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Abstract

With more and more protein sequences generated, one of the most pressing tasks in

bioinformatics has become to interpret these data. This thesis concerns how to predict the

3D structure of a protein relying on its sequence only, which is a long-standing problem in

computational biology. A commonly adopted intermediate step for this task is to predict

pairwise amino acid contacts based on the query sequence. Due to the simplicity of the

current algorithms, which include statistical models and machine learning techniques,

the accuracy of contact prediction is still low for many proteins. Also, these available

algorithms are unable to predict amino acid distances (distance longer than contact).

Thus, the lack of high quality and enough geometry constraints make it difficult for 3D

structure prediction for many proteins. To deal with the current limitations of amino acid

constraint and structure prediction, a state-of-the-art deep neural network based amino

acid contact & distance prediction algorithm, DeepCDpred, is proposed in this thesis.

For a given query protein sequence, the geometry constraints predicted by DeepCDpred

are fed into a Rosetta ab initio modelling protocol for protein structure prediction. In

addition, a neural network based method is proposed to evaluate the quality of predicted

structures.

The accuracies of amino acid contact and distance predictions, the quality of structure

predictions and the accuracy of confidence score predictions were evaluated by a test set

of 108 protein chains whose experimental structures are known. Any sequence in the test
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set shares no greater than 25% sequence identity with any sequence in the training set,

which was used to train DeepCDpred. The accuracy of amino acid contact predictions of

DeepCDpred is just slightly worse than a newly published method, RaptorX; but exceeds

all others mentioned in this thesis. Thanks to the predicted extra distance constraints

and the Rosetta ab initio modelling protocol, the structure prediction quality based on

the algorithms proposed in this study is better than that from the RaptorX server. A

blind test, which was done with a yet to be released protein, was also used to validate

the effectiveness of DeepCDpred. The protein classes of structures predicted with amino

acid contact constraints from MetaPSICOV (the amino acid contact predictor, which

DeepCDpred is most often compared with in this thesis), are analysed and compared to

the predictions based on contact constraints from DeepCDpred, and also to the predic-

tions based on both contact and distance constraints from DeepCDpred. An online server,

http://proteincoevolution.bham.ac.uk, is programmed and released to make the pro-

posed methods for amino acid contact and distance predictions, structure prediction and

structure confidence prediction accessible to average users, and it is expected beneficial

to the research community.
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Chapter 1

Introduction

1.1 Proteins

One cannot emphasize too much the importance of proteins to life. They are the workhorse

molecules in all organisms and carry out a great variety of functions: some act as building

blocks, together with other molecules to make the structure of cells; some work as cata-

lysts, accelerating almost all the biochemical reactions in cells, which are many orders of

magnitude faster than catalysts that humans can devise; some help cells to communicate,

to move, to respond to stimuli; some others interact with DNA to regulate programs of

development.

Proteins are long sequences formed out of 20 naturally occurring amino acid residues that
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adopt a unique three-dimensional (3D) structure in native physiological conditions (Anfin-

sen 1973). It is these amino acids that result in the diversity of the protein world. These

amino acids share a basic structure with an amino (-NH2) and a carboxyl (-COOH) group

connecting to the same carbon atom, called the Cα; they are thus α-amino acids. While

the third covalent bond of the Cα connects to a hydrogen atom, the fourth substituent is

the side-chain, which causes different chemical and physical properties. All amino acids

have chiral α atoms, except for glycine, which has a hydrogen side chain.

Proteins are usually described at four levels, known as primary, secondary, tertiary, and

quaternary structure (Figure 1.1). The complexity seen between the secondary and ter-

tiary structural levels can be further characterized by the super-secondary elements and

domains. In the native state, the primary structure folds into local secondary structures

including α helix and β strand. Secondary structures can be further packed into ter-

tiary structure due to van der Waals forces, the hydrophobic effect, hydrogen bonding

and electrostatic interactions between the atoms. Many proteins contain more than one

polypeptide chain. Protein quaternary structure refers to the arrangement and interaction

of multiple polypeptide chains.

2



Figure 1.1. The four levels of structure of a protein (reproduced from (Wikipedi-
a/Protein Structure 2018)).
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In a protein structure, adjacent amino acids are connected by a peptide bond. The

planarity of the peptide bond makes the dihedral angle, called ω, close to 0 degree (cis)

or more often, 180 degrees (trans); ω is formed by the four nearby atoms Cα(-1)-C(-1)-

N-Cα on the backbone (Figure 1.2a). Besides ω, there are another two dihedral angles

defined in a protein backbone, φ and ψ. φ is formed by the four atoms C(-1)-N-Cα-C;

and ψ is formed by N-Cα-C-N(+1) (Figure 1.2a). Unlike ω, the angles of ψ and φ are

flexible; different combinations of ψ and φ define different local conformations of the

protein structure.

a b

Figure 1.2. Depiction of dihedral angles φ and ψ in a polypeptide chain (a),
and an example of Ramachandran plot that shows all the φ-ψ angles within
a protein (b). (graph a is reproduced from (Wikipedia/Dihedral Angle 2018) and
graph b is reproduced from (Wikipedia/Ramachandran Plot 2018)).

The diagram of Ramachandran plot visualizes all the possible values of ψ and φ angles

within a protein structure. This plot is named after the biophysicist G.N. Ramachandran
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(1922 - 2001) (Wikipedia/Ramachandran 2018). A typical Ramachandran plot is shown

in Figure 1.2b. In the plot, both ψ and φ range from -180◦ to 180◦. Some combinations of

the two angles are not possible, due to the steric hindrance; some other combinations are

energetically favourable, as shown in the black areas on the plot. The ψ and φ degrees

of the two common secondary structures α helix and β strand can be clearly seen on the

plot. For α helix, average values of ψ and φ are about -57◦ and -47◦, as shown in the

middle-left black area. This is the right-hand α helix, which is the common type; another

less common type is the left-hand α helix, and the favourable combination of ψ and φ is

shown in the upper-right area. For a parallel β sheet, the average values are about -119◦

and +113◦, and an antiparallel β sheet, -139◦ and 135◦. The combinations of ψ and φ of

these two types of β sheet are shown in the upper-left area of the plot.

From the secondary structure of a protein, one can define its fold or topology. Two

proteins sharing a common fold do not necessarily require the two structures are identical;

instead, it requires their secondary structures have the same composition and the same

arrangement (Lo Conte et al. 2000). Thus two proteins sharing the same fold may have

different loop structures.

1.2 Public Protein Databases

Various protein databases were involved in the studies of this thesis, which include protein

sequence, structure and family databases.
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1.2.1 Protein Sequence Database

Thanks to the fast development of gene sequencing techniques, protein sequences are

accumulating at an ever-increasing speed. Protein sequence databases usually provide

functions or tools to search, compare and analyse these sequences. There are mainly

two protein sequence databases that are widely used, UniProt (Uniprot 2018) and NCBI

nr(NCBI 2018).

UniProt is composed of three core databases: UniProtKB (includes manually curated and

reviewed sequences in SwissProt, and unreviewed, automatically annotated sequences in

TrEMBL), UniParc, and UniRef (UniProt 2015). By September 2017, there were more

than 550,000 protein sequences in UniProtKB/SwissProt, and about 90 million sequences

deposited in the collection of UniProtKB/TrEMBL. Unlike UniProtKB, UniParc (UniProt

Archive) does not provide annotations. It just stores all publicly available non-redundant

protein sequences (Wu et al. 2006). In UniParc, all identical sequences over the full

length are merged into one sequence entry. UniRef (UniProt Reference Clusters) provides

clustered sequences from UniProtKB and selected UniParc records (Suzek et al. 2015).

UniRef100 database combines identical sequences into a single UniRef entry (Mirdita

et al. 2017). UniRef90 is created by clustering UniRef100 sequences such that each cluster

contains the sequences that have at least 90% pairwise sequence identity and 80% overlap

with the longest sequence (Mirdita et al. 2017). UniRef50 is built by clustering UniRef90

sequences that have at least 50% sequence identity with each other and 80% overlap with
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the longest sequence in every cluster (Mirdita et al. 2017; Uniref 2018). The server of

UniProt provides cross-references to other protein sources, such as PDB structures and

protein families (e.g., Pfam).

NCBI (National Center for Biotechnology Information) also provides a rich sequence

database, nr, which contains protein sequences from GenBank translations, as well as

the sequences from other databases, such as PDB, UniProt/SwissProt, etc.

Both UniRef (e.g., UniRef90) and nr are commonly used as the sequence search sources

for programs in the BLAST family, such as BLAST and PSI-BLAST.

1.2.2 Protein Structure Database: the Protein Data Bank

The Protein Data Bank (PDB) is the major source of macromolecular 3D structures in

the world, including proteins and nucleic acids (Rose et al. 2015). By the end of 2016,

there were about 125,000 structure entries deposited in PDB. These structures are mainly

resolved by X-ray crystallography and NMR spectroscopy. One can search a structure on

the PDB server (PDB 2018) based on its four-character identifier (pdb id). The structure

can be viewed and analysed on the server or downloaded to the local computer to be

viewed and analysed by programs such as PyMol (DeLano 2002) and JMol (JMol 2018).

There are two types of structures available in PDB, the asymmetric unit and the biological

unit. Like UniProtKB, the PDB server also provides cross-references to other databases,

such as the protein family databases (e.g., Pfam, SCOP and CATH), and protein sequence
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databases (e.g., UniProt). One can view annotations of a protein structure from other

sources.

1.2.3 Protein Family Database

Protein family databases are useful to assign functions to uncharacterized proteins (Louie

et al. 2008). A protein family derived from sequences is usually classified by a profile,

which is built from a multiple-sequence alignment (MSA) (Xu and Xu 2004). A good

example is Pfam, which builds MSAs of protein domain families by using the profile hidden

Markov model (profile HMM) (Bateman et al. 2004; Finn et al. 2014, 2010; Punta et al.

2012). Protein domains are usually sections of protein sequence or structure that could

evolve independently and “have an independent function or contribute to the function of

a multidomain protein in cooperation with other domains” (Vogel et al. 2004).

The structure-structure comparison yields protein structure families. CATH (Class, Ar-

chitecture, Topology and Homologous superfamily) and SCOP (Structural Classification

of Proteins) are the two most important protein structure classification schemes (Csaba

et al. 2009). Both of them classify protein structures which are generally deposited in

PDB, in a hierarchical manner. CATH sorts protein structures into four major levels

– class, architecture, topology and superfamily (Orengo et al. 1997); SCOP organizes

protein structures into class, fold, superfamily and family, an alternative four-level clas-

sification (Lo Conte et al. 2000). Regarding to how to classify proteins, CATH uses an
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automated process; while, SCOP mainly relies on expert knowledge (Hadley and Jones

1999).

1.3 Protein Data Analysis and Bioinformatics Tools

To deal with the overwhelming abundance of protein data, a collection of bioinformatics

tools and analysis methods have emerged. In the following, those related to this work

are briefly introduced; more detailed information about them can be found in the next

chapter.

1.3.1 Protein Sequence Alignment

Sequence alignment is a fundamental concept in protein data analysis, since it is the basis

of many further studies. Probably the basic and most common requirement of protein data

analysis is to search for similar sequences from a certain database to a query sequence.

The most widely used computational tool for this task is BLAST (Basic Local Alignment

Search Tool) (Altschul et al. 1990) and its variants – PSI-BLAST (Position-Specific It-

erative BLAST) (Altschul et al. 1997) and DELTA-BLAST (Domain Enhanced Lookup

Time Accelerated BLAST) (Boratyn et al. 2012). HMMER (Hidden Markov Model Tool

Suite) is widely used as well (Finn et al. 2011; Johnson et al. 2010; Soding 2005). It

probabilistically models the local interactive constraint between neighbouring residues
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and was shown to be more sensitive and accurate at finding similar sequences for a query,

but slower in speed, compared to BLAST and PSI-BLAST (Madera and Gough 2002).

The recently developed HHblits (HMM–HMM–Based Lightning fast IteraTive sequence

Search) algorithm was even proved to outperform HMMER in remote protein homologue

detection, as well as being faster than the latter (Remmert et al. 2012). Both CDD (Con-

served Domains Database) and Pfam use HMMs to detect known protein domains in a

query sequence.

An accurate multiple sequence alignment (MSA) is a critical step in both phylogenetic

analysis and amino acid coevolution analysis. Suboptimality of the MSA could reduce

the accuracy of the resultant phylogenetic tree (Ogden and Rosenberg 2006). Section

2.6 of the next chapter reviews both local and global statistical models for amino acid

coevolution analysis. All of these approaches start from the MSA of the target (query)

protein sequence. Alignment errors could lead to erroneous observations of correlated

mutation (Dickson et al. 2010). One of the most widely used approaches for aligning

multiple sequences is a heuristic method known as the progressive sequence alignment

(Ari and Goldman 2005). This method involves the construction of a coarse-guide tree

in the first stage. The tree determines how the sequences are added to the alignment –

the most similar sequences are added at the beginning and more distant sequences are

added successively. The final alignment from this method is not guaranteed to be globally

optimal, notably when errors are made at any time in expanding the MSA; they are

then propagated through to the final alignment. The two best-known programs using
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this method are CLUSTALW (Weighted UPGMA (Unweighted Pair Group Method with

Arithmetic Mean) CLUSTer analysis of the pairwise ALignments) (Thompson et al. 2002,

1994) and MUSCLE (MUltiple Sequence Comparison by Log-Expectation) (Edgar 2004).

Tools in the BLAST family make an MSA by aligning all significant hits to the query.

HMM builds an MSA by matching each hit to a profile HMM by using the Viterbi algo-

rithm (Eddy 1998). As a comparison, HHblits aligns all found HMMS by an HMM-HMM

comparison algorithm to make an MSA (Remmert et al. 2012; Soding 2005).

1.3.2 Protein Secondary Structure Prediction

Protein secondary structure (SS) represents the local conformations of amino acids. It is

formed by hydrogen bonds between N−H and C=O on the backbone. SSs have a regular

geometry that allows only certain values of dihedral angles (as already shown in Fig-

ure 1.2). Different amino acids have different natural propensities for a given secondary

structure element. For instance, methionine, alanine, leucine, glutamate and lysine prefer

helical conformations (α helix); aromatic residues (tyrosine, phenylalanine and trypto-

phan) and β-branched amino acids (threonine, valine and isoleucine) tend to be on β

strands (Chou and Fasman 1974).

Knowing the secondary structure of a protein allows a general structural classification from

α protein, β protein, α + β protein and α/β protein (Lo Conte et al. 2000). Moreover,

secondary structure plays a critical role in discovering how proteins fold (Zhou and Karplus
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1999). The accuracy of protein secondary structure prediction could impact the accuracy

of protein 3D structure prediction (Fischer and Eisenberg 1996; Rohl et al. 2004) and

amino acid solvent exposure prediction (Heffernan et al. 2016). Predicted secondary

structures have also proved to be useful in protein sequence alignment (Soding 2005).

A detailed description of SS prediction approaches can be found in Chapter 2 (Subsection

2.7.1).

1.3.3 Protein Three-dimensional Structure Prediction

Secondary structure provides a coarse-grained picture of a protein. However, in order

to understand the precise function of a protein, its 3D structure is required. In 2017,

experiments, such as nuclear magnetic resonance (nmr) and X-ray crystallography, are

still the main approaches to solve the structure of proteins. However, due to the labour,

time and money costs involved, only a very limited number of proteins have structure data

in PDB as compared with the exponentially growth of the number of protein sequences

in UniProt.

Thus, it is a great temptation to predict the 3D structure of a protein solely relying on

its primary sequence. In fact, it has long been recognised to be achievable in theory

(Anfinsen 1973). Unfortunately, according to the calculations performed by Levinthal

(Zwanzig et al. 1992), there are too many conformations even for a common protein to
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find the native state with random searches. Thus, predicting protein structure remains

one of the biggest open research issues in computational biology.

Great progress has been made in this field, and many algorithms have been proposed in

the last three decades. These algorithms can, in principle, be divided into two categories,

template-based and template-free modelling. Methods in the former group, given a target

sequence, identify evolutionarily related (homology modelling) or unrelated (threading)

templates with solved structure, and then construct structure models based on the frames

provided by these templates. Template-free modelling methods do not rely on template

structures. Among them, pure ab initio modelling methods, which do not use any prior

structural information, have been developed. However, the expensive computing cost

limits this method only to very short chains (< 90 residues) to achieve a reasonable

accuracy (<4 Å Cα RMSD) at present (Kallberg et al. 2012). Other ab initio methods that

assemble short structural fragments or use geometry constraints obtained from coevolution

analysis to constrain the building of a model structure, become more and more successful

(Ovchinnikov et al. 2017b), with results of RMSD better than 3 Å Cα (Ovchinnikov et al.

2016).

In Section 2.8 of Chapter 2, some of the popular protein structure prediction methods

will be introduced in detail.
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1.4 The Scope and Contributions of This Thesis

1.4.1 The Scope of This Thesis

The main content of this thesis introduces the author’s work on solving the long-standing

problem of protein structure prediction relying only on sequence. The method developed

in this thesis has two steps. In the first step, a deep neural network based algorithm

(DeepCDpred, Deep Contact & Distance Prediction) was proposed to predict inter amino

acid contacts and distances. In this algorithm, features, such as coevolutionary couplings,

the predicted protein secondary structure, sequence profile calculated from the target

sequence or the MSA of the target sequence were used. In the second step, the geome-

try constraints predicted from DeepCDpred were fed into a Rosetta ab initio modelling

(Fleishman et al. 2011; Leaver-Fay et al. 2011; Rohl et al. 2004) protocol to generate pro-

tein structures. The putative best-predicted structure was then selected as the one with

the lowest Rosetta energy score. In order to assign a confidence value to the predicted

structure to estimate how reliable it is, a TM-score prediction algorithm was developed.

In the next chapter (Chapter 2), the concept of coevolution, the relationship between

coevolution and amino acid contact, and previous studies that employ coevolution for

amino acid contact, structure and function predictions are introduced or reviewed. Since

sequence alignment and homology detection are the necessary steps for amino acid co-

evolution analysis, the methods in these fields are then briefly introduced. After these,
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both local and global statistical models for amino acid coevolution analysis are reviewed

(as mentioned in the above paragraph, the coevolutionary couplings calculated from these

models were used as features of DeepCDpred). The development of machine learning,

especially neural networks, is then presented. Other features used in the input of Deep-

CDpred, such as the secondary structure prediction, are reviewed. In the final section of

this chapter, the methods of protein structure prediction and structure similarity com-

parison are reviewed.

In Chapter 3 and Chapter 4, the materials and model development of DeepCDpred are

introduced, respectively. The materials include the descriptions of the training set, valida-

tion set and test set of DeepCDpred, the software that generate features for DeepCDpred,

and the structures of the methods proposed in this study. Chapter 4 includes the im-

plementation of DeepCDpred, the evaluation of the performance of DeepCDpred, feature

contribution analysis, how to select contact and distance predictions from DeepCDpred

for protein structure prediction, the Rosetta ab initio modelling protocol used in this

study, and the building of the TM-score prediction model.

In Chapter 5, the main results of this thesis are displayed, including: (a) the accuracy of

contact predictions of the test proteins of DeepCDpred, as compared with that predicted

by other algorithms; (b) the accuracy of distance predictions of DeepCDpred; (c) the

contribution analysis of the features used in DeepCDpred; (d) the accuracy of protein

structure predictions of the test proteins with the contacts predicted by DeepCDpred, as

compared with that based on the contact predictions from MetaPSICOV (Meta Protein
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Sparse Inverse COVariance) (Jones et al. 2015); (e) the accuracy of structure predictions

of these proteins based on both the contact and distance predictions from DeepCDpred;

(f) the result of TM-score predictions; (g) the structure prediction of DeepCDpred in a

blind test; (h) the comparisons of contact and structure predictions between DeepCDpred

and the two recently published methods (i.e., NeBcon (He et al. 2017) and RaptorX (Wang

et al. 2017b)); (i) with metagenome data employed as the homologue search source, the

accuracies of contact and distance predictions by DeepCDpred; (j) the accuracy of contact

predictions of the test proteins by a deeper version of DeepCDpred which replaces the two-

hidden-layer and sigmoid activation functions in the hidden layers with five-hidden-layer

and ReLU (Nair and Hinton 2010) activation functions; (k) the introduction to the online

server (www.proteincoevolution.bham.ac.uk) designed and programmed to implement

DeepCDpred and the protein structure prediction in this study.

The Chapter 6 discusses the limitations and the possible ways to improve this work, and

Chapter 7 concludes this study.

1.4.2 Contributions of This Thesis

The main contributions of this thesis include: (a) the development of a new deep neu-

ral network based amino acid contact & distance prediction algorithm, DeepCDpred; (b)

implementing a Rosetta ab initio modelling protocol that uses the predicted contact &

distance constraints for protein structure prediction; (c) proposing a TM-score prediction
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method that provides a confidence for the structure prediction; (d) testing two geome-

try constraint selection methods to see which one leads to better structure prediction;

(e) designing and programming an online website that implements DeepCDpred, protein

structure prediction and TM-score prediction.
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Chapter 2

Background

2.1 Overview of This Chapter

In this chapter, the background of coevolution and its relationship with amino acid con-

tacts are introduced first, followed by the review of the previous studies using amino acid

coevolution to predict amino acid contacts, protein structure and function. The methods

commonly used in the process of inferring coevolutional couplings from the target pro-

tein sequence are briefly introduced, which include protein sequence homology detection,

local/global statistical models of coevolution analysis, protein secondary structure pre-

diction, machine learning and feature selection. The final section of this chapter reviews

methods of protein structure prediction, discusses three representatives of structure mod-

elling algorithms (MODELLER, I-TASSER and Rosetta) and two approaches of structure

similarity measurement (RMSD and TM-score).
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2.2 Coevolution

Coevolution is a prevalent biological phenomenon that exists at species, organism, and

molecular levels, and “is a fundamental component of the theory of evolution” (de Juan

et al. 2013). It refers to the coordinated changes of multiple biological entities under

selective pressures, typically to maintain or to refine functional interactions among them

(de Juan et al. 2013).

