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ABSTRACT

Visual search is a cognitive process that makes use of eye movements to bring the

relatively high acuity fovea to bear on areas of interest to aid in navigation or interac-

tion within the environment. This thesis explores a novel hypothesis that human visual

search behaviour emerges as an adaptation to the underlying human information process-

ing constraint, task utility and ecology. A new computational model (Computationally

Rational Visual Search (CRVS) model) for visual search is also presented that provides a

mathematical formulation for the hypothesis. Through the model, we ask the question,

what mechanism and strategy a rational agent would use to move gaze and when should

it stop searching?

The CRVS model formulates the novel hypothesis for visual search as a Partially

Observable Markov Decision Process (POMDP). The POMDP provides a mathematical

framework to model visual search as a optimal adaptation to both top-down and bottom-

up mechanisms. Specifically, the agent is only able to partially observe the environment

due to the bounds imposed by the human visual system. The agent learns to make a

decision based on the partial information it obtained and a feedback signal. The POMDP

formulation is very general and it can be applied to a range of problems. However, finding

an optimal solution to a POMDP is computationally expensive. In this thesis, we use

machine learning to find an approximately optimal solution to the POMDP. Specifically,

we use a deep reinforcement learning (Asynchronous Advantage Actor-Critic) algorithm

to solve the POMDP.

The thesis answers the where to fixate next and when to stop search questions using

three different visual search tasks. In Chapter 4 we investigate the computationally ratio-

nal strategies for when to stop search using a real-world search task of images on a web

page. In Chapter 5, we investigate computationally rational strategies for where to look



next when guided by low-level feature cues like colour, shape, size. Finally, in Chapter 6,

we combine the approximately optimal strategies learned from the previous chapters for

a conjunctive visual search task (Distractor-Ratio task) where the model needs to answer

both when to stop and where to search question.

The results show that visual search strategies can be explained as an approximately

optimal adaptation to the theory of information processing constraints, utility and ecology

of the task.
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CHAPTER 1

INTRODUCTION

Visual search is a cognitive process that makes use of eye movements to bring the relatively

high acuity fovea to bear on areas of interest to aid in navigation or interaction within the

environment. It is a fundamental and ubiquitous task that we perform in our daily lives.

Infact, we search or look for things all the time (Eckstein, 2011). For example, searching

for family or friends in the crowd or car in a parking lot. Also, object localisation and

motor actions are often preceded by a soft search (Mennie, Hayhoe and Sullivan, 2007),

like, locating and fixating on a coffee mug before moving the hands to grab it.

As modern society is interwoven so strongly with technology today, we spend an

enormous amount of time searching through and looking at various displays. For example,

searching and launching an app on smart-phone or using histogram visualisation on Google

to find the cheapest flight tickets or using e-commerce sites like Amazon or eBay to find

products online to purchase. Due to such a vast diversity of displays that we encounter

in our everyday life, it is not surprising that visual search plays a pivotal role in our lives.

In addition to ecological importance, visual search also contributes to understanding

higher-level cognition. In particular, visual search requires making a series of eye move-

ment decisions due to the foveated vision property of human eye (Kowler, 2011). These

eye movements involve the deployment of covert attention and overt attention (Wright

and Ward, 2008). Visual search is arguably one of the most prominent paradigms used

to study the deployment of covert and overt attention (Eckstein, 2011). In a typical
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experimental scenario, search performance is evaluated by varying number of elements

in a display, which is then used to make inferences about different mechanisms involved

behind the covert deployment of attention (Carrasco, 2011).

Moreover, in real-world rewards and costs are often associated with search. For exam-

ple, in cases when people fail in finding the target, like in cancer detection, failing to find

malignant tissues in x-rays may incur a high cost due to patient death. In some cases,

multiple targets might have different cost or reward associated with it, like, searching for

food products in a supermarket with different nutritional value. Previous research has

used visual search paradigm to study the influence of reward on eye movement behaviour

(Hikosaka, Takikawa and Kawagoe, 2000, Glimcher, 2003, Najemnik and Geisler, 2005,

Della Libera and Chelazzi, 2009, Stritzke, Trommershäuser and Gegenfurtner, 2009, Eck-

stein, Schoonveld and Zhang, 2010, Navalpakkam, Koch, Rangel and Perona, 2010, Tseng

and Howes, 2015). For example, Navalpakkam et al. (2010) showed that when fixating on

an item in a display that is rewarded differently, people adapted their strategy to make

saccadic movements towards more rewarding locations. Stritzke, Trommershäuser and

Gegenfurtner (2009), showed that people are risk evasive, such that they direct their gaze

to a more rewarding region and stay away from the region that incurs a cost.

While previous research has looked at these components individually to understand

an isolated phenomenon, evidence suggests that an explanation of higher-level cognitive

functions requires a combination of these individual components (Lewis, Howes and Singh,

2014). In this thesis, I explore a novel hypothesis that human visual search behaviour

emerges as an adaptation to the underlying human information processing constraint, task

utility and ecology, and present a computational model that integrates ecology, mechanism

and reward/utility to understand high-level behaviour. Specifically, decision making for

eye movements which includes the question of where to move the gaze next, and when

to stop searching. Before going any further, we begin with an introduction to the visual

search.
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1.1 Visual Search

Visual Search is described as a perceptual task in which the cognitive system has to scan

an environment for relevant information. In an experimental paradigm, participants are

asked to find a target visual stimulus amongst other visual stimuli (distractors). The

target is either present or absent on trial by trial basis, and the participant has to make a

target present or target absent decision as quickly and accurately as possible. For example,

searching for a 45-degree tilted Gabor patch in a high contrast background Najemnik and

Geisler (2008), or searching for a coloured letter (e.g., red letter O) with is surrounded by

some distractor coloured letters (e.g., red X’s and green O’s) Shen et al. (2003). These

tasks typically involve multiple stimuli that compete for attention, placed randomly across

a visual field. Since the brain has a limited capacity to process information simultaneously

(Desimone and Duncan, 1995), attention is drawn to a limited set of stimuli for processing.

Two questions that arises here is why do we direct our attention towards a particular

object and neglect others in a visual field? In other words, how do people decide where

and what to look next? Second, target in some cases may or may not be present in the

environment. How do people decide when to stop searching?

1.1.1 When to terminate search?

In visual search experiments, it is not always necessary that the target be present. In

fact, in real-world, searches not always succeed, especially when the targets are hard to

find (Wolfe, Horowitz and Kenner, 2005). For example, in an airport security check, the

security officer has to look at x-ray scan to search for dangerous items in the luggage.

If the officer takes too long to look at each item, this might prolong the security queue,

and on the contrary, if he terminates early, there is a risk of not recognising potentially

dangerous item. The question is then when do people stop searching and what mechanism

they use to make that decision?

Previous literature has suggested different strategies that might explain the search
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termination behaviour. The focus has been on identifying the utility of searching and

the acceptable threshold of the utility, below which they stop searching. For example,

the exhaustive search approach (Treisman and Gelade, 1980), where people decide on a

target being absent after iterating through every item in the display. Nakayama et al.

(1986), Zohary and Hochstein (1989) extended the idea to conjunctive visual search and

showed that people search only a subset of stimulus exhaustively to make the decision.

The subset selected is dependent on the distractor ratio size (Zohary and Hochstein,

1989). For example, in a display of 36 items with 5 red circles, 30 green cross and green

circle as target, people exhaustively only search the minority set of features. However,

the exhaustive search has been rejected in a study done by Wolfe and Horowitz (2004)

(see (Wolfe, 2012) for a review). Wolfe (2012) described search termination in terms of

the number of items searched or time spent in searching. The assumption is that people

keep track of a noisy estimate of either of these two sources of information which is then

used to formulate a decision threshold to terminate the search. The thresholds can be

conservative or liberal (terminate early or later), which is decided by the number of goal-

relevant items in the display, crowding and cluttering of items in the display or the value

of target item (Wolfe, 2012).

As highlighted above stopping rule has predominately been studied through utility the-

ory and heuristic thresholds are define as rules for termination. While heuristics thresholds

do explain the termination on the specific task that the utility thresholds are fitted to.

However, they require significant development work on the application of the models to

new tasks.

1.1.2 Where to look next?

The guidance of attention or where to look next is considered to involve a pre-attention

process (Müller and Krummenacher, 2006). The role of pre-attention process is to extract

information from the visual field, which is then used to direct attention and the fovea to

the relevant location.

4



Consider a scenario where a moving object or a bright light appears in our visual field.

We immediately direct our attention towards it, these behaviours have been previously

explained as a bottom-up or stimulus-driven deployment of attention. The bottom-up

or stimulus-driven approach uses information processing mechanisms to explain the eye

movement behaviour. They define architectures and algorithms (Koch and Ullman, 1987,

Itti, Koch and Niebur, 1998) to explain the underlying mechanism used by the human

cognitive system. For example, in the Feature integration theory (Treisman and Gelade,

1980) the incoming visual information is first received by the visual neurons and extracts

basic features (colour, shape, orientation, etc.) of the stimulus present in the display.

Features are then processed in parallel over entire visual field. The processed output is

represented as a feature map which consists of visual features at a given location. Atten-

tion is then deployed to a region based on this map, and then objects are re-assembled

in the given region to form more complex representation. This was further extended by

Koch and Ullman (1987), they introduced the concept of saliency map which represented

how much a given location differs from its surrounding visually. The selection of where

to deploy attention next was based on a heuristic called winner-take-all (Pomplun, Rein-

gold and Shen, 2003). According to bottom-up or stimulus-driven approach attention

is directed to most salient regions in a display. They explain ‘how’ the eye movement

behaviour emerges what underlying mechanisms are being used. However, they fail to

explain ‘why’ people choose the salient object and ‘why’ sometimes they do not?

Alternatively, consider a situation where we are searching for our car in a parking

lot, certain objects (other cars from the same manufacturer, colour or model) draws

our attention towards them because we are searching for them. This way of attention

deployment was previously explained as top-down or goal-driven (Yarbus, 1967). The

top-down approach is a voluntary deployment of attention on certain features or objects

that are relevant to the task. For example, Yarbus (1967) in a photograph viewing

experiment asked the participants to view photographs with different goals. He reported

that participants adapted their eye movements to part of the scene that was most task-

5



relevant. The top-down approach focuses on explaining behaviour as an adaptation to task

demands or the goal to achieve. These approaches have especially been used in explaining

attention in natural tasks (Ballard, Hayhoe and Pelz, 1995, Land and Hayhoe, 2001,

Hayhoe, Shrivastava, Mruczek and Pelz, 2003). The top-down approach provides a ‘why’

explanation of human behaviour. It assumes that the underlying system/architecture

(human mind) is a black-box, and the actions can be predicted as rational adaptation to

the environment.

There has been an on-going debate over which approach better explains the eye move-

ment behaviour. Whether basic features (colour, shape, orientation, etc) are only ex-

tracted which is followed by a bottom-up or stimulus-driven deployment of attention. For

example, human performance has been reproduced in a conjunctive visual search task (Itti

and Koch, 2000) using bottom-up attention models. Also, attention allocation in natural

scene like military car detection (Itti et al., 2001), face and motion detection (Ma et al.,

2005), pedestrian detection (Miau et al., 2001), free viewing Wang et al. (2011) have been

shown using bottom-up models. Or, features that are relevant to task demands are only

extracted and a top-down or goal-driven attention deployment follows? Especially when

people are engaged in a real-world task, top-down processing is seen as an influential fac-

tor for guiding attention in comparison to bottom-up processing (Borji et al., 2011). For

example, attention deployment in tasks like block copying (Ballard et al., 1995), tea mak-

ing (Land and Hayhoe, 2001), reading (Rayner, 1998), and object search (Navalpakkam

and Itti, 2005) have been explained as top-down processing. As shown above, previous

research has looked at these approaches independently, i.e., attention deployment is either

purely bottom-up or top-down driven.

From a modelling perspective, by focusing only on the top-down approach, the model

isolates itself from considering the underlying mechanisms that was used. In doing so, it

fails to explain the information processing capacity that lead to the observed behaviour.

On the other hand, the bottom-up approach is influenced by user defined mechanisms that

are based on both modellers intuition and some empirical evidence.
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Evidence suggests that both bottom-up and top-down processing is involved in visual

search. For example, when searching for a red car in a parking lot, attention is increased

to all the cars with the colour red. This suggests that interaction between bottom-up and

top-down approaches are not mutually exclusive (Awh et al., 2012), rather they more

often agree on. Neurological studies also suggest plausibility of large part of attention

selection includes a mixed bottom-up and top-down approach (Corbetta and Shulman,

2002). Despite the evidence, interaction between bottom-up and top-down approaches

have received limited attention. Our approach in this thesis follows this train of thought.

Rather than approaching the visual search as a pure bottom-up or top-down processing,

we present a computational model in this thesis that works on the interaction of both

bottom-up and top-down approach. Specifically, we use the theoretical framework ‘Com-

putational Rationality’ (Lewis et al., 2014) as a basis to build our model. According to

this framework, human behaviour can be derived using cognitive mechanisms that are

rationally adapted to both the mind and the environment (Lewis et al., 2014).

In this thesis we present a new computational model Computationally Rational Visual

Search (CRVS) model that operationalises the ‘Computational Rationality’ framework

as a Partially Observable Markov Decision Problem (POMDP). The framework provides

a mathematical formulation for the eye movement problem (detailed overview provided

in chapter 3). In the POMDP formulation, information perceived from the environment

is incomplete and noisy. An observation function is defined to represent the noisy and

incomplete information. In the model, the information processing constraints are encoded

in this function. For example, in visual search task, the observations obtained on a fixation

are constrained by the noise in human vision (ability to correctly perceive decreases with

increase in eccentricity). These observations are then integrated across eye movements in a

task-relevant representation known as state estimation (bottom-up approach). A solution

to the POMDP problem determines the question of what to do next given the current

state? The solution represents the optimal strategy given the information processing

constraints imposed in the observation model. It is obtained by maximising task reward
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where the reward is constrained by the task demands (top-down approach). Thus, the

new computational model presented here in this thesis provides a mathematical means to

apply ‘Computational Rationality’ on visual search tasks. It is to be noted, the goal is to

find the overall optimal strategy and not individual actions.

1.2 Problem Description

The sections above has previewed the two questions asked in visual search literature and

the approaches used. What follows in this section is the formalisation of the problem

description associated in the modelling of these question that this thesis solves.

• How strategies emerge from mechanisms: The first problem is to show how

information processing mechanisms as a consequence of the biological architecture

can give rise to the strategies without any description of rule or heuristics. For the

CRVS model, the strategies emerge as an adaptation to the underlying assumptions

about the mechanisms, utility and ecology. The aim here is to go beyond traditional

approaches that only focus on utility and environment to describe behaviour and do

not account for control of actions. For example, Bayesian approaches to visual search

explain how to represent the environment, but neglect how to use this representation

to guide attention. Rather, they use heuristics like ‘maximum a posteriori (MAP),

to guide attention. The use of heuristics not only require domain expertise it is also

a significant development work on the application of the models to new tasks.

• How mechanisms can be tested: The second problem is to show how the-

ories of information processing mechanisms can be tested and what does it imply

about behaviour. Testing theories for different mechanisms and evaluating against

alternatives is difficult, especially to find correlation between a behaviour and the

underlying mechanism. For example, one mechanism can generate multiple strate-

gies, and it is these strategies that determine the behaviour. More often, different
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mechanisms can also generate very similar strategies. Therefore, it is not sufficient

to just choose a mechanism and a strategy to describe behaviour. Rather, what is

require is to determine which strategies are efficient given the choice of mechanism.

1.3 Thesis Contributions

• A new computational model: This thesis presents a new computational theory

of visual search and operationalises it using the CRVS model that explains the

human search behaviour. The model explains the eye movement strategies as an

emergent consequence of ecology, reward and critically the architecture defined for

the task. In doing so it avoids any predetermined rules or heuristics, and thereby

is able to easily generalise across tasks. Furthermore, through the CRVS model

we show how to combine both the top-down and bottom-up processing of visual

information.

• Framework to test theories: Through the CRVS model we show how to test for

perceptual noise originating due to the biological structure of the retina and what

it tells about behaviour. the CRVS uses an optimisation algorithm (Deep Rein-

forcement Learning) to find an efficient strategies. By selecting a strategy through

an optimisation algorithm, it allows a causal relationship between the theoretical

assumption made in the model and the resulting behaviour that emerged.

• Scale to real world tasks: The model further contributes to the application of

Deep Reinforcement Learning in solving visual search problems. In doing so, it is

able to scale to real world tasks which consist of continuous and high dimensional

state space and not limited to laboratory experimental tasks.
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1.4 Thesis Outline

Chapter 2: This chapter provides an introduction to the ‘Computational Ratio-

nality’ framework. Also, reviews the literature on previous modelling approaches to the

visual search.

Chapter 3: This chapter provides an overview of the mathematical background for

the thesis. In particular, it provides an overview of the CRVS model, the underlying

framework used, reinforcement learning, and state representation.

Chapter 4: In this chapter the CRVS model is applied to an image search task

experiment by Tseng and Howes (2015). The model solves the control problem of when

to stop the search in this chapter. To preview the model shows that the stopping strategy

emerges as an adaptation to the user preference defined as the reward in the model and the

task ecology which is defined as the skewed distribution of the number of target features

in an image.

Chapter 5: In this chapter the CRVS model is applied to William’s Object search

task (Kieras et al., 2015a). The model solves the control problem of where to search

next in this chapter. To preview the model shows that the where to search next strategy

emerges as a consequence of the constraints imposed by human peripheral vision and

memory.

Chapter 6: In this chapter the CRVS model is applied to the Distractor-Ratio Task

(DR-Task) Shen et al. (2003). The model solves the control problem of both where to

search next and when to stop in this chapter. To preview the model shows that the where
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to search next strategy emerges as a consequence of the constraints imposed by human

peripheral vision (crowding effect) and task rewards.

Chapter 7: : The final chapter provides a summary of the primary outcomes of the

study done in this thesis. Also, the contribution to cognitive science is discussed. Finally,

future extension of the current work is highlighted.
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CHAPTER 2

BACKGROUND

2.1 Introduction

The CRVS model presented here in this thesis is used to explain the visual search be-

haviour when performing any visual search task. Our approach here is to explain the

search behaviour as a bounded optimal adaptation to constraints imposed by the human

physiology and the task utility. Hence, we first systematically review the computational

rationality framework (Lewis et al., 2014), which has been proposed as a means to explain

behaviour as bounded optimality (Russell and Subramanian, 1995).

Also, we review alternative modelling approaches that explain visual search behaviour.

In this thesis we try and classify these model as to how the eye movement strategy is

derived, i.e., either using some form of heuristic algorithm or using an optimal approach.

Also, in the review, we highlight for each of the alternative models, how the utility, ecology

of the environment and mechanism is considered for deriving the search behaviour.

2.2 Computational Rationality

The rational analysis framework in cognitive science was coined by John Anderson to

explain the cognitive processes of the human mind (Anderson, 1991). The framework uses
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rationality as an empirical tool to explain how and why people adapt to their environment.

The framework is described as a 6-step process, in which, a specification of three factors

are required, those are: goals, task environment and computational limitations. In the

first step, the modeller specifies the task goals the cognitive system needs to achieve.

Following which, a formal model of the external environment is defined that will be acted

upon. In the third step, bounds or limitations are imposed/defined due to the statistics of

the environment. As a consequence of these three factors, optimal behaviour is derived.

The optimal behaviour is then evaluated against human data to validate the model. This

process is iterated until a good fit for the human data is found. A key point to be noted

here is, the framework assumes that people are optimal with respect to the environment,

and the emphasis here is on the constraints imposed by the environment. An apparent

drawback in this framework is that it fails to account for the mechanism involved. It

explains the question of ‘why ’ people behave the way they do, but, is unable to answer

‘how ’ they achieve it and what architecture is being used.

Alternatively, the bounded optimality framework in artificial intelligence literature was

proposed by Russell and Subramanian (1995). According to this framework, an artifi-

cial agent bounded by the computational resources available to it and the task environ-

ment behaves as well as possible given these bounds. Bounded optimality describes an

agent’s behaviour should be similar to an optimal program running on a bounded sys-

tem/architecture while interacting with its environment where the program dictates what

to do on receiving observation from its environment. By framing the problem using this

framework, it provides the generality and flexibility to accommodate both the benefits

of rationality to explain the ‘why ’ behaviours and the underlying architecture used to

generate those behaviours.

Computational Rationality is an application of bounded optimality adapted to psy-

chology (Lewis et al., 2014). It is based on the idea that behaviour is generated as an

adaptation to the environment and the mind (architecture). In other words, it extends

the question asked by rational analysis, i.e., what behaviour should a rational agent ex-
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hibit while interacting with this environment? And includes the information processing

bounds, i.e., what should a utility maximizing rational agent do, when constrained by its

information processing mechanism, in this environment? Computational Rationality fo-

cuses on testing theories of the architecture and what does it imply about the behaviour.

By describing behaviour in this way, the framework provides a medium for formulating

theories using optimality as a tool and which in turn generates explanations that unify

both the top-down rational approaches and bottom-up mechanism approaches. Therefore,

Computational Rationality is the most suitable framework for approaching the modelling

of visual search behaviours.

In the section below, we describe the individual component involved in this framework.

2.2.1 How Computational Rationality Works

The Computational Rationality framework can be summarised by a description of four

components as shown in figure-2.1. According to the framework the strategy/behaviour

people exhibit is dependent on the utility, ecology and mechanism involved. A successful

explanation about the behaviour requires a theory of all the three components. Below,

we review and define each component.

