)	Proliferative Diabetic Retinonathy (PDR)	Refer to onbthalmology:
na (Fromerative)	Presence of active new vessels or Vitreous	Patients are likely to receive
	haemorrhage	laser treatment or other
	hacmonnage	intervention
R6 (Inadequate)	Not adequately visualized: Retina not	Technical failure:
no (madequate)	sufficiently visible for assessment	Patients for alternative
		screening examination
IrNAA Intrarational NA	icrovascular Abnormality	SUCCIMING EXAMINIATION.
* The hemifields for	nerior and Inferior, are demanded by a line th	arough the force centre and
ontic disc	perior and interior, are demarcated by a line ti	nough the loved centre and
υμπε αινε.		

Table S2. Maculopathy and retinopathy grades for the diabetic retinal screen.

Table S	53. Linkage	disequilibrium	among 3	SNPs .
I GOIC N	or Linnage	ansequinisi rum	amonge	

SNPID	rs7243626	rs9966620	rs7240470
rs7243626	1	1	0.84
rs9966620	1	1	0.85
rs7240470	0.84	0.85	1

SNP: single nucleotide polymorphism

The values in the table indicate R-square values.

Table S4. The top SNPs for the GWAS on the phenotypes of DM (regardless of visual acuity, 1,240 cases) against the controls (1,374 samples).

Chromosome	SNP	Positions	Test	NMISS	OR	SE	L95	U95	Р
1	rs3818329	192627760	ADD	2324	1.865	0.1202	1.474	2.361	2.12x10 ⁻⁷
3	rs12629668	147209179	ADD	2061	1.397	0.06611	1.228	1.591	4.15x10 ⁻⁷
6	rs117482282	165511471	ADD	2361	3.079	0.2224	1.991	4.762	4.27x10 ⁻⁷
13	rs1149833	50750876	ADD	2557	0.747	0.05813	0.6666	0.8372	5.23x10 ⁻⁷
2	rs1406230	29583321	ADD	1943	0.6923	0.07334	0.5996	0.7994	5.35x10 ⁻⁷
1	rs2296022	192627124	ADD	2324	1.799	0.1183	1.427	2.269	6.92x10 ⁻⁷
16	rs35498131	9120809	ADD	1493	0.5596	0.117	0.445	0.7038	6.94x10 ⁻⁷
7	rs140306040	62321151	ADD	2171	0.509	0.1365	0.3895	0.6651	7.47x10 ⁻⁷
7	rs73121760	62313911	ADD	2155	0.5131	0.135	0.3938	0.6685	7.71x10 ⁻⁷
16	rs34300094	9120719	ADD	1487	0.5589	0.1184	0.4431	0.7049	8.98x10 ⁻⁷
2	rs34954281	152225877	ADD	2021	0.6739	0.08045	0.5756	0.789	9.34x10 ⁻⁷

SNP: single nucleotide polymorphism NMISS: number of individuals for the logistic regression analysis of a specific SNP OR: odds ratio SE: standard error

ADD: additive model

Figure 1. Manhattan plot of the GWAS on diabetic maculopathy with decreased visual acuity (469 cases and 1,374 controls).

URL: http://mc.manuscriptcentral.com/nopg E-mail: ophthalmicgenetics@yahoo.com

Recombination rate (cM/Mb)

1. 3673 individuals were genotyped by WTCCC2 using	Affymetrix SNP6.0
3254 individuals were genotyped by SUMMIT using	Illumina OmniExpress

2. Perform imputation using SHAPEIT and IMPUTE2, adapt imputation quality control (r²>0.3)

3. Extract imputed genotypes of cases and controls according to their definitions

4. Merge, detect population stratification, remove relatives and perform routine quality control

5. Obtain cleaned datasets including 469 cases and 1,374 controls in PLINK format (lambda= 1.00)

6. Logistic regression analyses with covariates in PLINK

Figure S1. Workflow of the GWAS on diabetic maculopathy with decreased visual acuity in GoDARTS.