The concept of coevolution can be traced back to Darwin’s On the Origin of Species (1859),

in which he mentioned the evolutionary interaction between orchids and pollinators. The

formation of the term of ‘coevolution’ was introduced in 1964 by Ehrlich and Raven

(Ehrlich and Raven 1964). A widely accepted definition of coevolution is ‘reciprocal

evolutionary change in interacting species’ (Lovell and Robertson 2010; Thompson 1994).

It implies that a change in one species could alter selection pressure on another species.

Conversely, the change that selection pressure caused in the second species could change

the selection pressure of the first species (Lovell and Robertson 2010). Examples of

coevolution from paired species include predator and prey, parasite and the host.

As for coevolution at the molecular level, a mutation of a residue at one site could change

the fitness to a function of the protein which applies selection pressure to change a related

residue to the first one (structural nearby or functional related). The related residue in

response to this pressure could in turn affect the evolution of the residue at the first site.
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Chakrabarti et al. (Chakrabarti and Panchenko 2010) conducted a large-scale study of

coevolving site identification by 803 protein families. The authors found 15% active sites

are coevolving with other sites; the number is changed to 11%, 11% and 9% for functionally

important, protein binding and ligand binding sites, respectively. More discussions of the

mechanisms of coevolution can be found in (Lovell and Robertson 2010) and (Pazos and

Valencia 2008).

Within the literature, there are several synonyms for coevolution, including covariation

and correlated mutation. In order to avoid confusion, coevolution and correlated mutation

are mainly used in this thesis. The difference between them is that coevolution refers to

the biological phenomenon, but correlated mutation is used when the coordinated changes

of residues at multiple sites (positions) in an MSA are being discussed. For simplicity and

efficiency of calculation, researchers have mainly focused on pairwise coevolution so far. In

this thesis, all the words of ‘coevolution’ and ‘correlated mutation’ refer to the interaction

between two entities, except the ones in the brief introduction to the SCA (statistical

coupling analysis) in this chapter.

2.3 Coevolution and Amino Acid Contact

Amino acid coevolution is suggestive of compensatory substitutions that occur between

coupled residues (e.g., those in close proximity or acting together at binding sites) due

to the folding, structural, or functional constraints of a protein or a protein complex
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(Chakrabarti and Panchenko 2010; Gobel et al. 1994; Neher 1994; Shindyalov et al. 1994;

Taylor and Hatrick 1994). It can result in correlated columns in the MSA of homologous

protein sequences. Homologous sequences can be considered as a record of the natural

sampling of the sequence space available to folded functional proteins. By inverting the ob-

servation of covarying positions, structural or functional interdependencies between amino

acids can be inferred from patterns of correlated mutations within the MSA. Importantly,

the concept of amino acid coevolution provides a direct link between sequence and 3D

structure and can be turned into a protein structure predictive method (Figure 2.1).

SNDAIDKFSRDIKP

DNAKIKALAEEVQD

DDAAIDQLQRKVGA

DEAQIKECFEKIGV

Co-evolution

Protein	Structure	Prediction	

A B C D

Figure 2.1. Some structural constraints of a protein are recorded in the
alignment of homologues, from which they can be inferred and used for the
structure prediction. From A to B, coevolutionary pressure between physically inter-
acting amino acid residues (orange circles in A) in the 3D structure of a protein leaves
a visible record of amino acid correlated mutation in the MSA (two orange columns in
B). The inverse problem of inferring direct coevolutionary couplings from the alignment
(from B to C) could be achieved by several algorithms, including the global statistical
model introduced in this chapter. Once evolutionary couplings are determined (orange
circles in C), they can be used to predict the unknown 3D structure of a protein (D)
from a set of sequences alone.

21



2.4 Review of Using Coevolution to Predict Amino

Acid Contact & Protein Structure and to Study

Protein Function

2.4.1 Using Coevolution to Predict Amino Acid Contact

Before introducing how to use coevolution analysis to predict inter-amino-acid contacts

(hereinafter referred to as amino acid contacts for simplicity), it is necessary to make it

clear how an amino acid contact is defined and classified. In the literature, a widely used

definition is to choose a cut-off of 8Å between the Cβ atoms (or Cα in the case of glycine)

of the two residues (Ekeberg et al. 2013; He et al. 2017; Jones et al. 2012, 2015; Skwark

et al. 2013; Wang et al. 2017b). This definition is also employed by the Residue-Residue

prediction category of the Critical Assessment of protein Structure Prediction (CASP)

competition (Monastyrskyy et al. 2014).

Amino acid coevolution analysis is mainly a mathematical process that tries to find co-

varying positions based on an MSA. Since coevolving positions have been shown to be

much more likely to be spatially proximal or just in contact in the protein structure than

by chance, a substantial effort has been invested in developing more and more advanced

statistical algorithms to infer coevolutionary signals during the past more than twenty

years (de Oliveira et al. 2016; Goh et al. 2000; Jones et al. 2015; Kosciolek and Jones
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2016; Martin et al. 2005; Shindyalov et al. 1994; Wang et al. 2017b). The inferred inter-

residue amino acid contacts have further aided protein structure prediction (de Oliveira

et al. 2016; Hopf et al. 2012, 2014; Jones et al. 2015; Marks et al. 2011, 2012a,b; Morcos

et al. 2011).

The first algorithm using evolutionary information to predict inter-residue contact was

introduced by Gobel et al. (Gobel et al. 1994). It and other early proposed approaches

were originally developed to detect pairs of positions in an MSA that have similar amino

acid substitution patterns (Gobel et al. 1994; Neher 1994; Taylor and Hatrick 1994). Sub-

stitution patterns could be recognized based on an amino acid substitution matrix (e.g.,

BLOSUM62), and the similarity between them can be evaluated by a linear correlation

(e.g., Pearson correlation coefficient). The common feature of these approaches is that

they all treat each pair of positions as independent from the other pairs in the MSA

being considered. Thus, they are called local statistical models, which are different from

the recently developed approaches, the global statistical models. The early models only

achieved very limited success in predicting inter-residue contacts – only 20% to 40% of

all predicted contacts are correct (Burger and van Nimwegen 2008; Fariselli et al. 2001;

Pollastri and Baldi 2002).

The following reasons explain why amino acid contact inferred from coevolution is not

easy.

(a). Correlation might not be a good indicator of direct coevolutionary signals; a typical
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example is that two distant residues correlate only because they are both in contact with a

third residue. (b). Some contacting residues are too conserved to show sensible variations,

in which case only a low correlation signal may be detected. (c). MSAs might have only

a few sequences so that the correlated mutation signal cannot be inferred efficiently; (d).

A similar situation is that MSAs might have lots of sequences but all of them are very

similar. (e). Sequencing is biased toward the organisms that are of research’s interest,

which potentially leads to biased coevolution signals. (f). In homo-dimer proteins, it

is hard to distinguish intra-protein coevolution signals from those due to inter-protein

contacts. (g). Last but not least, coevolution signals may not necessarily originate from

amino acid contacts but from protein functional constraints.

However, the adoption of global statistical models and machine learning techniques in

recent years has made contact prediction far more accurate than the earlier attempts. The

global statistical models assume that each sequence in the MSA of the target sequence is a

sample of a multivariate probability distribution, and by maximizing the Shannon entropy

of the distribution with the constraints of the first-order and second-order observed amino

acid frequencies from the MSA, the direct coupling between each pair of residues in the

target sequence can be obtained (Marks et al. 2011) (Section 2.6). Machine learning

techniques take coevolutionary couplings predicted from these global models, as well as

other protein primary and secondary structure related features as inputs and output a final

contact score for each pair of residues in the target sequence (Subsection 2.6.10). All these

methods can effectively disentangle the direct pairwise couplings from the background
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phylogenetic noise (see Section 2.6 for details).

Predicted contacts are then used as geometry constraints to predict protein 3D structure

through the provision of a priori structural information by using ab initio modelling.

Such information can sharply reduce conformation search space and computational com-

plexity, and thus make it possible to predict protein structure on a personal computer.

Owing to the development of high throughput gene sequencing technologies and the de-

creasing cost of sequencing in the past more than twenty years (Figure 2.2), more and

more organisms have been sequenced. There are a large number of genome sequencing

projects, approximately 10,691 completed and 47,118 ongoing (JGI 2018) by the date of

July 1st, 2017, which have resulted in the knowledge of more than 16,000 protein families

(Finn et al. 2016). Many of these protein families contain from 103 to 105 homologous

sequences. The vast number of available homologous sequences could improve the amino

acid coevolution-based inter-residue contact prediction and the devising of protein struc-

ture prediction algorithms for both globular and membrane proteins (Hopf et al. 2012;

Marks et al. 2011; Ovchinnikov et al. 2017b).
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Figure 2.2. Cost of DNA sequencing has reduced dramatically in the past
more than ten years, especially since 2008. This graph is produced based on
the data downloaded from https://www.genome.gov/sequencingcostsdata/ (last ac-
cessed: September 1st, 2017).

Predicted amino acid contacts are not only helpful for protein model generation but can

also be used in many other steps within the process of protein structure prediction. Due

to the fact that contacts are structural features, they are more conserved than sequences

and can thus help to identify remote structural templates (Ovchinnikov et al. 2017b).

This might enable homology modelling in cases where templates cannot be identified by

sequence information alone. Additionally, predicted structural representatives for protein

families might be used as template structures to model the remaining family members.

This could reveal structural information for hundreds or thousands of proteins in a family

where there is none available at the moment.
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2.4.2 Using Coevolution to Predict 3D Structure of Protein

Experimental structure determination could also benefit from accurately predicted con-

tacts and structures. In NMR, the coevolutionary couplings can serve as an additional

signal and improve the quality of resultant structures (Tang et al. 2015). In X-ray crystal-

lography, models from contact-based structure prediction can be used to solve the phase

problem (Safarian et al. 2016). Besides these, a study has illustrated the possibility of

combining X-ray structures deposited in PDB with coevolutionary-based contact predic-

tions to find other conformations that the proteins sample (Morcos et al. 2013).

Disordered proteins do not have fixed structures, but they can assume specific structural

states when interacting with other molecules. It was shown that these states could be

identified by DCA(direct coupling analysis)-based contact predictions. This achievement

revealed possible folds that have not been observed before (Toth-Petroczy et al. 2016).

In addition, the application of contact prediction with global statistical models extends

far beyond the tertiary structure prediction of a single protein chain. When combining the

alignments of two protein families, contacts on the interface could be detected, serving as

the constraints for protein-protein docking (Burger and van Nimwegen 2008; Hopf et al.

2014; Ovchinnikov et al. 2014; Pazos et al. 1997; Yeang 2007). It was also applied on the

nucleotide level, where contacts in RNA molecules could be inferred and used to predict

tertiary structures of RNA (De Leonardis et al. 2015); by combining the alignments with

those of protein-coding genes, it revealed protein-RNA interactions (Weinreb et al. 2016).
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In a recent large-scale study, DCA has been used to detect epistatic effects on a nucleotide

level between genes of streptococcus bacteria, where whole genome alignments were served

as inputs (Skwark et al. 2017). The resulting network revealed strong couplings between

genes related to antibiotic resistance, facilitating the identification of novel drug targets.

2.4.3 Using Coevolution to Study Protein Function

Besides amino acid contact prediction, coevolution was also employed for protein function

study. One example is the Statistical Coupling Analysis (SCA). SCA was proposed to

detect networks of residue positions that are coevolving. But it usually focuses on the

patterns associated with functions (de Juan et al. 2013). The first implementation of

SCA was introduced in 1999 by Ranaganathan et al. (Lockless and Ranganathan 1999);

it analyses how the amino acid frequency change at one position causes a statistical

perturbation to the amino acid frequencies of functionally related positions. It was further

developed in 2009 by Halabi et al.(Halabi et al. 2009), also from the lab of Ranaganathan.

It was enriched with a noise reducing method, PCA (Principal Component Analysis).

The function of the noise reducing lies in the existence of a hierarchical structure in

the interaction network of amino acid residues. This hierarchy can be extracted by an

orthogonal transformation of the covariance matrix. It was shown that the top principal

components of the covariance matrix have biological meanings and they correspond to the

so-called functional sectors (Halabi et al. 2009). Results showed that each sector has a

specific functional role, and is physically connected with others in the tertiary structure.
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Thus, it is suggested that a protein sector is an evolutionary unit of protein structure

(Halabi et al. 2009; McLaughlin et al. 2012).

Both versions of SCA were successful in searching for clusters of coevolving residues that

contribute to protein folding or allosteric interactions (de Juan et al. 2013; Halabi et al.

2009). However, a lack of comprehensive benchmarking is a major limitation for the

applications of SCA-based methods (de Juan et al. 2013). It has also been shown that

they are not competitive for predicting protein contacts as compared with DCA methods

(Kukic et al. 2014; Walsh et al. 2009).

2.4.4 Summary of This Section

The field of statistical analysis of coevolutionary signals between residues is active and

thriving. It is expected that new coevolution-based methodologies will continue to be

developed and improved. One aspect is to investigate the amino acid non-contact predic-

tion. Due to the obvious fact that non-contact residues are much more numerous than

contact residues (see Figure 5.1 in the Results chapter (Chapter 5) for the percentage of

amino acid contact pairs in an analysis of 250 unrelated protein chains), if inter-residue

distances other than contacts can be precisely predicted for a given query protein, it could

be easier to carry out accurate structure prediction. We are not the first group to notice

the potential benefits of inter-residue distances. Two papers from the group of Pollastri

(from the University College Dublin, Ireland) have already been published to introduce
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the ideas of both predicting real-value residue-residue distance map and further using the

map to predict the protein structure (Kukic et al. 2014; Walsh et al. 2009). However,

their results are very poor – the predicted distance is about 6Å difference compared to

native distance on average and structure predictions only have an average TM-score of

about 0.23 against the native structures.

In this thesis, both inter-residue contact predictions and non-contact (or distance) pre-

dictions are produced by machine learning models. Some features in these models take

advantage of the latest development of the study of amino acid coevolution. The protein

structure prediction results show that the incorporation of non-contact predictions can

improve the quality of predicted protein models (see Subsection 5.6.6 in Chapter 5).

2.5 Protein Sequence Alignment and Homology Detec-

tion

Protein sequence alignment and homology detection are the essential steps of all

coevolution-based statistical amino acid contact prediction algorithms (introduced in

Section 2.6), as well as the machine learning based amino acid contact/distance predic-

tion models (of course, including the DeepCDpred algorithm proposed in this study).

Specifically, for all the amino acid coevolution analysis, the target protein sequence is

firstly searched against a sequence database, and the significantly similar sequences (hits,
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or homologues) are aligned to build an MSA. The subsequent calculations are based on

this MSA.

Proteins sharing a common ancestor are considered to be homologous. Homologous pro-

teins that arose through speciation are orthologs; or from gene duplication are paralogs.

Orthologous sequences thus have identical or almost identical functions in different species;

whereas paralogous sequences can undergo differentiation resulting in different functions.

A set of homologous sequences composes a protein family. It is favourable to define con-

sensus amino acid residues of a family and map residues of the individual proteins onto

them for statistical analysis. This leads to a symbol matrix, as already mentioned, the

MSA.

In an MSA, equivalent residues are placed in the same column. Hence, the variations of

the amino acids in the columns tell a story of evolutionary mutations that may spread to

millions of years (Figure 2.3). A well-known online MSA database is Pfam (Finn et al.

2016), which contains a large number of protein families (more than 16,000 by the writing

of this thesis), with up to several hundred thousand sequences for each family.

Figure 2.3. A section of the MSA of Pfam PF00103.
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Before building an MSA, it is necessary to search for homologous sequences in a sequence

database for a given query protein. This step is called homology detection. Homology

detection has become a prerequisite procedure in the fields of computational biology such

as protein evolution, and structure and function prediction of new proteins. The central

idea of protein homology detection is to measure the sequence similarity (other information

may also be incorporated, e.g., secondary structure prediction) between the query and

sequences from a dataset or database with respect to a certain scoring scheme.

Lots of computational methods have been developed for homology detection. Probably,

the simplest one in this field is pairwise sequence alignment with constant match/mis-

match and gap scores. It can be achieved by dynamic programming algorithms such as

Needleman-Wunsch (Needleman and Wunsch 1970) or Smith-Waterman (Smith and Wa-

terman 1981). The idea behind dynamic programming is to find an optimal solution for

aligning each position in one sequence to each position in another sequence with respect to

an underlying scoring scheme. In the following, some of the sophisticated and widely-used

protein homology detection tools developed in the past three decades and how to align

the searched significant hits to generate an MSA are introduced.

2.5.1 From Amino Acid Substitution Models to BLAST

“Amino acid substitution models estimate the replacement rate of an amino acid residue by

another ” (Pavlopoulou and Michalopoulos 2011). The Point Accepted Mutation (PAM)
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matrix is constructed relying on the sequence alignments of closely related sequences (Day-

hoff and Schwartz 1978; Pavlopoulou and Michalopoulos 2011). It was shown that PAM

matrix cannot well approximate changes over long evolutionary timescales (Risler et al.

1988). Using the PAM matrix, Risler et al. aligned two pairs of protein sequences, the

N and the C-terminal sections of chymotrypsin and elastase respectively, which have low

sequence identity but similar 3D topologies (Risler et al. 1988). The reference alignments

were obtained by superimposing the 3D structures of each pair. Their results showed that

PAM could not align them well. To solve this problem, the BLOck SUbstitution Matrix

(BLOSUM) was built based on conserved, functionally important regions (no gaps in the

regions) found in the alignments of remotely related sequences (Henikoff and Henikoff

1992). For example, the BLOSUM62 is derived from observed substitutions in ungapped

alignments that share at least 62% sequence identity. Other amino acid substitution

matrices in the BLOSUM family can be calculated in the same way.

The widely used program of BLAST (Basic Local Alignment Search Tool) employs BLO-

SUM62 as the default amino acid substitution matrix for detecting homologues for a query

sequence (Pearson 2013). With this matrix, BLAST uses a heuristic searching strategy

to find short matches to the target from a sequence database.
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2.5.2 Profile-Sequence Comparison and PSI-BLAST

The sensitivity of homology detection was further improved by incorporating the informa-

tion from multiple sequences instead of just one. A sequence profile, or a position-specific

scoring matrix (PSSM), is a description of the consensus of an MSA, capturing the vari-

ability of sequences in a family through position-specific amino acid frequencies, which

are stored as a N × 20 matrix (N is the columns of the MSA and 20 is all the types of

amino acids). This makes it a much more sensitive and specific method than position-

independent scoring systems for database searching.

PSI-BLAST (Position-Specific Iterative BLAST) derives a PSSM from the alignment of

significant hits of one round of BLASTP (Altschul et al. 1997). The PSSM is then used to

further search the sequence database for new hits, and is updated for subsequent iterations

with the newly identified sequences. It is important to note that gaps are still scored

equally, rather than according to their different positions in the sequence (Altschul et al.

1997; Edgar and Sjolander 2004). The reasons why PSI-BLAST does not use position-

specific gap scores include two aspects: (a) there is no good theory for deriving such a

gap score system (Altschul et al. 1997) and (b) “eschewing the position-specific gap costs

could help to make a reasonable estimate of the statistical significance of the resulting local

alignments”(Altschul et al. 1997). However, it was shown that not using position-specific

gap scores is one reason that PSI-BLAST is less sensitive than profile HMMs (introduced

in the next section) (Soding 2005).
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After homologue detection, both BLAST and PSI-BLAST simply collapse the pairwise

alignments between the query and each hit into a multiple sequence alignment by aligning

all of the hits to the query (Figure 2.4).

Query ...THVVMKTDAEFVCERTLKYFL... 

Hit1 ...THVVVPGDA---VQSTLKCML... 

Query ...THVVMKTDAEFVCERTLKYFL... 

Hit2 ...TRVIVPGEG--VQSTTKCMLL... 

Query ...THVVMKTDAEFVCERTLKYFL...

Hit1  ...THVVVPGDA---VQSTLKCML... 

Hit2  ...TRVIVPGEG--VQSTTKCMLL... 

Figure 2.4. The way of building a multiple sequence alignment by BLAST or
PSI-BLAST. It aligns all of the hits into an MSA according to the pairwise alignments
of each hit with the query.

2.5.3 Profile HMM-Sequence Comparison

More accurate homology detection algorithms use profile HMMs (hidden Markov models)

to include position-specific gap scores and neighbouring dependencies. To arrive at a

description of how profile HMMs detect remote sequences, the basics of an HMM are

introduced below.

An HMM (Krogh et al. 1994) is the statistical modelling of a stochastic process for which

the outputs are observable, while the internal states of the model producing them remain
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hidden. It also has the Markov property, which says that the states of the system in the

future only depend on the current state.

M1 M2 M3 MnBegin End

I0 I1 I2 I3 In

D1 D1 D3 Dn…

…

Figure 2.5. Diagram of profile HMM for protein homologous sequence de-
tection.

When an HMM is employed for protein remote homologue detection, the internal states

are matches (M), insertions (I), and deletions (D) (Figure 2.5). The match state is used

to model consensus amino acids within a family; while the insertion and deletion states

represent additional and skipped amino acids relative to the family, respectively.

Like sequence profiles, a profile HMM is derived from the MSA of homologous proteins.