Figure 2.1: Diagram illustrates individual components of the Computational Rationality frame-
work (Payne and Howes, 2013).
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Utility. the concept of utility has more often found its roots in microeconomics,

game theory and decision theory. Also, has been provided with different interpretation

(Kahneman and Tversky, 2013, Von Neumann and Morgenstern, 2007). For example,

the concept of utility as per the expected utility theory states that people under risk or

uncertainty make decisions by comparing the expected value between choices (Von Neu-

mann and Morgenstern, 2007) where the expected value is the statistical expectation of

the value of the outcomes. Alternatively, the prospect theory (Kahneman and Tversky,

2013) states that people decide by taking into account potential profit or loss they may

incur by making that choice rather than the end outcome.

In the Computational Rationality framework, the utility is thought as what is essential

to people and makes similar assumptions about what people would value more. For

example, in flight-based tasks people might value time more and may find strategies that

minimise the amount of time spent. In other words, they may find strategies that trade-

off speed-accuracy. The utility theory has many theoretical implications, where, defining

utility as experimental goals (objective utility) through instructions can verify whether

people’s subjective utility was consistent with experiments objective utility. Alternatively,

the subjective utility was entirely different, for example, people just wanted to finish the

experiment quickly. Defining utility in this way is consistent with Singh et al. (2010)

formulation of intrinsic motivation and reward. In this thesis we describe the utility in

form of a reward function.

Ecology. In the framework, ecology is concerned with the statistical distribution of

an environment that the user is currently interacting with and which he has interacted

during his lifetime. Therefore, the agent that is described as computationally rational has

to also adapt to the environment it has experienced thus far.

Anderson (1991) through the rational analysis framework showed that people do adapt

their behaviour to the statistics of the environment. For example, in Schooler and An-

derson (1997) they showed that the memory decay in humans was optimally adapted to
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a task environment where the task was to predict odds of a word encountered in the

front-page headlines of the New York Times newspaper. In the experiment, the frequency

of a word encountered followed a power function. This was consistent with the memory

decay behaviour in humans (Schooler and Anderson, 1997).

Furthermore, as described by Tseng and Howes (2015), visual search strategies are

adapted to the task ecology. For example, in a study done by Vlaskamp et al. (2005),

they found that the distance between items in a display has a direct impact on the search

performance, i.e., the amount of time fixated on an item, number of fixations and dwelled

time. They showed that by controlling the distance between items (range between 1.5

to 7.1 visual angle), the number of fixations and fixation duration increases with an

increase in distance. These experiments provide evidence that environment ecology plays

an essential role in shaping human behaviour.

Mechanism. here concerns with the human information processing capacities (at-

tention, perception, memory, motor control). In other words, mechanism defines the

underlying architecture of the human mind. It explains the mapping of the sensory input

(perceptual, auditory or smell) to how it is stored and processed and finally how that

information is converted to interactive actions (eye movements, motor movements for a

button press).

In cognitive psychology, the term mechanism or mechanistic explanation refers to

identifying underlying processes involved in a particular phenomenon (Bechtel, 2008).

Also, these processes/mechanisms are then further decomposed into atomic operations

and an architecture is defined to explain the organisation and functioning of these pro-

cesses (Bechtel, 2008). Over the years, many computational models have been proposed

that make assumptions about the underlying information processing architectures. For

example, cognitive architectures with production rule (Anderson, 1996, Kieras and Meyer,

1997), saliency models (Itti and Koch, 2001) , artificial neural networks (McClelland and

Cleeremans, 2009). In each case, a set of mechanisms are defined assuming, that is how
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the human mind would process the information. Following which, a set of control pro-

grams are defined based on the task specifications to generate behaviour. By defining a

theory for the underlying mechanism, inferences can be made about the behaviour as to

how it emerged. Also, inferences can be made about what constraints were involved in

explaining those behaviours.

Strategy. In the framework strategy is defined as a computational program. These

programs define a sequence of actions that can be performed by an agent to interact and

reach task-specific goals. There can be n number of programs with different combinations

of actions taken in sequence, that achieve task goals. Computational rationality assumes

that human mind is synonymous to a bounded computational unit that runs these pro-

grams (Lewis et al., 2014). While the behaviour that people exhibit is defined as the

best/optimal program that is adapted to not only to the task environment but also to the

bounded computational unit it is running on. Here, the best/optimal program is obtained

using the principle of rationality. Payne and Howes (2013) state that in order to explain

human behaviour theory of utility, mechanism and ecology must be provided. In case of

any missing component, the strategy obtained would be significantly different from the

actual behaviour (Payne and Howes, 2013).

In the framework, to find the optimal strategy a utility maximisation/minimisation

approach is adopted. Where any formal optimisation approach can be used that involves

utility maximisation/minimisation to find the optimal strategy. An important thing to

note here is that there are no constraints or assumptions on the strategy. Instead, the best

strategy emerges as a consequence of adaptation to the utility, ecology and mechanism.

If the model with the best payoff strategy fits the observed human data, then it can be

concluded that the model behaves correctly and can be used for further prediction or

analysis of the behaviour. Otherwise, it can be concluded that the utility function or

the underlying hypothesis about the human information-processing constraint that was

encoded in the model is incorrect. Hence, a bad fit does not mean the rejection of bounded
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optimal behaviour. Instead, it supports rejection of the underlying assumptions made in

the model.

The goal here in this thesis is to present a computational model that makes a testable

prediction of the underlying behaviour. Also, combines the benefits of both top-down and

bottom-up approaches. The Computational Rationality framework provides the frame-

work to achieve this goal.

2.3 Models of Visual Search

In the sections below, we review some existing models of visual search. The focus here

would be to highlight in each of the models how the ecology, utility and mechanisms are

implemented. Also, what control strategy is used in each of the models.

2.3.1 Guided Search model

The Guided Search model by Wolfe (1994, 2007) was first presented as an alternative

to the two-step Feature Integration Theory (Treisman and Gelade, 1980). In contrast

to the parallel feature search and serial conjunctive search, Wolfe (1994) proposed that

the feature map generated through the parallel process is used to guide attention in

conjunctive visual search as well.

In the Guided Search model, the information captured for different item features

channels (e.g., colour, shape, orientation) are combined as a feature map. The feature map

holds a topographical distribution in terms of activation for each location in the display.

The attention is then directed towards the location with the highest activation. If the

location consist of all target features an immediate target present response is registered.

However, due to the inherent property of the visual system, the model may wrongly

encode noise to the activation function and direct attention to a distractor. The search

continues by moving to the next highest activation location. The search terminates if

a target is found or else the activation’s drop below a threshold and followed by target
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absent response.

The activations are described as a weighted sum map. Where through the bottom-

up process the low-level features are extracted from the display first and represented in

different channels. These are then weighted according to a Top-down approach where

only the target features are given higher weight, and non-target features are suppressed

by lower weight values. By, weighing the activation, in conjunctive search, the target then

gets higher activation from both the feature channels and distractors only get activation

from a single target channel. Through this mechanism, the search is shown to be efficiently

guided in conjunctive search tasks. Also, the top-down weighing is used to explain the

selectivity shown by people by ignoring a specific set of items.

In the Guided Search model, the mechanism is described as the bottom-up and top-

down neuron activation for each location which also has some inherent noise due to the

properties of the human visual system. The Guided Search model does not have any ex-

plicit utility function. The description of ecology is encoded in the local task environment.

Finally, the strategy is described as a heuristic control (MAX-rule) in which attention is

drawn serially to the highest activation location.

One key drawback of Guided search model is that they do not take into account the

decline in acuity. The experiments for guided models are described in such a way that the

stimuli in displays are large enough to be available throughout the display. The Guided

models are more focused on covert attention than the overt deployment of attention and

thereby ignore the eye movement behaviour.

2.3.2 Signal Detection Theory

Signal Detection Theory (SDT) based models for visual search (Verghese, 2001, Eckstein

et al., 2000) are a class of search models that emphasized on only a single parallel process-

ing stage as compared to the traditional two stage information processing architectures

like Feature Integration Theory (Treisman and Gelade, 1980). The SDT framework are

models of covert information processing, and does not account for overt visual search.
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In the SDT model, the goal is to discriminate the target stimulus in a visual repre-

sentation against the background/surrounding noise or distractors. Each element in the

visual display is internally represented as a noisy random variable with a mean and a

variance to account for uncertainty in response. SDT assumes a filter is applied across

the visual display in parallel and the output of this filter is what an observer monitor. The

filter here is a detector that is sensitive to the target features. On repeated presentation

of the visual stimuli, a response is generated. This response is represented as a Gaussian

distribution centred around the response mean. The framework states that due to the

noise in the visual system there is an overlap of the Gaussian distribution with adjacent

distractors. If the distractors are similar to the target, then there is an even higher overlap

in the internal representation.

Regarding human physiology, the SDT framework can be understood as a neuron that

is well trained through experience to fire on detecting a target stimulus. The response is

then defined as a mean neuron spike count and some variability across the mean spike

count affected by the nature of distractors. The mechanism is described here as the

transfer of visual stimuli to the neurons to generate a neuron spike through the sensory

system which is bounded by some information processing constraints. The architecture

defined here is through the scope of filters involved in processing the information. The

utility is defined as a trade-off between the correct detection of a signal (Hit) and the false

alarm. The description of ecology is encoded in the local task environment. Finally, the

strategy is described as a heuristic control (MAX-rule) in which a threshold is defined for

the spike count. If the spike count exceeds the threshold, the model then responds target

is present or else it is absent. In the SDT framework, the threshold is based upon the

sensitivity index d′, such that it maximises hits and minimises false alarm.

To summarise, the SDT framework explains visual search behaviour as an adaptation

to the constraints in the visual system (noise) and the local task environment. It is

also seen as a rejection of the two-stage architectures proposed by Treisman and Gelade

(1980). While it has been successful in explaining some of the visual search behaviours,
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for example, effects due to distractor set size and similarity. However, it fails in explaining

the fixation distribution in the visual field. In other words, the SDT framework is unable

to capture the intermediate behaviour that emerges before the end goal is reached.

2.3.3 Bayesian Models

The Bayesian approach to model visual search tasks (Najemnik and Geisler, 2005, 2008,

Butko and Movellan, 2008, Myers et al., 2013, Nunez-Varela and Wyatt, 2013, Vincent,

2015), focuses on explaining the search phenomenon using the Bayesian probabilistic

framework. These models assume that the visual information from a search task is stored

as a probabilistic estimate (posterior) of the state of the world. On each fixation, the

estimated state is updated optimally by integrating information (Bayes rule) from the

previous state and the current observation according to the acuity function of the human

eye. The accuracy of the observation is determined by using a psychophysical function

that replicates the decline of acuity of the human eye from the fovea. The eye movements

are then made using these states and applying a heuristic decision rule (e.g., ‘Maximum

A Posteriori’ (MAP) (Myers et al., 2013) or information-based strategy (Najemnik and

Geisler, 2008)) to navigate. This rule generates a behaviour in which attention is directed

to areas which have the highest probability of target present (for MAP) or to areas that

maximises information gain(Najemnik and Geisler, 2005) (for information-based strategy

or Ideal searcher). For example, (Najemnik and Geisler, 2005) observed that the number

of fixations and spatial distribution of fixations could be better explained by a model

in which each eye movement was directed to an ‘ideal’ location (i.e., a location that

maximises information gained). Their model took into account the decline in acuity

as a function of eccentricity, i.e., the accuracy of perceiving a feature degrades with

eccentricity. In contrast, (Clarke et al., 2016) showed that a stochastic model with random

fixation sampled from a biased distribution is also able to replicated human eye movement

behaviour.

In the Bayesian modelling approach, the mechanism is defined as a reliability function
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for the observation obtained on each fixation. This reliability encodes various limitations

imposed by the architecture of the human information processing system. The definition

of the mechanism in these models are not only limited to the reliability function, but also

on the memory limitation for storing these observations Butko and Movellan (2008). The

description of ecology is provided in the model of the external environment. The utility

here is described as “one that minimises the number of fixations to find the target while

keeping the error rate below some threshold” Najemnik and Geisler (2008). Finally, the

strategy is described as a heuristic control using the ‘Maximum A Posteriori’ (MAP) or

the ideal-search strategy to guide attention.

To summarise, the Bayes optimal state estimation approach assumes that saccades

are programmed to move the foveal region of the eyes to areas with a highest posterior

probability of the target being present or highest information gain and are informed by a

Bayesian estimate of the world. Bayesian approach are data intensive and visual search

models have complemented Bayes optimal state estimate with heuristic control.

2.3.4 Cognitive Architectures

Cognitive architecture like ACT-R (Anderson et al., 1998), EPIC (Kieras and Meyer,

1997) and EMMA Salvucci (2001) are class of models that represent a set of hypotheses

about human information processing system that remains constant over time and are

independent of task. These hypotheses are encoded in the form of information processing

architectures that a model uses to produce different behaviour, e.g., search behaviour.

The EPIC (Kieras and Meyer, 1997) cognitive architecture provides a framework for

simulating human performance in a given task environment. Here, the human is modelled

as an information processing system that consists of units that process information, for

example, cognitive processors, perceptual and motor processor. For the architecture to

work, the simulated environment needs to be programmed by the analyst. Also, the strat-

egy space the model can use needs to be defined as production rules (if-else conditions).

The input to the perceptual processor is provided in the form of symbolic information and
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responses are returned either as a perceptual action or using motor movements. When

the model is run, the architecture generates a sequence of perceptual-motor events that

are required to perform a task, within the constraints determined by the architecture and

the environment. Recently, EPIC cognitive architecture has been successfully applied to

the classic William’s object search task Kieras and Hornof (2014).

In these models of visual search, mechanism is described in the form of the architecture

that is being used. The architecture consists of processors that encode a theory about

the information processing constraint in play while performing a task. The description

of ecology is provided in the local task environment. These architectures do not use an

explicit model of utility. Instead, it is implicitly defined by the analyst in the strategy that

is consistent with the task goals. The strategy space is described in terms of production

rules (if-else conditions). These heuristic controls are encoded by the modeller taking into

account the task objectives.

One criticism these cognitive architecture face, which also is a drawback is that the

models are restricted to the strategy that was explicitly defined (hand-coded) by the

modeller. Adding constraints on the strategy space makes these models quite brittle for

understanding the complexities of human behaviour.

2.3.5 Uncertainty minimisation Models

The uncertainty minimisation models (Renninger et al., 2007, Friston et al., 2012) for

visual are a class of models that tries to minimise the overall uncertainty of the possible

states of the stimulus in the display. These models utilise the information theory frame-

work that relates to the concept of uncertainty reduction and information gain. Here,

uncertainty is defined by using entropy, that measures the degree to which probability of

various model states (target present or absent, target location, target type) is similar. In

other words, when each of the model state has same probability, then the uncertainty is

high (high entropy value), or else, when fewer states have high probability and rest low

probability, this represents low uncertainty (low entropy value). For example, (Renninger
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et al., 2007) used the entropy minimisation model for target orientation identification

task and showed that people make eye movements towards region that minimise local

uncertainty rather than global uncertainty. Also, (Friston et al., 2012) presented a model

of visual search based on the free energy principle, called the active inference framework.

The model can be described as minimising expected free energy; where the free energy is

a proxy for the entropy.

In the uncertainty minimisation approach, the mechanism is defined as a reliability

function for the observation obtained on each fixation/measurement. This reliability

function is a measure of uncertainty of the sampled observation. The description of

ecology is encoded as a prior distribution. The model does not have a explicit notion of

the utility, but the goal here is to minimise task entropy. Finally, the strategy is described

as a heuristic control that minimised uncertainty/entropy or maximises information gain.

To summarise, the Uncertainty minimisation approach assumes that saccades are pro-

grammed to move the foveal region of the eyes to areas with highest information gain or

area that reduce overall task uncertainty. These approaches explain why people behaved

the way they do but do not explain how information is processed.

2.3.6 Control Models

The control model approach (Sprague et al., 2007, Butko and Movellan, 2008, Rao, 2010,

Nunez-Varela and Wyatt, 2013, Chen and Perona, 2014, Hayhoe and Ballard, 2014, Chen,

2015) to explaining visual search are a class of models that build upon the notion that

people are rational and find optimal strategies to achieve task objectives. In other words,

given some task objectives, for example, finding the target as soon as possible, the goal

is to maximise the overall task utility/reward. The highest reward/utility a user can

get throughout the task is constrained by people’s information processing system. In

contrast to heuristic approaches adopted by the models described above, in the optimal

control models strategy emerges as a consequence of constraints imposed by the human

information processing system (Butko and Movellan, 2008), task rewards (Nunez-Varela
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and Wyatt, 2013) or both (Chen, 2015).

The optimal strategy can be derived using an optimisation algorithm, such as Rein-

forcement Learning (Sprague and Ballard, 2004, Sprague et al., 2007, Hayhoe and Ballard,

2014). Where reinforcement learning algorithm has previously been proposed as a means

of explaining human learning processes (Dayan and Daw, 2008) and also, as means of

deriving rational analyses of what a person should do in particular task (Chater, 2009).

In these models, the mechanism is described in the form of observation function that

is used to extract information from the external environment. The description of ecology

in the local task environment. The utility definition is provided in the reward function

used in the model. For example, a negative reward is given for information foraging and

positive reward for correctly finding the target to enforce speed-accuracy trade-off. The

strategy space is not defined rather it emerges as a optimal adaptation to the utility,

mechanism and ecology.

To summarise, the optimal control approach assumes that the saccades are pro-

grammed to move the fovea to maximise task utility/reward. One issue associated with

this approach is the ability to scale up the problem to real-world tasks.

2.3.7 Machine Learning Models

Reinforcement Learning Models

Reinforcement Learning models for visual search (Sprague and Ballard, 2004, Chen, 2015)

are a class of machine learning models that frames the visual search task as a control

problem (Jagacinski and Flach, 2003). They are a type of Control Model (section 2.3.6)

that uses reinforcement learning to find optimal strategy. These models embrace the fact

that information perceived by humans are noisy and partially observable. They define

the underlying mechanism as the amount of information captured from the environment

and saved as the state. However, to solve the control problem they convert the partially

observability to a fully observable problem by keeping track of the previous information.
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For example, (Sprague and Ballard, 2004, Chen, 2015) uses a kalman filter to update

previously seen information. In doing so, it adds a strong constraint on the model that

the noise function can only be a Gaussian function and linear.

Alternatvely, a deep learning model of visual search with reinforcement learning for

optimal control (Mnih et al., 2014, Leibo et al., 2018, Xu et al., 2015) are a class of

machine learning models that utilise the properties of human vision to classify the content

of real-world images. These models are an extension of the Control Models (section 2.3.6)

described above. They are specifically used to overcome scalability issues.

In these model’s strategy is derived by training a neural network that acts as a classifier

where the output classes are the locations in the task display. The description of ecology in

the local task environment. The utility definition is provided in the reward/error function

used in model. The mechanism is described in the form of constraints in the inputs

provided to the neural network.

The visual search model by Mnih et al. (2014) uses human-like foveated images as an

input to the model and learns to classify what number is present in the image (MNIST

dataset). They show that a neural network based model learns to make the foveated

region move before making predictions. However, the model behaviour is not validated

with human behaviour performance.

End-to-End Deep Learning Models

Alternatively, Li et al. (2018) presented a deep learning model of menu search that uses

the data-driven approach. According to this approach, the model is first fitted to the

human data such that it can replicate or predict the human search performance. In the

menu search task, Li et al. (2018) first trained a deep recurrent network on a sequence of

interaction obtained from actual human data to produce similar search time performance.

The trained model is then used to make inferences about the interaction behaviour by

exploring network parameters. The data-driven model is useful in exploring previously

unseen patterns in learning behaviour by imitation. Since the model is fitted to the data,
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it has not been demonstrated that it explains the adaptive behaviour that people exhibit.

Nor, that it would generate human-like behaviours in the absence of a large amount of

interpretable data.

One common issue with deep learning models is how to interpret what has the model

learned. Also, the models are sensitive to the input diet provided, that is, a correct output

can only be ensured if all the inputs are correct.

2.4 Summary

To summarise, in this chapter we reviewed different approaches to modelling visual search.

In each of the techniques reviewed the behaviour was explained as an adaptation to the

task demands and the model architecture. However, these techniques differed in the way

strategy was defined and the mechanism used to derive those strategies. In contrast, the

thesis uses the computational rationality framework that focuses on the theories of the

architecture used and what it implies about the resulting behaviour. A review of the

computational rationality framework is presented in this chapter.
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CHAPTER 3

COMPUTATIONAL FOUNDATION OF THE NEW
VISUAL SEARCH MODEL

3.1 Introduction

This thesis aims to formulate a computational model for eye movement in a visual search

task. In a typical visual search task, the model is required to make two control decisions,

i.e., to determine where to look next and when to stop. Also, given the fact that the human

vision is imperfect, the decision-making process is affected by partial observability.

In this chapter, we present the computational foundation of the CRVS model. We

first give a brief overview of the model. Second, we define the Markov Decision Processes

(MDP), which is a common framework to model decision making. Third, we present

Partially Observable Markov Decision Processes (POMDP), as an extension to MDP.

Fourth, we highlight different techniques to keep track of the information gathered across

eye movements. Fifth, an overview of reinforcement learning is presented which allows the

model to learn how to perform a given task based on feedback in the form of reward signals.

Finally, the Asynchronous Actor-Critic algorithm is described as a scalable extension to

standard reinforcement learning.
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3.2 Model Overview

Figure 3.1: A Diagram describing the interaction between a computational agent and the external
environment.
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Figure 3.2: High-level python code that describes different functions in the CRVS model.

We begin by giving a brief overview (as shown in Figure-3.1) of the CRVS model. The

model consists of 3 processes, (1) Information Encoding process, (2) Information Updating

process, and (3) Controller process.

The Information Encoding process in the CRVS model is handled by the retinal pro-

cessor in figure-3.1. The retinal processor encodes the information captured by the sensor

with some perceptual noise to generates a retina-like display. The perceptual noise is

based on the distance (in visual angle) between the object of interest and the fovea. The

human visual system is known to have an acuity that declines with eccentricity (Geisler,

2011, Findlay and Gilchrist, 2003, Kieras and Hornof, 2014). Hence, the retinal processor

is described by an architecture/function that replicates the acuity function of the human

visual system. In the thesis, the perceptual noise used is described in section 4.5.4.

The Information Updating process in the CRVS model is handled by the perceptual
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processor in figure-3.1. The perceptual processor is divided into two tasks. The first task

is to extract task-relevant information, given the encoded information as an input. The

second task is to update existing information with new incoming information at every time

step. In the CRVS model, we describe this updated information as a state. In the model,

we explore three different variations of information updating process (see section 3.6). By

varying the information updating process, our intention is not to vary the theory, but, to

test the scalability of each approach.

The Controller in CRVS model is responsible for the deployment of attention. Given

the current state, the controller finds the best strategy for deployment of attention such

that task objectives are met. The CRVS model uses a Deep Reinforcement Learning

algorithm to find the approximate optimal strategy. The best strategy is informed by

a reward function which is internal to the agent. The reward function is a combination

of the environment task goals (e.g., rewarded on finding the target) and internal goals

(e.g., minimise time spent). The learned strategy is then used to make inference about

the search behaviour. An important thing to note here is that the strategy learned by

the controller is an adaptation to the architecture defined in the retinal and perceptual

processor and the reward function.

3.3 Agent-Environment Interaction

We assume here that an agent imitating the human behaviour has some sensors similar to

the humans (e.g., human eyes), that aid in gathering information about the environment

that it is interacting with. The information obtained is then processed and stored as

an internal representation of the environment, which we denote in the model as a state

(see section 3.6 for different state representations). A state is a set of all the parameters

that are used to describe an environment. Information that can be captured in a state

could consist of but not limited to different properties of the environment, e.g., colour,

shape, size or position of an object present in the environment. Based on this state the
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model can perform some sequence of actions that may or may not change the state and the

environment it is acting on. The decision that is to be made by the model is what sequence

of “independent” actions should be taken based on the information obtained thus far, such

that, it will lead to accomplishing of some task related goal(s). Also, every action that

the model takes has an immediate and long-term effect. In other words, every action has

a cost associated with it. For example, actions that lead to foraging for more information

may have an immediate time cost associated with it, but, it also may result in accurate

decisions later on. Hence, the model has to learn an optimal policy/strategy (what action

to take and when) for some cost/reward function defined in the task. One way of guiding

the performance of the model is through feedbacks, which the model receives every time

it interacts with the external environment by taking action. The feedback is how the cost

function is encoded in the environment and provided to the model on interaction.

The description provided above is known as sequential decision making (Littman,

1996). Modelling such decision-making problems is not trivial, which is further explained

in sections below. Many assumptions have to be made to model these problems. In

many cases, an optimal solution to these problems is not feasible for real-world problems,

and hence, an approximation to the optimal solution is found instead. We begin with a

simple mathematical formalisation of the sequential decision-making problem, known as

the Markov Decision Process (MDP).

3.4 Markov Decision Processes

The Markov Decision Process (MDP) is a framework to mathematically formulate se-

quential decision-making problems. The MDP is described as a tuple (S, T, A, R ), where,

• S is a set of all possible states the environment can be in.

• A is a set of all possible actions.
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• T is the transition function represented as T(s, a, s′) which denotes the probability

of state s transitioning to state s′ on taking action a.

• R is the reward function represented as R(s, a) is the expected reward given for

taking action a in state s.

In the MDP framework, interaction with the external environment is assumed to be

in discrete time steps. At any time step t, the agent perceives the current state of the

environment st. The agent then has to decide as to what action at to choose that is

available in state st. On executing the action at, the environment then transits to a new

state st+1 with a probability defined in the transition function T(st, a, st+1), and a feedback

in form of a reward rt is provided to the agent. The reward rt serves as an indicator to

the agent as to how good the action at is when taken in state st.

It is important to note, that the transition to the new state st+1 is only dependent on

the current state st and action at and it is conditionally independent of previous states. In

other words, the transition function in the MDP satisfies themarkov property. Themarkov

property states that a state is Markovian if the current state sufficiently summarises all

past interactions such that the future interaction is only dependent on the current state.

To define it Formally, the environment satisfies the markov property if the environment

dynamic can be described as,

P (st+1 = s′|st, at) = P (st+1 = s′|st, at; st−1, at−1; ....; s0, a0)

The goal here for the agent is to make a sequence of independent action selection

choices (until termination) such that it maximises some discounted cumulative reward

over a potentially infinite horizon. To specify the goal, two functions are defined; first,

the control policy, which specifies the mapping/solution of what action at to take when an

agent is in a specific state st. Second, the value function, which contains the discounted

cumulative reward as a value of a state s following the solution provided by the policy

π. Equation-3.2 describes the bellman equation (Bellman, 1952) to calculate the value of
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state s.

V π(s) = R(s, π(s)) + γ
∑
s∈S

T(s, π(s), s′)V π(s′) (3.1)

Where, 0 ≤ γ < 1 is the discount factor to emphasise the trade-off between long-

term and short-term gain/reward, V π(s′) is the value function for state s′ and π(s) is the

deterministic policy being followed in state s. For stochastic policy,

π(a|s) = P (At = a|St = s)

V π(s) =
∑
a

π(a|s)
∑
s∈S

T(s, a, s′)[R(s, a) + γV π(s′)] (3.2)

In general, and also in this thesis what we look for is to find the optimal solution/policy

π∗. Here, the optimal solution/policy is defined by finding the maximum value for a state

under all solution/policies, as defined in equation-3.3

V ∗(s) = max
π

V π(s)

V ∗(s) = max
a∈A

[
R(s, π(s)) + γ

∑
s∈S

T(s, π(s), s′)V π(s′)
]

(3.3)

The MDP framework is a straightforward mathematical model that has been applied

to various tasks (Littman, 1996). However, it makes one very unrealistic assumption, i.e.,

the agent at all times has full knowledge about the environment it is interacting with.

However, in this thesis, we are trying to model the human visual system which is imperfect

and is capable of only processing the environment partially. To overcome this problem,

we use Partially Observable Markov Decision Process(POMDP) that has been proposed

as an extension to the MDP (Littman, 1996).
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3.5 Partially Observable Markov Decision Processes

As discussed in the previous section, the MDP framework assumes that the agent is

always able to observe the state that the environment is currently in without any errors.

In other words, the agent receives all possible information from the environment to infer

the current state. This assumption is unrealistic for the class of problem being addressed

here in this thesis. Since, we assume that the sensor an agent uses is constrained by the

noise in the human visual system, due to which, the model is never able to observe the

environment completely. For example, the noise here is based on the distance (in visual

angle) between the object of interest and the fovea. The human visual system is known

to have an acuity that declines with eccentricity as a consequence of the architecture

of the retina (Geisler, 2011, Findlay and Gilchrist, 2003, Kieras and Hornof, 2014). A

partial representation of the actual environment is available to the agent. The Partially

Observable Markov Decision Process (POMDP) framework is used as a solution to model

such scenarios and is, in fact, the approach that is used in this thesis.

The POMDP framework is a generalization of the MDP framework, where the agent

rather than observing the current state directly, instead, receives set of observations and

its corresponding probabilities (Kaelbling et al., 1998). The POMDP is described as a

tuple (S, T, Ω, O, A, R ), where, S, T, A and R are the same as defined in Section 3.4 for MDP.

Ω is the set of observations and O is the observation function represented as O(o|s′, a).
The observation function represents the probability of making the observation o if on

taking action a the environment is in state s′.

When formulating the problem as POMDP, at each time step, the agent is no longer

able to perceive the true environment state. Rather, it receives an observation on in-

teracting with the environment. Since the states are no longer observable, actions are

chosen under certain uncertainty about the true underlying state of the environment.

One method proposed by Littman (1996) is to maintain a probability distribution over all

possible states. On receiving an observation after interacting with the environment, the

agent can then update the probability distribution over all states and thereby updating
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its belief about the true state of the world. The probability distribution is known as belief

state or Information state (Littman, 1996) and is represented as b(s). In the section below

we provide the details on how the belief state is updated.

3.6 Belief Representation

As described in Section 3.5, the belief state b is a probability distribution over all possible

states S. Where the function b(s) denotes the probability that is mapped to a state s ∈ S.

In this section, we describe the process known as state estimation (Kaelbling et al., 1998),

for updating the belief state. The state estimation process computes the new belief state

b′ based on the previous belief b, the action a an agent took, and the observation o that

is received on performing that action. Below we highlight three techniques for updating

the belief state.

3.6.1 Bayesian Representation

The belief state needs to represent the most probable state the environment is currently

in taking into account agents own uncertainty from experience. The information stored

should be statistically sufficient such that no additional information about its past inter-

action or observation can further inform about the current state (Kaelbling et al., 1998).

In other words, rather than the observations being Markovian, the belief state now follows

the Markov property.

To compute the belief state Kaelbling et al. (1998) suggested the use of Bayes’ theorem

as shown in equation 3.3.

P (x | y) = P (y | x)P (x)

P (y)
(3.4)

where, P (x | y) is the posterior distribution, P (y | x) is the likelihood, P (x) is

the prior and P (y) is the normalizing factor. The bayes’ rule provides a probabilistic
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approach to updating the belief from the current observation. Here, the belief distribution

is represented as posterior distribution. The equation 3.4 show the belief update using

the bayes’ rule.

b′(s′) = P (s′ | o, a, b)

P (s′ | o, a, b) = P (o | s′, a, b)P (s′ | a, b)
P (o | a, b)

P (s′ | o, a, b) = P (o | s′, a, )∑s∈S P (s′ | a, b, s)P (s | a, b)
P (o | a, b)

b′(s′) =
O(s′, a, o)

∑
s∈S T (s, a, s

′)b(s)
P (o | a, b) (3.5)

Where, O(s′, a, o) is the observation function, T (s, a, s′) is the transition function, b(s) is

the previous belief and P (o | a, b) is the normalization factor.

3.6.2 Naive Bayes Representation

As described in the previous section, the Bayes’ theorem provides a probabilistic way

of recursively estimating the belief state on receiving an observation. Alternatively, the

posterior can be represented as a Gaussian distribution.

The Naive Bayes or the kalman filter is a parametric Bayes’ filter that represents the

posterior distribution as a Gaussian distribution, parameterised by mean μ and variance

σ2. It assumes that the transition and observation function can be represented by a linear

function (Faragher, 2012). Also, the initial belief is represented by a Gaussian distribution

(Faragher, 2012).

We give here an overview of how the kalman filter updates the belief state. Initially,

the algorithm represents the belief state b0 as a Gaussian distribution with mean μ0 and

variance σ2
0. On taking action a, the model receives a new observation o which is also
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represented as a Gaussian distribution with mean μ1 and variance σ2
1. The algorithm

then updates the current estimate of the belief state by updating its mean μ0 according

to equation 3.6, and variance is updated according to equation 3.7.

k =
σ2
0

σ2
0 + σ2

1

μ′ = μ0 + k(μ1 − μ0) (3.6)

σ′2 = σ2
0 − kσ2

0 (3.7)

Where, μ′ and σ′2 are the updated mean and variance, and k is the Kalman gain. The

Kalman gain k is a weight factor in the recursive update equations, which determines how

much importance the new observation is given to estimate the current state. A higher k

value weighs the new observation more as compared to the current estimate.

3.6.3 History Representation

The previous two sections (3.6.1, 3.6.2) describes two popular ways of updating the belief

state and thereby estimating the current state of the environment. The third technique

that is used for state estimation process is based on the selective perception and hidden

state by McCallum (1996). In the selective perception and hidden state process it is

assumed that the observations are limited by two forms of constraints. First, consist

of limited sensory data due to constraints in the field of view, acuity or occlusion of

objects McCallum (1996). Second, an overabundance of raw information that may or

may not be relevant to the task, and limitation in computational capability for processing

all this information McCallum (1996). The solution proposed was to draw attention

to particular region/features and thereby assigning computational resources to process

those region/features. However, this leads to the problem of generating a hidden state,

where the agent is no longer able to determine the true underlying state of the world

McCallum (1996). This is also true when information is limited by constraints in sensors.
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The hidden state is described as a non-Markov state, since, the features of the state are

partially observable and are dependent on past observations.

The non-Markovian dependencies can be overcome by introducing memory McCal-

lum (1996). Rather than agent working with immediate observations, the belief state is

represented as a sequence of past observations and actions (Equation 3.6.3).

bt(s) = h(ot−1, at−1; ot−2, at−2; .....; o0, a0)

Here, the history maintained by the agent is a sufficient statistic (Heess et al., 2015).

However, maintaining the entire sequence of actions and observations taken by the agent

for most POMDP problems are computationally intractable. Hence, some form of ap-

proximations or summary of the past is usually learned or maintained. For example,

algorithms that use a recurrent neural network to summarise interaction history is being

used recently (Heess et al., 2015, Mnih et al., 2014).

3.7 Reinforcement Learning

Reinforcement Learning (RL) is a class of machine learning problem where the agent

learns how to behave by interacting with the environment and receiving feedbacks in the

form of numerical rewards (Sutton and Barto, 1998). Reinforcement learning is based on

the MDP framework (as described in section 3.4). These class of problems differ from

supervised learning in a way that there is no critic to tell the agent what the correct

decision is. Instead, the agent only receives a feedback/indication on interacting (Sutton

and Barto, 1998). Reinforcement learning is a technique that is defined as a learning

problem rather than a learning method. Any method that solves that problem is a

reinforcement learning method (Sutton and Barto, 1998). In the next subsection below,

we look at one such method called Q-Learning (Sutton and Barto, 1998).
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3.7.1 Q-Learning

Q-Learning is a popular model-free reinforcement learning algorithm based on based on

MDP framework (Sutton and Barto, 1998). The algorithm tries to recursively find the

optimal state-action value (Q∗(s, a)) using the following equation,

Q∗(s, a) = Q∗(s, a) + α(r + γmax
a∈A

Q∗(s′, a′)−Q∗(s, a))

Where, Q∗(s′, a′) is the optimal state-action value for next state s′ and action a′, r

is the reward obtained on performing action a in state s, 0 < α ≤ 1 is the learning rate

and 0 < γ ≤ 1 is the discount factor. The learning rate α is a parameter that controls to

what extent the new information overwrites the old one. When α = 0, the agent learns no

new information (exploit the prior), while α = 1, makes the agent only consider the most

recent information (ignore the prior). The discount factor γ controls the agent behaviour

when the agent prefers immediate rewards than rewards that are potentially received far

away in the future. By setting γ = 1, the agent tries to maximise long term reward, and

with γ = 0, the agent tries to maximise immediate reward.

Q-learning defines a set of states S in an environment and a possible set of actions

A in those states. At each iteration it learns the value of each of those actions for each

state; this value, Q(s, a), is referred to as the state-action value. So, the starting point of

Q-learning is to define a Q-table that is a tabular mapping between each state and the

actions, and setting all state-action values to an arbitrary value (e.g., the value 0). It then

goes around and explores the state-action space. For example, a ε-greedy algorithm can

be used to explore and choose actions greedily based on the highest Q(s, a) value with a

probability of 1-ε, otherwise, chooses a random action. After every action in a state is

tried, an evaluation is made, i.e., what state it has led to. If the chosen action has resulted

in a non-target state, the Q value is reduced for that action in that state. In doing so,

the other actions will have a higher value and have a higher probability of being chosen

the next time instead. Similarly, for a target state higher reward is given for taking that
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particular action. Importantly, when Q value is updated, it’s the previous state-action

combination that is being updated in the Q-table. This is also known as one-step look

ahead Q-learning (Sutton and Barto, 1998).

There are two main limitations of the Q-learning algorithm,

• Exploration vs Exploitation: The q-learning algorithm uses a value-function

to estimate what are the possible rewards for a selected action, while the policy-

function decides on the best action based on the rewards. However, the chosen action

is not always necessarily the best action that will lead to the maximum obtainable

reward. When the policy selects the best action, it said to be exploiting the value-

function; otherwise, it is exploring the environment. The problem q-learning faces is

a trade-off between exploitation and exploration. If a learning algorithm (q-learning)

exploits too much, it will never converge to an optimum global location which could

result in a higher reward. In contrast, if a learning algorithm keeps on randomly

exploring the environment, it will end up accumulating very little reward (Sutton

and Barto, 1998).

• State Space Explosion: The Q-learning algorithm keeps a mapping of values of

all the states it encountered and the actions available in a table (Q-table). Imagine

the algorithm is used to learn to play an Atari game, where the state is the current

game screen. Let, the image size be 84x84 pixels and is converted to a grey scale

representation with 256 colours. For the Q-learning algorithm to learn a strategy is

needed to maintain a Q-table with 2567056 rows or states. While, there may be some

states that the agent may never visits, nonetheless, it would still take the Q-learner

a lifetime to converge to a solution.

3.8 Deep Reinforcement Learning

As described in the previous section, Q-learning suffers from the problem of state space

explosion, especially when the state space is continuous. Infact, in real world scenarios

41



more often we encounter problems where either the state or the action space is continuous

and sometimes both. A possible solution is to use a function approximation that param-

eterises the Q-values or the policy itself. For example, Mnih et al. (2015) introduced the

Deep Q-network (DQN) that uses a neural network to approximates the Q-values. By

using a neural network as a function approximator the model is better able to scale up to

real world problems with large state space, however, it comes at a cost of no guarantees of

convergence to global optimal solution. In the next subsection below, we describe a Deep

Reinforcement Learning (Asynchronous Advantage Actor Critic) that parameterises the

policy used in this thesis. We use the Asynchronous Advantage Actor Critic in this thesis

because it is a type of policy gradient approach which has better convergence property

in comparison to say the popular neural network version of the Q-Learning algorithm

(DQN)Mnih et al. (2015). Furthermore, the policy gradient approach better adapts to a

recurrent neural network architecture.

3.8.1 Asynchronous Advantage Actor Critic

The Asynchronous Advantage Actor-Critic (Mnih et al., 2016) is a type of policy search

algorithm that solves the problem of finding the optimal policy by representing the policy

space in a parametric form and then using a sampling-based technique to find the optimal

policy parameters.

In policy search algorithms the goal is to find optimal parameters such that it mix-

imises some future cumulative expected reward over a finite horizon T . Let, J(θ) be the

performance function of policy π parameterised by θ.

max
θ

J(θ)

J(θ) =
π

E
θ

[ T∑
t=1

R(st, at)
]

(3.8)

Where, To solve equation 3.8, policy gradient is the most popular approach used
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(Williams, 1992, Baxter and Bartlett, 2001, Mnih et al., 2016). The idea here is to shift

the parameter vector θ (e.g., θ can be the weights of a neural network) by a small amount

by calculating the gradient of �J(θ) such that an optimal θ is found. The gradient is

defined using the likelihood-ratio theorem (Glynn, 1990). Here the expected reward in

each state is the weight sum of the probability of being in the state and the reward (3.9).

Due to the Markov property the current state is dependent on the previous state, hence,

the Pθ(st, at) can rewritten as a product,

Pθ(st, at) = Pθ(a0|s0)Pθ(s0|a0)...Pθ(at−1|st−1)Pθ(st|at−1)

As a consequence of multiplying probability the resulting values will be very small. Using

this small value to train for example a neural network by back propagating will be very

slow. To avoid this, likelihood-ratio theorem (Glynn, 1990) is used to convert the product

of probabilities to a sum (3.10)

π

E
θ

[ T∑
t=1

R(st, at)
]
=

T∑
t=1

Pθ(st, at)R(st, at) (3.9)

�J(θ) =
π

E
θ

[( T∑
t=1

R(st, at)
)
�
( T∑

t=1

logPθ(st, at)
)]

(3.10)

While equation 3.10 is an unbiased estimator of gradients for the expected cumulative

reward, it still has high variance. In other words, the optimiser may take many steps

in the poor direction, even though on average it will end up in the correct direction.

This may lead to weak or slow convergence. Alternatively, Williams (1992) showed that

any constant baseline value that is independent of the action can be subtracted from

the gradient to minimise variance. Introduction of this baseline still makes the gradient

update unbiased (see (Williams, 1992) for derivation).

�J(θ) =
π

E
θ

[
�

T∑
t=1

logPθ(s, a)
( T∑

k=t

R(sk, ak)− b(st)
)]

(3.11)
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The Actor-Critic algorithm is a class of policy search method that combines the policy

gradient approach with value iteration approach (Sutton et al., 2000). Here, the algorithm

uses the state value function V (s) as a baseline. In the Actor-Critic algorithm, the Critic

is responsible for calculating the value function V (s) following policy π as described in

section 3.4. The Actor then uses the value function estimated by the critic and using

equation 3.11 updates the policy parameters. The actor-critic variant of policy gradient

approach helps in reducing variance as compared to the standard policy-gradient. Alter-

natively, Schulman et al. (2015) explored various other unbiased estimators. In this thesis

we use the low variance Generalised Advantage Estimate (GAE) variant of actor-critic

which is shown to better reduce variance than other estimators (Schulman et al., 2015)

and also used by (Mnih et al., 2016) (see appendix A for details).