It provides a statistical framework for the amino acid frequencies in the columns of the

profile and additionally contains position specific insertion and deletion probabilities (one

of the differences to PSI-BLAST). Specifically, in a profile HMM, there are two types of

probabilities – emission probabilities and transition probabilities. The emission proba-

bilities represent the chances that the match, deletion or insertion state emits a certain

residue type at a given position on the sequence. The transition probabilities describe the

probability of each of the states (match, deletion and insertion) at one position on the
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sequence changes to each of the states at the next position. For an MSA, the transition

and emission probabilities can be learned from the sequences. Aligning a target sequence

to the profile HMM is to use the two sets of probabilities to score each possible path (a

path, as indicated by arrows in Figure 2.5, represents the states of all positions that can

emit the target sequence) and then find the best path (Figure 2.5) that maximizes the

score by the Viterbi algorithm (Eddy 1998), a variant of dynamics programming.

HMMER3 is a software suite for HMM-sequence comparison (Eddy 2009). The iterative

search method in HMMER3 is called Jackhmmer. In the first iteration, a profile HMM

is built using a simple scoring scheme (BLOSUM62) for the query sequence. With this

profile HMM, a sequence database is searched and all hits that pass the inclusion threshold

(i.e., E-value) are added to the query sequence in a multiple alignment and a profile is

then made from the alignment. This new profile is further used as the input for the next

search iteration. Iterations continue until no new sequences are found or the maximum

number of iterations is reached.

Since PSI-BLAST and HMMER3 are based on profile-to-sequence and HMM-to-sequence

comparisons, respectively, they have the advantage over HHsearch and HHblits (which

will be mentioned below) of being able to search raw sequence databases, although the

latter are more sensitive for detecting and aligning remote homologous proteins.

37



2.5.4 Profile-Profile Hidden Markov Models

Recent efforts have been made to improve the sensitivity of profile HMMs by aligning

a profile HMM built from the query sequence with another profile HMM built from a

training profile. HHsearch (Soding 2005) is among these approaches. HHsearch performs

local alignment between pairs of profile HMMs. For this purpose, both the query protein

and the database must be represented in the HMM format. Besides the HMM pair

comparison, HHsearch is further improved with the incorporation of a secondary structure

term into its alignment scoring function. Each HMM in HHsearch is therefore built from

two components:

1. A sequence profile, computed by PSI-BLAST with multiple iterations;

2. Secondary structure, predicted by PSIPRED (PSI-blast based secondary structure

PREDiction) for the sequence alignment (McGuffin et al. 2000) or computed by DSSP

(Dictionary of Protein Secondary Structure) if there is at least one structure of the

proteins in the alignment available (Kabsch and Sander 1983).

Due to the better performance in detecting remote homologues, HHsearch is often

used for homology modelling (Bordoli et al. 2009; Kelley et al. 2015; Meier and

Soding 2015). Besides the standalone toolkit that can be downloaded from https:

//github.com/soedinglab/hh-suite (last check: November 2018), there is also a web
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server (HHpred) available at https://toolkit.tuebingen.mpg.de/#/tools/hhpred

(last check: November 2018) that runs HHsearch.

One major drawback of HHsearch is that it is generally “too slow for iteratively search-

ing through large sequence databases such as UniProt” (Remmert et al. 2012). Another

algorithm named HHblits (HMM-HMM Based Lightning-fast ITerative Sequence search),

from the same laboratory, solved this problem. It was shown that HHblits is faster, and

constructs multiple alignments with significantly better quality than PSI-BLAST and

HMMER3, and not compromising on sensitivity compared to HHsearch (Remmert et al.

2012). Unlike HHsearch, HHblits can also build MSAs beginning with a single protein

sequence.

To search homologues, HHblits first changes the query sequence (or query MSA) to a

profile HMM by putting pseudocounts of amino acids that are physicochemically similar

to amino acids in the query (Remmert et al. 2012). HHblits then searches a profile HMM

database by using HHsearch and appends sequences from the significant hits based on

which the new HMM for the next iteration is constructed. To accelerate speed, the prob-

abilities of the 20 amino acids in each HMM column are discretized into an alphabet of

219 discretized states. The 219 states are encoded by 219 ASCII characters, with each ap-

proximating a typical amino acid probability vector in the columns of the profile HMMs.

The authors clustered amino acid distributions of the columns of a large training profile

HMM set (built from the NCBI nr database) into 219 clusters and each cluster is repre-

sented by a character (Remmert et al. 2012). Then, the score of each HMM column in the
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query MSA is computed with each of the 219 discretized states, which produces a 219-row

extended sequence profile. The profile is then aligned to a profile HMM database. Statis-

tically significant profile HMMs that have passed a prefilter are aligned again (Remmert

et al. 2012). The use of HHblits requires a special format sequence database, in which

a large number (usually millions) of profile HMMs are indexed(Remmert et al. 2012).

Each profile HMM is built with several sequences. Fortunately, users can download such

a database together with the HHblits program suite (HHblits 2018). The name of the

latest database is “uniclust30_2017_10”.
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2.6 Review of Amino Acid Coevolution Analysis

There have been two types of coevolution analysis used for amino acid contact prediction,

i.e., local statistical models and global statistical models. These two types of models

share in common that they are pure statistical approaches and have a concrete theory to

identify the coevolutionary signals from an MSA of the query protein. None of them uses

other features of the query protein (e.g., the amino acid profile or secondary structure

prediction) to help the identification of the coevolutionary couplings. However, the re-

cently developed machine learning models incorporate coevolutionary couplings predicted

by local statistical models or/and global statistical models, as well as 1D and 2D proper-

ties of the query protein. These machine learning models are not designed for coevolution

analysis, but for amino acid contact/distance prediction. However, since they use coevo-

lutionary couplings, they are also called coevolution based amino acid contact prediction

models.

Representatives of the three types of coevolution based amino acid contact prediction

models are reviewed in this section. Among them, both predictions from the local and

global statistical models were used as features in the contact/distance prediction algo-

rithm developed in this study (DeepCDpred). The predictions from the machine learning

algorithm, MetaPSICOV, were used to benchmark the performance of DeepCDpred.

All of the local and global statistical models below use the MSA of the query sequence as
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the input and output a matrix of pairwise amino acid coevolutionary couplings. The value

of the couplings is used to indicate how likely a pair of residues is in contact. An MSA of

detected significant homologues of the query protein sequence is the start point for all of

the models reviewed in this section. In order to carry out mathematical calculations, the

MSA is firstly converted to a numerical matrix whose values are from 0 to 20 (where 0 to

19 represent 20 letters in the MSA and 20 stands for the gap). This conversion scheme is

adopted from the one previously used in PSICOV (Jones et al. 2012) and the detail of the

mappings can be found in Table A.1 of Appendix A. For ease of description, the following

notations are made:

1. M and L are the number of rows and the number of columns in the MSA, which

represent the number of sequences and the number of amino acids in the query protein,

respectively;

2. Uppercase X = (X1, . . . , XL) ∈ R
L is an L dimensional random variable vector with

Xi corresponding to ith column of the MSA, where 1 ≤ i ≤ L;

3. Lowercase x = (x1, . . . , xL) ∈ R
L represents an observation of X and a row (that is, a

sequence) in the MSA; xm = (xm1 , . . . , x
m
L ) is the mth observation of X and mth row in

the MSA, where 1 ≤ m ≤M ;

4. fi (a) is the observed frequency of amino acid type a in ith column; fij (a, b) is the

observed joint frequency of amino acid type a occurring in column i and b occurring

in column j;
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2.6.1 Local Statistics Models

The first attempts to study amino acid coevolution used local statistical models. They

assume that the dependency of any pair of positions is independent of all the other pairs.

These methods have been widely used until about 9 years ago (1999). Pearson correlation

coefficient, observed minus expected squared (OMES) and mutual information are three

representatives among them and mutual information is probably the most widely used

(de Juan et al. 2013). The following provides a brief introduction to the application of

mutual information in the amino acid coevolution study.

Mutual information detects covarying positions in an MSA based on the strategy that it

measures whether the presence of the amino acids at one position is a good prediction

of the presence of amino acids at another position. Specifically, for an MSA, one can

calculate the empirical mutual information MIij between any column pairs i and j using

one-site and two-site amino acid frequencies fi (a) (as well as fj (b)) and fij (a, b),

MIij = MIji =
∑

ab

fij (a, b) log

(

fij (a, b)

fi (a) fj (b)

)

(2.1)

MIij is bounded between [0, min (Hi, Hj)] (Martin et al. 2005) and equals to zero if

and only if the distributions of the two columns are independent. Here, Hi and Hj are

the empirical entropies of column i and column j, respectively. A high score of MIij is

usually used as an indicator of coupling (Gloor et al. 2005). It is easier to understand

and make comparisons to bound MIij ∈ [0, 1]. Thus, normalized mutual information
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NMIij =
NMIij

min(Hi,Hj)
was proposed and used (Martin et al. 2005). NMIij = 1 if column i

and column j are perfectly correlated.

However, MI suffers from a problem related to the high degree of amino acid conserva-

tion at some sites. For example, if position i is always leucine and position j always

lysine, NMIij would be equal to one although no variation between the two positions is

observed. By definition, MI also does not take into account which residues are present in

both columns in an MSA. It just treats different amino acid types as different symbols

(numbers). Thus, the biochemical changes are ignored when MI is used to assess the sim-

ilarity of mutational patterns between two positions. Besides the two limitations, MI also

cannot remove phylogenetic biases and indirect interaction effects, which will be discussed

in the next two sections.

2.6.2 Disentangling Directly Coupled Positions from the Network

of Indirectly Correlated Positions

Indirect interaction is also called chaining correlation or transitive correlation. Due to the

essence of correlation, the mutation between two residues may present significant correla-

tion even if they are not close in structure. In the simplest situation with three residues,

A, B, and C, if both residue pairs AB and BC are coevolving together directly, there

may be an apparent correlation between A and C (“indirect interaction” ) regardless of

whether these residues interact (Figure 2.6). This additional correlation appears because
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the two real couplings share residue B. It is obvious that the above local statistical mod-

els are not able to remove these artefacts – they just reflect how strong the correlation

between two sites is, but do not distinguish where the correlation comes from. Thus,

the coupling matrix obtained by local statistical models mixes both direct and indirect

couplings (Figure 2.6, right).

B

A C

A

B

C

A B C

B

A C

Direct	coupling Indirect	coupling

Figure 2.6. An illustration of the indirect coupling caused by the transfer of
direct couplings.

The mixture of these indirect correlations makes it difficult to identify the directly coupled

sites. However, since the direct couplings are more useful for predicting spatially close

amino acid residues in protein structures, approaches need to distinguish direct from in-

direct couplings (de Juan et al. 2013). The methods discussed in the Global Statistical

Models subsection (2.6.4) have shown good performance in dealing with this problem.

2.6.3 Phylogenetic Bias Correction

Because of the evolutionary relationships among species, in an MSA, the aligned sequences

do not represent independent samples – sequences from some taxa may be over-represented

and other sequences under-represented, as driven by the research interests of the scientific
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community. This violates the assumption that the measured sequences are independent

and identically distributed. It might happen that two positions just keep their respective

ancestral amino acid with no mutual influence. The two positions then show a high degree

of correlation resulted from phylogeny alone. This effect is called phylogenetic noise or

bias (Baker and Porollo 2016). Since the calculations of both local statistical models and

global statistical models (see detail in the next section) are based on MSAs, they all suffer

from this problem.

A practical solution for this bias can be dealt with by an approach called Average Product

Correction (APC) (Dunn et al. 2008). An instructive derivation of APC found in (Burger

and van Nimwegen 2010) is followed here. Assume that the coupling Jij of positions i and

j is made of two parts, Jr
ij, corresponding to a real (or observed) mutual influence (can be

indirect or direct), and BiBj, a product of single-site characteristics that represents the

background bias:

Jij = Jr
ij +BiBj (2.2)

One hopes to correct such a background by estimating the contribution of it and subtract-

ing it from the coupling score. It is now assumed that Jr
ij ≪ BiBj. Then the one and

two-site averages of Jij will also be dominated by the single site contributions (average

denoted by •):


























Ji• ≈ BiB•

J•• ≈ (B•)
2

(2.3)

where Ji• = 1
N

∑N

j=1 Jij, B• =
1
N

∑N

i=1Bi and J•• = 1
N

∑N

j=1 Ji•.
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Therefore,

Jr
ij = Jij −

Ji•J•j

J••
(2.4)

Previous studies have shown that couplings corrected by APC could improve amino acid

contact prediction (Buslje et al. 2009; Dunn et al. 2008; Gomes et al. 2012).

2.6.4 Global Statistical Models

Breakthroughs to address the transitive interaction problem of the local statistical models

(e.g., mutual information) and predict much more accurate amino acid contacts were only

made with the adoption of global statistical models. These techniques view all residues

in a whole network simultaneously and treat pairs of correlated residues as dependent on

one another. They try to find the smallest set of direct couplings that can explain the

observed correlations in the MSA by applying the maximum entropy principle.

From this subsection (2.6.4) to the subsection of “Pseudo-likelihood Maximization DCA”

(2.6.9), the background of global statistical models (2.6.4), the optimization strategy

(maximum entropy principle, 2.6.5), and three representatives (2.6.7, 2.6.8 and 2.6.9) of

the global statistical models are introduced. These three models were used in the pipeline

of the proposed algorithm in this thesis, DeepCDpred (precisely, PSICOV was replaced

with QUIC for speed consideration. See the Model Development chapter (Chapter 4) and

the Results chapter (Chapter 5) for details). The subsection of “Sequence Reweighting”

(2.6.6) introduces the preprocessing that is necessary before feeding the MSA of the target
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sequence to the three statistical models to generate the coevolutionary couplings for each

pair of residues in the target sequence.

Applying the maximum entropy principle to the study of amino acid coevolution was

initially attempted by the work of Lapedes et al. (Lapedes et al. 1999). However, due to

a large number of parameters in the proposed model and lack of optimization algorithms,

this work was unrecognized at that time. Ten years later, Weigt et al. (Weigt et al.

2009) also applied the maximum entropy principle to infer the amino acid coevolution,

but used a more computationally efficient message-passing algorithm. Once again, due to

the scaling of the computational complexity, this work still only analysed 60 positions of

an MSA. This method was termed message-passing Direct Coupling Analysis (mpDCA)

because of its ability to distinguish direct from indirect coevolutional couplings.

The next several years documented a significant step forward for the development of

global statistical models, or more precisely, DCA related models. Just like mpDCA, most

of these methods concretize the maximum entropy principle with the observed one-site

and two-site amino acid frequencies from an MSA. The representatives among them are

mean-field DCA (mfDCA), PSICOV (Protein Sparse Inverse COVariance) and pseudo-

likelihood maximization DCA (plmDCA). mfDCA was implemented in a software named

FreeContact (Kajan et al. 2014), which is capable of running in parallel and similarly,

plmDCA was implemented in CCMpred (Seemayer et al. 2014) to run in parallel. The

original release of PSICOV was already programmed to use multiple CPU cores. The dif-

ference between these methods are: mfDCA essentially takes the inverse of the correlation
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matrix and is thus the fastest and is capable of processing large proteins in a reasonable

period of time (Morcos et al. 2011); PSICOV assumes the global model with a multivari-

ate Gaussian distribution and approximates the likelihood function of the distribution by

using the GLASSO algorithm (Friedman et al. 2008). It was shown that PSICOV can

make better inter-residue contact prediction than mfDCA (Jones et al. 2012); however, it

also suffers from much slower speed than both the mfDCA implementation of FreeContact

and the plmDCA implementation of CCMpred (Kajan et al. 2014; Seemayer et al. 2014);

plmDCA simplifies the likelihood function of the global model with an easy-to-calculate

pseudo-likelihood and achieves better residue contact prediction than both of mfDCA and

PSICOV (Ekeberg et al. 2014, 2013; Jones et al. 2015).

In the following subsection, the maximum entropy principle is introduced and how to

apply it to the MSA data to produce a global statistical model is explained.

2.6.5 Maximum Entropy Principle

The principle of maximum entropy seeks a solution to the problem of how one selects the

best probabilistic model, which is consistent with certain constraints, from many models.

The answer is one should choose the model that assigns probabilities in a probability

space as evenly as possible. Mathematically, this means to find the probability P that

maximizes the formula S(P ) with constraints C (P ) = 0, where S(P ) is the Shannon

entropy. In other words, maximum entropy is also called the least constrained approach.
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A multivariate probabilistic model P (X1, ..., XL) assigns a probability to any amino acid

sequence A = (a1, ..., aL) based on the empirical frequency counts in the MSA. More

precisely, in order to be consistent with the MSA, the probabilistic model is chosen to

reproduce the empirical one-site and two-site amino acid frequency counts:

S = −
∑

X

P (X) logP (X) (2.5)

subject to

∑

{ak|k 6=i}

P (a1 , . . . , aL) = fi (ai)

∑

{ak,l|k 6=i,l 6=j}
P (a1 , . . . , aL) = fij (ai, aj)

(2.6)

where X = (X1, ..., XL) is the variable vector; fi (ai) is the frequency of proteins having

amino acid a in column i of the MSA, and fij (ai, aj) counts the fraction of proteins with

amino acid a in column i and amino acid b in column j.

Maximizing S with the constraints can be carried out through the introduction of Lagrange

multipliers. Now, there are two choices to progress calculations. One is to view the

distribution P (X) as discrete so that each random variable can only choose values from a

finite set (e.g., 20 amino acids and a gap, that is {1, . . . , 21}); the second is to consider the

distribution as continuous. For the former, after some calculations, the Potts distribution

can be obtained (Marks et al. 2011):

P (a1 , . . . , aL) =
1

Z
exp





L
∑

i=1

L
∑

j=i+1

Jij (ai, aj) +

L
∑

i=1

hi (ai)



 (2.7)
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where the ai, aj can take any value from an alphabet of size q = 21 (20 amino acids and

one gap symbol) and the Jij (ai, aj) and hi (ai) are real numbers indexed by the positions

i and j and the amino acids ai and aj.

The normalization constant Z is defined as

Z =
∑

(a1 ...,aL)

exp





L
∑

i=1

L
∑

j=i+1

Jij (ai, aj) +

L
∑

i=1

hi (ai)



 (2.8)

Z is also known as the partition function and ensures the sum of the probabilities equals

1; x = (a1 . . . , aL) runs through all possible sequences. Notice that the outer sum in

Equation 2.8 contains qN (q=21) terms, corresponding to all possible sequences. This

means that an exact and direct calculation of Z is impossible even for small proteins.

Methods therefore must generally avoid an exhaustive evaluation of Z and one thus needs

to rely on approximate methods for inferring the model parameters.

In physics, the Potts model is a generalization of the Ising model. The latter describes a

lattice of classical spins that can each be in one of two states (Wu 1982). The generalization

is that in the Potts model the spins can be in one of q > 2 states. Inspired by statistical

physics, the exponent in Equation 2.7 is often called (with a minus sign) the Hamiltonian:

−H (x = (a1 . . . , aL)) =





L
∑

i=1

L
∑

j=i+1

Jij (ai, aj) +
L
∑

i=1

hi (ai)



 (2.9)

In the Potts model, Jij is the coupling strength between spins i and j, and hi is the

strength of the external field at position i on the lattice (Ekeberg et al. 2013). When this

model is applied to the amino acid coevolution analysis, the local couplings and fields
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describe the preferences of positions to carry certain amino acids. Specifically, a large

hi (a) is a bias of position i toward preferring amino acid type a, and a large Jij (a, b)

translates into a desire for positions i and j to jointly carry amino acid types a and b.

Jij indicates the direct interaction between positions i and j. Hence, the aim here is

to infer the parameter set {h, J} (h is useful to characterize the conservation states of

all the positions in a query protein) from the observed one-site and two-site amino acid

frequencies, i.e., inferring the model parameters from observations of the system, which

is also called the inverse Potts problem.

If the distribution P (X) is considered as continuous rather than the discrete distribution

that leads to the the Potts model, it takes the form of a multi-variate Gaussian distribution

(Friedman et al. 2008; Stein et al. 2015):

P (X) =
1

√

(2π)L detΣ
exp

(

−1

2
(X− µ)T Σ

−1 (X− µ)

)

(2.10)

where µ and Σ is the mean vector and symmetric covariance matrix of the population,

respectively; detΣ is the determinate of Σ. Note that Σ is positive definite and thus

detΣ > 0.

The proof of why P (X) takes the form of Equation 2.10 can be found in the paper (Stein

et al. 2015).

Equation 2.10 is well determined. The inverse covariance matrix, Σ
−1, is also termed

as the precision matrix. Unlike the covariance matrix, in which each element is mixed

with direct and indirect interactions between two random variables, it measures the direct
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couplings within random variable pairs, after effects from other variables removed. This

property is desired in amino acid contact prediction. More details can be found in the

section about PSICOV (subsection 2.6.8).

The Number of Free Parameters In Equation 2.7

In the Potts model, it is easy to obtain that the parameters hi and Jij have the following

vector forms:

hi =



































hi,1

hi,2

...

hi,q



































and Jij =



































Jij,(1, 1) Jij,(1, 2) · · · Jij,(1, q)

Jij,(2, 1) Jij,(2, 2) · · · Jij,(2, q)

...
...

. . .
...

Jij,(q, 1) Jij,(q, 2) · · · Jij,(q, q)



































The calculation of how many free parameters there are in {h, J} – which can suggest the

complexity of the inverse problem to some extent – is as follows:

The pairs (i, j) and (j, i) are considered to be the same, and no pairs of the type (i, i) are

included. Thus, the number of pairs equals the number of ways in which one can choose

two elements from a collection of L without replacement, L(L−1)
2

. Because there are L

positions, each with a field vector (hi) of length q, and L(L−1)
2

residues pairs, each with a

coupling matrix of size q2, the total number of parameters is Lq + L(L−1)q2

2
. But, it turns

out that the parameter set {h, J} is over-parameterized. Because in Equation 2.6, fi (q)
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is implied given fi (1) , . . . , fi (q − 1), since
∑q

a=1 fi (a) = 1; and similarly, the coupling

constraints
∑q

b=1 fij (a, b) = fi (a) also exist. These constraints lead to the real number

of free parameters in {h, J} being L(q − 1) + L(L−1)(q−1)2

2
(Cocco et al. 2013; Ekeberg

et al. 2013; Morcos et al. 2011; Weigt et al. 2009). A way to solve this dimensional excess

is to fix some values of the parameters, for example by setting

Jij (q, l) = Jij (l, q) = hi (q) = 0 (2.11)

for all i, j, and l, where 1 ≤ i, j ≤ L, i 6= j, 1 ≤ l ≤ q. It makes all biases and couplings

with the last state as a reference. This would make the solution of the inverse Potts

problem unique.