In the Asynchronous Advantage Actor-Critic algorithm (Mnih et al., 2016), a neural

network is used to maintain the stochastic policy π and the value function V as a function

of the state. The policy is defined as a probability distribution π(a|s; θ) over the action

space which the agent can choose from in the state s and use this distribution to sample

an action. The value function is represented as the expected cumulative reward Vπ(s; θ)

when starting in state s and following policy π. The parameter θ represents the weights of

the neural network and is used to estimate these values. The parameters or weights of the

neural network (θ) are then tuned by optimising a loss function, here, the loss function is

composed of three sub losses (equation 3.12).

totalloss(θ) = policyloss(θ) + valueloss(θ)

+entropyloss(θ)

(3.12)

In the A3C algorithm, the agent interacts with its environment to generate an en-

tire roll-out of a single trial. The network weights are then updated using this entire

roll-out. In the roll-out, each step is represented as a tuple < s0, a0, r0, s1, vs0 >→<

s1, a1, r1, s2, vs1 >→ ... →< sn−1, an−1, rn−1, sn, vsn−1 >.
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valueloss(θ) = (Vtarget(si)− V (si; θ))
2, i = 0, ..., n− 1

where, Vtarget(si) =
n−i−1∑
t=0

γtrt+i

(3.13)

The valueloss(θ) is calculated using the roll-out to estimate the target value for each

state using the actual rewards obtained (equation 3.13). The value of the terminal state

is set to 0. Each roll-out generates a set of n samples/steps to train the neural network

on the value loss function using the estimated values.

policyloss(θ) = −log(p(ai|si; θ)) ∗ A(ai, si; θ),

i = 0, ..., n− 1

where, A(at, st; θ) =
n−i−1∑
t=0

γtrt+i + γn−iV (sn; θ)

−V (si; θ)

(3.14)

The policyloss(θ) loss function (equation 3.14), tunes the network parameters in order

to shift the policy such that the sampled actions improves the advantage value A(ai, si; θ)

given the current state si. Here, the advantage value is defined as an additional feedback

signal to the agent on taking action ai in the state si over the average value of V (si; θ) as

a baseline.

Defining the policy in such a way may bias the agent towards some actions which leads

to the agent not exploring other actions in a state and converge to suboptimal policy. To

prevent this, Mnih et al. (2016) suggested adding an entropy loss to improved exploration

by discouraging premature convergence. The entropyloss(θ) loss function, maximises the

entropy of probability distribution over action space for a given state (equation 3.15).

entropyloss(θ) =
∑
a∈A

−p(a|si; θ)log(p(a|si; θ)),

i = 0, ..., n− 1

(3.15)

Also, the architecture of the A3C algorithm comprises of a global network and multiple
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asynchronous worker agents that interact with their copy of the environment in parallel.

Each worker agent uses its local copy of the gradients using the loss function to update

the global network parameters and then copies the global network parameter for training

on the next trail. This is done so to avoid any correlation between the training data

since each worker will explore and generate a different state space and thereby reduce any

correlation. Also, using multiple agents results in faster convergence (Mnih et al., 2016).

The derivation still holds when the states are non-markovian, i.e., rather than using

states model uses the entire history (see (Wierstra et al., 2010) for proof).
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CHAPTER 4

IMAGE SEARCH TASK

4.1 Introduction

In this chapter, we apply the CRVS model to our first visual search experimental task,

i.e., the image search task. The goal of the image search task is to simulate a real-world

visual search. The search task required the participant to search for an image with as

many target feature he/she can find and as quickly as possible. Here, there was no right

or wrong target every image in the display can be a target image. The control problem

that the model needs to solve here is when to terminate the search.

Previous modelling approaches have utilised heuristic thresholds (Treisman and Gelade,

1980, Wolfe, 1994, 2012, Ehinger and Wolfe, 2016) to explain the stopping behaviour dur-

ing visual search. In contrast, we show that an approximately optimal control model can

explain the emergent behaviour without any description of the heuristic rule. Instead, it

explains the behaviour as an adaption to constraints in the human visual system, ecology

and the reward. Here, we demonstrate that the stopping rule emerges as an adaptation to

the reward/cost received for choosing an image and the distribution of the target features.

The CRVS model presented in this chapter represents the environment as a symbolic

vector. Where each element in the vector represents a collection of target features (e.g.,

colour, shape and size). The actions than the model can take consist of 36 fixations

action and a select action that selects the fixated image and terminates the trail. In this
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chapter, we compare two state update technique, i.e., the recurrent neural network model

that maintains a summarised history of observations and a full Bayesian update that uses

Bayes theorem. Our intention here is to evaluate the scalability of the two approaches.

The Bayesian update acts as a benchmark which is a standard method used to maintain

the state update to solve the POMDP (Littman, 1996).

4.2 The Task

Figure 4.1: The figure illustrates a random display used in one of the search trials. The search
task required the participant to search for an image with as many target feature he/she can find
and as quickly as possible. In this display, the target features were Castle, Clouds, Sky, Tree,
and Water. There was 1 image with 5 target features, 1 image with 4 target features, 2 images
with 3 target feature, 6 images with 2 target features and 26 images with 1 target feature (Tseng
and Howes, 2015).

The image search task as conducted by Tseng and Howes (2015) required participants

to search for an image, in a display of 36 images, that best matches some set of target

features. The target features consisted of high-level feature description like, for example

[Sky, Castle, Bird, Tree, Lake] (See Figure 4.1). As in a typical visual search experiment,
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there are both matching and distractor features. However, this experiment differed from

traditional visual search experiments by not specifying a correct target image. Instead,

participants were free to choose whichever image they wanted, and there was no correct

or wrong image. Participants were given points for selecting an image and were instructed

to maximise the feedback points. The points in the experiment were a function of search

time and image value, where value was a function of the number of features that matched

the goal (Tseng and Howes, 2015), So, an image that matched all five features of [Sky,

Castle, Bird, Tree, Lake] would receive more points than an image that matched only two

of these features.

At the beginning of the trial, participants were made aware of the value of each n-

feature image (where n is the number of target features in the image). Also, a high-level

description of the target features that they need to search for was provided. Once the

participants familiarised themselves with the target features (participants were not timed

at this stage and were also made aware of it), they then started the search task, at this

point they were timed. The trail terminated once they click on the selected image with

the mouse. This was followed by a feedback screen of the points they scored. While the

experiment doesn’t measure any behavioural data about the mouse movement, however,

it does add to the total search time since the trail and the timer is terminated only after

an image is clicked.

In the experiment two image value functions were tested, i.e., the value of an image

with n target features increased as a power function in one condition and a linear function

in the other. These reward values represent the user preference and show how much

people would value finding all matching features or if even finding four will do features.

The density of images in the display was also manipulated: low density (edge-to-edge

item spacing of 0.85 degree) and high density (edge-to-edge item spacing of 0.085 degree).

4.2.1 Observed Data

Tseng and Howes (2015) observed that people adapted their search strategy to the feed-
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Figure 4.2: The figure illustrates the two utilities used in the experiment. (Tseng and Howes,
2015).

back reward. They reported that the images selected with the number of target feature

were higher when the value of the images followed a power function distribution in contrast

to the linear function distribution.

Furthermore, the reward function also affected the number of fixations people took

(Tseng and Howes, 2015). Participants fixated on more images when the value of images

followed a power function in comparison to the linear function. These results are consistent

with the previous observations since participants found higher target images in power

function scenario which had a higher return. Also, the number of fixations in the high-

density display were lower than the low-density displays.

The ecological distribution of real-world images returned from a search engine that

matched the search criteria was reported in (Tseng and Howes, 2015). In the study, the

goal was to identify the relationship between the number of keywords in the search criteria

and the number of images returned. Here, Google image search engine was used to infer

the distribution. In the study, a list of keywords like ‘water’ and ‘boat’ and ‘sky’ keywords

was entered, and the number of returned images were noted. Tseng and Howes (2015)

reported that the resulting distribution followed a power distribution. In other words, as
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the number of keywords increased the number of target images returned decreased, and

this declined followed a power-law.

4.3 Background

Search termination is a significant problem that has frequently been overlooked (Wolfe,

2012). Especially in scenarios which involve high risk, for example, searching for food,

cancer symptom, a bomb in luggage, etc. Where early or delayed search termination

may incur a high cost. Previous models have explained search termination by describing

stopping thresholds (Ehinger and Wolfe, 2016, Treisman and Gelade, 1980, Wolfe, 1994,

2012).

Wolfe (2012) describes search termination in terms of the number of items searched

or time spent in searching. The assumption is that people keep track of a noisy estimate

of either of these two sources of information which is then used to formulate a decision

threshold to terminate the search. The thresholds can be conservative or liberal (terminate

early or later), which is decided by the number of goal-relevant items in the display,

crowding and cluttering of items in the display or the value of target item (Wolfe, 2012).

Ehinger and Wolfe (2016) extended the idea by presenting a potential value version of

optimal foraging model for search termination. The task was to find some target objects

(gas stations) in a satellite image. The number of gas stations in an image varied for each

trial. Ehinger and Wolfe (2016) showed that the search termination could be explained by

a model that stops searching when the expected rate of targets found in an image is lower

than the cumulative average of targets found thus far. Also, they showed that to estimate

the expected rate, people combine three sources of information. They are the prior belief

about the distribution of targets in images, time spent in search and the search history.

In contrast, we present a novel model of visual search that explains search termination

as an optimal1 adaptation to the task ecology, constraints involved in processing incoming

1we use the word optimal here for brevity. The solution found is an approximation to the optimal
solution, which is asymptotically optimal.
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information from sensors and task reward. Here in the model, we avoid any heuristic

thresholds; instead, the termination strategy emerges as an optimal adaption to the theory

defined for the ecology, reward and information processing constraints.

In the model, we utilise the active vision approach (Findlay and Gilchrist, 2003).

According to this approach, people make a series of eye movements to gather task-relevant

information. The eye movements are necessary because the high acuity (fovea has the

highest density of cone density) foveated vision only covers 1-2 degrees of visual angle.

With the increase in eccentricity, the acuity drops sharply (the density of cones drop off

beyond 2 degrees of visual angle), and hence the vision becomes noisy and uncertain.

This this further evident from Nelson and Loftus (1980) experiments on item recognition.

In their experiments, they showed that the ability to correctly identify/ recognise item

declined as a function of the distance between the fixated location and the object location.

Also, the peripheral vision that covers a larger area, though information obtained here

introduces some uncertainty, it is still useful for guiding eye movements and recognising

objects (Loftus and Mackworth, 1978, Nelson and Loftus, 1980, Geisler, 2011).

Furthermore, evidence from previous literature shows strategies are adapted to the

task ecology (Bertera and Rayner, 2000, Halverson and Hornof, 2004, Vlaskamp et al.,

2005, Tseng and Howes, 2008, Payne and Howes, 2013, Liu et al., 2017). For example,

Vlaskamp et al. (2005) found that the distance between items in a display has a direct

impact on the search performance, i.e., the amount of time fixated on an item, number of

fixations and dwelled time. They showed that by controlling the distance between items

(range between 1.5 to 7.1 visual angle), the number of fixations and fixation duration

increases with an increase in distance. Similarly, Everett and Byrne (2004) showed that

small changes in spacing between icons in a display changed the search strategy which

was reflected in the reaction time for finding the target icon.

Also, Chen et al. (2015) presented a cognitive model for a menu search task. In

their experiment, they found that people adapted their search strategy to the ordering

and grouping design of menus. Specifically, they showed that the semantically grouped
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menus with alphabetic ordering required the least amount of search time as compared to

unorganised menus. They also controlled the menu group size (3 menu item in groups

of 3 and 5 menu items in groups of 2) and showed that a semantically grouped menus

with semantic ordering (highly related items are close together within the group) had

a significant effect on search time, where, users skipped menu groups which were not

semantically related to the target menu.

In addition, search strategies have also been shown as an adaptation to task reward

(Hikosaka et al., 2000, Glimcher, 2003, Najemnik and Geisler, 2005, Della Libera and

Chelazzi, 2009, Stritzke et al., 2009, Eckstein et al., 2010, Navalpakkam et al., 2010,

Tseng and Howes, 2015)(see (Eckstein, 2011) for review). For example, Stritzke et al.

(2009), showed that people are risk evasive, such that they direct their gaze to the more

rewarding region and stay away from the region that incurs a cost. Also, Eckstein et al.

(2010) showed that people also find strategies that maximise total accumulated rewards

in scenarios where rewards are distributed differently across locations in a display.

In the sections below, we first define our theory for what mechanism are involved to

explain the behaviour shown by people during the image search. This is followed by the

description of the control model and the results of the model performance.

4.4 Theory

In this chapter, we present a control model with the theoretical assumption that the

eye movement strategy emerges as a consequence of adaptation to the statistics of the

environment (distance between items in a display and the target feature distribution in

the display), the constraints imposed by the mechanisms of human visual system (active

vision) and the task reward. For the search task, the decision-making problem can be

formulated as a POMDP and solving this problem with a deep reinforcement learning

algorithm to find the optimal strategy.

In the model, we assume that people’s decision to stop searching is informed by the
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feedback in the form of rewards that are received for making a decision. Better decisions

will receive higher rewards, which in turn will reinforce better eye movement strategy.

Hence, our theory here is,

• When images are displayed with a smaller gap between them (high density), more

information will be available in the parafoveal region. We predict that the number

of fixations will reduce since more information is available. We also predict due

to the availability of more information people will switch to a low-cost strategy of

skipping items.

4.5 CRVS model with Recurrent Update

In the following section, we provide a detailed overview of each of the individual compo-

nent used in the CRVS model with recurrent architecture.

4.5.1 External Display

On each trial, 36 images were randomly positioned in a 6 x 6 grid-like display. In the

display, each image consisted of some target (represented by a scalar value 1) and non-

target (represented by scalar value 0) objects. Some image has more target relevant

features, and some had fewer. The distribution of target features in the display followed

a power distribution. In other words, a display with a set of 36 images, there was 1 image

with 5 target features, 1 image with 4 target features, 2 images with 3 target features,

6 images with 2 target features and 26 images with 1 target feature. This formulation

follows the ecological study of target feature distribution done in Tseng and Howes (2015).

The edge to edge gap between objects was kept at 0.85 degree for low density condition

and 0.085 degree for high density condition.

Also, non-target objects were added to each image randomly by sampling the number

of objects to be added between 1 to 4. It was ensured that the total number of objects
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(target and non-target) within an image was less than or equal to 5. Here we assume

that the search engine algorithm is not efficient enough to filter images with non-target

features.

4.5.2 Action Space

In the model, the action space consists of (1) fixate on an image location and (2) select the

fixated image. In our study, there was a grid of 6x6 images, and there were, therefore, a

total of 36 possible fixation actions. A trial was terminated by choice of the select fixated

image action.

4.5.3 Reward

In the model, the value function of an image was a function of the number of target

features that it contained, and there were two value functions,

• A power law condition that had image value of 200, 60, 30, 20 and 0 for images with

target feature 5, 4, 3, 2 and 1 respectively.

• A linear law condition that had image value of 130, 100, 70, 40, 0 for images with

target feature 5, 4, 3, 2 and 1 respectively.

These image values have been exactly adapted from Tseng and Howes (2015). The

total search time used in the mode is described in equation 5.1 (Baloh et al., 1975).

SearchT ime = SaccadicDuration+ FixationDuration (4.1)

SaccadicDuration = 37 + 2.7 ∗ Amplitude (4.2)

Where the Amplitude is the distance between the current and previous fixated loca-

tion, SaccadicDuration (in milliseconds) is the time required to move fovea from previous
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fixated location to the current fixated location. FixationDuration (in milliseconds) is

the dwell time on each image, which is kept at a constant time in the model and the value

used is taken from the experimental results of Tseng and Howes (2015) (figure 4(b)).

The reward function was therefore defined as (imagevalue/10) - searchtime (inseconds).

Here, we reduce the image value to avoid gradient explosion (Pascanu et al., 2013) during

training. By adding a time cost to the reward function, a speed-accuracy trade-off is

imposed in the model. Searching longer for an image may result in higher reward but at

a cost.

4.5.4 Observation Model

The human eyes ability to discriminate and perceive object features degrades with eccen-

tricity (Strasburger et al., 2011). The rate of decline is different for colour, shape and size

features (Kieras and Hornof, 2014). Here in the model, we describe the acuity function as

a probability function that specifies whether the object is correctly perceived or not. A

quadratic psychophysical function was used to model acuity drop as described in Kieras

and Hornof (2014). The function (equation 4.3) determines the feature availability as a

function of eccentricity and feature size.

P (detection) = P (size+X > threshold) (4.3)

threshold = ae2 + be+ c

X = N(size, size ∗ v)

Where, size is the size of each feature in the image (in the model we assume all objects

occupy same spatial span) and represented in terms of visual angle, e is the eccentricity

in terms of visual angle. In the model, the parameter values a, b, c and v were set to

0.2, 0.1, 0.1, 0.7 respectively as described in (Kieras and Hornof, 2014).
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4.5.5 State Estimation

At each time step t on which fixation is made the model receives a noisy observation for

each location. The observation space consists of the number of target-features present

in each location. Also, the current fixation location is also provided to the model in the

form of one hot encoded vector (the fixated location is represented by value 1 and rest

all cells are 0). The fixated location information is important here because when the

search terminates, the fixated image is the selected image in the model. Hence, the state

in the model is represented as the combined vector of observation and fixated location.

The model then on each fixation updated the state using a recurrent neural network

(Hausknecht and Stone, 2015). The network receives partial observation on each fixation,

and by using a recurrent neural network, it maintains the summarised history of previous

observations (see section 3.6.3).

4.5.6 Model Learning

Model Architecture

The model architecture as shown in Figure 4.3 provides a brief overview. The noisy

observation (36 element vector) and the one hot vector (36 element vector) (see section

4.5.5) was taken as the input. The observation consists of a vector of size 36 with each cell

representing the content of each image described as the number of target objects perceived

with values ranging from 0-5 and another vector that informs the current fixated location

a vector of size 36 with value 1 for current fixation index and rest are 0s. Images consist of

a set of objects, and each object occupies equal size in an image. We add this constraint

in the model as we do not have the ecological distribution of the sizes of the object

used in the experiment. However, adding distractor objects to images at random will

rescale the size of target objects in the image. This input was first combined to form a

72-element vector and then connected to a recurrent layer consisting of 72 hidden nodes,

with tanh activation function. This is followed by a fully connected hidden layer consisting
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Figure 4.3: An Overview diagram of the CRVS model interacting with the image search task
environment.

of 37 nodes with a single output for each action in the task, with a softmax activation

function. The output of the recurrent neural network is also connected to a single node

fully connected hidden layer. The two output layer provides the probability distribution

over action space and the value of each state.

Policy Learning

As described above, at each point in time, the model observes the external display through

a noisy percept (section 6.5.4). The probability to correctly perceive feature is highest
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in the foveal region and declines as a function of eccentricity in the parafoveal region.

The model then uses the noisy information from the foveal and parafoveal region to guide

attention by taking actions (e.g., choose where to move the fovea). Since the environment

is only partially observed the model needs to integrate information over time in order to

determine how to act and how to make eye movements most effectively. It does this using

the Recurrent network as state estimator described above. At each step, on taking action

the model receives a scalar reward (section 6.5.3). Here, the goal of the agent is to learn

policies/strategies that maximises the total sum of such rewards R = E[
∑

γt−1rt] where

γ ∈ (0, 1) is the discount factor.

Here, the model learns the optimal control policy by using one type of reinforcement

learning algorithm, i.e., the policy gradient algorithm (for detail refer to section 3.8.1).

4.5.7 Results

In the section below, the search performance of the deep reinforcement learning model

is reported and compared to the human performance for image search task. The results

reported here are from a model that learns the approximately optimal policy (reward

value per trial asymptoted) through training and was used to generate the behaviour

(last 50,000 trials of the simulation).

The plot of the reward function versus the number of fixations is shown in Figure 4.8.

The result shows that the model required fewer fixations in the linear function as compared

to the power function. Also, when the image density was high, the model required fewer

fixation as compared to a low-density condition. This behaviour is consistent with human

performance with the goodness of fit for the model being R2 = 0.95 and the Mean squared

error value being RMSE = 0.57. Here, the model can replicate the human performance

for the difference in the number of fixation behaviour between linear and power reward

function. However, it takes fewer fixations for power function in comparison to human

performance. We assume this behaviour is a consequence of memory decay phenomenon

in the model. The LSTM network is known for capturing long-term dependencies and
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(a) Human (b) CRVS

Figure 4.4: Mean search performance as function of number of fixations for (a) Human and (b)
CRVS model. Error bars represent standard error

may differ to human memory decay.

The plot of reward function versus target features selected in an image is shown in

Figure 4.8. The deep reinforcement learning model found the higher number of matching

target features in an image when the reward function used power-law as compared to the

linear law. This behaviour is also replicated in the human performance with our model

achieving goodness of fit value of R2 = 0.94 and the Mean squared error value being

RMSE = 0.27. In comparison to human performance, the model was able to achieve

higher mean target features for both linear and power reward function. We assume this

behaviour as a consequence of our choice of the noise model. The visual noise model

parameters are not fitted to the task and hence the difference in performance.

The model behaviour shown above is consistent with the search time effect and the

total reward gathered by the model. Here the model took a long time to select an image

in the power law function as compared to the linear law. This was because the payoff was

better with higher image value in the power function condition. The goodness of fit with

human data was R2 = 0.93 and the Mean squared error value being RMSE = 1022.83.

Here, the high Mean squared error is because the model did not account for the mouse
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(a) Human (b) CRVS

Figure 4.5: Mean search performance as function of number of target features selected in an
image for (a) Human and (b) CRVS model. Error bars represent standard error

movement time. Due to the exclusion of mouse control in the model, the actual human

data shows that peoples’ search time was higher than the model. This is replicated in the

reward plot as well, where, the model reported higher reward achieved in comparison to

actual human data.

4.6 CRVS model with Bayesian Update

4.6.1 External Display

The External display is same as defined in section 4.6.1. The only difference is we scale

down the display size to a 3x3 grid-like display. The distribution of target features in the

display was also scaled down with 1 image with 4 target features, 1 image with 3 target

features, 2 images with 2 target features and 5 images with 1 target feature. We also,

double the gap between the images to reduce the availability of information.
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(a) Human (b) CRVS

Figure 4.6: Mean search performance as function of search time for (a) Human and (b) CRVS
model. Error bars represent standard error

4.6.2 Action Space

The action space is the same as defined in section 4.5.4. The only difference is the number

of fixation actions is reduced to match the 3x3 display size with 9 possible fixation action.

4.6.3 Reward

The reward function is same as defined in section 4.6.3. The only difference is the value

of 4-feature image was increased for power function to 100.

4.6.4 Observation Model

The Observation model used is same as defined in section 4.5.4.

4.6.5 State Estimation

A state here in the model is represented by a hypothesis which states that the given

location the hypothesis represents is the best image (best image is described as an image

with highest number of matching features) and the number of fixations. For example, H0
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(a) Human (b) CRVS

Figure 4.7: Mean search performance as function of reward (image value/search time (in sec-
onds)) for (a) Human and (b) CRVS model. Error bars represent standard error

represents image at location 0 is the best image. In the model there were 9 hypotheses

used, with each hypothesis representing the image at their respective location is the best

image and are mutually exclusive. A sample state space will look like:

H0 H1 H2 H3 H4 H5 H6 H7 H8 Fixations

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 3

At each time step, the model is in a state which is guided by observations that are

partial. The model maintains a belief distribution b(s) over all states given the observa-

tions thus far. On taking action a the model observed an observation o and updated its

belief according to the Bayes rule described in section 3.6.1.

At the beginning of the trial, the model assumes a uniform distribution over all states.

In other words, initially, the model assumes the images at every location is equally likely

to be the best image. On taking an action the model transits from state s to state s′

with a probability P (s′|s). In the model, the transition is assumed to be with probability

1, since the display remains static within the trail and we assume eye movements do not

encode any error. The models also maintain a likelihood table which is a frequency table
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to calculate P (o|s). Each row in the table is a mapping of an observation to the frequency

of its occurrence. The observation in the table consists of the true hypothesis number,

the number of features in best images, fixated location number, the observation of highest

feature image seen and its location. Also, we made the hypothesis discrete by rounding

the values to 5 levels [0.0, 0.25, 0.5, 0.75, 1.0]. This done so for the model learning to be

scalable.

4.6.6 Model Learning

The model here tries to learn when to decide to click an image assuming this is the best

image in the environment or makes an eye movement in search of better images. This

learning process can be emulated with control knowledge. The control knowledge is repre-

sented as a mapping between the beliefs and actions, which is learnt with a reinforcement

learning algorithm, Q-learning (see section 3.7.1). At the beginning, the values in the

Q-table (i.e., Q-values) of all belief-action pairs were set to zero. The model, therefore,

started with no control knowledge and action selection was entirely random. The model

was then trained until performance plateaued (requiring 100,000 trials). The model ex-

plored the action space using an epsilon-greedy exploration. This means that it exploited

the greedy/best action with a probability 1 - epsilon, and it explored all the actions ran-

domly with probability epsilon. Epsilon was set to 0.1 in our model. The idea is that

these Q-values are learned (or estimated) by a simulated experience of the interaction

tasks. The true Q-values are estimated by the sampled points encountered during the

simulations. The optimal policy acquired through this training was then used to generate

the predictions.
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4.6.7 Results

(a) (b)

Figure 4.8: Mean search performance as function of number of fixations for (a) Human and (b)
Bayes model. Error bars represent standard error

(a) (b)

Figure 4.9: Mean search performance as function of number of target features selected in an
image for (a) Human and (b) Bayes model. Error bars represent standard error
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(a) (b)

Figure 4.10: Mean search performance as function of search time for (a) Human and (b) Bayes
model. Error bars represent standard error

(a) (b)

Figure 4.11: Mean search performance as function of reward (image value/search time (in sec-
onds)) for (a) Human and (b) Bayes model. Error bars represent standard error

In the section below, the search performance of the optimal control model with Bayes

update is reported and compared to the human performance for image search task. The

results reported here are from a model that learns the optimal policy (reward value per

trial converges) through training and was used to generate the behaviour (last 10,000
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trials of the simulation).

The plot of the reward function versus the number of fixations is shown in Figure 4.8.

The result shows that the model required fewer fixations in the linear function as compared

to the power function. Also, when the image density was high, the model required fewer

fixation as compared to a low-density condition. This behaviour is consistent with human

performance with the goodness of fit for the model being R2 = 0.84 and the Mean squared

error value being RMSE = 5.35. Here, the model can replicate the human performance

for the difference in the number of fixation behaviour between linear and power reward

function. However, the magnitude of fixation was lower due to the scaled down the display.

The plot of reward function versus target features selected in an image is shown in

Figure 4.8. The deep reinforcement learning model found the higher number of matching

target features in an image when the reward function used power-law as compared to the

linear law. This behaviour is also replicated in the human performance with our model

achieving goodness of fit value of R2 = 0.71 and the Mean squared error value being

RMSE = 1.03. Again, the magnitude was lower because we scaled down the problem

size.

The model behaviour shown above is consistent with the search time effect and the

total reward gathered by the model. Here the model took a long time to select an image

in the power law function as compared to the linear law. This was because the payoff was

better with higher image value in the power function condition. The goodness of fit with

human data was R2 = 0.80 and the Mean squared error value being RMSE = 3298.98.

4.7 Discussion

4.7.1 Model Comparison

As shown above, both the CRVS and the Bayes model were able to predict the human

performance. Our intention here was not to vary the theory of how information is updated,
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but, to show the scalability of the approaches. The theory assumes that people maintain

an optimal state estimate on each fixation. To achieve this, two approaches were tested:

1. using Bayes theorem 2. using a recurrent neural network. While the CRVS model

was able to scale up to the task (using the recurrent network as state estimator) and

accurately predict human-like visual search strategies, in contrast, the Bayes model failed

to scale up to the actual task. To maintain the likelihood table for just 3x3 display

required 85 million rows of observations encountered. However, the Bayes model was able

to predict the change in visual search strategies with the change in reward. Both the

models were able to learn the feature threshold for when to stop searching that minimises

reward defined as a user preference. While interpreting the Q-table states is easy, what

internal representation the recurrent model learns is difficult to decode. The recurrent

model can scale up to the actual experiment display. However, it is difficult to interpret

what features it has learned from the input.

4.7.2 General Discussion

In this chapter, we proposed a new model for explaining and predicting users’ visual

search in complex interactive tasks. Unlike any other model, ours uses deep reinforcement

learning to generate human-like visual search strategies. Moreover, we showed that our

model accurately predicted when people would terminate visual search; and that this

stopping rule was a function of payoffs, the design of the interface (item spacing) and the

ecological structure of the task (the distribution of matching goal features in each display).

Also, the strategy choice of the number of fixations and number of target features selected

can be explained as an approximately optimal adaptation to these constraints.

The model presented here can generate human-like strategies is a departure from the

traditional heuristic models that use hand-coded rules (Kieras and Hornof, 2014, Kieras

et al., 2015b, Everett and Byrne, 2004) and approaches that learn from human exam-

ples (Li et al., 2018). Instead, strategies are derived by defining theories of constraints.

Specifically, the model shows that a small change in the visual angle between items and
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changes in the reward structure that reflects user preference causes qualitative changes in

strategy. In the model, observations were constrained by a theory of foveal and parafoveal

vision that encode information about high-level features that are available. A uniform

distribution of distractors in the image was assumed due to the low accuracy of the search

engine. It, therefore, represents a progression to models that require fewer inputs from

analysts in order to model human cognition.

Also, the reported model adds to the growing body of research that the computational

models of adaptive behaviour offer mean of explaining the behaviour as an adaptation

to constraints (Brumby et al., 2009, Howes et al., 2009, Chen et al., 2017). The model

findings presented here is not only restricted to explaining visual search behaviour but

also is crucial to human-computer interaction literature. Specifically, model findings show

that the decision people make is affected by small changes in distance (in visual angle)

between items and changes in reward structure. These findings support the view that

people are computationally rational, and they adapt their strategies to known information

processing constraints, the statistical distribution of task and the cost of taking any action

(Lewis et al., 2014, Howes et al., 2009). It thereby helps make the crucial link between

the cognitive mechanism and rationality that supports more in-depth explanations of

behaviour.

While the model does predict the visual strategy people may use during the image

search task, it does not take into account the mouse control movement. This is specifically

seen in the search time results where we see a large difference in actual search time and the

predicted. An extension to this work will be to model the mouse control movement as well.

Also, we assume that the distractor distribution in each image is normally distributed.

This assumption about the distribution may not be true. Further analysis of the image

data set needs to be done to find out the distractor distribution.

In conclusion, we have reported and evaluated a model of how people make a decision

when interacting with a web page of images. Here, the strategies are derived by formulat-

ing the problem as a POMDP and solving the problem to find the optimal solution that

69



is adapted to the human perceptual constraints, the statistical distribution of images on

the web page, and the speed/accuracy trade-off function.
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CHAPTER 5

WILLIAMS OBJECT SEARCH TASK

5.1 Introduction

In this chapter, we apply the CRVS model to our second visual search experimental task,

i.e., the Williams object search task. The goal of this search task is to explore the effect

of low-level visual features on search strategy. The task required the participant to search

for a target object (with either known colour, shape or size feature information) among

other objects. The control problem that the model needs to solve here is where to fixate

next.

Previous cognitive models like EPIC have utilised hand-coded rules to explain the

search behaviour in the Williams object search task. In contrast, we show that an approxi-

mately optimal control model can explain the emergent behaviour without any description

of the hand-coded rules. Instead, it explains the behaviour as an adaption to constraints

in human visual system and memory. Here, we demonstrate that the observed effects like

saccadic selectivity (proportion of fixation landing on target features), the number of fixa-

tions and saccadic distance can be explained as an adaptation to the difference in decline

in acuity for different low-level features in human vision and the decay in information

retention.

The CRVS model presented in this chapter represents the environment as a display of

75 objects. Where each object in the model is represented as presence or absence of the
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target feature (e.g., colour, shape and size). The actions than the model can take consist

of 75 fixations action and a select action that selects the fixated image and terminates

the trail. In this chapter, we use a history based state update with time based decay of

information. Our intention here is to emulate a time based memory decay seen in human

behaviour (McCarley et al., 2003). In the model we constraint the information maintained

by the model using a decay parameter. In this chapter, we fit the decay parameter that

best produces human like behaviour. It is to be notes that the model was not fitted to

human data to best produce the behaviour result. Rather, only the constraint parameter

was fitted.

5.2 The Task

In the visual search task published by Williams (1967) and re-done by Kieras et al.

(2015a) the goal is to locate a target object in a field of 75 distractor objects as soon

as possible. Each object in the display is described by a unique two-digit number and

a unique combination of colour, size and shape. At the start of a trail, the participants

were provided with a unique number that identified the target and one of the low-level

features of the target, i.e., either colour, shape or size.

The 75 unique objects were randomly distributed across a search field of visual angle

39 by 30. figure-5.1 shows a re-creation of the display used in the experiment. Each object

was sampled with a unique colour, shape and size. Where, the colours were blue, green,

yellow, red and purple. The Sizes were small (0.8), medium (1.6), and large (2.8). The

shapes were circles, semi-circles, squares, equilateral triangles and crosses. At the centre

of each object, a unique two-digit number was presented from 01 to 75 with a size of 0.26.

Between each object, a distance of at least 1 was maintained.

In the experiment, the participants were first pre-cued with the target features. This

was followed by the disappearance of the target features and appearance of the search

field. When the participants found the target, they were asked to click the target object
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Figure 5.1: A sample display used in the experiment. Task display used from (Kieras et al.,
2015a)

with the mouse. Here, participants were constrained not to move the mouse until they

found the target. On successful completion of a trial, the participants were financially

rewarded. Each trial started with a bonus of five, twelve or twenty-one cents, depending

on the difficulty of the search condition. The bonus diminished at a rate of 0.4, 0.3, 0.15

cents per second respectively until the participants clicked on the target. Errors resulted

in a penalty of five cents.

5.2.1 Observed Data

Human performance for the proportion of fixations that landed on the objects that shared

the same cued features is presented in figure-5.2. Here, the participants found the colour

and size cues to be more effective in finding the target object since colour and size cue
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Figure 5.2: figure re-plotted from (Kieras et al., 2015a) showing proportion of fixations that
match the target cue.

can be recognised over wider eccentricity range (Gordon and Abramov, 1977). Hence, the

proportion of fixation that landed on these objects was higher. In comparison, the shape

feature was the least useful cue between the three cues since recognising the shape required

detailed scrutiny of features like edges and this ability declines rapidly with eccentricity

(Kieras and Hornof, 2014).

figure-5.3 shows the mean number of fixations across trials participants took for each

cue. The colour cue took the least amount of fixation followed by size since the colour

information is available over wider eccentricity range (Gordon and Abramov, 1977). In

comparison, the shape cue required the highest number of fixations.

Another exciting result reported by Kieras et al. (2015a) was that on an average across

cues, 25% of the fixations were on a previously fixated object. Out of which, 14% of the

fixations were immediate repeats with little variation between different cues. Peterson

et al. (2001) in his findings had reported that repeated fixation are rare and are roughly

around 5.7%. Kieras et al. (2015a) in their findings suggested that these immediate

fixations could be accounted for by encoding error in peripheral vision.
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Figure 5.3: figure re-plotted from (Kieras et al., 2015a) showing mean number of fixations re-
quired to successfully complete a trial for each target cue.

5.3 Background

The search behaviour in Williams object search task was previously explained by using

an EPIC cognitive architecture (Kieras et al., 2015a). In their model, the search strategy

was adapted to the constraints in the human visual system. They utilised the active

vision approach to constraint the amount of information being gathered on each fixation.

The strategy adopted by the model to explain the search behaviour was defined using

production rules (see section 2.3.4 for review of cognitive architectures like EPIC). In the

model, the strategy to fixate on next item is described by a priority scheme. Here, the

priority was defined on the basis the most available information over the least available in-

formation. For example, colour information had the highest availability in the parafoveal

region in the model and hence had the highest priority, followed by size and finally shape.

The priority is also dependent on the pre-cued feature shown to the participants. Al-

ternatively, when no pre-cued feature information is available in the parafoveal region, a

location is randomly selected. The strategy employed by the EPIC model as described by

(Kieras et al., 2015a) can explain the guided gaze movement to the corresponding known

target feature objects. However, it fails to explain the unguided gaze movements when
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no known target feature is available in the parafoveal region.

In contrast, to the EPIC architecture, we present a novel model of visual search that

explains the search behaviour as an optimal adaptation to both human information pro-

cessing constraints in the visual system and the task reward. Here in the model, we use

two sources of constraints, i.e., the feature noise and memory decay. Both sources of

noise have been previously shown to be essential to modelling the visual search behaviour

in Willams’ object search task (Kieras and Hornof, 2014, Kieras et al., 2015a, Williams,

1967). In this chapter, we contrast our model with the EPIC models that have been used

previously to provide an interpretation to the search task.

What follows is a description of the underlying theory used in our model to interpret

the search behaviour. Then the description and results of the model are presented in the

chapter. Finally, the implication of the model is discussed.

5.4 Theory

In this chapter, we present a control model with the assumption that the search behaviour

in William’s object search task can be explained as an adaptation to the feature noise

that constraints the human visual system and the decay in information retention time that

constraints the human working memory. The feature noise can be described as the decline

in the ability of the human visual system to discriminate and perceive information with

an increase in eccentricity (the distance of the object from the centre of gaze) (Strasburger

et al., 2011). This decline is also influenced by the low-level feature that defines an object,

for example, colour, shape, size and orientation (Findlay and Gilchrist, 2003). Kieras and

Hornof (2014) showed that the colour features have the highest degree of availability in

the parafoveal region, followed by the size feature (larger objects are easily perceived

compared to smaller objects), and finally shape features.

In addition to the feature noise, the model also includes a constraint on the working

memory. Peterson et al. (2001) in their experiment showed that visual search retains
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information about previous fixations. They recorded the search behaviour of participants

for a visual search task where 12 letters were randomly distributed in a display. In the

display, the target letter ‘T’ was surrounded by letter ‘L’ and the goal was to find the letter

T as quickly as possible. Peterson et al. (2001) noted that the re-fixation to the previously

visited location was significantly lower than what would be in a memoryless system. They

concluded that this behaviour is only possible if people maintained a memory of previous

fixations. In addition to people maintaining a history of the previous fixation, there is

a limit to the capacity of what they can retain. McCarley et al. (2003) in their study

showed that the probability of re-fixating to a previously visited location increases with

time.

Therefore, our theory here is that because of feature noise the availability of infor-

mation is limited. For the colour feature, the availability of information in parafoveal

region spans the highest and hence, we predict that proportion of fixations that will land

on objects with the colour target will be the highest followed by size feature and finally

shape. We predict this behaviour will also replicate for the number of fixation due to

the availability of information, where the target with known colour cue will require fewer

fixations in comparison to size and shape.

Due to decay in memory, the information about previously fixated location will be

lost with time. Unless the location is revisited, or information is available in parafovea.

We predict due to memory decay the number of fixations will increase and the saccadic

distance will be the highest for the colour feature since information is available further.

However, to optimise information gain versus memory decay, we predict a sizeable saccadic

distance for weak cue like shape, to reduce the overall uncertainty in the display quickly.

In the following section, we formalise this theory in the form of a computational model

in which the above-specified behaviour emerges.
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5.5 CRVS Model with History based update

To construct the approximately optimal control model description of the (a) visual acuity,

(b) what information is gathered and stored and (c) for how long the information persists

in memory is required. In sections below, A walk-through of the 75 elements visual search

task is presented with a description of the above three components.

5.5.1 External Display

In the model, we represent the display by randomly distributing the 75 objects in a grid,

where each object can span multiple cells based on the size of the object. In the model, we

used a matrix of size 5 x 15 to represent the display with 75 objects randomly distributed

in the display. In the display, a minimum gap of 1 degree (visual angle) was maintained

between objects and an additional gap was randomly sampled from a distribution. In

the model, a uniform distribution over gap with [0.0, 1.0, 2.0, 3.0] degrees were used to

sample additional gap size.

Each cell in the display is represented by the presence or absence of target feature at

each object location where the presence or absence of a feature at each location in the

model is represented numerically by the number 1 for presence and 0 for absence. The

presence and absence of each object feature in the model is maintained in a vector. In

the model, four vectors are kept for colour, shape, size and text features.

5.5.2 Actions

The action space consists of (1) fixate on a location, and (2) click the fixated object. In

our study, there was a grid of 75 objects with unique colours, shapes and sizes. Therefore,

a total of 75 possible fixation actions were possible for the model to take. A trial was

terminated when the click fixated object action was chosen.
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5.5.3 Reward

A reward was given after clicking the fixated object. The reward distribution was defined

as a value 5, 12 or 21 for a correct response depending on the difficulty of the search

condition, a value of −5 for an incorrect response and a value of −0.4 * SearchT ime,

−0.3 * SearchT ime, or −0.15 * SearchT ime for each fixation depending on the difficulty

of the search condition. Where the search time (in seconds) is defined in equation 5.1

We assume in the model that the mean fixation duration for high-speed visual search is

around 275ms (Rayner and Castelhano, 2008). Here, in the experiment, the level of search

difficulty in ascending order is described as colour, size and shape. The penalty on each

fixation imposes a speed-accuracy trade-off. More fixations give greater accuracy but at

a cost.

5.5.4 Observation Model

visual constraint

The observation model is the same as described in section 4.5.4

memory constraint

In addition to the visual constraint, the model also constraints the duration of information

being persisted in the model. This is achieved by maintaining a decay threshold in the

model. If last perceived information from a location exceeds the decay time threshold,

the last seen information is removed. In the model, the time cost added to each fixation

is described below,

SearchT ime = SaccadicDuration+ FixationDuration (5.1)

SaccadicDuration = 37 + 2.7 ∗ Eccentricity (5.2)
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Where the Fixation Duration was kept constant at 275ms (Rayner and Castelhano,

2008) for all features, eccentricity is the distance between fixated location and item of

interest in degrees visual angle.

5.5.5 State Space

In the model, we combine the available feature and text observation vectors to obtain a

scalar score for each location. This scalar score is defined as a relevance score in the model.

The relevance score for each cell is a Euclidean distance between the target features, i.e.,

[1, 1] and the available feature and text observations for each location (6.3). The relevance

score is capped between 0 and 1 where a value 1 represents high relevance to task and

value 0 represents low relevance to the task.