In summary, global statistical models, which are based on the maximum entropy principle,

represent an MSA as a 21-state Potts model. Each sequence of the MSA can be thought as

a sample taken from a Potts model probability distribution (Ekeberg et al. 2014). Thus,

if a Potts model can be approximated with respect to the observed sequences, this model

could be used to identify coevolving positions.

2.6.6 Sequence Reweighting

This procedure aims to mitigate the phylogenetic bias. As mentioned in the subsection of

Phylogenetic Bias Correction (Subsection 2.6.3), protein sequences from a database (e.g.,

uniprot) are not independently distributed. A good example is the homologous sequences

of a target protein; some of them could have a very high identity. However, as described in
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the above subsection (2.6.5), the samples (or observations) of the global statistical models

should be independently distributed. A commonly used approach to alleviate the problem

resulted from similar sequences is called the sequence reweighting (Ekeberg et al. 2014;

Hopf et al. 2014; Jones et al. 2012). The essence of this approach is to assign a weight

to each sequence in an MSA based on how many similar sequences are related to it. The

more similar sequences a sequence has, the lower the weight it obtains. Two sequences are

considered to be similar if more than a fraction of σ (0 ≤ σ ≤ 1) of all the positions in the

alignment of these two sequences have the same amino acids. Explicitly, each sequence

x
b is assigned a weight wb = 1/mb, where mb is the number of sequences in the MSA that

are similar to x
b:

mb =
∣

∣

{

a ∈ {1, . . . ,M} : similarity
(

x
a ,xb

)

≥ σ
}∣

∣

Here, appropriate values for σ are in the range of 0.7− 0.9 (Ekeberg et al. 2013; Morcos

et al. 2011; Weigt et al. 2009).

Using this technique, the one-site and two-site amino acid frequencies are modified to

fi (k) =
1

Meff

M
∑

b=1

wbI
(

xbi = k
)

fij (k, l) =
1

Meff

M
∑

b=1

wbI
(

xbi = k
)

I
(

xbj = l
)

(2.12)

respectively. Here Meff =
∑M

b=1wb is the effective number of sequences and I
(

xbi = k
)

is

the indicator function with the value of1 if xbi = k, otherwise 0 (the same with I
(

xbj = l
)

).
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2.6.7 Mean Field DCA

Mean-Field Direct Coupling Analysis (mfDCA), proposed by Morcos et al. (Morcos et al.

2011), whose definition is followed below, was the first fast and efficient method to infer

the couplings Jij in Equation 2.7, for a given MSA. The idea behind this approach is a

Taylor-expansion of the Legendre transform of the term F = -lnZ (F is the free energy

of the system) around zero (Morcos et al. 2011).

Specifically, at the beginning, a perturbation parameter ε is introduced to control the

strength of the interaction term in the Hamiltonian:

Z (ε) =
∑

x

exp



ε

L
∑

i=1

L
∑

j=i+1

Jij (xi, xj) +

L
∑

i=1

hi (xi)



 (2.13)

Then the Legendre transform of − lnZ is considered:

G (ε) = lnZ(ε)−
L
∑

i=1

q−1
∑

ai=1

hi (ai)Pi (ai) (2.14)

where P is the multi-variate probability distribution defined in Equation 2.7.

Approximates G (ε) to the first order in ε by using a Taylor series expansion:

G (ε) = G (0) + ε
∂G (ε)

∂ε

∣

∣

∣

∣

ε=0

+O
(

ε2
)

(2.15)

In this approximation, the key result is obtained:

(

C−1
)

ij
(ai, aj) = −Jij (ai, aj) (2.16)

where empirical covariance matrix is defined as

Cij (ai, aj) = fij (ai, aj)− fi (ai) fj (aj) (2.17)
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A Potts model describing an MSA with sequence length of 50-300 amino acids includes

about 105− 107 parameters. However, a typical protein family has only from hundreds to

thousands of sequences. The limited number of samples leads to the empirical covariance

matrix C in the above inversion problem usually being not of full rank, and therefore,

Equation 2.16 is not well-defined. Morcos et. al. introduced a pseudo-count approach

in which the one-site and two-site amino acid frequencies are adjusted by a parameter

λ (Morcos et al. 2011). This method is a modified version of the reweighting scheme as

described in the previous section:

fi (k) =
1

λ+Meff

M
∑

m=1

wm

(

λ

q
+ I (xmi = k)

)

fij (k, l) =
1

λ+Meff

M
∑

m=1

wm

(

λ

q2
+ I (xmi = k) I

(

xmj = l
)

)

(2.18)

The pseudo-count is used to ameliorate the statistical noise due to under-sampled se-

quences in the MSA and could also increase the rank of the correlation matrix, therefore

promotes the invertibility of the covariance matrix C (Ekeberg et al. 2013; Morcos et al.

2011). Here, I (xmi = k) is an indicator function taking value 1 if and only if the amino

acid at position i in sequence m is k, and otherwise taking value 0.

In summary, inferring coupling using mfDCA involves the following three steps:

1. compute the observed one-site and two-site residue frequencies, fi and fij, from the

MSA using Equation 2.18;

2. calculate the empirical correlation matrix Cij (ai, aj) = fij (ai, aj)− fi (ai) fj (aj);
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3. invert the matrix Cij to obtain the couplings Jij (ai, aj) .

The task left is how to combine the couplings between positions i and j to a contact

measuring score. Morcos et al. (Morcos et al. 2011) used a quantity termed direct infor-

mation DIij, similar to the mutual information between site i and j, based on a two-site

probability model:

P d
ij (a, b) =

1

Zij

exp
(

Jij (a, b) + ĥi (a) + ĥj (b)
)

(2.19)

where Zij is calculated in a similar way to Equation 2.8, but limited to sites i and j;

ĥ is inferred so that the empirical one-site frequencies are recovered with this two-site

probability model (Morcos et al. 2011). The direct information (DI) between sites i and

j is defined as:

DIij =
∑

a,b

P d
ij (a, b) ln

P d
ij (a, b)

fi(a)fj(b)
(2.20)

The DIij, sorted by their numerical values, stand for the evolutionary coupling strength

for the initial MSA.

2.6.8 Sparse Inverse Covariance Estimation (PSICOV)

In the Maximum Entropy Principle subsection (2.6.5) of this chapter, it was discussed

that if each sequence of an MSA is considered as being sampled from a continuous multi-

variate distribution, and with the first moment and second moment of the observations
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(e.g., the sequences in the MSA) as constraints, unlike the Potts model, the probability

adopts the form of a multi-variate Gaussian distribution:

P (X) =
1

√

(2π)N detΣ
exp

(

−1

2
(X− µ)T Σ

−1 (X− µ)

)

(2.21)

where µ and Σ is the mean vector and symmetric covariance matrix of the population,

respectively; detΣ is the determinate of Σ. Note that Σ is positive definite and thus

detΣ > 0.

Using this special distribution as a start-point, Jones et al. proposed a successful amino

acid contact prediction algorithm termed PSICOV (Protein Sparse Inverse Covariance

Estimation) in 2012 (Jones et al. 2012).

The inverse of the covariance matrix Θ = Σ
−1 is termed as the precision matrix. From it,

one can define the so-called partial correlation coefficient connected to the two variables

Xi and Xj as:

ρXi,Xj
= −

ΘXi,Xj
√

ΘXi,Xi

√

ΘXj ,Xj

(2.22)

The partial correlation coefficient matrix has the property that each element in it measures

the correlation of two random variables after the influence of the other variables has been

taken away (Peng et al. 2009).

In order to be consistent with the notation in the previous subsection (Subsection 2.6.7),

let C be the empirical covariance matrix again. Due to the large size of C and the limited

number of sequences in the MSA for typical proteins, C is not invertible (Jones et al.
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2012). One practical solution to calculate the inverse covariance matrix is to minimize

the negative log-likelihood with a l1 norm penalty regularizer (to overcome the overfitting

problem) (Jones et al. 2012):

obj =
d
∑

ij=1

CijΘij − log detΘ + ρ ‖Θ‖1 (2.23)

where ‖Θ‖1 is the l1 norm – the sum of the absolute values of the elements in Θ; ρ controls

the sparsity of Θ—a larger ρ makes more of the elements in Θ approach 0; d = 21×L and

L is the number of amino acids in the query protein sequence. The empirical covariance

matrix C with size of (21× L)× (21× L) is defined:

C
a,b
i,j = f

(

xai , x
b
j

)

− f (xai ) f
(

xbj

)

(2.24)

where 1 ≤ a, b ≤ 21 and 1 ≤ i, j ≤ L.

A brief explanation to the regularization is appropriate here. It is not only used in Equa-

tion 2.23, but also used in the function optimization of Subsection 2.6.9 (next subsection)

and the training process of the DeepCDpred (4.2.3), the amino acid contact/distance pre-

diction algorithm, proposed in this thesis. The idea behind regularization is as described

in Occam’s razor – among many models, the one that makes the fewest assumptions

should be chosen. As for solving a model with multiple parameters by optimization, reg-

ularization could be achieved by adding a penalty to the parameters. In the optimization

process, the penalty term forces some of the parameters to approach zero. Two widely

used regularization forms are L1 and L2. L1 minimizes the sum of the absolute values
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of the parameters (e.g., Equation 2.23); while L2 minimizes the sum of the square of the

parameters (e.g., Equation 2.33).

The optimization of the objective function has been a research focus for many years.

One famous algorithm is termed graphical LASSO (least absolute shrinkage and selection

operator), which uses a coordinate descent procedure. In the original paper of PSICOV,

Jones et al. (Jones et al. 2012) also adopted this algorithm. Using the l1 norm to constrain

the solution of the inverse of the covariance matrix to be sparse not only accelerates the

calculation by allowing null rows to be skipped in the graphical LASSO procedure, but

also constrains the statistical model to be as simple as possible (Tetchner et al. 2014).

Sparse priors are also used in plmDCA; see the next subsection for detail. After solving

the partial correlation coefficient matrix, PSICOV also attempts to reduce the effects of

phylogenetic bias by applying average product correction (APC) as already mentioned in

Subsection 2.6.3.

Unlike the graphical LASSO algorithm, which essentially solves the optimization prob-

lem of Equation 2.23 using a block-wise coordinate descent method, another algorithm

proposed in 2014 named QUIC (Quadratic approximation for sparse Inverse Covariance

estimation) was proved to achieve a much faster convergence, as well as a considerable

improvement of performance due to a smart partitioning of variables into fixed and free

sets (Hsieh et al. 2014). Because of these advantages, PSICOV was replaced by QUIC for

amino acid coevolutionary couplings calculation in this thesis. See the Model Development

chapter (Chapter 4) for more information.
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2.6.9 Pseudo-likelihood Maximization DCA

Pseudo-likelihood maximization DCA, or plmDCA, represents the most successful pure

mathematical approach in amino acid contact prediction so far (Jones et al. 2015). The

idea of this approach is to use the pseudo-likelihood as an alternative to the full likelihood

(Besag 1977). To do this, note that:

P (X; θ) =
∏

i

P (Xi|X1, . . . , Xi−1; θ) (2.25)

via the chain rule. Here, θ = {h, J} is the parameter set in the distribution. Consider

the following approximation:

P (X; θ) ≈
∏

i

P (Xi|X1, . . . , Xi−1, . . . XL; θ)

=
∏

i

P (Xi|X−i; θ)

(2.26)

where the conditioning over additional variables is added. Here,

X−i = {X1, . . . , Xi−1, . . . XN}; it is the collection of all the variables except Xi. Then, the

following equation (Equation 2.27) can be obtained:

P (Xi = xi|X−i = x−i) =
exp

(

hi (xi) +
∑L

j=1;j 6=i Jij (xi, xj)
)

∑q

l=1 exp
(

hi (l) +
∑L

j=1;j 6=i Jij (l, xj)
)

=
1

Zi

exp

(

hi (xi) +
L
∑

j=1,j 6=i

Jij (xi, xj)

)

(2.27)
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where Zi =
∑q

l=1 exp
(

hi (l) +
∑L

j=1; j 6=i Jij (l, xj)
)

and for convenience, Jij (xi, xj) means

Jji (xj, xi) when j < i (this notation is reasonable, since the coupling between the residue

xi at position i and the xj at position j is the same as the coupling between the residue

xj at position j and the xi at position i, i.e., the coupling is undirected).

This quantity does not contain the forbidding and bothersome normalization. In a sense,

normalization is still going on though; the denominator Zi can be seen as the ‘new Z’,

specified to the position i. The dependent variable l takes on just q states (contrasted to

with qL states in the original Z), so this normalization is compatible with a large L.

Based on the above analysis, given an MSA, the negative logarithm pseudo log-likelihood

function corresponding to the ith position reads

− logPLi = −
M
∑

m=1

wm



h (xmi ) +

L
∑

j=1,j 6=i

Jij
(

xmi , x
m
j

)

− logZi



 (2.28)

where

Zi =
1

Meff

M
∑

m=1

wm ln





q
∑

l=1

exp



hi (l) +

L
∑

j=1,i 6=j

Jij
(

l, xmj
)







 . (2.29)

The wm is the weight for the mth sequence in the MSA.

Sequential and Parallel Negative Logarithm Pseudo-likelihood Minimization

There are two ways to approximate the parameter set {h, J}. The straightforward one is

to minimize the combined L negative logarithm pseudo-likelihood functions:

{

h#, J#
}

= argmin
h,J

L
∑

i=1

(− logPLi) (2.30)
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and solve the parameter set with only one optimization process. This is called the sequen-

tial negative logarithm pseudo-likelihood minimization. GREMLIN uses this strategy and

was shown to be able to achieve more accurate amino acid contact prediction than both

mfDCA and PSICOV (Balakrishnan et al. 2011). However, this optimization has the

drawback of being slow (Ekeberg et al. 2014).

Another method is to minimize each − logPLi separately, one is independent of another.

Many modern computers have multiple CPU cores. So, it is possible to send the cal-

culation of each − logPLi to a different core and join the individual parameter subset
{

h#i , J#
i∗

}

to form the final
{

h#, J#
}

. This method is called the parallel negative log-

arithm pseudo-likelihood minimization, since it can be easily programmed using parallel

computing. Obviously, it is much faster than the former one. However, this method also

suffers from a problem. For any inferred coupling J
#
ij , it can come from both J#

i∗ and J#
∗j

, which are named J#i
ij and J#j

ij . The two J
#
ij can be different. A compromise proposed

by Ekeberg et al. (Ekeberg et al. 2014) was shown to achieve almost the same amino acid

contact prediction accuracy as the sequential one:

J
#
ij =

1

2

(

J#i
ij + J#j

ij

)

. (2.31)

Due to the speed advantage, the following description of plmDCA only focuses on the

parallel one.

Although one can find the solutions of {h, J} by gradient descent, practically, due to the

huge number of free parameter in the set, overfitting cannot always be avoided (Ekeberg
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et al. 2014). The technique of regularization partially solves the issue (Ekeberg et al.

2014, 2013) of overfitting.

Regularization

In Equation 2.28, l2 regularization, which is the sum of all squares, was used. The l2

regularizer forces a finite fraction of parameters to assume value zero, thus effectively

reducing the number of parameters. Instead of minimizing − logPLi, one minimizes

− logPLi +Rl2with

Rl2 (h, J) = λh

L
∑

i=1

q
∑

a=1

‖hi (a)‖22 + λJ

L, L
∑

1≤i<j≤N

q,q
∑

a,b=1

‖Jij (a, b)‖22 (2.32)

λh and λJ are regularization strengths for the couplings and the fields to be specified by

the user. Suitable values were found to be λh = λJ = 0.01 (Ekeberg et al. 2014, 2013).

So, instead of minimizing − logPLi,

g
(reg)
i = − logPLi + λh ‖hi‖22 + λJ

L
∑

j=1,i 6=r

‖Jij‖22

= − 1

Meff

M
∑

m=1

wm







hi (x
m
i ) +

N
∑

j=1,i 6=j

Jij
(

xmi , x
m
j

)

− ln

q
∑

l=1

exp



hi (l) +

L
∑

j=1,i 6=j

Jij
(

l, xmj
)











+ λh ‖hi‖22 + λJ

L
∑

j=1,i 6=r

‖Jij‖22

(2.33)

is minimized.
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From the above equation, the partial derivatives are calculated as (cited from (Ekeberg

et al. 2014)):

∂g
(reg)
i

∂hi (a)
=− 1

Meff

M
∑

m=1

wm



I [xmi = a]−
exp

[

hi (a) +
∑L

j=1,i 6=j Jij

(

a, xmj

)]

∑q
l=1 exp

[

hi (l) +
∑L

j=1,i 6=j Jij

(

l, xmj

)]





+ 2λhhr (s)

(2.34)

∂g
(reg)
r

∂Jij (a, b)
=− 1

Meff

M
∑

m=1

wmI [x
m
i = a]



I
[

xmj = b
]

−
exp

[

hi (a) +
∑L

j=1,i 6=j Jij

(

a, xmj

)]

∑q
l=1 exp

[

hi (l) +
∑L

j=1,i 6=j Jij

(

l, xmj

)]





+ 2λJJij (a, b)

(2.35)

g
(reg)
r is a smooth function, which means that minimizing g(reg)r is to find the point at which

these derivatives are all zeros (Ekeberg et al. 2014).

Scoring

This step deals with how to choose values from the inferred parameter set {h, J} to make

amino acid contact prediction. Weigt et. al. used the direct information (DI) to measure

the interaction strength between any pair of amino acid sites in their pioneering mfDCA

work (Morcos et al. 2011). However, instead of DI, Ekeberg et. al. used Frobenius norm

(FN) followed by the APC correction (Ekeberg et al. 2014, 2013). There is not a clear

theoretical reason why one should favour this approach over DI, but the results in the

study by (Ekeberg et al. 2014, 2013) indicate that it seems to achieve better amino acid

contact prediction in the context of plmDCA, and thus it was also the scoring function of

choice in this work.
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For any pair of sites i and j, the Frobenius norm is defined as

FNij =

√

√

√

√

q,q
∑

a=1,b=1

Jij (a, b)
2 (2.36)

After being corrected by the APC, the final score which indicates the amino acid coupling

strength is

Sij = FNij −
FN•jFNi•

FN••
. (2.37)

2.6.10 Machine Learning Based Predictors

All of the above three global statistical approaches were shown to be able to detect struc-

tural amino acid contacts more accurately than local statistical approaches (Ekeberg et al.

2013; Jones et al. 2015; Morcos et al. 2011). plmDCA was reported the best among them.

It is worth knowing whether plmDCA could predict all of the contacts that mfDCA and

PSICOV predict, or in other words, whether mfDCA or PSICOV could predict some

contacts which plmDCA couldn’t. Some groups have investigated the differences in the

contacts predicted by these three approaches (Jones et al. 2015; Skwark et al. 2013).

Figure 2.7a shows the overlap of correctly predicted contacts and Figure 2.7b illustrates

the overlap of the incorrectly predicted contacts from the three approaches for the same

set of MSAs. It is clear to find that the different methods result in a number of correct

predictions, as well as incorrect predictions, which are unique to that method, even if the
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majority of correct contacts are identified by all of the three. So, it is a good idea to com-

bine the three approaches to generate a meta-predictor via machine learning techniques

with the aim of improving amino acid contact precision.

a b

Figure 2.7. Diagram of the overlap of the correct contact predictions (a),
and incorrect contact predictions (b) by PSICOV, EVfold (mfDCA) and
CCMpred (plmDCA) from 1050 predictions. This figure is adopted from the
study by (Tetchner 2016).

The first developed machine learning based contact predictors that combine the amino acid

coevolutionary couplings from multiple global statistical models by machine learning were

PconsC (Skwark et al. 2013) and a modified version of PconsC (PconsC2) (Skwark et al.

2014). These methods combine the coevolutionary couplings from plmDCA and PSICOV

that are calculated based on eight different MSAs for a query protein sequence by using a

random forest classifier. Of the eight MSAs, four are generated by JackHMMER (an itera-

tive profile HMM program in the HMMER suite), with different expectation values (10-40,

10-10, 10-4, 1), and four are generated by another program, HHblits, with the same four ex-

pectation values (Skwark et al. 2013). Besides the eight contact predictions, PconsC2 also

used predicted SS, accessible solvent area and amino acid profile as features. In addition,
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PconsC2 also changed the architecture compared to PconsC: a five-layer stack of random

forests was used. From the second layer, the outputs from the preceding layer were fed

into the input of the current layer, together with the above-mentioned features. PconsC

and PconsC2 improved amino acid contact prediction performance compared to the indi-

vidual statistical methods (Skwark et al. 2013, 2014). However, they both suffer from the

drawback of being slow for contact prediction calculation (Michel et al. 2014; Wang et al.

2017a). The later proposed MetaPSICOV approach (Jones et al. 2015), which combines

predictions from mfDCA, PSICOV and plmDCA along with other structural predictions

such as the secondary structure prediction and solvent accessibility prediction, and protein

primary structure properties such as amino acid profiles, reduces a lot of computational

time (Jones et al. 2015), as compared with PconsC and PconsC2. MetaPSICOV uses

feedforward neural networks and can make better amino acid contact predictions than

the original PconsC (Jones et al. 2015) and PconsC2 (de Oliveira et al. 2016).