Scoret[i, j] = min(max(0,

√
(1− δfeature[i, j])

2 + (1− δtext[i, j])
2), 1.0) (5.3)

This combined score is then used as a state vector st. The state vector according

to the model persists in the working memory. Every time new information is obtained

at a specific location the model updates the information at that location in the state

space. The model also maintains the persistence time for each information in the state

space. The persistence time acts as a time counter for each location in the state space.

It monitors when last the information was updated by adding a time cost (see section

5.5.4) to the counter on each fixation. On reaching a decay threshold, the information is

removed from the state space and replace with a value 0.5 which represents uncertainty.

On the availability of each information in the state space, the persistence time is reset to

0 for the location being updated.
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(a) Human (b) EPIC (c) CRVS

Figure 5.4: Mean search performance for proportion of fixations that match the target feature
for Human, EPIC (plotted from (Kieras et al., 2015a)) and CRVS model.

5.6 Model Learning

5.6.1 Model Architecture

The relevance score estimates Scoret (75 element vector) from the state estimator (above)

was taken as the input. This input was connected to three fully connected hidden layer

consisting of nodes equivalent to the number of elements in the display, i.e., 75, with

rectifier activation function. Finally, the output layer was a fully connected linear layer

of 76 nodes with a single output for each action in the task. To avoid over-fitting of the

network l2 regularisation of the weights was applied with value 10−5 and Dropout with

rate 0.2 was added to each hidden layer except the final layer.

5.6.2 Policy Learning

The algorithm used to learn policy is same as described section 4.5.6.

5.7 Results

In the section below, the search performance of the CRVS model is reported and compared

to the human performance and the EPIC architecture performance reported by Kieras
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(a) Human (b) EPIC (c) CRVS

Figure 5.5: Mean search performance for number of fixations required to successfully complete
a trial for each target cue for Human, EPIC (plotted from (Kieras et al., 2015a)) and CRVS
model.

(a) Human (b) EPIC (c) CRVS

Figure 5.6: Mean search performance for saccade distance from the previous fixation to the
fixated object for Human, EPIC (plotted from (Kieras et al., 2015a)) and CRVS model.

et al. (2015a) for the Williams object search task. The results reported here are from a

model (best fit model) that learns the approximately optimal policy through training and

was used to generate the behaviour (last 50,000 trials of the simulation).

The plot for the proportion of fixations that landed on the objects that shared the

same target features is presented in Figure 5.4. The result shows that the CRVS model

predicted the highest proportion of fixations that landed on the objects that shared the

same features as the pre-cued colour feature followed by the size and shape feature. This

behaviour is consistent with human search performance with the goodness of fit for the

model being R2 = 0.98 and the mean squared error value being RMSE = 0.04. Here,
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the model replicated the human performance, where both people and the model found

the colour as the most reliable cue with larger availability span across para-foveal region

followed by size and finally shape feature.

The plot for the number of fixations per trial for successful completion is presented

in Figure 5.5. The results show that the colour cue required a fewer number of fixations

where guided fixations dominated. This was followed by the size feature where larger

objects were further available in para-foveal, and hence fixations were guided towards

those objects. For smaller sized target objects, more fixations were required due to the

low availability of features in the parafoveal region. Finally, shape feature which was

dominated by unguided fixations due to lowest availability of information in the para-

foveal region and required the highest number of fixations. This behaviour is consistent

with human search performance with the goodness of fit for the model being R2 = 0.97

and the mean squared error value being RMSE = 17.89. However, the magnitude of

the fixations was not replicated as seen in human performance. This could be due to the

uniform distribution used to generate the ecology of the gaps between objects. As shown

in chapter 4, a small increase in gap increases the number of fixations.

The plot for the saccadic distance from the previous fixated location to current fixated

location is presented in Figure 5.6. The results show that the saccadic distance was

highest when the cued feature was the colour feature due to the high availability of

information making larger jumps. In comparison to colour feature, the size and shape

features were comparatively lower due to lower availability of information. However, the

saccadic distance for shape feature was higher in comparison to size feature although the

availability of information is lowest for shape feature. This behaviour is contributed to

the memory decay where the strategy is adapted to the information retention time where

large retention time leads to larger saccadic jumps and lower retention time lead to smaller

saccadic jumps. This behaviour is consistent with human search performance with the

goodness of fit for the model being R2 = 0.92 and the mean squared error value being

RMSE = 1.24.
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The repeated fixations seen for 5 seconds of information retention time threshold set

in the model was 23% across all features. Individually, for the colour feature, the repeated

fixation was 14.4%, for size feature the repeated fixation was 21.3% and for shape feature

the repeated fixation was 35.1%. The overall reported fixation was around 25% for human

performance. While we did explore the retention time threshold (see appendix B) the

best fit model was for 5secs. By decreasing the threshold time further, the magnitude of

fixation did improve but at the cost of an increase in repeated fixations.

5.8 Model Comparison

The figures 5.4, 5.5 and 5.6 show a comparison between the search performance of the

EPIC architecture (Kieras et al., 2015a) and the CRVS model for the Williams object

search task. Our results show that both the models were able to predict the difference in

the proportion of fixations and the number of fixations per trial for each pre-cued features.

However, the magnitude of fixations was low for both the EPIC and CRVS model.

The two models differed in how the strategy was defined. In the case of EPIC architec-

ture, a hand-coded rule was defined where the model chose a candidate object according

to a priority rule. The priority rule made fixation choices according to the availability

of the features, and so the objects with matching colour feature were given the highest

priority followed by size and then shape. If there are no candidate objects, then a ran-

dom object is chosen whose properties are unknown. In contrast, the CRVS model was

provided with just the theory of constraints and the reward. The strategy emerged as an

approximately optimal (optimisation algorithm like Deep Reinforcement learning used to

find the solution) adaptation to the underlying theory.

Furthermore, a clear distinction of strategy choice was seen for unguided fixations in

case of shape features (Figure 5.6), where the EPIC architecture made small saccadic

jumps. However, the CRVS model predicted a large saccadic jump which was consistent

with human behaviour. The strategy used by the CRVS model adapted to the memory
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decay constraint.

5.9 Discussion

In this chapter, we presented a computational model for explaining and predicting users’

visual search strategies and the role of working memory for Williams object search task.

The model was able to generate human-like behaviour, given a theory of constraints in

the human visual system and the memory decay. The model predicted where to fixate

next strategy as a function of the acuity of low-level features like colour, size and shape.

The results show that the proportion of fixation that landed on target features was similar

to the human performance where the colour feature had that highest proportion followed

by size and shape features. Since the colour feature has the highest range of availability

across the periphery (Gordon and Abramov, 1977), the model was able to perceive target

colour at a broader range. As a result, the model learned to guide its attention towards

those objects that matched the target colour features. The next highest availability was

seen for size followed by the shape feature which saw the least proportion of fixations.

The number of fixations was also predicted by the model as an adaptation to both

the constraints on the acuity of features in the periphery and the memory decay. In the

case of colour feature the memory decay had a little effect. Since the colour feature could

be perceived at a broader range, the model required fewer fixations and completed the

trail before the set decay threshold and with fewer repeated fixations. In contrast, the

size and shape feature saw a higher number of repeated fixations due to memory decay.

For size feature, the larger sized objects were perceived at a wider range, but the smaller

sized objects were difficult to perceive which contributed to a higher number of fixations

and saw higher repeated fixations. Finally, the shape feature had the least availability of

the three and required the highest number of fixations and repeated fixations.

Furthermore, the saccadic distance predicted by the model was adapted to the acuity

of features in the periphery, and the memory decay as a consequence of colour feature
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having the highest acuity had the largest saccadic distance followed by shape and size.

The model made saccadic distance jumps as an adaptation to the information decay and

the feature acuity. When no decay was present, the model chooses to cover a larger

area because once the information enters the working memory, it remains throughout the

trail. In contrast, when the information decays very quickly, the model chose to make

smaller jumps to keep the previously fixated information available in the parafovea. Also,

the saccadic distance adapted to the acuity of features, for example, in figure 5.7, the

saccadic distance increased with the difficulty of perceiving the object as a function of its

size. This explains the lower saccadic distance seen in human performance between size

and shape cue. As the cue availability reduces the number of unguided fixations increases

and hence the model makes larger jumps so as to reduce overall uncertainty in the display.

Also, the model shows that a working memory that represents the spatial position of

objects in the display is essential in guiding attention when the target information changes

on each trial. The model supports the view on visual working memory playing an active

role in finding targets and reject distractors in a visual search task as suggested previously

in literature Peterson et al. (2001), McCarley et al. (2003), Woodman and Chun (2006).

This was further evident from our results (see appendix), as the models’ ability to retain

information decreased the model ability to reject previously seen distractors reduced and

thereby reducing the proportion of fixations landing to target features.

Previous approaches like the EPIC architecture that required pre-defined hand-coded

rules provided an interpretation to the Williams search task. They showed that the

pattern of human fixations could be explained as a consequence of differences in colour,

shape and size acuity. However, the strategy encoded was sub-optimal and couldn’t

explain the unguided fixation pattern for low acuity feature, e.g., when the target feature

information was a shape cue. In contrast, the CRVS explained the search behaviour as

an adaption to the acuity of the low-level features and the decay in memory. In the

CRVS model, no handed-coded rules were provided. Instead, the strategy emerged as an

adaptation to the constraints. The use of optimisation algorithm ensured the causality
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between the acuity constraint and the memory decay with the human behaviour.

Further work needs to be done to be confident about the model behaviour. We need

to explore the gap parameter space of the CRVS model fully. For example, changing the

gap distribution between the objects may improve the fit to the number of fixations. As

shown in Chapter 4, a small change in object density changes the behaviour. This might

also impact saccadic distance reported by the model. Also, the CRVS model needs to

be extended with recurrent based state estimation approach and explore the behaviour

of this model. In the current version, we did not use the recurrent architecture due to

its property to retain long-term information. As part of future work, we will explore the

Basic recurrent neural network architecture that is prone to information decay.

In conclusion, we have reported and evaluated a model of the human scan path. The

model predicted where to fixate next strategies as a function of feature acuity. Here, the

strategies are derived by formulating the problem as a POMDP and solving the problem

to find the approximately optimal solution that is adapted to the human perceptual

constraints and memory. +
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(a) (b)

(c) (d)

Figure 5.7: Plot showing strategy learned by the model for different cue sizes. (a) Average
number of fixations per trial for each size cue. (b) Proportion of fixation landing on target size
cue. (c) Repeated fixations observed per trial for each size cue. (d) Saccadic distance observed
per trial for each size cue.
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CHAPTER 6

THE DISTRACTOR RATIO TASK

6.1 Introduction

In this chapter, we apply the approximately optimal control model to a visual search

experimental task, i.e., the Distractor Ratio (DR) task. In this task, the participant has

to find a target item (which may or may not be present) surrounded by some distractors

which share one common feature with the target. Here the control problem involves

learning both when to stop searching and where to look next.

Previous modelling approaches, like the bottom-up salience and maximum a posteriori

(MAP), have utilised heuristic rules to explain the search behaviour in the DR task. In

contrast, we show that an approximately optimal control model can explain the search

behaviour without any description of the heuristic rule. Instead, it explains the search

behaviour as a consequence of adaption to constraints in the human visual system and the

reward. Here, we demonstrate that the two empirical phenomena, i.e., the distractor ratio

curve (inverted U shape) and the saccadic selectivity can be explained as an adaptation

to the uncertainty introduced by the crowding of objects which results in smearing of

features in human vision, and the speed-accuracy trade-off.

The CRVS model presented in this chapter represents the environment as a display

of 36 objects. Where each object in the model is represented as presence or absence of

the target feature (e.g., colour and shape). The actions than the model can take consist
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of 36 fixations action and choice of present or absent action. In this chapter, we use a

recurrent neural network with history based state update. We do not use any time decay

in this model because the search task terminates within few seconds for memory decay

to have any behavioural effect. Furthermore, we compare the recurrent model against

two other behaviour model previously reported in literature. First, is the Kalman filter

based state update model (adapted to the CRVS model) first reported by Sprague and

Ballard (2004). Second, is a heuristic model (adapted to the CRVS model) reported by

Myers et al. (2013). Here, we fit the noise parameters that constraint the amount of

information perceived by the model that best fit the human data. We did not fit the

model behaviour/strategy to the human data.

6.2 The Task

In the distractor ratio task, the participants were asked to find a target object surrounded

by some distractor objects. The participants were informed about the features that define

a target and the distractor’s. At the start of the trial, a display is presented to the

participant which may or may not consists of a target object (randomly positioned) and

some distractor objects each of which shares at least one common feature with the target.

The number of colour to shape distractors present in the display is a controlled parameter

in the experiment and is unknown to the user. The goal is to respond whether the target

is present or absent on each trial. An example display is shown in Figure 6.1 where the

target is a red letter O. The distractors in this display share either a same-colour ‘red’ or

same-shape letter ‘O’ feature with the target.
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Figure 6.1: A sample distractor-ratio display with ratio distribution: (a) 3:45, (b) 24:24, (c)
46:2 and target stimuli a colour red letter O.

Shen et al. (2003) through his experiment observed and reported that the participants

took fewer fixations and responded quickly whether the target was present or absent when

the distractor ratio for same colour to shape and the same shape to colour distractors was

in the minority (as shown in Figure-6.2 (a)). For example, in Figure-6.1 participants took

fewer fixation to find the target ‘red letter O’ in the display (a) and (c) with ratios 3:45

and 46:2 respectively in contrast to display (b) which required more number of fixations

to respond Shen et al. (2003). This effect was especially significant for target absent trials.

The inverted-U like shape (see Figure-6.2 (a)) is termed as distractor-ratio effect.
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(a) (b)

Figure 6.2: (a) Average number of fixations per trial as a function of the number of distractors
sharing colour with the search target in target-absent trials and target-present trials for high
discriminability condition. (b) Saccadic bias (the difference between the observed frequency and
chance performance) as a function of the number of same-colour distractors in target- absent
trials for high discriminability condition (Shen et al., 2003)

In addition to the distractor-ratio effect Shen et al. (2003) also reported and observed

a systematic shift in saccadic towards the distractor features which were in the minority.

In Figure 6.2 (b), the frequency of saccades to same-colour distractors is plotted against

the number of same-colour distractors. In the plot, the saccadic frequencies are higher

for rare features (colour or shape) than should be expected by chance (represented by the

horizontal line). When the same-colour distractors are rare in the display, the participants

were more likely to make eye movements towards them than when they were common.

Conversely, when the number of same-colour distractors was high, the participants were

more likely to make eye movement towards same-shape distractors.
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6.3 Background

Previously, two approaches were used to explain the two empirical phenomena in dis-

tractor ratio task. First, is the map-based approach as described by Kowler (2011). In

this approach, different information sources are combined together to form a hypothetical

map-based representation, such as activation map (Pomplun et al., 2003, Wolfe, 2007) or

saliency map (Findlay and Gilchrist, 1998, Shen et al., 2000). These map-based repre-

sentations consist of topological peaks, where the peak may either represent high neural

activity due to the presence of target item (Wolfe, 1994) or how different they are from

their surroundings items/location (Findlay and Gilchrist, 1998). The foveated vision is

then directed towards these peaks sequentially by using a heuristic control, such as winner

take all (Itti et al., 1998). These are the class of models that describe the distractor ratio

effect using the bottom-up or stimulus-driven approach.

Alternatively, Myers et al. (2013) presented a Bayesian model to explain the distractor

ratio task. According to these models, the distractor ratio effect can be explained as an

adaptation to human information processing constraints in the visual system. In these

models, the agent starts with a prior probability of where the target could be present.

These probabilities are then updated by making a series of eye movements. The model

assumes that people make eye movements to gather evidence in order to identify the

underlying true display. Once enough evidence is gathered, the decision maker then

responds that the target is either present or not. These decisions are made based on a

threshold.

In contrast, we present a novel model of visual search that explains the distractor ratio

effect as an optimal adaptation to both human information processing constraints in the

visual system and the task reward. As shown in chapter 4 and 5 both the visual constraint

and the reward is essential to explaining when to stop and where to look next strategies.

Here in the model, we use two sources of constraints, i.e., the feature noise and spatial

noise on the human visual system. Both sources of noise have been previously shown to

be essential to modelling the DR Effect (Myers et al., 2013, Chen, 2015). In this chapter,
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we contrast our model with two other control models that have been used previously to

provide an interpretation to the distractor ratio effect.

What follows is a description of the underlying theory used in our model to interpret

the DR-effect. Then the description and results of each of the model present in the chapter

are provided. Finally, the performances of the models are compared against each other.

6.4 Theory

In this chapter, we present a control model with the assumption that the distractor

ratio effect can be explained as an adaptation to the spatial smearing that constraints the

human visual system and task reward. Spatial smearing can be explained as a localisation

error (Levi, 2008), where information located in the parafovea may erroneously combine

features from one location with its adjacent locations. It is a well-known constraint

that has previously been shown as one of the potential causes for crowding effect (Levi,

2008, Yu et al., 2009). In Eriksen’s flanker task (Eriksen and Eriksen, 1974), this effect

was shown for letters, where the target letter was flanked by distractor letters on either

side. The participants were explicitly instructed to identify the target stimuli, i.e., the

letter in the middle position and ignore the two flankers on either side. Despite the

instruction, the participants were unable to ignore the distractors completely. Yu et al.

(2009) postulated that this behaviour could be the consequence of smearing of information

from neighbouring flanker letters on the target letter when the objects are in parafovea.

The neuronal explanation was that, when the participant observes the display, an area of

the display will fall within the same neural unit or within a single receptive field, which

would include a number of stimuli. Yu et al. (2009) thereby assumed that the probability

of correctly encoding a stimulus was not only a function of the stimulus itself but also a

function of its neighbouring stimuli. They showed that performance of the flanker task

having target letter ‘S’ with compatible flanker (letter ‘S’) and incompatible flanker (letter

‘H’) could be accounted for by a spatial smearing model.
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We assume that the accuracy of response to identify an object with a colour and a

shape will deteriorate with eccentricity due to the spatial smearing effect. For example,

If the colour red and shape X is surrounded by colour green and shape O around it in

the parafoveal region, as a consequence of spatial smearing, the participants would be

uncertain whether the red coloured X is truly red-X or a green coloured O. Alternatively,

the uncertainty reduces if the red coloured X is surrounded by red-X’s since the mixing

of information has little effect.

Therefore, our theory here is that, because of smearing of both shape and colour

information, the observer will function under uncertainty for any distractor ratio, when

the object is in the parafoveal region and surrounded by distractors. As a consequence of

spatial smearing the observer will be highly uncertain for the objects in minority set, and

therefore, may saccade towards those items in order to reduce the uncertainty. In addition,

the observer would also be highly uncertain for the entire display when the distractor ratio

is closer to 1 since there is an equal number of red-X and green-O distractors in the display.

Based on our theory described above, we predict that the observer should take a longer

time to respond (target present/absent) when the ratio is closer to 1 due to higher overall

uncertainty in the display.

In the following section, we formalise this theory in the form of a computational model

in which the above-specified behaviour emerges. We hypothesise that the control model

encoded with these simple assumptions about the reward structure and spatial smearing

constraint will learn policies that maximise reward. The policies are, to saccade towards

minority set objects to resolve the colour and shape uncertainty caused by smearing. Also,

to make more saccadic movements when the distractor ratios are closer to 1 to resolve

overall uncertainty in the display.
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6.5 CRVS model with Recurrent Update

In the following section, we provide a detailed overview of each of the individual compo-

nent used in the optimal control model with recurrent architecture.

6.5.1 External Display

In the model, we represent the display by randomly distributing the target (if present)

and the distractors in a grid-like space, where each cell consists of either a target object

or a distractor object that either share a common colour or shape feature with the target.

In the display, the number of common colour or shape distractors are determined by

randomly sampling a ratio from a set r (where, r = { 3:33, 6:30, 9:27, 12:24, 15:21,

18:18, 21:15, 24:12, 27:9, 30:6, 33:3 }) per trail. The display is represented by two feature

vectors, one for colour and one for shape. Each cell can contain a value either 1 or 0.

Where for colour vector value 1 represent the feature red and value 0 represents feature

green. Similarly, for shape vector a value 1 represents the letter ‘O’, and value 0 represents

letter ‘X’.

6.5.2 Action Space

In the model, the action space consists of (1) fixate on a cell, (2) respond present and (3)

respond absent. In our study, there was a grid of 6x6 coloured shapes, and there were,

therefore, a total of 36 possible fixation actions. A trial was terminated by choice of the

present or absent action.

6.5.3 Reward

The reward function uses the time cost to reward or penalise the model during the learning

process. A reward of 10 for a correct response and a value of −10 for an incorrect response

was given after choosing a present or absent action. For every fixation action, a time
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penalty is given to the model defined as −1 ∗ (FixationDuration + SaccadicDuration)

where the FixationDuration in target present trial is 0.230 sec and in the target-absent

trial is 0.200 sec. These mean values across distractor ratio set for FixationDuration is

taken as reported in (Shen et al., 2003). The SaccadicDuration is defined in equation-6.1

(Baloh et al., 1975),

SaccadicDuration = 37 + 2.7 ∗ Amplitude (6.1)

Where the Amplitude is the distance between the current and previous fixated loca-

tion, by providing a penalty on each fixation, a speed-accuracy trade-off is imposed in the

model. More fixations give greater accuracy but at a cost.

6.5.4 Observation Model

Every time the model fixates, it also makes an observation. The observation obtained by

the model is constrained by the noise in the human visual system. Two types of noise are

added to the signal: spatial smearing noise and feature noise. Both sources of noise have

been shown to be essential to modelling the DR Effect (Myers et al., 2013, Chen, 2015).

1. Feature Noise: The human eye’s ability to discriminate and perceive object

features degrades with eccentricity according to a hyperbolic function (Strasburger

et al., 2011). To model this function we added Gaussian white noise with mean 0

and standard deviation as eccentricity, i.e., a function of visual angle ‘θ’ between

the fovea and the given location, and a scalar weight ‘wfeatural’ to scale the effect of

distance to the fovea for feature noise. Therefore, the equation for the observation

after adding feature noise at location j given that the eye is focused on location k

is as follows,

δfeatural(St, j) = v[st] +N(θ, σf (θjk, wfeatural))

σfeatural(θjk, wfeatural) =
θjk

(wfeatural)
+ c
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where, v[st] is the feature vector as defined in section 6.5.1, c is a constant with

value 10−4 to avoid 0 variance in the model, σf (θ, wf ) is the variance to simulate the

degrading eccentricity and ‘θ’ is the distance between the fixated cell and location

j.

2. Spatial Smearing: Another source of uncertainty in the human visual system

is the localisation error (Levi, 2008), where information in the parafovea may erro-

neously combine features from one location with adjacent locations. Therefore, for

each location in the colour and shape vector, a weighted sum is calculated for the

location and its adjacent eight locations. For example, If a red X is surrounded by

green Os in the parafovea then, as a consequence of spatial smearing, the participant

would be uncertain whether they are actually looking at a red X or a green O. In

the model, spatial smearing is represented by a weighting function (Gaussian kernel)

with standard deviation as a function of visual angle ‘θ’ between the fovea and the

given location, and a scalar weight ‘wspatial’ to scale the effect of distance to the

fovea for spatial noise. The weighting function here is a normalised function. As ‘θ’

(distance) increases the acuity decreases and the standard deviation of the Gaussian

kernel increases, this means that the precept of the item at a given location suffers

greater interference from surrounding items. This encoding is done for each location

in the display. Thus, the equation for the observation after adding spatial noise at

location j given that the target features are at location St ∈ (1, 2, ..., n) and the eye

is focused on location k is as follows,

δpercept(St, j) = K(s, σs(θjk, wspatial))× δfeatural(St, j)

σspatial(θjk, wspatial) =
θjk

(wspatial)
+ c

where, K is the Gaussian kernel with kernel size 3x3, σs(θjk, ws) is the variance.

δpercept(St, j) is calculated separately for both shape and colour feature vectors. c is

a constant with value 10−4 to avoid 0 variance in the model.
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(a) (b)

Figure 6.3: (a) acuity function represented using a linear variance model with wfeatural = 3. (b)
plot for acuity drop using the linear variance model.

An important thing to note here is, even though the variances σf (θ, wf ) is generated

using a linear function (see Figure 6.3 (a)). The decline in acuity as a consequence of

using the linear variance function is still hyperbolic (see Figure 6.3 (b))(Strasburger

et al., 2011).

Now each percept (δpercept) (one for colour and one for shape) is represented as a

vector of noisy observations for each location. A consequence of introducing the

noise is uncertainty in the content of the location. The extreme values, <= 0.0 or

and >= 1.0, represent strong evidence that the feature is either red or green or O or

X, while a value of 0.5 represents the absence of evidence in favour of either feature

value.

6.5.5 State Estimation

At each time step t on which fixation is made the model receives a noisy observation for

each location. The observation space consists of a noisy colour and shape feature vector.

Now, we combine the colour and shape observation vectors to obtain a scalar score for
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each location as shown in equation 6.3. This scalar score is defined as a relevance score

in the model. The relevance score for each cell is a Euclidean distance between the target

features, i.e., [1, 1] and the observed colour and shape observations for each location (6.3).

The relevance score is capped between 0 and 1 where a value 1 represents high relevance

to task and value 0 represents low relevance to the task.

Scoret[i, j] = min(max(0,

√
(1− δcolour[i, j])

2 + (1− δshape[i, j])
2), 1.0) (6.2)

This vector of relevance score is input to a recurrent neural network which integrates

information across fixation. In this model, by using a recurrent neural network, we update

the underlying hidden state by maintaining a summarised history of previous observations

(see section 3.6.3).

6.5.6 Model Learning

Model Architecture

The model architecture consists of the 36-element relevance score vector. This is then

forwarded as an input to the recurrent neural network with a network size of 36 and

tanh activation. The output from the network is a 36-element vector which we denote as

the underlying hidden state. The hidden state is then mapped to a feed-forward neural

network (layer2) of size 36 nodes and a sigmoid activation function. The output of the

layer2 is mapped to a feed-forward layer of 38 nodes and soft-max activation function.

This network outputs the parameterised policy distribution. Also, the layer2 is mapped to

another feed-forward network with a single node and linear activation that approximates

the value of the given state. The model uses Adam Optimisation with a learning rate of

0.0001 to train the network with 4 worker nodes. The hidden layer weights were initialised

using Xavier initialisation (Glorot and Bengio, 2010).
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Policy Learning

As described above, at each point in time, the model observes the external display through

a noisy percept with a high-resolution fovea and low-resolution parafovea and receives an

observation (section 6.5.4). The model then extracts the high-resolution local information

from the environment by taking actions (section 6.5.2) to move the fovea (e.g., choose

where to move the fovea). Since the environment is only partially observed the model

needs to integrate information over time in order to determine how to act and how to

make eye movements most effectively. It does this using the Recurrent network as state

estimator described above. At each step, the model receives a scalar reward (section 6.5.3)

(which depends on the action taken by the agent), and the goal of the agent is to learn

policies/strategies that maximise the total sum of such rewards R = E[
∑

γt−1rt] where

γ ∈ (0, 1) is the discount factor.

Here, the model learns the optimal control policy by using one type of reinforcement

learning algorithm, i.e., the policy gradient algorithm (for detail refer to section 3.8.1).

6.5.7 Results

The search performance of the CRVS model with recurrent update is reported and com-

pared to the human performance for the Distractor-Ratio task. The results reported here

are from a model that learns the approximately optimal policy through training and was

used to generate the behaviour (last 50,000 trials of the simulation).

Plots of fixation frequency versus same colour distractor-ratio for the best fit model

is shown in Figure 6.4 (a). The results show that the model generates similar distractor

ratio curves to humans (Figure 6.2) for target absent, where more fixations are required

for ratios close to 1. The RMSEs for the model RMSE = 0.40 and the goodness of fit

against Human performance for the model was R2 = 0.92. The model here predicts the

invert-U curve or the distractor ratio effect only in the absent condition and a flatter curve

in target present condition. This predicted behaviour is consistent with human behaviour.

101



(a) (b)

Figure 6.4: (a) Average number of fixations per trial as a function of the number of distractors
sharing colour with the search target in target-absent trials and target-present trials for the CRVS
model with recurrent update. (b) Saccadic bias (the difference between the observed frequency
and chance performance) as a function of the number of same-colour distractors in target-absent
trials for the CRVS model with recurrent update. Noise parameters used: Feature noise weight
= 18, Spatial noise weight = 4.

The saccadic bias effect is shown in Figure 6.4 (b). The results show that the model

chose to make eye movements towards colour or shape distractors when they were in

minority set. The RMSEs for the Naive Bayes model RMSE = 9.41 and the goodness of

fit against Human performance for the model was R2 = 0.95. A weakness in the model

was it could not predict the magnitude of saccadic selectivity shown by participants.

6.6 CRVS model with Naive Bayes update

6.6.1 Model Environment

The environment details used in this model is same as described in section 6.5.1, sec-

tion 6.5.2, section 6.5.3, section 6.5.4
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6.6.2 State Estimation

In the model, we combine the colour and shape observation vectors to obtain a scalar

score for each location. This scalar score is defined as a relevance score in the model. The

relevance score for each cell is a Euclidean distance between the target features, i.e., [1, 1]

and the observed colour and shape observations for each location (6.3). The relevance

score is capped between 0 and 1 where a value 1 represents high relevance to task and

value 0 represents low relevance to the task.

Scoret[i, j] = min(max(0,

√
(1− δcolour[i, j])

2 + (1− δshape[i, j])
2), 1.0) (6.3)

This combined score is then used as a state vector st. The state st is updated on each

fixation using the Naive Bayes method described in section 3.6.2.

Here, in this model each cell in the state vector st is parameterised by representing

it with a mean score value Scoret[i, j] and variance σt[i, j] (which represents the uncer-

tainty). On each time-step the previous score and variance is maintained in the model

(Scoret−1[i, j] and σt−1[i, j]). On receiving a new observation, i.e., Scoret[i, j] and vari-

ance σt[i, j] (here variance is the eccentricity) the model uses the Naive Bayes method

(section 3.6.2) to update the current estimates of the score and variance.

6.6.3 Model Learning

Model Architecture

The relevance score estimates Scoret (36 element vector) from the state estimator (above)

was taken as the input. This input was connected to a fully connected hidden layer

consisting of nodes equivalent to the number of elements in the display, i.e., 36, with

rectifier activation function. This is followed by a second fully connected hidden layer

consisting of again nodes equivalent to the number of elements in the display, i.e., 36,

with sigmoid activation function. Finally, the output layer was a fully connected linear
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layer of 38 nodes with a single output for each action in the task. To avoid over-fitting of

the network l2 regularisation of the weights was applied with value 10−5.

Policy Learning

Here, the model learns the optimal control policy by using one type of reinforcement

learning algorithm explained in section-3.8.1 (Mnih et al., 2016).

6.6.4 Results

The search performance of the CRVS model with Naive Bayes update is reported and com-

pared to the human performance for the Distractor Ratio task. The results reported here

are from a model that learns the optimal policy (reward value per trial converges) through

training and was used to generate the behaviour (last 50,000 trials of the simulation).

(a) (b)

Figure 6.5: (a) Average number of fixations per trial as a function of the number of distractors
sharing colour with the search target in target-absent trials and target-present trials for the CRVS
model with Naive Bayes update. (b) Saccadic bias (the difference between the observed frequency
and chance performance) as a function of the number of same-colour distractors in target-absent
trials for the CRVS model with Naive Bayes update. Noise parameters used: Feature noise colour
weight = 14, Feature noise shape weight = 13 and Spatial noise weight = 4.

Plots of fixation frequency versus same colour distractor-ratio for the best fit model is
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shown in Figure 6.5 (a). The results show that the Naive Bayes model generates similar

distractor ratio curves to humans (Figure 6.2) for target absent, where more fixations are

required for ratios close to 1. The RMSEs for the Naive Bayes model RMSE = 0.98 and

the goodness of fit against Human performance for the model was R2 = 0.92. The model

here predicts the invert-U curve or the distractor ratio effect only in the absent condition

and a flatter curve in target present condition. This predicted behaviour is consistent

with human behaviour. A weakness in the model is the magnitude of fixations it predicts

for the target absent condition.

The saccadic bias effect is shown in Figure 6.5 (b). The results show that the Naive

Bayes model chose to make eye movements towards colour or shape distractors when they

were in minority set. The RMSEs for the Naive Bayes model RMSE = 6.64 and the

goodness of fit against Human performance for the model was R2 = 0.96. The saccadic

selectivity predicted by the model is consistent with the strategy used by people in the

distractor ratio task.

6.7 Heuristic Model for Distractor Ratio Task

6.7.1 Model Environment

The environment details used in this model is same as described in section 6.5.1, sec-

tion 6.5.2, section 6.5.3, section 6.5.4

6.7.2 State Estimation

The state estimation function used in this model is same as described in section 6.6.2
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6.7.3 Model Learning

The Heuristic model begins each trial with a prior score for each location as 0.5. Once

a random display is presented to the model, it begins by fixating on a location (the first

fixation is random) and obtains a noisy observation. It then integrates the noisy obser-

vation with previously acquired information from the trial (as described in section 6.6.2).

It then uses the integrated state vector to choose the next action to take. These choices

in the model are made using decision variables (target present or a target absent). If the

decision variables are greater or less than the threshold, then the model responds appro-

priately. If neither decision variables reach the required threshold, then the model selects

a new location to fixate. The next location to fixate is made using a look for best strategy

(max rule),i.e., the model selects the location with highest relevance score to fixate.

6.7.4 Results

The search performance of the Heuristic model is reported and compared to the human

performance for the Distractor Ratio task. The Heuristic control model was run for 50,000

trials, and 10 regression runs to check for consistency.

Plots of fixation frequency versus same colour distractor-ratio for the best fit model

is shown in Figure 6.6 (a). The results show that the Heuristic Control model generate

similar distractor ratio curves to humans (Figure 6.2) for target absent, where more

fixations are required for ratios close to 1. The RMSEs for the Heuristic Control model

RMSE = 0.35, and the goodness of fit against Human performance for the model was R2

= 0.93. The Heuristic Control model produced the shape and magnitude of the distractor

ratio curve for target absent similar to humans. However, a weakness of the Heuristic

control model was that it produced DR effects for both target present and target absent.

The saccadic bias effect is shown in Figure 6.6 (b). The results show that the Heuristic

Control model chose to make eye movements towards colour or shape distractors when

they were in minority set. The RMSEs for the Heuristic Control model RMSE = 10.45,
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(a) (b)

Figure 6.6: (a) Average number of fixations per trial as a function of the number of distractors
sharing colour with the search target in target-absent trials and target-present trials for Heuristic
Control Model. (b) Saccadic bias (the difference between the observed frequency and chance
performance) as a function of the number of same-colour distractors in target-absent trials for
Heuristic Control Model. Noise parameters used: Feature noise weight = 6, Spatial noise weight
= 8, Absent Threshold = 0.35 and Present Threshold = 0.90.

and the goodness of fit against Human performance for the model was R2 = 0.92. The

saccadic selectivity predicted by the Heuristic Control model is not consistent with the

strategy used by people in the distractor ratio task. The Heuristic Control model produces

a small saccadic bias which is not a characteristic of human performance.

6.7.5 Model Comparison

In this section we compare the performance of the CRVS model with recurrent update, the

CRVS model with Naive Bayes update and the heuristic control model on the Distractor-

Ratio task.
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(a) (b)

Figure 6.7: (a) Mean accuracy achieved by the three best fit models (CRVS Recurrent update
model, CRVS Naive Bayes update model and Heuristic model). (b) Mean utility gained by the
three best fit models (CRVS Recurrent update model, CRVS Naive Bayes update model and
Heuristic model).

Figure 6.8: plot shows frequency distribution of the first fixation over the grid like display made
by the CRVS model. The distribution shows that majority of the first fixation landed in the
centre of the display.

CRVS vs Heuristic model

The results from the simulation shows that the both the CRVS and Heuristic control

models were able to generate the distractor ratio curves in the target absent condition.

However, the Heuristic model produced DR effects for both target present and target

absent. Also, the magnitude of the saccadic selectivity was better captured by the CRVS

model in comparison to the Heuristic model.

108



Our results show that the look for best heuristic strategy does not explain the saccadic

selectivity as shown by people. These findings are consistent with the analysis reported

by Najemnik and Geisler (2008), that the people use more sophisticated strategies than

a simple look for best.

Another effect generated by the CRVS model is the bais towards the centre of screen

on the first fixation (see Figure-6.8). A characteristic which is also shown by people Tatler

(2007). The CRVS tends to produce this effect as an adaptation to the decay in acuity,

so as to maximise information gain on the first fixation. In contrast, the heuristic model

requires such strategy to be externally encoded.

CRVS Naive Bayes vs Recurrent Update

Both the Naive Bayes and the Recurrent CRVS model were able to generate the distractor

ratio effect and the saccadic selectivity. However, the magnitude of saccadic selectivity was

better explained by the naive Bayes model. Our analysis shows that this lower saccadic

selectivity in the recurrent CRVS model can be attributed to the state estimation used

by the model. In the recurrent model, the states are defined as the noisy relevance score

estimate. The relevance score uses an euclidean distance metric as a similarity score

between the target features and the observed features. Due to this metric, information

is lost regarding which feature contributed more, whether colour feature lead to high

relevance score or shape feature. For example, the relevance score for observed features

[colour = 0.6, shape = 0.4] and [colour = 0.4, shape = 0.6] is the same when target feature

are defined as [colour = 1.0, shape = 1.0]. In contrast, the Naive Bayes model updates

the feature estimate separately for colour and shape and then combines them to give a

relevance score. The information loss impacts both the models, however, due to using

sub-optimal information to estimate current state the recurrent model suffers the most.

The performance of the model is shown in fig 6.7. The results show that the recurrent

update model out-performs the naive bayes update model. The recurrent update model

achieves higher utility and accuracy than the naive bayes update model.

109



6.8 Discussion

In this chapter, we presented a control model for explaining and predicting peoples search

behaviour for the distractor-ratio task. Our results show that the saccadic selectivity

and the distractor-ratio effect emerges as an approximately optimal adaptation to the

constraints imposed by the human visual system specifically, the noise introduced by

crowding of neighbouring features in the periphery (feature smearing). Unlike previous

work, including Myers et al. (2013), our results are based on a model that makes approxi-

mately optimal control decisions to choose fixation locations rather than a model that uses

MAP-like heuristics. Furthermore, our results show that the MAP-like heuristic fails to

capture the magnitude of saccadic selectivity shown by people in DR-Task. Furthermore,

our results show that the distance metric for feature binding used in the model has some

information loss. As a consequence of this way of feature binding, the saccadic selectivity

is lower than what is shown in human performance.

The model presented was tested against the human performance reported in Shen

et al. (2003) for a 36-element distractor-ratio task. Our results explain that people choose

where to fixate next so as to reduce the overall uncertainty in the display about the target

and distractor item caused by the feature smearing in the periphery. Also, the when to

stop decision, that is, to decide if the target is present or absent emerges so as to maximise

the trade-off between the accuracy and dwell time.

Achieving these results required two contributions to cognitive modelling. The first is

the novel application of POMDPs to the framing of the distractor-ratio problem, further

extending the work of Butko and Movellan (2008). The POMDP framing is important

because it provides a rigorous basis for exploring the computationally rational adaptation

of human strategies to known information processing constraints Lewis et al. (2014),

Howes et al. (2009). It thereby helps make the crucial link between cognitive mechanism

and rationality that supports in-depth explanations of behaviour.

The second contribution is the novel application of Deep Reinforcement-Learning Mnih

et al. (2016) to determine the optimal policy given a theory of human visual information
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processing capacities. The role of reinforcement learning based algorithm has previously

been proposed as means of explaining human learning processes Dayan and Daw (2008)

and also, as means of deriving rational analyses of what a person should do in particular

task Chater (2009). Our work is more aligned with the goals of Chater (2009). The

purpose of our reinforcement learner was not to model the step-by-step learning process,

but rather to model the rational outcome of the learning process – an approximately

optimal adaptation to information processing limits.

A future extension to the work will be to extend the recurrent architecture with a

state estimate that uses colour and shape estimate separately rather than a combined

estimate. Rather than using a sub-optimal state estimate the alternative may help in

further improving the fit to the saccadic selectivity.

In conclusion, we have demonstrated that framing the visual search problem as a

POMDP and solving this problem with deep reinforcement learning is a viable approach

to explaining effects such as distractor-ratio and saccadic selectivity.
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CHAPTER 7

GENERAL DISCUSSION

7.0.1 Main Results

To summarise, the thesis presents a computational theory of visual search and opera-

tionalises it using the CRVS model that explains the human search behaviour. The model

explains the eye movement strategies as an emergent consequence of ecology, reward and

critically the architecture defined for the task. The theory was tested against three visual

search tasks.

In the Image search task (Chapter 4), the, when to stop strategy, emerged as an

adaptation to the structure of the feedback reward (power and linear) and the ecology

(skewed distribution of target features in an image in the display). The model assumes

that the availability of information declines with eccentricity (also termed as feature noise

in this thesis). The model uses this constraint to define the model architecture. The

results showed that the model strategy adapted to the change in reward and the density

of images where the model took fewer fixation and terminated the search when the reward

for images increased linearly as compared to the power-law-like increase. The model also

adapted to the gap size between images, where, the model took fewer fixation when the

gap between images was small as compared to the large gap between images.

In the Williams’ object search task (Chapter 5), the where to look next strategy

emerged as an adaptation to the constraints in the human visual system. The model re-
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uses the architecture defined in chapter 4, where the availability of information declines

with eccentricity and the rate of decline varies for each low-level feature like colour, shape,

size. Also, the model assumed that the information previously perceived decays with time.

The results showed that when the colour feature was provided as a pre-cued feature the

proportion of fixations landed on target colour was the highest due to high acuity of

the colour feature, followed by size and shape feature. Furthermore, a fewer number of

fixations were required for the colour feature due to the high acuity. Although the model

failed to capture the magnitude of saccadic distance, it still did capture the shape which

was consistent which human search performance. This cause of difference was due to the

difference in the ecology of the gap between the simulated display and the actual display

experience by participants. The model also revisited previously fixated locations which

were a function of the memory decay rate.

In the Distractor-Ratio task (Chapter 6), the where to look next and when to stop

strategy emerged as an adaptation to the theory of constraints on the architecture and

the ecological distribution of the distractor set. The model made the same architectural

assumption as in chapter 4. In addition, the model also assumed a smearing perceptual

noise due to crowding and similarity of distractors with the target on a single feature

dimension. The results showed that the saccadic selectivity and the distractor ratio effect

could be explained by the model as a function of the distractor set and the acuity. Fur-

thermore, the model showed that the centre of gravity effect emerged as an adaptation

to the acuity function. Where, by fixating at the centre of the display, the para-foveal

region is able to gather more information and effectively guide fixations. Also, our results

showed that MAP-like strategy is not a characteristic of human behaviour and failed to

produce the magnitude of saccadic selectivity shown by people in DR-Task. This finding

is consistent with Geisler (2011) study. Where, they also reported that MAP-like heuristic

does not capture the human strategy, rather people utilise a more complex strategy.