MetaPSICOV consists of two stages. In stage 1, the neural network has a single hidden

layer with sigmoid activation and 55 hidden units. For each pair of sites, the input layer

is fed with a 672-dimensional feature vector for each pair of residue on the target sequence

and outputs a value in the range of 0−1 to indicate how likely the residue pair is in contact

(0 indicates very unlikely and 1 very likely to be in contact). Stage 2 is another neural

network with the same architecture as stage 1. The main difference is that the contact

predictions generated by stage 1 are used as an input feature of stage 2. This iteration

strategy allows stage 2 to be able to predict more accurate amino acid contacts than
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stage 1 in most cases. By combining machine learning techniques and coevolution-based

predictions, MetaPSICOV is able to successfully deal with proteins with different lengths

(the number of amino acids). In the paper of MetaPSICOV (Jones et al. 2015), the authors

report that, if the MSA of the query protein has poor quality, MetaPSICOV downweights

the coevolutional coupling signal and promotes the weights of other structural properties

(e.g., the secondary structure prediction, amino acid profile). Conversely, if the MSA has

sufficient homologous sequences, the coevolutional coupling signal is upweighted.

Summarized comparisons between the above three machine learning based amino acid

contact prediction approaches can be found in Table 2.1.
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Table 2.1. Comparisons between PconsC, PconsC2 and MetaPSICOV.

# PconsC PconsC2 MetaPSICOV

Machine

Learning

Type

Random Forest (100

decision trees)

5 Layers of Random

Forests (each layer

has 100 decision

trees)

Two stages of three-layer

feedforward neural networks

Feature

PSICOV and

plmDCA contact

predictions based on

8 MSAs

PSICOV and

plmDCA contact

predictions based on

8 MSAs, sequence

separation, predicted

SS and accessible

solvent area, amino

acid profile. These

features are used in

the first layer; from

the second layer,

these features

together with the

preceding layer

outputs are used in

the inputs.

mfDCA, PSICOV and

plmDCA contact

predictions, MI, statistical

potential, position entropy,

amino acid profile,

predicted SS and accessible

solvent area, sequence

separation, sequence length,

the number of sequences in

the MSA, the number of

effective sequences in the

MSA. These features are

used in the neural network

of stage 1; for stage 1

neural network, besides

these features, the output

from stage 1 is also used.

Training

Set Size
48 proteins 150 proteins 672 proteins

Performance

Better than mfDCA

(evfold), PSICOV

and plmDCA

(Skwark et al. 2013)

Better than PconsC

(Skwark et al. 2014)

Better than both PconsC

and PconsC2 (de Oliveira

et al. 2016; Jones et al.

2015)

Besides the above three methods, there are another three recently published amino acid

contact prediction algorithms, namely plmConv (Golkov et al. 2016), NeBcon (He et al.

2017) and RaptorX (Wang et al. 2017b). They all claim to make more accurate amino

acid contact predictions than MetaPSICOV. The following is a brief introduction to them.
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In the paper of plmConv, a 2D three-layer convolutional network was employed and co-

evolutional couplings calculated by plmDCA were included in the features. Mean squared

error was used as the loss function, and the Adam algorithm (Kingma and Ba 2014) as

the training function during the network training process.

NeBcon includes two steps. In the first step, contact scores are firstly predicted by eight

representative predictors, which include PSICOV, CCMpred, Freecontact, MetaPSICOV,

etc., for the query sequence; a naive Bayes classifier is then used to calculate the posterior

probability score for each contact score matrix. In the second step, six features (secondary

structure prediction, solvent accessibility prediction, Shannon entropy, residue separation,

residue composition and residence; here residue composition is the amino acid frequency of

the MSA of the query sequence and the residence is binary value to indicate the location of

the residue pair being considered) are extracted from the query sequence; they, together

with the posterior probability scores, are fed into a neural network to report the final

contact score.

RaptorX predicts amino acid contacts by combining both sequence information and evo-

lutionary coupling; it uses an ultra-deep neural network (60 layers in total) model formed

by two deep residual neural networks. In the first residual neural network, 1D features

including the sequence profile (the amino acid frequency), the secondary structure pre-

diction and the solvent accessibility prediction are used, and the output of this network is

converted to a 2D matrix. This output, together with pairwise features, are used as the

input in the second residual neural network. The pairwise features include coevolutional
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couplings predicted by CCMpred, pairwise contact and distance potentials. The output

from this network reports the final contact score.

2.7 Feature Selection and Machine Learning

As mentioned in the above paragraphs of the previous section, the latest coevolution

based amino acid contact prediction methods use machine learning models. Besides the

coevolutionary couplings calculated from the local/global statistical algorithms, other

protein 1D or 2D properties are also usually calculated and used as features. In this

section, some of the commonly used features are introduced (these features are also used in

DeepCDpred). The brief introduction to the development of machine learning, especially

the neural network model, could help readers to understand the models proposed in this

study.

2.7.1 Secondary Structure Prediction

The secondary structure of a protein not only provides an approximate idea about the

overall structural category it belongs to, but also can define geometry constraints for the

tertiary structure prediction when its known 3D structure is not available in PDB.

Protein secondary structure prediction requires the definition of the secondary structure.

The most commonly used standard is the secondary structure assignment method, DSSP

73



(Dictionary of Secondary Structure of Proteins) (Kabsch and Sander 1983), which defines

eight states of secondary structure: H (α-helix), G (310 helix), I (π-helix), E (extended

strand in parallel and/or anti-parallel β-strand conformation), B (β-bridge), S (bend), T

(turn) and C (coil) based on hydrogen bonding patterns. These eight states are further

simplified into three states – helix (H, G and I), strand (E and B) and coil (S, T and C)

(Muppalaneni and Gunjan 2015).

In order to assign one type of secondary structure for each residue in a protein, a number of

sophisticated computational approaches have been developed in the past several decades

for protein secondary structure prediction. The approaches can be classified into two main

groups: simple statistical methods and machine learning based methods. The highlight of

the former is that the biological meanings are comprehensible (Chou and Fasman 1974).

They generally assign secondary structures for a given protein according to the statistical

propensities of amino acid residues towards a specific secondary structure element. How-

ever, the maximum Q3 accuracy of them is only around 65% (Muggleton et al. 1992).

Here, Q3 is the total number of correctly predicted residue states divided by the total

number of residues. By contrast, a major advantage of machine learning, especially deep

learning based methods, is that different information can be incorporated into a prediction

model (Zhang 2015). Among them, neural-network based models have seen the highest

reported accuracy (Yang et al. 2016). These methods typically rely on a sequence profile

(position-specific substitution matrix, PSSM) derived from multiple sequence alignment

of homologous sequences. Using PSSM implicitly assumes that homologous sequences
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have the same secondary structures (Yang et al. 2016).

In a newly published paper, some protein secondary structure prediction methods were

reviewed (Yang et al. 2016). The authors compared seven state-of-the-art algorithms –

Jpred 4 (Drozdetskiy et al. 2015), SCORPION (Yaseen and Li 2014), Porter 4.0 (Mirabello

and Pollastri 2013), PSIPRED 3.3 (Buchan et al. 2010; McGuffin et al. 2000), SPINE X

(Dor and Zhou 2007), SPIDER2 (Structural Property prediction with Integrated DEep

neuRal network 2) (Heffernan et al. 2015) and DeepCNF (Deep Convolutional Neural

Fields) (Wang et al. 2016b) by using the same test set (115 X-ray crystallography solved

proteins released between 1 January 2016 and 20 September 2016). The three-state ac-

curacies reported in this paper were 77.1% by Jpred 4, 80.1% by SPINE X, 80.2% by

PSIPRED 3.3, 81.7% by SCORPION, 81.9% by SPIDER2, 82.0% by Porter 4.0 and

82.3% by DeepCNF. Here, the prediction accuracy is measured by the Q3 score. Except

Porter 4.0, all of the algorithms used PSSM calculated from a sequence database with

PSI-BLAST as inputs for each machine learning model (Buchan et al. 2010; Dor and

Zhou 2007; Drozdetskiy et al. 2015; Heffernan et al. 2015; McGuffin et al. 2000; Wang

et al. 2016b; Yaseen and Li 2014). Porter 4.0 used the frequencies of 25 amino acids (20

standard amino acids plus B (D or N), U (selenocysteine), X (unknown), Z (E or Q)

and the gap) as inputs. In addition, Jpred 4 also used the HMM profile that is obtained

from the MSA of the target sequence as input features (Drozdetskiy et al. 2015). SPINE

X also used seven physical parameters including the graph shape index, hydrophobicity,

volume, polarizability, isoelectric point, helix probability, and sheet probability, as the
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input features (Faraggi et al. 2012). As for outputs, all of these algorithms generated a

three-state probability vector for the target sequence; each position in the vector includes

three elements which represent the probabilities of the secondary structure states, helix

and strand, and coil/loop. SPIDER2 (Heffernan et al. 2015) also reported the φ and ψ

angles. DeepCNF (Wang et al. 2016b) reported an eight-state probability vector for the

eight-state secondary structure prediction (the definition of the eight states was already

mentioned at the beginning of this section).

At the time of developing the code of the proposed amino acid contact/distance prediction

algorithm (i.e., DeepCDpred) in this thesis, the codes of Porter 4.0 and DeepCNF were

not available, so SPIDER2 was used for the secondary structure prediction and embed-

ded in the automatic amino acid contact/distance prediction pipeline of DeepCDpred.

In future work, Porter 4.0 and DeepCNF will be tried to replace SPIDER2 to improve

contact/distance accuracy. Please see Section 6.6 in Chapter 6 (Discussion chapter) for

more discussions.

SPIDER2 (Heffernan et al. 2015) applied deep neural networks, which refer to neural net-

works with more than one hidden layer, for secondary structure prediction. Three hidden

layers were used in SPIDER2 and each consisted of 150 neurons. Weights were learned by

the standard backward propagation algorithm. SPIDER2 used an iterative simultaneous

improvement of secondary structure, backbone torsion angles and solvent accessibility

(solvent accessible surface area) by using three iterations. The original publication re-

ported that the method achieved an average Q3 accuracy of 81.8% for an independent
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test on 1199 high-resolution proteins (<2.0 Å) (Heffernan et al. 2015).

DeepCNF was published in 2016, one year later than SPIDER2. It combined a deep convo-

lutional network and a conditional random field. The deep convolutional network (7-layer)

captured long-range sequence information and the conditional random field models the

SS labels of nearby residues (Heffernan et al. 2015). In the paper, the authors claimed

that DeepCNF predicts better 3-state SS than JPRED, SPINE-X and RaptorX-SS8 on

the CASP10, CASP11 and CAMEO (https://www.cameo3d.org (last check: Novem-

ber 2018); like CASP, CAMEO is a world-wide protein structure prediction competition

platform) proteins.

Secondary structure prediction has already been used in the machine learning based amino

acid contact prediction algorithms (Cheng and Baldi 2007; Jones et al. 2015; Skwark et al.

2014; Wang et al. 2017b).

2.7.2 Other Features

Besides the secondary structure prediction, a couple of other structural properties have

been included in machine learning based contact prediction models. For example, amino

acid solvent accessibility, site entropy and amino acid composition, sequence separation

(number of amino acids along the sequence) between the two residues, the number of

sequences in the MSA were scored and calculated (Jones et al. 2015). These properties

aim at capturing different structural characteristics of a protein. Usually, a local window
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with a specific width is used for the position of the residue being considered, to include the

effect of neighbouring residues (Jones et al. 2015). That is, properties of interest within

the window are taken as features that will be fed into a machine learning model. After

the model has been trained and validated, a structural target (e.g., amino acid contact or

hydrogen bonding pattern in the structure) will be obtained from the output.

2.7.3 Machine Learning and Artificial Neural Network

Machine learning (ML) can be defined as “the study of computational methods and the

construction of computer algorithms and programs capable of learning from their own

previous experience, in order to improve their performance at a defined task” (Mitchell

1997). It has become more and more popular in recent years, in some areas even sur-

passing human-level performance (He et al. 2015; Tang and Xiaoou 2014). Representative

applications of ML include the development of self-driving cars (e.g., Google’s self-driving

car), automatic language translation (Zhang and Zong 2015), automatic text generation

(Yu et al. 2017), object recognition in images and videos (Kang et al. 2016; Ren et al.

2015; Szegedy et al. 2015) and disease prediction in healthcare (Chen et al. 2017).

ML can be generally grouped into three categories.

1. Supervised learning: in this case, each input in the training data is associated with

a desired output. The main aim is to learn a function (continuous or discrete) from

the inputs and the desired outputs which minimize the difference (“loss”) between the
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desired outputs and the predicted outputs. Predictions could then be made with this

function for new inputs. The main tasks associated with this kind of learning are

classification and regression.

2. Unsupervised learning: in this case there is no outcome and the aim is to describe the

associations and patterns among a set of inputs (Hastie et al. 2001). The principal

tasks associated with this kind of learning are clustering and association rules.

3. Reinforcement learning: in this case, there is also no supervisor, but a reward system

instead; the system provides a feedback (reward signal) to the agent to indicate how well

it is doing, and the agent needs to take actions to maximize the expected cumulative

reward.

This thesis focuses on a supervised classification task. Classification is an example of

pattern recognition. Classes (or groups) are defined by the categories of the desired

outputs in the training data. By learning a model between the inputs and outputs in the

training data, the aim of classification is to determine which class a new input belongs to.

Groups can be a simple binary partition (e.g., a pair of amino acid residues in “contact”

or “not in contact” , the problem addressed in this thesis), or a complex with multiple

partitions. A good example of the multiple-category classification is recognizing hand-

written digits (the 10 numbers from 0 to 9) in the MNIST database (Schmidhuber 2015a).

Conventional machine learning algorithms include decision trees, naïve-Bayes classifiers,

support vector machines, Logistic regression and neural networks (NNs). NNs are the
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method used in this thesis. The core idea of NNs is inspired by biology and attempts to

mimic the behaviour of neurons in the brain. They are made of basic units (the neurons),

which propagate signals to the other connected units. NNs can be viewed as general input-

output relationship estimators. The estimation is achieved after a learning process from

a set of samples in the training set. NNs are commonly used in classification, regression

and clustering. This section briefly describes the characteristics of NNs.

Usually, an NN organizes the neuron units into several layers. The first layer is called the

input layer, and the last layer is the output layer. The layers (if any) between these two

are called hidden layers. For a feedforward NN, the input feature vectors from the input

layer through the hidden layer(s), and finally to the output layer. For the recurrent NN,

the output from the hidden layer(s) not only goes to the next layer (another hidden layer

or output layer), but also returns to the input layer after a time delay and then combines

with new inputs to go into the NN again.

Neural networks are usually trained by backpropagation and optimized by stochastic

gradient descent. The learning process is divided into the forward pass and the backward

pass. In the forward pass, the input goes through the network and produces an output.

The output is then compared to the target data by using a loss function and the resultant

gradient is propagated through the network in the backward pass. In the process, the

weights of each layer are slightly changed in a way that reduces the error. This is repeated

until a stop condition is reached. Simple stop conditions can be a threshold to the error

on the training set, or the number of iterations.
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Although an NN model may not be the best choice in some tasks (Caruana and Niculescu-

Mizil 2006), it does have some advantages for the amino acid contact/distance prediction

study that will be introduced in the later chapters. Two main characteristics of this study

are the large number of inputs (tens of millions) and high dimensions (≈750) of the feature

vector in the training dataset. NN models are known to be more suitable for dealing with

large datasets (Chau et al. 2014). The use of mini-batch and stochastic gradient descent

optimization could easily speed up the training process of a deep network model on a

platform with multi-CPU or multi-GPU. See the results shown in B.III (Appendix B),

trained with the same set, DeepCDpred produced a higher accuracy of amino acid contact

prediction than an SVM model and a random forest model on the same test set.

The research community has seen very fast development of both NN related libraries

and newly proposed network models. Such libraries include Tensorflow (tensorflow 2018)

(backed by Google, supports Python, Java, R and C++), Keras (Keras 2018) (supports

Python, Java and R), Deeplearning4j (Deeplearning4j 2018) (supports Java and Scala),

PyTorch (PyTorch 2018) (backed by Facebook, supports Python), CNTK (CNTK 2018)

(backed by Microsoft, supports Python, Java, C++ and C#/.NET) and Caffe (caffe

2018) (supports Python and C++). The neural network toolbox and statistics & machine

learning toolbox in MATLAB also provide easy to use functions for deep learning studies.

The first version of Tensorflow was released in November of 2015, and now (later 2018), it

has already become the most popular deep learning framework estimated by the number

of stars on Github (github/tensorflow 2018).
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Furthermore, deep learning models have begun to outperform humans on some tasks

regarding performance (Karam and Lina 2017) in recent years. A well-known example is

the AI (artificial intelligence) Go (an ancient Chinese game) player AlphaGo (developed by

the company of DeepMind) which beat a top world ranking player. Go uses a convolutional

network guided tree search strategy to find the best play positions in the next steps

(Silver et al. 2016). Another example is the image classification on the ImageNet dataset

(Wikipedia/ImageNet 2018). The residual network proposed in 2015 achieved an error

rate of 3.57%, which is lower than the human error rate of 5.1% (He et al. 2016).

Limitations of neural networks also exist. A large number of parameters and the some-

what non-schematic training procedure are regarded as downsides of NNs. Some of the

parameters include the overall architecture (i.e. the number of hidden layers and hidden

units), the activation functions, the weight initialization, the learning rate and the choice

of momentum. Activation functions may themselves have additional parameters. When

the network goes deeper (contains multiple hidden layers), activation functions such as

ReLU (Nair and Hinton 2010), ELU (Djork-Arne Clevert 2015) and SeLU (Klambauer

et al. 2017) may reduce the vanishing gradient problem and give the network a better

performance than traditional sigmoid functions. Due to the shapes of different activation

functions, for pattern recognition problems, sigmoid (two categories) or softmax (two or

more categories) activation functions should be used in the output layer, while for function

regression problems, linear activation should be used instead.

Classical neural networks are considered to have shallow architectures often composed of
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0 or 1 hidden layers. Deep Neural Networks (DNNs, i.e. with more than one hidden

layer, Figure 2.8) and other related deep learning techniques have become popular tools

in recent years for the studies of many problems including the tasks of speech recognition,

image recognition, object detection and natural language processing (LeCun et al. 2015;

Schmidhuber 2015a). Classic neural networks are often limited by the complexity of the

pattern they try to learn. These models need careful selections of input features. While,

DNNs have been shown to be better than classic neural networks in many fields, since

they are able to learn intermediate representations, and each layer learns slightly more

detailed and more abstractions from the input data than the previous layer (Bengio et al.

2013; LeCun et al. 2015). Thus, DNNs with multiple layers can recognise very complicated

patterns within the input data (Bengio 2009).

In summary, neural networks are a powerful approach to deal with multiclass classification

problems. Their setup allows to capture high order correlations from inputs. Through

the introduction of more hidden layers, this ability can be increased even further, also

referred to as the deep learning. However, introducing more hidden layers could also

increase the risk of making the system over specified and prone to overfitting. This

problem can be mitigated by the strategies of “early stopping”, regularization and dropout

(Srivastava et al. 2014). Early stopping is realized by introducing a separate validation

set and checking the prediction accuracy on it after every several epochs (e.g. 6) when the

network is training. The training process is stopped when the accuracy of prediction on

the validation set ceases to improve for a specific number of continuous epochs. The goal
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of regularization (e.g., L1 or L2) on the weights is to impose the value of some weights to

approach zero during the training process.

output

output

output

Input Layer Hidden Layer Hidden Layer Hidden Layer Output Layer

Figure 2.8. A three-hidden-layer deep neural network

2.8 Protein Structure Prediction

2.8.1 Introduction

In this section, the background of computational algorithm based protein structure pre-

diction is introduced. It is followed by the introduction and discussion of the two types of

protein structure prediction approaches. Then, the well-known competition in the field of

protein structure prediction, CASP (Critical Assessment of protein Structure Prediction),
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is briefly introduced. It the end, two methods of protein structure similarity comparisons

are described and compared.

As mentioned in Chapter 1, protein sequences are accumulated with an ever-increasing

speed. The development of metagenome sequencing in recent years even accelerates this

trend (Mitchell et al. 2016; Oulas et al. 2015). However, experimentally resolved struc-

tures are accrued much slower. For example, by the end of 2016, the number of protein

structures deposited in PDB was about 125,000, accounting for only 0.14% of sequences in

the UniProtKB database at that time. The increasing gap between the number of protein

structures and the deluge of protein sequences is clearly displayed in Figure 2.9.

As the experimental determination of protein structures by either X-ray crystallography or

NMR is time-consuming and expensive, developing an efficient computer-based algorithm

to predict 3D structures from sequences is attractive and worthwhile.
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Figure 2.9. The gap between the numbers of protein sequences and structures
are becoming larger over time. The sharp drop in UniProtKB entries resulted from a
proteome redundancy minimization procedure implemented in March 2015 (The UniProt
2017). Data are obtained from http://www.rcsb.org/pdb/statistics/holdings.do

& http://www.uniprot.org/statistics/ (last check: November 2018).

Decades of intense research in bioinformatics has brought about a huge progress in dealing

with the ever-increasing amount of protein data. In an attempt to bridge the ‘sequence-

structure gap’, computational approaches have long been devised with the aim of pre-

dicting the tertiary structure of proteins from the sequences (Figure 2.10). A number of

different approaches have been proposed over the years. They can be broadly divided into

two categories: template-based modelling and template-free modelling, which are briefly

introduced in the next two subsections.
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LFKLGAENIFLGRKAATKEEAIRFAGEQLVKGGYVEPEYVQAMLDREKL

TPTYLGESIAVPHGTVEAKDRVLKTGVVFCQYPEGVRFGEEEDDIARLV

IGIAARNNEHIQVITSLTNALDDESVIERLAHTTSVDEVLELLAGRK

Figure 2.10. From protein sequence to protein structure. Anfinsen theory sug-
gests that in the native environment, the 3D structure of a protein is uniquely determined
by its amino acid sequence. The sequence and structure of the protein pdbid 1a3a (IIA
mannitol from Escherichia coli) are used here.