In all three studies presented in the thesis, the strategy (saccadic selectivity, and

saccadic distance due to feature sensitivity) emerged as a consequence of the architecture
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defined in the model (the perceptual feature noise, spatial noise, and memory decay), the

reward (speed accuracy trade-off) defined for the model for each task, and the ecology of

the task (distribution of target features, distribution of distractor set, and gap between

stimulus). Furthermore, in all the three tasks no prior assumptions were made about the

strategy space nor were any hand-coded rule or heuristics were defined. Instead a set of

theories were defined, and the strategy emerged as an adaptation to those theories.

7.0.2 Machine Learning for Computational Models

In addition to the scientific contribution, a new methodological contribution is also pro-

vided where strategies are not hand-coded, rather derived as an adaptation to the theory

defined.

The predictive performance of the existing models is impressive. However, their further

development is limited by how the strategies are defined to build the models. Cognitive

architectures like EPIC (Kieras and Meyer, 1997) and ACT-R (Anderson, 1996) models

have required hand-coded rules and the coding of rules not only require domain expertise

it is also a significant development work on the application of the models to new tasks.

Bayesian models are data intensive or make strong assumptions about the likelihood

distribution (e.g., Gaussian distribution) (Butko and Movellan, 2008) which makes them

difficult to scale up to real-world tasks efficiently.

Alternatively, with a recent breakthrough in machine learning, cognitive models have

utilised machine learning techniques to derive strategies. However, the models have relied

upon relatively simple reinforcement learning methods (Sprague and Ballard, 2004, Chen

et al., 2015) or classifiers (Li et al., 2018). The efficiency concerns limit the range of tasks

to which the models can be applied.

In this thesis, we investigated a more scalable and efficient approach to modelling hu-

man behaviour. The model presented utilised a model-free Deep Reinforcement Learning

(DRL) algorithm as an optimisation technique to solve the visual search problem given a

set of theory about human cognition. The role of reinforcement learning in decision mak-
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ing have previously been proposed as a means of explaining human behaviour (Dayan and

Daw, 2008). Also, as a means of deriving optimal strategy of what a person should do

in particular task (Chater, 2009). The studies presented in this thesis is more aligned to

Chater (2009). The purpose of our reinforcement learner was not to model the step-by-

step learning process, but rather to model the optimal outcome of the learning process –

an approximately optimal adaptation to the theory of constraints.

The model-free reinforcement learning works by ignoring the underlying environment

dynamics (model) and utilise only the past experience to take future actions. The focus

is on answering what is the best action to take given only the current observation. This

assumption is especially useful for finding optimal policies when the underlying system

is complex to model. In this thesis, the environment used is static, and the saccadic

movements are assumed to be without any errors. In other words, the transition proba-

bility of moving from one state to next (P (s(t + 1)|st, a)) is 1. Due to this nature of the

environment, the model-free reinforcement learning is an appropriate algorithm to find

the optimal policy.

An optimisation algorithm was used for the assumption that the behaviour emerges

as an approximately optimal adaptation to the theory of the architecture, reward and

ecology. The optimality here is assumed to derive a causal relationship between the

theory and the emergent behaviour.

In this thesis, we formulated the visual search problem as a POMDP, and used a deep

reinforcement learning algorithm to solve the POMDP problem, we have shown that the

approach can scale to everyday tasks that require a visual search. The POMDP framework

breaks down the problem into two sub-tasks of state estimation and controller. The state

estimation is a one-to-one mapping of current environment state and the controller then

uses the state to learn how to act in the environment. The role of state estimation

has previously been attributed to Orbitofrontal cortex (OFC) that maintains the current

environment state (Wilson et al., 2014) for a given task. Also, integrating information

from cortical and subcortical areas, with information from memory to update current state
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in partially observable setting (Wilson et al., 2014). In this thesis, through the three visual

search tasks, we investigated three different state estimation mechanisms. Our intention

here was not to vary the theory of how people maintain or update information across

fixation. Rather, to test the efficiency of the approaches.

In the Image search task (Chapter 4), the Bayes optimal and recurrent network ap-

proaches were investigated for updating information across fixations. Our results showed

that both the state estimation techniques were able to explain the change in stopping

behaviour with the change in item density and the reward. However, the Bayes state

estimation approach was difficult to scale up to the actual task size in comparison to the

recurrent approach.

In the Distractor-Ratio task (Chapter 6), the Naive Bayes and the recurrent net-

work approaches were investigated for updating information across fixations. Our results

showed that both the techniques were able to explain the distractor ratio effect and sac-

cadic selectivity. However, the Naive Bayes approach imposed a strong constraint on the

noise model to be used, i.e., the noise model needs to be linear and Gaussian. This con-

straint might not be feasible to model real-world problems that are more often non-linear

in nature. Furthermore, the CRVS model with recurrent update achieved higher accuracy

and utility as compared to the CRVS model with Naive Bayes update.

In the studies presented above, the recurrent architecture with deep reinforcement

learning was shown to be a more scalable and efficient solution to modelling human

behaviour. However, decoding what representation a recurrent network has learnt is

difficult.

The fact that the CRVS model generates human-like strategies using machine learning

distinguishes it from approaches which use hand-coded rule (Kieras and Hornof, 2014) and

approaches that learn from human examples (Li et al., 2018). It, therefore, represents a

progression to models that require fewer inputs from analysts in order to model human

cognition. Also, the model represents a new application of deep reinforcement learning in

modelling human behaviour. Previous research has focused on the application of learning
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human-level control policies on a variety of different Atari games (Mnih et al., 2015). By

defining a deep reinforcement learning algorithm to solve a POMDP, as we have done, we

have shown that the approach can scale to everyday tasks that require a visual search.

Also, by utilising a recurrent neural network to approximate state estimation, we further

extended (Rao, 2010) idea to solve a larger POMDP problem, and addressed some of the

high computational cost associated with POMDPs to provide a more efficient approach

to the modelling problem.

7.0.3 Further Contributions to Cognitive Modelling

Through the studies reported, the thesis makes a contribution to the field of cognitive

science by presenting a new computational model that further explains the role of con-

straints, ecology and reward in understanding human behaviour and decision making.

This work extends the current practice of computational modelling by (a) by showing

how to operationalise computational rationality to model human behaviour, (b) extend

deep reinforcement learning with recurrent neural network to explain visual search, and

(c) explaining behaviour as bounded optimal and focus on the role of constraints on the

behaviour.

Research on human behaviour has often focused on explaining behaviour as either

being optimal (Anderson, 1991, Chater and Oaksford, 1999, Geisler, 2011) or sub-optimal

(Rahnev and Denison, 2018). This thesis claims that behaviour is bounded optimal.

The assumption of bounded optimality (computational rationality) in the computational

model is crucial because it enables models to be predictive and explanatory (Howes et al.,

2009, Lewis et al., 2014, Howes et al., 2016, Acharya et al., 2017). By selecting a strategy

through an optimisation algorithm, it allows a causal relationship between the theoretical

assumption made in the model and the resulting behaviour that emerged. Furthermore,

the strategy derived is also predictive. Here, the success of the model in predicting

behaviour does not lead to the conclusion of behaviour being optimal or sub-optimal.

Instead, it provides evidence in favour of the theory of the constraints, ecology and rewards
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used.

The visual constraints assumed in this thesis worked well to predict users search be-

haviour to locate target items in the display. The model was able to address what infor-

mation can be perceived on each fixation by showing that the difference in the effective

field of view for the low-level feature (colour, shape and size) helps to predict how quickly

participants were able to find the target. An important prediction of the model was to

explain the fixation proportions (where to fixate next). The model was able to address

this question by showing that the difficulty in discriminating features in the periphery

and the ecology of the task plays a critical role in explaining and predicting the emergent

behaviour. For example, in chapter 6 the spatial noise made it difficult for the model

to discriminate features and thereby adopted a strategy to guide fixations towards the

minority set.

The model-free reinforcement learning used to explain search behaviour suggests that

the people may utilise a trial-and-error approach to perform goal-directed tasks. These

models operate by caching rewards/values accumulated through repeated interaction with

the environment. In other words, the decision is made by estimating future reward based

on the rewards that have been encountered in the past. For example, in chapter 4 the

model learned when to terminate searching such that it maximised its rewards. In chapter

5 and 6 the model learned where to move next so that it minimised the search time.

Furthermore, the model prediction explains how the strategic choices that people make

are affected by the task ecology, information processing constraints and user priorities

described in the form of rewards. For example, in chapter 4 small changes in the visual

angle between items and changes in the reward structure that reflects user preference

causes qualitative changes in strategy. In chapter 6, smearing of information due to

crowding effect led to saccadic selectivity towards target features. By describing cognitive

models as an adaptation to the underlying theory, enables the model to explain behaviour,

rather than merely describing them. Furthermore, the model provides a framework to test

the theory of constraints that led to observed behaviour.
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To summarise, the model presented in the thesis shows that the human eye movement

behaviour can be explained as computationally rational strategy that adapts to both the

visual and cognitive influence. Both factors need to be taken into account for a theory to

explain how eye movements operate in the real world. For example, we saw that the eye

movement are dependent on the information processing constraints, user expectations,

memory and the constraints imposed by the structure of the visual display.

7.1 Future Work

Through this thesis, the CRVS model we presented was able to generate human-like search

behaviour in 3 different visual search tasks. Though the progress made in this thesis is a

step forward, it does so for visual search tasks. This section discusses some of the possible

extensions to the work.

7.1.1 Integrated Model for Human behaviour

The model reported in this thesis interacts with its environment by converting rich visual

information into a symbolic representation. With the complex visual layouts of todays

displays, converting to a symbolic representation may prove to be a challenge. A possible

extension would be to use Convolutional Neural Networks (CNN) to process raw images

as an input to the model rather than symbolic values. Recent, breakthrough in CNN’s

capability of extracting meaningful information has led to high performing object detec-

tion classifiers (Girshick, 2015, Dai et al., 2016, Liu et al., 2016). The model will extend

its input layer to incorporate a CNN layer to extract task-relevant information given a

foveated image input and then use the information to learn the strategy. Xu et al. (2015)

have previously used attention-based learning to generate image caption. With the newer

displays being more visually rich and complex a CNN extension will help the model to

be applied to more real work tasks. The first test task would be to redo the modelling of

image search task (Chapter 4) with a CNN layer.
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Another extension to the model will be to incorporate a motor control module. Much

of the real-world interaction involves both the eye movement for localising or feedback and

a corresponding motor movement. For example, driving, typing text, cooking or grabbing

a cup on the table. A unified model of perceptual-motor control will be rich enough

to answer questions like how attention and motor control is coordinated. For example,

in the chapter 4 the model was missing the motor control model of mouse movement.

Future work will be to see if a model of mouse movement recovers the additional search

time. It will further validate the novel hypothesis explored in this thesis with a complex

architecture where the model has to adapt to both the perceptual noise and the motor

control noise.

7.1.2 Optimal Control versus Approximately Optimal Control

One potential direction of research is to look at the consequence of approximation to

visual search behaviour. While many researchers have advocated that human search

behaviour can be explained as Bayes optimal (Najemnik and Geisler, 2005, 2008, Butko

and Movellan, 2008, Myers et al., 2013, Nunez-Varela and Wyatt, 2013). Where the

research suggests people maintain an optimal state estimate of the world and use those

estimates to act in the world optimally. However, the work presented in the thesis assumes

that finding an optimal policy to the real-world problem is biologically intractable, and

some form of approximations needs to be applied to solve these problems. For example,

in chapter 4 the Bayesian model was not tractable to the full 6x6 grid display.

Approximations are especially necessary because in real-world information received is

high-dimensional, continuous and partial. This implies that the data received is sparse and

situations may or may not be encountered multiple times to learn best decisions to make.

A consequence of approximation is the soft/no guarantees of convergence to global optimal

solution. This may lead to a model learning local optimal solution for some problems.

Further work needs to be done to understand the consequence of approximation to the

underlying theory.
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7.1.3 Model Constraints

Fixation Duration

The question of when do people move the gaze from one location to next is frequently

asked in visual search (Rayner, 1998). In this thesis, the three studies presented doesn’t

answer this question directly. In chapter 4 for the image search task the fixation duration

was set from the reported human data. In chapter 5 and 6 the fixation duration was set

to 275ms. Visual search literature suggests that in high-speed visual search tasks fixation

duration range from 250-300ms (Rayner and Castelhano, 2008). Previous research has

given some insight into what factors effect fixation duration (Halverson and Hornof, 2004,

Wolfe, 2007, Rayner, 1998). For example, Mackworth (1976) in his study showed that

the fixation duration increased as the density of objects increased in the search display.

He attributed this to the increase in cognitive demand imposed due to processing more

objects in the display. As a future work, the model will be used to explain the increase

in fixation duration as a function of object density.

Saccadic Movements

In the model, we assumed that when the gaze is moved from one location to next, they

land on the object of attention without any error. Previous research has shown that the

saccadic movements are noisy and imperfect (Kowler, 1990). Becker and Fuchs (1969)

showed that saccades have a tendency of undershooting rather than overshooting the

target location. Also, there is a distinction between where people are attending to and

where the eyes move Salvucci (2001). For example, Schilling et al. (1998) showed that

participants did not fixate on every word as they read a sentence, yet they could almost

perfectly comprehend the sentence. Also, McConkie and Rayner (1975) showed that

people are able to process information prior to them fixating on the word by processing it

in the parafovea. The CRVS model presented in the thesis does not make the distinction

between the deployment of attention using the noisy observation and then making eye
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movements. Since, it does not capture the imperfect eye movements. Previous work by

Salvucci (2001) presented the EMMA model that captures the noisy eye movements. As

part of the future work, we will use the constraints encoded in EMMA in our model. We

will then use this model to the changes in model behaviour for the Williams object search

task presented in chapter 5.

Discount Factor

Human behaviour studies have shown that people have a cognitive bias called ‘Hyperbolic

discounting’ (Vincent, 2016), where they choose small immediate reward rather than

a large reward later. This phenomenon is especially seen when the delay is closer to

the present than the future. For example, when people are given 2 choices, get a 50

today or 70 in a week. People choose 50 today. In this thesis we did not explore the

discounting of reward and its influence on human behaviour. Rather, we assumed based

on the experimental instruction that people would maximise the future reward rather than

intermediate reward. As part of future work, we need to further explore the discount factor

parameter and its influence on model behaviour.

Parameter Exploration

The model presented in the thesis uses a grid search method to find model constraint pa-

rameters that best fit human performance. Two issues arise because of manual search: (1)

an exhaustive search for finding values that leads to best fit is computationally expensive,

(2) using values from literature can introduce additional bias on behaviour that is un-

wanted. An extension to the current modelling effort would be to use an inverse model to

reduce ambiguity and bias due to model parameters that are derived from observed data.

For example, Kangasrääsiö et al. (2017) used an Approximate Bayesian Computation

(ABC) inference model to estimate model parameters from experiment data. Specifically,

they were able to derive fixation duration and recall probability parameters for the model

to improve prediction performance. As an extension, we will use the ABC model to derive
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fixation duration for the model in chapter 5. Furthermore, we will explore whether noise

parameters can be derived from observed data.

7.2 Conclusion

The thesis demonstrates that a computationally rational strategy can explain and predict

peoples’ visual search behaviour. The CRVS model presented in this thesis derive strategy

as an approximately optimal adaptation to the constraints imposed by the human visual

system, the ecology of the task and the task rewards. In doing so, the model avoided

any heuristic assumptions about the strategy. Three visual search task presented in this

thesis supported the hypothesis.
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APPENDIX A

GENERALISED ADVANTAGE ESTIMATE

The chapter explains the Generalised Advantage Estimate used in the thesis in sec-

tion 3.8.1.

In the Generalised Advantage Estimate (GAE), the cumulative reward is described as

Monte-Carlo return eq-A.1.

Rt =
T−t∑
k=0

γkrt+k (A.1)

Here, Rt is an unbaised expected return of future rewards in a given state. But, in

a stochastic environment, the rt+k is a random variable, and sum over rewards can have

high variance. However, by using a n-step return that is represented by a value function

V(s) that approximates the sum of return from remaining steps can be used as a low

variance estimator.

R
(n)
t =

n−1∑
k=0

γkrt+k + γnV (st+n) (A.2)

Where, R
(1)
t represents a 1-step look ahead commonly refered to Q-learning (section-

3.7.1) and R
(∞)
t represents the Monte-Carlo return over the entire trajectory. Here, n-step

acts as a trade-off between bais and variance, where, R
(∞)
t gives an unbiased but high

variance estimator and R
(1)
t gives a biased but low variance estimator.

Alternatively, a λ-return (Sutton and Barto, 1998) method is used for bias-variance
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trade-off, using a exponentially-weighted average function to estimate the value of state

with λ as a decay parameter.

Rt(λ) = (1− λ)
T∑

n=1

λ(n−1)R
(n)
t (A.3)

Where, λ = 0 refers to a 1-step look ahead similar to R
(1)
t , and λ = 1 refers to Monte-

Carlo return R
(∞)
t . Intermediate values are used balance the bias and variance trade-off

for value estimation. Empirically, values between [0.9, 0.99] works best (Schulman et al.,

2015). In this thesis we set the value at 0.98.

Using the λ-return to update the value function results in a temporal difference algo-

rithm (Sutton and Barto, 1998). Also, estimating the advantage function (eq-A.4) using

the λ-return derives the generalized advantage estimator (Schulman et al., 2015).

At = Rt(λ)− V (st) (A.4)

�J(θ) =
π

E
θ

[
�

T∑
t=1

logPθ(s, a)A
t
]

(A.5)

Empirically, the λ-return better performance than the n-step return (Schulman et al.,

2015).
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APPENDIX B

WILLIAM OBJECT SEARCH

B.1 Introduction

The chapter shows the model performance for the explored parameter space. Here, we

highlight the model search performance for different decay threshold. Figure B.1 shows

that the proportion of fixations landing on target items decreases as the models’ ability to

retain information in the working memory decreases. The number of fixations increases

as the as the models’ ability to retain information in working memory decreases. This is

due to the model re-fixating on the previously visited object as seen in Figure B.1 (d).

The model also adapts its saccadic distance as a function of decay where smaller jumps

were made for para-fovea to be useful when the duration of information retention was

small.
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(a) (b)

(c) (d)

Figure B.1: Plots showing the search performance as a function of memory decay when the gap
between objects was sampled from a uniform distribution over [0.0, 1.0, 2.0, 3.0]. (a) Proportion
of fixation landing on target cue. (b) Average number of fixations per trial for each target cue.
(c) Saccadic distance for each target cue. (d) Repeated fixations observed per trial for each target
cue.
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APPENDIX C

DISTRACTOR-RATIO TASK

C.1 Introduction

The chapter shows the CRVS model and the Heuristic model performance for the explored

parameter space. Here the results show the effect of feature noise and spatial noise on

the search behaviour. In both models, as feature noise increases the number of fixations

required to respond target present or absent increases. Furthermore, the spatial noise

effects the shape of the distractor ratio curve and the saccadic selectivity. As the spatial

noise is increased the saccadic selectivity increases, but, as more noise is introduced the

saccadic selectivity reduces.
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C.1.1 Parameters explored for CRVS Model

(a) FN:16,SN:6 (b) FN:16, SN:4 (c) FN:16, SN:2

(d) FN:14, SN:6 (e) FN:14, SN:4 (f) FN:14, SN:2

(g) FN:12, SN:6 (h) FN:12, SN:4 (i) FN:12, SN:2

Figure C.1: Average number of fixations per trial as a function of the number of distractors
sharing colour with the search target in target-absent trials and target-present trials for CRVS
Model. FN is the Feature noise parameter and SN is the spatial noise parameter.
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(a) FN:16,SN:6 (b) FN:16, SN:4 (c) FN:16, SN:2

(d) FN:14, SN:6 (e) FN:14, SN:4 (f) FN:14, SN:2

(g) FN:12, SN:6 (h) FN:12, SN:4 (i) FN:12, SN:2

Figure C.2: Saccadic bias (the difference between the observed frequency and chance perfor-
mance) as a function of the number of same-colour distractors in target-absent trials for CRVS
Model. FN is the Feature noise parameter and SN is the spatial noise parameter.
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C.1.2 Parameters explored for Heuristic Control Model

(a) FN:6,SN:4 (b) FN:6, SN:6 (c) FN:6, SN:8

(d) FN:8, SN:4 (e) FN:8, SN:6 (f) FN:8, SN:8

(g) FN:10, SN:4 (h) FN:10, SN:6 (i) FN:10, SN:8

Figure C.3: Average number of fixations per trial as a function of the number of distractors
sharing colour with the search target in target-absent trials and target-present trials for Heuristic
Control Model. FN is the Feature noise parameter and SN is the spatial noise parameter.
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(a) FN:6,SN:4 (b) FN:6, SN:6 (c) FN:6, SN:8

(d) FN:8, SN:4 (e) FN:8, SN:6 (f) FN:8, SN:8

(g) FN:10, SN:4 (h) FN:10, SN:6 (i) FN:10, SN:8

Figure C.4: Saccadic bias (the difference between the observed frequency and chance perfor-
mance) as a function of the number of same-colour distractors in target-absent trials for Heuris-
tic Control Model. FN is the Feature noise parameter and SN is the spatial noise parameter.
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