2.8.2 Template-Based Modelling

Compared to free modelling, template-based modelling still holds the leading role in pre-

dicting the tertiary structure of a protein regarding the prediction accuracy. Template-

based modelling refers to building a 3D model for a given protein sequence based on the

information from previously solved 3D structures in PDB.

To predict a protein structure by template-based modelling, two requirements have to be

met (Fiser 2010). Firstly, the sequence to be modelled must have at least one template
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of known structure; and secondly, it must be possible to compute an accurate alignment

between the target sequence and the template structure. The alignment provides struc-

tural equivalences that could be used as geometry constraints for the target sequence.

The accuracy of the alignment becomes even more important when the sequence iden-

tity between the target and template falls to less than 40% (Fiser 2010). Depending on

whether there is detectable sequence similarity between the target and the sequence of the

template (in other words, whether the target sequence and the template sequence belong

to the same protein family based on their sequence similarity), template-based modelling

can be further categorized into two types – homology modelling and threading.

Homology modelling, also known as comparative modelling, is usually used when the

sequence identity between two proteins is above ≈30% (Rost 1999). Structural similarity

can usually be then assumed. The principle idea behind homology modelling is that

protein structure is more conserved than sequence, and most protein pairs were found

structurally similar when the sequence identity is higher than 30% (Rost 1999). When

one structure has been experimentally determined in a protein family, other members of

this family can be modelled guided by information from it (the known structure).

As the sequence identity falls below ≈30% (in the so-called ‘twilight zone’ (Rost 1999)),

homology modelling becomes unreliable, since protein sequences have accumulated so

many mutations that the relationship between sequence and structure similarity gets

increasingly blurred (Bordoli et al. 2009). Threading is used for this situation. It is

devised to match the target sequence directly onto the 3D structures with the objective of
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scoring how likely they are. The idea of threading is based on the observation that there

are many fewer distinct folds than sequences due to physical constraints in the structure

space (Govindarajan et al. 1999). Thus, threading is also named fold recognition.

Generally, the operating procedure of template-based modelling consists of four steps:

1. finding the proteins of known structure related to the target sequence (for homology

modelling, this step tries to find homologues with known structures; whereas for thread-

ing modelling, with looser constraints, it tries to find proteins with known structures

that likely have a similar arrangement of secondary structures);

2. aligning each residue of the target sequence onto the structures of templates;

3. generating a backbone of the target protein by copying aligned regions, or by satisfying

some kinds of spatial constraints with templates;

4. modelling unaligned loops and side-chains.

For the first two steps, homology modelling algorithms usually detect template structures

in PDB with PSI-BLAST, HMMER, HHsearch or HHBlits. The alignment between the

sequence of the target protein and the sequence of the template structure can also be

obtained by these programs. Threading algorithms commonly use score functions to detect

template structure(s) from a protein structure database (e.g. PDB, SCOP and CATH)
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for the target sequence. These score functions include terms such as sequence profile-

profile alignment (Soding 2005), secondary structure match (Khor et al. 2015), inter-

residue contact match (Zhang and Skolnick 2004b), and statistical potential (Skolnick and

Kihara 2001). However, none of the threading methods that use only one term of the score

function can outperform others for all of the target protein structure predictions (Khor

et al. 2015). For this reason, meta-methods that combine the output models from multiple

programs have been developed (Ginalski et al. 2003; Wu and Zhang 2007). Among them,

LOMETS (Local Meta-Threading Server) (Wu and Zhang 2007), which selects consensus

models from nine threading servers, is used as the template identification program of I-

TASSER (Iterated Threading ASSEmbly Refinement) (Roy et al. 2010; Yang et al. 2015).

The latter was ranked as No.1 server in the CASP experiments (more introduction about

CASP can be found in Subsection 2.8.4 of this chapter) from CASP6 (2006) to CASP12

(2016), except CASP9 (2010) in which it was ranked as No.2 (CASP 2018). Due to this

great success, a brief description of I-TASSER is introduced as follows.

After the template structure(s) is identified by LOMETS, I-TASSER uses a Monte Carlo

simulation method (more explanations about Monte Carlo simulation can be found in the

next section), TASSER (Zhang and Skolnick 2004a), for template assembly. For regions

not covered by the template(s), ab initio modelling is used. After this step, multiple full-

length models are generated, which are then clustered by SPICKER (Zhang and Skolnick

2004c). Centroids obtained by averaging the 3D coordinates in each cluster are used to

search for similar PDB structures with TM-align (Zhang and Skolnick 2005). Geometry
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constraints from the template(s) identified by LOMETS and new PDB structures are

then used to generate new models. This round of “iteration is to remove steric clashes

as well as to refine the global topology of the cluster centroids” (Roy et al. 2010). Low-

energy models are selected to feed into REMO (Li and Zhang 2009) to generate the final

full-length models.

MODELLER (Sali and Blundell 1993) is one of the most frequently used template-based

modelling programs. It builds models of the target protein by deriving constraints from

the target-template alignment(s). It assumes that the spatial distances and angles between

equivalent residues are similar (Fiser 2010). The distance and angle constraints can also

be expanded by adding non-bonded atom-atom contacts, bond lengths and bond angles

(Webb and Sali 2014). To account for these uncertainties of the quality and reliability of

the alignment(s), each constraint is specified by a probability density function (pdf). By

using this method (the use of pdf), MODELLER allows the incorporation of information

from multiple templates. Taking the distance between two given atoms in the target

sequence as an instance, it is assumed to be similar to the corresponding distances in the

template structures and is thus modelled by a Gaussian distribution. If enough distance

constraints are specified, the 3D structure of the query protein can be accurately predicted.

In the optimization step, MODELLER determines the best query structure by maximizing

the joint probability.

Template-based modelling has both advantages and limitations. Because of the much

smaller conformational searching space compared to ab initio modelling, template-based
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modelling, especially homology modelling, achieves more accurate protein structure pre-

dictions. For example, depending on the degree of similarity between target and tem-

plate sequences, structures predicted by homology modelling are generally within 3.5 Å,

sometimes even within 1 Å backbone RMSD (Kopp and Schwede 2004). However, the

applicability of template-based modelling (including both MODELLER and I-TASSER)

is limited to those protein sequences that have reliable template structures. At present,

the chance of finding a related template structure for a protein sequence chosen randomly

from a genome varies roughly from 30% to 80% (Fiser 2010); the difference in the chance

is due to the differences in the genome being considered (Fiser 2010). Because this ap-

proach builds protein models for the query sequence by copying the structure(s) from the

template(s), an inherent drawback of it is that the models generated have a strong bias

toward the template structure(s), rather than toward the native structure of the query

protein (Read and Chavali 2007). Therefore, template-based modelling techniques should

be refined to generate models closer to the native structures.

2.8.3 Template-free Modelling

When there are no structural analogues available in PDB, or they cannot be detected by

threading modelling, one has to predict the structure of the target protein from scratch

based on some basic physical principles. Thus, this type modelling is also called ab initio

or de novo modelling, which is helpful to understand the physicochemical principle of

how a protein adopts its specific fold in nature (Lee et al. 2017). The methods in this
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category can also be divided into two types: pure physics-based free modelling and prior-

knowledge-based free modelling.

In a pure physics-based ab initio method, interactions between atoms should be calcu-

lated according to classical mechanics or quantum mechanics. Since this method requires

expensive computing resources, it has not been widely used to predict protein structures

(Rigden 2009). A practical way to do the pure physics-based ab initio protein modelling

is to use an empirical force field with selected atom types, which is applied in software

such as AMBER (Salomon-Ferrer et al. 2013). There are two types of algorithms that are

widely used in this protein structure modelling category, Monte Carlo simulation (MC)

and molecular dynamics (MD). The former generally starts with building a global energy

function to account for all conformational states of the target protein and then devises an

efficient search strategy capable of quickly identifying low energy states (Figure 2.11). In

detail, a random move on a fragment of the backbone or on the side chain is applied; an

energy function is used to calculate the energy of the structure before and after the move;

after comparing the energy change, the move is rejected or accepted with the Metropolis

criterion. For MD simulation, the forces on each atom of a protein are solved by using a

force field; the result is then used to calculate the position and the velocity of the atom at

the next time point; the energy of the system at the current is calculated with a potential

energy function. Due to the huge conformational search space even for an average protein,

as compared with template-based modelling, this approach requires vast computational
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resources and has thus achieved only very limited success. Some examples of pure physics-

based modelling include (a) the 36-residue peptide of villin headpiece simulated with MD

on a 256-CPU computer for two months, which finally reached an RMSD of 4.5Å to the

native structure (Duan and Kollman 1998), (b) the mini protein of tc5b simulated to

within 1 Å RMSD to the native NMR structure with a supercomputer (Chowdhury et al.

2003), (c) a 102-residue α+β protein from T. maritima topologically correctly predicted

with a 7.3 Å Cα RMSD, and a phosphate transport system regulator PhoU which is a

235-residue mainly α-helical protein, also from T. maritima, announced by (Oldziej et al.

2005) that the authors “predicted the topology of the whole six-helix bundle correctly within

8 Å RMSD”. Despite these successes, “physics-based folding is far from routine for general

protein structure prediction of normal size proteins, mainly because of the prohibitive com-

puting demand ” (Zhang and Wu 2009). In a recently published paper (Krupa et al. 2016),

the authors introduced their MD simulation results of 55 proteins, which are the targets

of CASP11. The average size of the proteins was 251 amino acids and the simulations

were done with the coarse-grained UNited RESidue (UNRES) force field (Sieradzan et al.

2015), developed by the same group. Although the authors had completed the simulation

of each protein in three weeks and the best RMSD of 3.8 Å was achieved for a 97-residue

protein (T0769), over 4000 CPUs were used for the computation. This type of computing

device is not accessible to an average laboratory.
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Figure 2.11. Diagram of a protein folding funnel. This figure shows how a protein
folds into its native state through minimizing the free energy. This figure is reproduced
from Dill and Chan (Dill and MacCallum 2012)

The most successful free modelling techniques use prior knowledge (Lee et al. 2017).

The prior knowledge can be small amino acid residue fragments with known structure,

empirical energy terms derived from the solved structures deposited in PDB, or inter-

residue contact constraints, etc. Probably the most successful method of this type is

the AbinitioRelax program in the Rosetta protein modelling software suite, developed by

David Baker and co-workers (Leaver-Fay et al. 2011; Rohl et al. 2004). It makes use of an

assembly strategy to combine fragment structures of unrelated proteins with similar local

sequences to the query sequence by using Bayesian scoring functions (Simons et al. 1997).
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A Bayes-based theorem gives the probability of a structure depending on its amino acid

sequence. The 3D structures are generated by splicing together fragments and evaluating

them using scoring functions.

Usually, Rosetta AbinitioRelax uses both three and nine continuous amino acid residues as

the fragments. These structural fragments are obtained by searching all three- and nine-

residue windows of the target protein sequence against the PDB database (exclusively

X-ray structures with 2.5 Å or better) (Rohl et al. 2004). The initial search is carried

out in a centroid mode and an optional subsequent model refinement is done in a full

atom mode (Malmstrom 2005). In the centroid mode, the backbone heavy atoms of each

residue (except glycine) of the target sequence remain, but the side-chain is simplified to

a pseudo-atom (centroid) whose properties are determined by the identity of the residue

(Rohl et al. 2004). The pseudo-atom is located at the side-chain centre of mass (for glycine,

the Cα atom is chosen as the pseudo-atom) (Rohl et al. 2004). The energy function in

this step includes solvation, electrostatics, hydrogen bonds between β strands, and steric

clashes; all of these terms are knowledge-based (Kaufmann et al. 2010). After a large-scale

conformation search with MC (described in the previous section), a set of selected low-

resolution centroid mode models are fed into an all-atom mode refinement procedure by

using a physics-based energy function that includes van der Waals interactions, hydrogen

bonding, beta sheet pairing and pairwise solvation free energy. For the conformational

search, multiple rounds of MC are employed again. Along with the predicted structures,

Rosetta also outputs each individual energy score and the total energy score which is the
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combination of all the individual energy scores for every structure. The structure with

the lowest total energy score is likely to approach the native structure of the protein.

Since the Rosetta AbinitioRelax was used for the protein structure prediction study in

this thesis, a Rosetta ab initio modelling protocol can be found in Subsection 4.3.5 of

Chapter 4.

The biological phenomenon of amino acid coevolution has caught the attention of re-

searchers in the past 20 years. Coevolving residues are often found to be spatially prox-

imal in the protein structure (Marks et al. 2012b). Recently, evolutionary analysis has

made good progress in contact prediction by using global statistical models and machine

learning algorithms (de Juan et al. 2013; Jones et al. 2015), which has led to the rapid

development of protein structure prediction algorithms that use such predicted contacts

as distance constraints. The archetypes include EvFold (Hopf et al. 2012; Marks et al.

2011), GDfuzz3D (Pietal et al. 2015), CONFOLD (Adhikari et al. 2015) and CoinFold

(Wang et al. 2016a). Compared to the Rosetta ab initio program, these algorithms are

able to not only sharply reduce the protein conformational search space and require much

fewer computational resources, but also make good quality structure predictions (de Juan

et al. 2013; Lee et al. 2017).
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2.8.4 CASP

Critical Assessment of protein Structure Prediction (CASP) is a world-wide and double-

blind competition to evaluate the state-of-the-art protein structure modelling methods. It

has taken place biannually since 1994 (Moult 2005). CASP offers participating groups an

opportunity to objectively assess their structure prediction methods, delivers information

of what progress has been made in this field, and highlights where the future research

may be most productively focused for both the research community and the public users.

The idea of CASP is to assign all the groups amino acid sequences (targets) whose struc-

tures have been solved experimentally, but have not yet been released to the public. All

the groups are then challenged to predict 3D structures using their favourite algorithms.

Subsequently, all the final models are sent back to the organizers and compared to the

native structures by independent assessors. In the end, rankings (e.g., by group or best

model) can be generated according to different quality measures.

CASP includes several categories: template-based modelling predictions, template-free

modelling predictions, model refinement, model quality assessment (evaluating the accu-

racy of a model) and amino acid contact prediction (Moult et al. 2016a). In the CASP12

held in 2016, the most exciting result was the accurate template-free prediction of a large

protein’s 3D structure (256-residue) with the amino acid contact constraints predicted

from GREMLIN (an implementation of plmDCA) (Monastyrskyy et al. 2016; Moult et al.

2016b). As a comparison, the predicted amino acid contact did not lead to improved
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structure predictions until this round of CASP (Moult et al. 2016a). In addition, the

model quality evaluation also marked an improvement in this round. The best single-

model (assessing the quality of a model based on its properties) based method was shown

to be as effective as clustering-based methods (assessing the quality of a model by com-

paring its similarity with other models of the same target protein) to pick out the best

model among multiple candidates (Kryshtafovych et al. 2016).

In the CASP11 (2014), the most impressive improvement was made in the model re-

finement category (Moult et al. 2014), where a group used the MD simulation with the

CHARMM36 force field and the TIP3 water model to successfully improve the structure

predictions of all of the targets for the first time (Mirjalili et al. 2014).

2.8.5 Protein Structure Comparison

In this thesis, the protein structure predictions based on the algorithms proposed in this

study need to be compared with the experimentally solved structures to evaluate how

successful they are. Two of the structure similarity comparison methods commonly used

today, root-mean-square deviation (RMSD) and template modelling score (TM-score) are

introduced in this section. Which one is the better will also be discussed.
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RMSD. RMSD is the most commonly used similarity measure between the structures of

two proteins. RMSD values are presented in Å and calculated by

RMSD (v, w) =

√

√

√

√

1

n

n
∑

i=1

‖vi − wi‖2 (2.38)

where v and w are sets of n corresponding atom positions in two superimposed proteins.

Given the corresponding positions, a superposition with the minimal RMSD is found by

translating and rotating the protein centroids onto each other. The computation of the

optimal translation and rotation can be done with the Kabsch algorithm (Kabsch 1976,

1978).

The advantages of RMSD are that the value is straightforward and easy to understand,

and the calculation process is relatively simple compared to the TM-score. An RMSD

of ≈ 0Å means two structures are identical. However, its disadvantages should not be

ignored.

Firstly, RMSD is sensitive to outliers. According to the formula of RMSD, a small number

of atoms with high flexibility could lead to a large RMSD; e.g., a large RMSD between

two protein structures may just be caused by a change at the position of a flexible loop.

RMSD is also protein length dependent; one cannot judge the RMSD values of two pairs

of proteins of different lengths (Kufareva and Abagyan 2012). One also cannot find an

RMSD cut-off to judge if two structures compared have the same fold based on RMSD

only. An RMSD of ≈ 0Å indicates the two structures have the same fold. If one (or both)
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of them has flexible loops, and they have the same secondary structure composition and

arrangement (which means they share the same fold), the RMSD between them might be

a large value.

TM-score. TM-score tries to solve the above problems of RMSD. It was introduced along

with the TM-align algorithm that can calculate TM-score efficiently (Zhang and Skolnick

2005). The formula of TM-score is

TM−score = Max











1

LTarget

Lali
∑

i

1

1 +

(

di

d0(LTarget)

)2











(2.39)

where LTarget is the number of residues in the target protein; Lali is the number of matched

residues between the target and the query; di is the distance between the ith matched

residues pair. d0 (LTarget) = 1.24 3

√

LTarget − 15− 1.8 is a normalization term to eliminate

the dependence of the obtained score on the target protein length. It is derived from the

analysis of large sets of related and unrelated protein structures with different numbers

of amino acids. The maximization is with respect to all superpositions of the target and

template proteins.

It is very useful to know what different ranges of TM-score stand for. The TM-score value

is in the range of (0, 1]. When TM-score = 1, it means the two structures are perfectly

matched or they are identical; when TM-score < 0.17, it means they are just random
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structures; roughly, when TM-score > 0.5, the two structures likely have the same fold

(Zhang and Skolnick 2004b, 2005).

2.9 Summary of This Chapter

This chapter introduces the backgrounds of the methods developed in this thesis. The

main aim of this thesis is to present and evaluate the amino acid contact/distance pre-

diction algorithm (DeepCDpred) and the ab initio structure prediction method which

requires the predicted geometry constraints from DeepCDpred. DeepCDpred uses neural

network models to make amino acid contact and distance constraint predictions for a

query (target) protein sequence. It starts with searching the homologous sequences of the

query sequence from a sequence database and building an MSA (Section 2.5). From the

MSA, the features of the inputs of the neural networks are calculated. The features fed

into DeepCDpred include coevolutionary couplings (amino acid coevolution is introduced

in Section 2.2) calculated from the MI (Subsection 2.6.1) and the three global statisti-

cal models (mfDCA, PSICOV and plmDCA, Subsection 2.6.4), and secondary structure

prediction (Subsection 2.7.1). Other features are mentioned in Subsection 2.7.2. The

background of machine learning, specially neural networks, is introduced in Subsection

2.7.3. Since DeepCDpred needs to be compared with other algorithms, three recently pub-

lished amino acid contact prediction algorithms (PconsC, PconsC2 and MetaPSICOV) are

reviewed in Subsection 2.6.10. Among the three algorithms, MetaPSICOV is the most
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accurate. Thus, the results of the comparisons between DeepCDpred and MetaPSICOV

are displayed in Chapter 5 are the comparisons between DeepCDpred and MetaPSICOV.

The background of protein structure prediction introduced in Section 2.8 would help the

readers understand the protein structure prediction method proposed in this study. Also,

the introduction to RMSD and TM-score (Subsection 2.8.5) is necessary to explain why

TM-score is preferred for protein structure comparisons in this study (Chapter 5).

103



Chapter 3

Method Overview and Materials

3.1 Overview of This Chapter

This chapter firstly introduces the aims of this thesis and the structures of the methods

proposed in this thesis, which include DeepCDpred, the amino acid contact/distance pre-

diction algorithm, DeepCDpred_AbInitio which employs the constraints predicted from

DeepCDpred and a Rosetta ab initio modelling protocol to predict protein structures,

and a protein model quality evaluation method, being used to achieve these aims. It is

followed by the description of the materials required by these methods, which include data

resources, software and computing resources. The final section of this chapter presents

how the data and software are assembled to build the feature sets of the inputs of Deep-

CDpred and of the model confidence score prediction method.
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3.2 Aims of This Thesis

Three aims were planned for this thesis:

1. to propose a more accurate algorithm for amino acid contact predictions which is also

capable of predicting amino acid long-range distances;

2. to use a Rosetta ab initio modelling protocol and the amino acid contact/distance

prediction obtained in aim 1 for protein structure prediction, which could test the

effectiveness of the predicted constraints;

3. to propose a confidence prediction method which evaluates the quality of the predicted

protein models.

3.3 Structures of The Methods Proposed In This

Thesis

This section displays the structure of each method developed in this thesis and provides

necessary explanations. Detailed information about how each method was developed can

be found in the next chapter (Chapter 4).
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3.3.1 Definitions of Amino Acid Contact and Amino Acid Cou-

pled at A Distance

Before introducing the structures of the methods proposed in this thesis, it is necessary

to present the definitions of amino acid contact and amino acid coupled at a long-range

distance.

A variety of thresholds were used to define whether two residues are in contact. Here, the

widely-used definition (Kamisetty et al. 2013; Pietal et al. 2015; Wang and Xu 2013) was

adopted: two residues are considered to be in contact if the distance of their Cβ (Cα for

glycine) atoms is no greater than 8Å in the experimental structure. MetaPSICOV also

used this standard (Jones et al. 2015). Any residue pair with sequence separation less

than 5 amino acids is removed from the training and the prediction in this work, since

they are expected to be very close in a structure (e.g., residue pairs within an α helix)

(Jones et al. 2015; Wang et al. 2017b). This could also remove strong but trivial couplings

between nearby residues, which might introduce bias to other residue pairs in the training

and prediction process otherwise.

Besides the contact bin of (0−8Å], three other distance bins are taken into consideration,

i.e. (8−13Å], (13−18Å], (18−23Å], also measured by the Cβ-Cβ (Cα for glycine) distance.

Predicting the three distance bins provides more constraints for protein structure predic-

tion, and the choice of bin size of 5Å for each bin is based on the consideration that a
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larger bin size could not provide precise constraints for structure prediction, and a smaller

bin size may increase the difficulty of classification due to the limited data in the bin.

3.3.2 The Structure of DeepCDpred

The overall structure of the amino acid contact/distance prediction algorithm, DeepCD-

pred, is shown in Figure 3.1. The pipeline of DeepCDpred is summarized in Figure 3.1a,

and the explanations are as follows.

At the beginning, homologous protein sequences of the query (target) sequence were de-

tected and an MSA was built. These were done by using HHblits. Direct couplings

were then inferred from three global statistical models, mfDCA (from the FreeContact

software), QUIC and plmDCA (from the CCMPred software), based on the MSA. Other

features such as amino acid profiles, statistical potential, mutual information, the number

of sequences and the number of effective sequences were also calculated based on the align-

ment. Meanwhile, the secondary structure and the solvent accessibility were predicted by

SPIDER2. All of these features, together with the protein length (the number of amino

acids), were fed into four groups of neural network models to output an inter-residue

contact score and three other distance scores for each residue pair of the query sequence.

DeepCDpred consists of four groups of neural network models (Figure 3.1b). Each group

is responsible for the prediction of inter-residue contacts in a specific distance bin.
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Figure 3.1. The overall
structure of DeepCDpred.
(a). The overview structure of
DeepCDpred. (b). The neural
networks for contact and dis-
tance prediction. Each green
rectangle represents a neural
network; the contact predic-
tion model is the average of
the outputs from four net-
works and each was trained
with a different contact cut-
off (i.e. 0-8Å, 0-7.9Å, 0-8.1Å
and 0-8.2Å); for distance pre-
diction, only one network was
used; for both contact and dis-
tance prediction, the strategy
of two-stage was employed in
DeepCDpred; the contact/dis-
tance prediction from stage 1
was used as an extra feature
fed into the network of stage 2;
the final contact/distance pre-
diction score for each residue
pair was taken from the out-
put of the network of stage
2. (c). The architecture of
the networks in (b), which in-
cludes the structures of both
stage 1 and stage 2.

In each group or each prediction task, a two-stage structure was used. This means the

prediction results (contact or distance prediction scores) from stage 1 were used as a fea-

ture in the model of stage 2; the output scores from stage 2 were the final contact/distance
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predictions (Figure 3.1b).

In the contact prediction group, for both stage 1 and stage 2, there are four neural network

models. In addition to the distance range of 0− 8Å, three other similar ranges were also

chosen, i.e. 0− 7.9Å, 0− 8.1Å and 0− 8.2Å, for amino acid contact prediction. Each of

the distance ranges was used as the classification target to train a neural network model

(e.g., for the range of 0 − 8Å, the target was set to 1 if the distance of a residue pair

in the training set is in this range and 0 if is out of this range when training the neural

network). In other words, the four networks in stage 1 of contact prediction used the same

feature inputs, but different classification targets. The contact prediction scores from the

four networks were averaged and used as features in the inputs of the networks in stage 2.

Again, the four networks in stage 2 of contact prediction used the same feature inputs, but

different targets (also 0−7.9Å, 0−8.0Å, 0−8.1Å and 0−8.2Å). The final neural network

output from this group was the average of the outputs from the four networks. This

strategy of combining different contact thresholds followed its successful implementation

in MetaPSICOV (Jones et al. 2015). In Figure 5.8 of the Results chapter (Chapter 5),

for both stage 1 and stage 2, a comparison between the contact prediction accuracy from

each model in the four networks and the result calculated by averaging the outputs from

the four networks is shown. For each of the other three groups of inter-residue distance

prediction, only one neural network model was trained in each stage; the classification

target was defined by the corresponding distance bin range. The combination of multiple

neural network models were also tried, but it did not show significant improvement of
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distance prediction (data not shown in this thesis).

Figure 3.1c shows the architecture of the neural networks used in the four groups. There

are two hidden layers: the first has 120 neurons and the second has 50 neurons. The

output layer has only one neuron to report the prediction score (between 0 and 1).

3.3.3 The Structure of DeepCDpred_AbInitio

Figure 3.2 shows the overview of DeepCDpred_AbInitio, which includes DeepCDpred,

the protein structure prediction step that is based on the predicted constraints from

DeepCDpred, the secondary structure prediction from SPIDER2, and a Rosetta ab initio

protocol.

The first part of DeepCDpred_AbInitio is the already-mentioned DeepCDpred. From

DeepCDpred, not only the final predictions of contacts and distances for each residue pair

in the query (target) sequence, but also the intermediate result of the secondary structure

prediction for the query (target) sequence, were exported. All of them were used in Rosetta

ab initio structure modelling. As will be introduced in Section 4.3 (the next chapter),

two methods to construct Rosetta constraints were used. Meanwhile, the three-mer and

nine-mer fragments were generated for the query (target) protein by using the Perl script

of ‘make_fragments.pl’ , which can be found in the Rosetta suite. Two groups of structure

predictions were made based on constraints from two different methods, respectively. In
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each group, the model with the lowest Rosetta energy score was selected; and the TM-

score was predicted based on the TM-score prediction neural network model (the model

confidence evaluation method that will be introduced later). The quality of the predicted

best structures between the two groups is compared in the Results chapter (Chapter 5).
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Figure 3.2. Overall diagram of DeepCDpred_AbInitio pipeline, including the
step of DeepCDpred for inter-residue contact and distance predictions, and
the step of structure prediction by using the obtained geometry constraints
from the former.
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3.3.4 The Structure of The Confidence Prediction Model

A confidence value should be assigned to each structure prediction to indicate its expected

similarity to the native structure. It might be useful for a user to select or filter out

predicted structures.

Since the TM-score of a model with respect to the crystal structure is a good measure of

the quality of the model, as described earlier, the quality prediction model was trained to

predict this TM-score (subsection 2.8.5). The model is a classic three-layer feedforward

neural network as shown in Figure 3.3. The input layer has 7 dimensions; the hidden

layer contains 5 neurons and the output layer only has one neuron to report the predicted

TM-score.

…

…

Input	layer Hidden	layer Output	layer

7	neurons	 5	neurons	 1	neuron

Feed	forward

Figure 3.3. The architecture of the
three-layer neural network model
chosen for predicting TM-score.
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3.4 Materials

3.4.1 Data

A. Homologous Sequence Search Database

The homologous sequence search data source was downloaded from http://wwwuser.

gwdg.de/%7Ecompbiol/data/hhsuite/databases/hhsuite_dbs/ (last check: November

2018). The file name is “uniprot20_2016_02”. It was built by the HHblits group (i.e.

Sø̈ding and his coworkers). Both DeepCDpred and MetaPSICOV (the algorithm Deep-

CDpred is compared with in this thesis) used HHBlits to search for homologous sequences

from this data source and build an MSA for each target sequence. The settings of HHblits

are introduced in the Software section (the next section).

A metagenomics sequence dataset was downloaded from https://metaclust.

mmseqs.com/current_release/metaclust_2017_05.fasta.gz (last check: Novem-

ber 2018); it was concatenated with uniprot100 (downloaded from ftp://ftp.

uniprot.org/pub/databases/uniprot/uniref/uniref100/uniref100.fasta.gz,

March 2017) and used as an extra protein sequence source for homology detection.

It is worth noting that uniprot sequences do not come from metagenomics projects

(http://www.uniprot.org/help/sequence_origin (last check: November 2018)),

and thus the concatenation does not generate sequence redundancies. This dataset
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contains about 600,000,000 sequences. As a comparison, uniprot100 itself only had

about 100,000,000 sequence entries by the March of 2017. Since uniprot20 is a subset of

uniprot100 and “uniprot20_2016_02” was built in 2016, it must have fewer sequences

than uniprot100. This concatenated larger data set does not support an HHblits search,

but supports an HMMER search (HMMER will be introduced in the Software section);

the latter is much slower than the former. Thus, this dataset was only used to explore the

possibilities of improving the performance of DeepCDpred (visit Section 5.11 (Chapter 5)

for the result).

B. Test Set, Training and Validation Set of DeepCDpred

The test dataset was created based on MetaPSICOV’s test set, since the latter is a set

of diverse proteins (Jones et al. 2015) and it is convenient to compare the amino acid

contact prediction performance between DeepCDpred and MetaPSICOV based on the

same data. Originally, there were 150 protein chains. A filtering process was made on

them by removing any chain similar to sequence(s) (sequence identity no less than 25%)

in the training set of SPIDER2. After this step, 108 protein chains ranging from 52 to 266

amino acids remained and were used as the test set of this work. According to the study

done by Jones et al. (Jones et al. 2012), these protein chains are X-ray crystallographic

structures and with the resolution < 1.9Å. Every pair of proteins in this test set has 25% or

less sequence identity to each other. Since the algorithm developed in this thesis is called

DeepCDpred, these 108 chains are named the test set of DeepCDpred (Figure 3.4). The
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SPIDER2 training set was downloaded from http://sparks-lab.org/server/SPIDER2/

dat/seq+ss_train.txt (last check: November 2018). It consists of 4,590 protein chains.

150 protein chains from 

MetaPSICOV’s test set

108 protein chains

Remove chains similar to at 

least one in the training set of 

SPIDER2. 

(sequence identity cutoff 25%)

Test Set of DeepCDpred Training Set & Validation Set of DeepCDpred

8511 protein chains from PISCES

3393 protein chains from PISCES

Remove chains similar to at 

least one in the training set of 

SPIDER2 and the 108 chains of 

test set of DeepCDpred. 

(sequence identity cutoff 25%)

Remove chains  with more 

than 400 amino acids

2957 protein chains from PISCES

1066 protein chains from PISCES

Arbitrarily choose 1066 

protein chains 

524 protein chains, 

concatenate all the 

inputs of them

542 protein chains, 

concatenate all the 

inputs of them

Split into two sets

85% inputs 15% inputs

training set 1 validation set 1

85% inputs 15% inputs

training set 2 validation set 2

Figure 3.4. Diagram of selecting the test set, training set and validation set
of DeepCDpred.

The pdb id list of these 108 protein chains can be found in Table C.3 of Appendix C.

For building of both the training set and the validation set of DeepCDpred, the protein

chains from the PISCES set (November 2016) (Wang and Dunbrack 2003) were used.

116

http://sparks-lab.org/server/SPIDER2/dat/seq+ss_train.txt
http://sparks-lab.org/server/SPIDER2/dat/seq+ss_train.txt


PISCES is a subset of the sequences culled from the entire PDB according to the experi-

mental type (e.g. X-ray crystallography, NMR), the structure quality and the maximum

mutual sequence identity. In PISCES, the chains were determined by X-ray crystallog-

raphy, with no less than 2Å resolution and with no more than 25% pairwise sequence

identity. There were 8,511 protein chains in the PISCES dataset. After removing se-

quences similar (pairwise sequence identity > 25%) to the ones in both the test set of 108

chains and the training set of SPIDER2, there were 3393 chains in the remaining PISCES.

In order to include more proteins in the training process, chains that have more than 400

amino acids were removed before going to the next step (a large protein generates much

more feature inputs to the training process of DeepCDpred than a small protein, which

can be easily understood in Subsection 3.5.1). Then 1,066 chains from the remaining

2,957 chains were arbitrarily chosen as the data resource of the training set and validation

set. Their chain lengths range from 16 to 394 amino acids. The pairwise sequence iden-

tity between the test set and the training set (including validation set) is 12.4% ± 3.6%

(Figure B.1 in Appendix B). Due to the memory limit of the computer used in this work,

the 1,066 chains had to be split into two sets with set one, 524 chains, and set two, 542

chains, in the training process. For each set, all of the neural network inputs of the chains

were concatenated (7,215,900 inputs in set one and 4,435,101 in set two; there were more

inputs in set one, since more large chains are in this set); each input has 752-dimensional

features in the training process of stage 1 and 753-dimensional features in stage 2. How

the features were defined for each stage can be found in Section 4.2 of Appendix 4. For
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both the two sets, 85% of the inputs were randomly chosen as the training set and the

rest 15% were used as the validation set; the latter was used to prevent overfitting in the

training process via early stopping. Dividing the training set and validation set based on

all of the inputs rather than dividing the proteins (e.g. 85% of the proteins used as the

training set and 15% as the validation set) was for the diversity consideration – the 85%

inputs in the training set may come from all of the 1,066 proteins and the 15% inputs in

the validation set are also possible from all of the 1,066 proteins. A diagram summarizing

the construction of the test set, the training set and the validation set can be found in

Figure 3.4.

The pdb id list of these 1066 protein chains can be found in Table C.4 of Appendix C.

As mentioned in the above two paragraphs, when the test set, the training set and the

validation set were prepared, sequences similar to any sequences in the SPIDER2 training

set were removed from these three sets. The secondary structure prediction from SPIDER2

was used as a feature in DeepCDpred. The secondary structure definition in the training

set of SPIDER2 is from experimental structures. Thus, if similar sequences in the test

set, the training set and the validation set of DeepCDpred were not removed, they would

introduce a bias.

It should be stated clearly how the similar sequence detection method was used to con-

struct the test set, training set and validation set works. As mentioned above, there were

three places that use similar sequence detection: removing sequences from MetaPSICOV’s
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test set that are similar to those in the training set of SPIDER2 to construct the test set

of DeepCDpred; removing sequences from PISCES that are similar to those in the test

set of DeepCDpred; and removing sequences from the remaining PISCES sequences that

are similar to those in the training set of SPIDER2. Since the methods used in these

three places are the same, only the first is introduced here. Firstly, the SPIDER2 training

set sequences were converted into a BLAST searchable database with the program make-

blastdb from the BLAST suite (BLAST 2018); then each sequence in MetaPSICOV’s test

set (150 chains) was searched against this database using Blastpgp (also from the BLAST

suite) with the default options (including the E-value, which was 10.0) except option ’-m’

(alignment view option) which was set to 8 (means the tabular output). Significant hits

found were output to a plain text format file. The sequence identity between the query

sequence and the hit from the SPIDER2 training sequences could be found in the third

column of the output file. For any query sequence, if at least one hit was found with

sequence identity >25%, this query was removed from the test set. After this filtering

step, 108 protein chains remained and formed the test set of DeepCDpred.

As a comparison, MetaPSICOV used a training set of 624 protein chains; the resolutions

of these chain structures are less than 1.5Å and their lengths range from 50 to 500 amino

acids (Jones et al. 2015).

C. Test Set, Training and Validation Set of the Model Confidence Estimation

Method
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The test set for the TM-score prediction method had the same 108 protein chains as the

test set of DeepCDpred. 161 protein chains randomly chosen from the training/validation

set of DeepCDpred were used as the training/validation set of this method. Similar to

DeepCDpred, the 161 inputs were concatenated; 85% of the inputs were chosen randomly

as the training set and the other 15% as the validation set, for the purpose of early

stopping, to prevent overfitting.

The pdb id list of these 161 protein chains can be found in Table C.7 of Appendix C.

3.4.2 Software

A. Programs for Homologous Sequence Searching and MSA Construction

HHblits. HHsuite (version 2.0.16) was downloaded from Github (https://github.

com/soedinglab/hh-suite (last check: November 2018)). HHblits requires a program-

specific protein sequence database of HMM profiles. Here, the version released in February

2016 (file name: uniprot20_2016_02) was used. The parameter settings used in HHblits

were iteration: 4 and e-value: 0.001 (these are the default values, and were also used in

MetaPSICOV (Jones et al. 2015)), minimum coverage with the query sequence: 60% (this

value is not the default, but was used by MetaPSICOV (Jones et al. 2015)), and maximum

pairwise sequence identity: 90% (this value was chosen based on some tests of contact

prediction with the proteins from the training/validation set by using CCMpred). The
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values chosen for ‘iteration’ and ‘maximum pairwise sequence identity’ in MetaPSICOV

were 3 and 99%, respectively.

HMMER. HMMER 3.1b1 was downloaded. The parameter setting for e-value was 1.0;

other parameters were chosen as the default values.

B. Programs for Amino Acid Coevolutionary Coupling Inference

The following four programs, MI_APC, FreeContact, QUIC and CCMpred, were used to

calculate pairwise coevolutionary couplings for each pair of residues in the target sequence,

which were used as features in the feature set of DeepCDpred. They all take the MSA as

inputs.

MI_APC. Mutual Information with the Average Product Correlation (MI_APC), as

described by Dunn et al. (Dunn et al. 2008), was calculated by using a script in the

MetaPSICOV source code, which was downloaded from http://bioinfadmin.cs.ucl.

ac.uk/downloads/MetaPSICOV/ (last check: November 2018).

FreeContact. mfDCA couplings were calculated by using the implementation of package

FreeContact (downloaded from ftp://rostlab.org/free/freecontact-1.0.21.tar.

xz (last check: November 2018)) with default parameters.

QUIC. The source code of QUIC was downloaded from http://www.cs.utexas.edu/

~sustik/QUIC/QUIC_MEX_1.1.tar (last check: November 2018). It consisted of a mixture

of MATLAB and C scripts. In this study, the code was rewritten solely in C. To speed up
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the calculation, OpenMP was also employed to allow it to run in parallel. The parameter

of tolerance which controls the speed of convergence was chosen as 0.004. Several proteins

from the training/validation set of DeepCDpred were arbitrarily chosen to test both the

original QUIC and the rewritten version, in order to ensure that the calculation results

from them were the same. The tolerance value is a trade-off between calculation speed

and contact prediction accuracy and was optimized with an arbitrarily chosen subset of

221 proteins from the 1066 protein chains (for more information about the 221 proteins,

please refer to Section 5.4 in the Results chapter and the Table C.2 in Appendix C).

CCMpred. CCMpred was downloaded from https://github.com/soedinglab/

CCMpred (last check: November 2018) and run with default parameters.

B. Programs for the Secondary Structure Prediction

The following programs of Blastpgp and SPIDER2 were used to predict the secondary

structure and the accessible solvent area of the target sequence. Specifically, Blastpgp

was used to search homologues for the target sequence and build a PSSM; SPIDER2 was

then used to predict the secondary structure and the accessible solvent area based on that

PSSM.

Blastpgp. Blastpgp of version 2.2.26 was used in this study and uniref90 (November

2016) was used as the sequence database.

SPIDER2. The source code of SPIDER2 and the training dataset of SPIDER2 were

downloaded from http://sparks-lab.org/server/SPIDER2/ (last check: November
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2018). The protein secondary structure and the accessible solvent area predictions for

the target sequence were generated by using default settings.

B. Program for Ab Initio Protein Structure Modelling

Rosetta. The source code of version 3.7 was downloaded from https://rosettacommons.

org (last check: November 2018) and compiled into executable files supported by the

openMPI library to allow parallel calculations on multiple CPU cores.

3.4.3 Computing Resources

The neural network models in this study were trained on a desktop machine with 128GB

RAM and two Intel Xeon E5-2630 v3 2.4 GHz processors (16 cores in total). Struc-

ture predictions were carried out on BlueBEAR, a supercomputer in the University of

Birmingham, and for each protein 50 CPU cores were used.

3.5 Features and Feature Vector

This section firstly explains in detail how the features in the neural networks of DeepCD-

pred and the network of the model confidence estimation method were calculated. Next,

it explains how the features were combined to form the feature vector (or the feature set).
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3.5.1 Features

Features of DeepCDpred

Features are the basis of many machine learning algorithms; feature selection is thus a

crucial step. The features of DeepCDpred were inspired by the earlier studies of MetaP-

SICOV (Jones et al. 2015) and SVMcon (Cheng and Baldi 2007). Table 3.1 lists all of

the 13 types of features used in stage 1 networks of DeepCDpred. For stage 2 networks,

besides the features used in stage 1, the output from stage 1 was also used as a feature. In

the table, the third column also explains how each type of feature was calculated. “Based

on MSA” means the corresponding feature was calculated based on the MSA by using

the script developed in this study. The amino acid profile is the amino acid frequency

distribution at each position of the target sequence. It was easily calculated based on

the MSA of the target sequence. The number of sequences in the MSA was calculated

directly based on the MSA. The number of effective sequences in the MSA was calculated

according to the formula in subsection 2.6.6 (sequence reweighting); the sequence identity

cut-off was chosen as 0.8, which means if the identity between two sequences in the MSA

is greater than 80%, they are regarded as the same sequence. With the amino acid pro-

file, the position entropy of each position could be calculated according to the Shannon

entropy formula S = −∑a f (a) log (f (a)), where a is any of the 21 amino acid types

(gap is considered as the 21st amino acid). The statistical contact potential between a

pair of residues from the target sequence is calculated by averaging contact potentials of
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all the pair of residues in the two columns of the MSA. The contact potential matrix for

the 20 standard amino acids used in this study came from the work of Betancourt and

Thirumalai (Betancourt and Thirumalai 1999). As for other features, each was calculated

with the programs listed in the table.

Table 3.1. Features of DeepCDpred.

# Feature Name How Calculated?

1 Chain Length No. of aa in the target sequence#

2 Amino Acid Profile Based on MSA

3 No. of Sequences in MSA Based on MSA

4 No. of Effective Sequences in MSA Based on MSA

5 Sequence Separation
Distance of the residue pair on

sequence

6 Contact Potential Based on MSA##

7 Position Entropy Based on MSA

8 MI MI_APC

9 Secondary Structure Prediction SPIDER2

10 Accessible Solvent Area SPIDER2

11 EvFold Coevolution Coupling FreeContact

12 QUIC Coevolution Coupling QUIC

13 plmDCA Coevolution Coupling CCMpred

#: aa, amino acid.

##: contact potential matrix was adopted from the study of Betancourt and Thirumalai (Betancourt and

Thirumalai 1999).

As described above, the DeepCDpred feature vector requires multiple features to be ab-

stracted from the MSA prior to training or prediction, i.e. pre-processing of the MSA.

Moreover, some of this pre-processing is undertaken by using neural networks, e.g. SPI-

DER2 to predict the solvent accessibility and secondary structure. However, the ultra
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deep convolutional networks are likely to be capable of learning abstracted features di-

rectly from the input data. With networks like ResNet (He et al. 2016) and SENet

(Hu et al. 2017), the greater the depth of the network, the greater the capacity to learn

abstracted features. Classic feed forward networks can also learn this in principle, but

facing the problem of vanishing gradient when getting deeper (Nair and Hinton 2010). It

should be possible to go directly from MSA to contact prediction without the need for

pre-processing the MSA. Skipping the preprocessing of the MSA would speed up train-

ing, testing and predicting. More discussions about end-to-end learning can be found in

Section 6.6 and Section 6.9 of Chapter 6.

Features of the Model Confidence Estimation Method

Table 3.2 lists all of the types of features used in this neural network method. For each

generated structure, the Rosetta energy score was assigned by the AbinitioRelax program

in the Rosetta suite.

These features were chosen for the following reasons: the chain length indicates the size

of the protein; the number of sequences and the number of the effective sequences define

the quality of the MSA of the query sequence, which could affect the amino acid contact

prediction accuracy (see Subsection 5.5.5), and thereafter the quality of the structure;

the accuracy of the secondary structure prediction also affects the accuracy of the amino

acid contact prediction (see Subsection 5.5.5); the Rosetta energy score is Rosetta’s own

measure of structure quality; a lower score would likely indicate a better model.
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Table 3.2. Features of the model confidence estimation method.

# Feature Name How Calculated?

1 Chain Length No. of aa in the target sequence

2 No. of Sequences in MSA Based on MSA

3 No. of Effective Sequences in MSA Based on MSA

4 Secondary Structure Prediction SPIDER2

5 Rosetta Energy Score Rosetta AbinitioRelax

3.5.2 The Feature Vectors

The Feature Vector of DeepCDpred

In stage 1 of each neural network of DeepCDpred, for each pair of residue positions, a

feature vector with 752 dimensions was used as an input. The position pair (any pair in the

target sequence) being considered here is denoted by (i, j). Some features in the neural

network model of this stage were based on the properties of the amino acids adjacent in

the sequence to the one of immediate interest. Two windows of length 9 amino acids are

centred at i and j respectively, and another window of length 5 is located at the middle

point (i + j)/2. For each of the columns (2 × 9 + 5) in the three windows, the amino

acid composition consisting of the relative frequencies of the 20 amino acids and a 21st

position for the gap were calculated; three values of the probabilities of helix, strand and

coil and one value of the predicted solvent accessibility (solvent accessible surface area)

were imported from the predictions of SPIDER2 (Heffernan et al. 2015). The Shannon

entropy for this position was also included. The last binary value (position tag) indicated
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whether this position is outside the length of the query sequence, since for the four N-

terminal positions and four C-terminal positions, the window centred at any of these is

not intact. Across the three windows, there were thus 621 local features, (2× 9 + 5) ×

(21 + 3 + 1 + 1 + 1) = 621. Other features were either only related to positions i or j,

or global properties of the MSA. Statistical contact potential and mutual information

with the average product correction were included (1 + 1 = 2 elements in the feature

vector). The covariance scores from FreeContact (mfDCA), QUIC (Hsieh et al. 2014) and

CCMpred (plmDCA) were also among the features. For the former two, only the values

located at (i, j) were used; while for the couplings predicted by CCMpred, a square

window of size 9 × 9 centred at the position pair (i, j) was used and all contact scores

predicted by this software in this window were included in the feature vector. The length

of the protein chain, the number of sequences and the effective number of sequences in the

MSA, the mean values of all the alpha helix, beta strand, coil, solvent accessibility scores

and position entropies were used as well (another 8 elements in the feature vector). The

other elements in the feature vector were used to encode the sequence separation between

the two positions (Figure 3.5).
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Figure 3.5. Diagram of the feature vector for each residue pair of stage 1
networks of DeepCDpred (graph a) and the concatenation of feature vectors
of all the residue pairs (inputs) of all the proteins in the training/validation
set to form the training/validation data (graph b).

In stage 2, the feature vector dimension was changed to 753. The predicted residue contact

scores from stage 1 were used in this stage. The square window centred at position pair
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(i, j) contained the 9 × 9 prediction scores from stage 1, rather than the scores from

CCMpred. The coupling score of CCMpred between positions i and j was also included,

which leaded to one more element in the feature vector as compared with that in stage 1.

The Feature Vector of the Model Confidence Estimation Method

85% of the 161 protein chains were randomly chosen as the training set and the other 15%

as the validation set to prevent overfitting.

Each input has 7 dimensions – chain length, the number of sequences in the MSA, the

number of effective sequences in the MSA, Rosetta energy score of the target model, and

the other three elements that are the mean of the helix probability predicted by SPIDER2

for all positions in the alignment, the mean beta strand probability, and the mean coil

probability (since the model was predicted with the constraints from DeepCDpred, the

secondary structure prediction was the same as the one used in the feature of DeepCD-

pred). Then, the inputs were constructed by concatenating the feature vectors of the 161

training/validation protein chains into one matrix (161× 7).
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Chapter 4

Method Development

4.1 Overview of This Chapter

This chapter introduces the development of the three methods proposed in this thesis (i.e.

DeepCDpred, DeepCDpred_AbInitio, and the protein model quality estimation method).

4.2 The Development of DeepCDpred

4.2.1 Introduction

An overview of the structure and feature vectors of DeepCDpred was introduced in the pre-

vious chapter. This section introduces the implementation of DeepCDpred (Figure 4.1),
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which includes the technical details of the network models in DeepCDpred (e.g. the activa-

tion function and the loss function) (Subsection 4.2.2), how these networks were trained

and optimized (Subsection 4.2.3), how the performance of DeepCDpred was evaluated

(Subsection 4.2.5), and the realization of DeepCDpred (Subsection 4.2.6, this part is not

mentioned in the diagram figure below). In addition, the explorations of improving the

performance of DeepCDpred by using metagenomic sequences and a deeper architecture

(Subsection 4.2.4), the feature contribution analysis that ranks the features of DeepCD-

pred based on their significance to the contact prediction accuracy (Subsection 4.2.7), and

the difference between DeepCDpred and MetaPSICOV are also introduced (Subsection

4.2.8, this part is not mentioned in the diagram figure)).
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Figure 4.1. Diagram of the development of DeepCDpred. The numbers indicate
which subsection each part will be introduced in.
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4.2.2 Technical Details of DeepCDpred

The features as described in Subsection 3.5.2 are fed into the input layer of DeepCDpred.

The number of neurons used in the input layer is the same as the dimensions of the feature

vector (i.e., 752 for stage 1 and 753 for stage 2); the two hidden layers have 120 and 50

neurons, respectively; the output layer has only one neuron to report the inter-residue

contact/distance prediction score. Compared to a classic three-layer feedforward neural

network, the neural network used in DeepCDpred is called a deep network. Subsection

2.7.3 of Chapter 2 has explained that deep neural networks are superior to conventional

neural network methods.

For each network in DeepCDpred, logistic sigmoid functions were used as the activation

functions for all the layers. Since the value range of the logistic sigmoid function is (0, 1),

the output from the single output layer neuron is also in the range (0, 1). For the contact

prediction network in DeepCDpred, the value represents the score of how likely it is that

a given pair of residues is in contact. If the value is close to 1, it means the residues

are likely to be in contact; if the value approaches 0, it means the residues are not likely

to be in contact. Similarly, for a network predicting an inter-residue distance, the final

neuron’s output indicates how likely it is that the distance between the two Cβ atoms

(Cα for glycine) of the two residues being considered is within the distance bin of that

network. For both contact and distance predictions made by DeepCDpred, the residue

pairs were ranked based on the corresponding network output scores from the highest to
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lowest. The prediction result for each distance bin (including the contact bin (0-8Å)) was

written as a separate file on the disk with the format:

residueA residueB DistanceLowerBond DistanceUpperBond score1

residueC residueD DistanceLowerBond DistanceUpperBond score2.

When it is contact prediction, “DistanceLowerBond” and “DistanceUpperBond” were re-

placed with 0 and 8, respectively; when it is distance prediction, the two parameters were

replaced with the distance bin range.

4.2.3 Training Process and Parameter Optimization of DeepCD-

pred

The following training process was used for both the amino acid residue contact and

distance prediction networks of DeepCDpred. All of the networks were trained by using

the Neural Network Toolbox of MATLAB (version 2015b).

Since the machine used in this study (128 gigabytes RAM) could not hold all of the

1066 proteins in the memory at the same time during the neural network training, the

training dataset had to be divided into two groups, 524 proteins in group one and 542

proteins in group two. A neural network model was trained with group one and then the

converged model was re-trained with group two. The training algorithm for all the models

was the conjugate gradient backpropagation with Powell-Beale restarts (training function

’traincgb’ in MATLAB) (Powell 1977). The initial weights and biases were generated
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as random numbers between 0 and 1. The strategy of batch training was used, which

means the weights and biases were updated only after all inputs from the training set

were processed by the network and the current cumulative error were calculated. For

this reason, the training required a very large RAM. The number of validation checks (or

early stopping checks) was set to 6 (the default value in the Neural Network Toolbox of

MATLAB), which means, when the loss function on the validation set failed to decrease

on 6 successive epochs, the training process would stop. Another parameter, the L2

regularization of the loss function, which also prevents overfitting, was set to 0.01. Please

refer to Section 5.12 of the Results chapter (Chapter 5) to check the primary results and

Section 6.7 in the Discussion chapter for the analysis.

There are multiple parameters involved in either the architecture or the training process of

DeepCDpred. All of them could affect the performance of DeepCDpred. The parameters

are: (1) the number of hidden layers in the neural network models (both contact and

distance prediction models), (2) the number of neurons in each hidden layer, (3) the

regularization in the training process, (4) the training function, (5) the size of the square

window in the feature vector.

The reader has already noticed that the values of the parameters were explicitly stated in

the above sections and the previous chapter for the convenience of introducing DeepCD-

pred. However, it is necessary to make it clear how these parameters were optimized.

For the first two parameters, the initial values were chosen as the values reported in
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the MetaPSICOV paper (Jones et al. 2015). The initial number of hidden layers was 1,

but increasing numbers were tested. In the one hidden-layer architecture, the number of

neurons in the hidden layer was varied; the networks were tested, in which the number of

neurons in the hidden layer were 55, 80, 100, 110, 120, 130 etc. Several architectures were

tested for the two-hidden-layer variants of DeepCDpred, with the numbers of neurons

in the two layers being 50 and 45, 70 and 30, 100 and 50, 110 and 50, 120 and 50, 120

and 55, 130 and 55. The number of neurons in the three hidden-layer architecture was

tried with the combinations: (a) 120, 50 and 30, (b) 120, 50 and 50. The regularization

values of 0.02, 0.01, 0.008, 0.005, 0.001 were tested for all of the above architectures.

All of the training functions available in the Neural Network Toolbox of MATLAB were

tried (namely, ‘trainlm’, ‘trainbfg’, ‘trainrp’, ‘trainscg’, ‘traincgb’, ‘traincgf’, ‘traincgp’,

‘trainoss’ and ‘traingdx’; please go to the page of https://uk.mathworks.com/help/

nnet/ug/choose-a-multilayer-neural-network-training-function.html (last

check: November 2018) for detailed descriptions of these functions) for all of the above

architectures.
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Table 4.1. Training function names and the corresponding optimization al-
gorithms in the neural network toolbox of MATLAB.

Function Name Algorithm

trainlm Levenberg-Marquardt algorithm

trainbfg BFGS# Quasi-Newton algorithm

trainrp Resilient backpropagation

trainscg Scaled conjugate gradient

traincgb Conjugate gradient with Powell/Beale restarts

traincgf Fletcher-Powell conjugate gradient

traincgp Polak-Ribiere conjugate gradient

trainoss One-step secant backpropagation

traingdx Variable learning rate backpropagation

#: Broyden-Fletcher-Goldfarb-Shanno.
Explanations about the above algorithms can be found on https://ww2.mathworks.cn/

help/nnet/ug/choose-a-multilayer-neural-network-training-function.html

(last check: November 2018).

Besides the logistic sigmoid function, activation functions in all of the layers were also

tried with hyperbolic tangent sigmoid functions. The size of the square window used

to include CCMpred calculated coevolutional couplings and the contact/distance scores,

which were predicted from stage 1, were tested with 7× 7, 9× 9 and 11× 11.

At one time, only one of the above changes was made and the others remained the same.

Since the neural networks used in this work were initialized with random weights and bias,

it was expected that the network could produce different prediction results when it was

trained multiple times with the same parameters. In fact, the differences among these were
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slight (visit Subsection 5.5.2 to check the evidence). Thus, each network architecture was

trained three times based on one parameter set. It is necessary to select the best neural

network from the different instances. For this aim, a subset of 435 protein chains from

the training/validation set was arbitrarily chosen. The neural network that achieved the

best amino acid contact/distance predictions on these protein chains was chosen among

the multiple runs.

For all the parameters mentioned above, the values were optimized based on improving

the contact prediction accuracy of the 435 proteins chosen for validation. If changing a

parameter led to an improvement in accuracy of 0.5% or greater, the current value of the

parameter was replaced with the new one; if not, the current value would remain.

The pdb ids of the 435 protein chains can be found in Table C.6 of Appendix C.

4.2.4 Explorations to Improve the Performance of DeepCDpred

Two methods were tried to potentially improve DeepCDpred. One of the methods re-

placed the HHblits homologous sequence database with the metagenomics data but kept

the above trained two-hidden-layer DeepCDpred. The other method used five-hidden-

layer networks rather than the original two-hidden-layer networks in the contact predic-

tion network group (the network group refers to the four contact prediction networks in

Figure 3.1b) of DeepCDpred. ReLU activation functions were also adopted to replace

the sigmoid functions in the new hidden layers. The new version of DeepCDpred were
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retained with the same training/validation set. Descriptions of the two methods are given

below and the corresponding results of them can be found in Section 5.11 and Section

5.12 of the Results chapter (Chapter 5).

Improving the Accuracy of Amino Acid Contact/Distance Prediction of Deep-

CDpred by Using Metagenomics Data

All of the above amino acid contact/distance predictions were based on the protein se-

quence dataset, UniRefKB. As the number of protein sequences in metagenome sequence

projects is growing faster than that in the UniRefKB database, protein families with a

limited number of homologous sequences in the UniRefKB might benefit from adding ex-

tra sequences from metagenomics data for amino acid contact prediction and structure

prediction (Ovchinnikov et al. 2017b). This study has tested to combine the protein se-

quences from the metagenomics data with those from UniRefKB as a protein sequence

searching dataset, and use it in the amino acid contact/distance prediction procedure of

DeepCDpred. The metagenomics data was introduced in Subsection 3.4.1 of the previous

chapter. Since the metagenomics data cannot be searched by HHblits, the HMMER tool

(Finn et al. 2011) was employed for the homologue search.

Improving the Accuracy of Amino Acid Contact Prediction of DeepCDpred

by Using Networks with Five Hidden Layers

As mentioned in Subsection 4.2.3 of this chapter, neural networks in DeepCDpred were

trained with the functions from the Neural Network Toolbox of MATLAB. The advantages
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of this toolbox include: it is easy to implement, train and test the network models, and it is

also simple for coding. Also, since MATLAB provides many functions for data processing,

the feature preparation is easily done by MATLAB. But the limitations of this toolbox

are crucial: it lacks latest activation functions (e.g., ReLU (Nair and Hinton 2010), ELU

(Djork-Arne Clevert 2015) and SeLU (Klambauer et al. 2017)), and network training

functions (e.g., stochastic gradient descent, or sgd, with mini-batch (Schmidhuber 2015b))

for feedforward networks. The use of sigmoid or hyper tangent activation functions in deep

networks has the vanishing gradient problem (visit Section 6.9 in the Discussion chapter

(Chapter 6) for an explanation to this problem), which means adding more hidden layers

could hardly improve the performance of a network, or even make it worse. The newly

proposed activation functions mentioned above can alleviate this problem. The training

function of sgd with a mini-batch could speed up the training process and requires less

RAM.

In this section, the two-hidden-layer networks in both stage 1 and stage 2 were replaced

with five-hidden-layer ones (seven layers in total); the sigmoid activation function was

used at the output layer; the other layers used ReLU activation functions. sgd was used

as the training function with the mini-batch size of 32. The implementation used the

Python neural network Keras library (Keras 2018) with Tensorflow (tensorflow 2018) as

the backend. The training/validation set, test set, and training process are the same

as those of the two-hidden-layer networks. Again, 15% of the inputs are used as the

validation set and the other 85% as the training set, and the final contact score is the
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average of four outputs from the four networks, with each using a different amino acid

contact cut-off (i.e. 0− 7.9Å, 0− 8.0Å, 0− 8.1Å and 0− 8.2Å) to define the classification

of the targets.

In the new five-hidden-layer networks, both the loss functions of cross entropy and MSE

(mean squared error) were employed, and the accuracies of the amino acid contact pre-

diction based on them were compared.

4.2.5 Contact and Distance Prediction Assessment

In this work, two methods were used to evaluate whether residue contact and distance

predictions are successful or not. The first one, commonly adopted by previous studies

(including MetaPSICOV) (Jones et al. 2015; Skwark et al. 2013), selected a number of

predictions based on the length of the query protein (e.g., L/10, L/5, L/4, L/3, L/2, L,

1.5L etc., where L is the length of the query protein, that is, the number of amino acids).

Before the assessment, residue pairs were ranked by the predicted contact scores and then

selections were made by choosing a certain number of residue pairs with high contact

scores. For each selection, a measure to assess the accuracy of the predicted contacts or

distances was calculated by using the formula:

Accuracy =
True Positives In the Selected Predictions

All Selected Predictions
× 100% (4.1)
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where True Positives (TPs) are predictions that are observed contacting residue pairs in

the experimental structure. Accuracy scores are between 0% and 100%; 0% indicates all

the predictions are incorrect, and 100% indicates all the predictions are correct. This

strategy was used to compare the contact prediction accuracies of DeepCDpred and the

previous algorithms as described in the section Review of Amino Acid Coevolution Anal-

ysis (Section 2.6). The advantages of this measure are: (a) it is easy to calculate; (b)

it is widely used in the research community, which makes it easier to compare contact

accuracy with other algorithms; and (c) the accuracy is well recognized or accepted by

the community.

In this section, another contact/distance selection strategy is also introduced, which is

based on the neural network output scores. Specifically, for a query protein, the score

of each contact/distance prediction is compared to a score cut-off; the predictions with

scores above the cut-off are selected. The logic of this method is as follows.

The contact/distance prediction scores of a query protein could be affected by the “quality”

of its MSA (‘quality’ indicates the factors related to the MSA that could impact the

residue contact and distance predictions, such as the proportion of gaps in each column

and the effective number of sequences in the MSA; the result shown in Subsection 5.5.6 of

Chapter 5 proves this statement). Thus, for a query protein with a few effective sequences

in its MSA compared to its sequence length (Nf), the contact/distance prediction scores

should on average be smaller than the one with many effective sequences. Therefore, based

on this selection method, the number of contact/distance predictions that can be selected
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is determined by the intrinsic quality of the query protein’s homologous sequences. Check

Subsection 5.5.6 in the Results chapter (Chapter 5) for the evidence. However, this method

also has limitations. Firstly, for the query protein with low-quality MSAs, it may improve

the contact/distance accuracy based on the above analysis, but it also reduces the number

of contact/distance predictions, which means there are fewer constraints fed into the

structure modelling software (i.e. Rosetta) for structure prediction. Whether more false

positives or fewer predictions is worse for structure prediction is unknown. Secondly, it is

hard to compare the contact/distance accuracies among different algorithms according to

this measure, since the scores from these algorithms are calculated with different methods,

which are not equivalent.

Based on the above analysis, the widely used contact/distance selection method of choos-

ing L/10, L/5, L/4, L/3, L/2, L, 1.5L predictions were used to compare the performance

of DeepCDpred with other algorithms. However, the accuracies of structure predictions

were compared based on two ways to select contacts: one was to use neural network out-

put scores; the other was to use a fixed number of top predictions. (check Subsection 5.6.2

and Subsection 5.6.3 in the Results chapter).

4.2.6 Realization of DeepCDpred

The source code of DeepCDpred was written in Python. Neural networks trained with

MATLAB code were converted to Python readable files. Some protein chains from the
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training/validation set were used to check if the conversion was correct. Prerequisites

(e.g. database and software) were downloaded to the local machine. Users can go to the

website of http://proteincoevolution.bham.ac.uk to access DeepCDpred. When a

job with one query protein sequence is submitted to the server, DeepCDpred will run and

prediction results will be sent to the email address provided by the user in the job. More

information about the server can be found in Section 5.13 of the next chapter.

4.2.7 Contribution Analysis of the Features of DeepCDpred

Different features from the input feature vector make different contributions to a neural

network model. Some features might even make no contributions. It is important to rank

the contributions of features of DeepCDpred. Knowing the ranking is useful for remov-

ing the non-contributive features and improving the effectiveness of the most important

features. For example, if the feature of secondary structure predictions is among the top-

ranked features, more accurate secondary structure prediction algorithms might improve

the performance of DeepCDpred.

In this study, to speed up the calculations, only 524 protein chains were selected from the

whole training/validation set introduced in Subsection 3.4.1 of Chapter 3. Limiting the

number of chains allows the time-consuming steps of feature vector creation and training

to be performed more quickly and thus to explore more possibilities. These chains were

actually the first group of the training/validation set of DeepCDpred (see Subsection 4.2.3
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‘Training Process of DeepCDpred’) and the lengths range from 16 to 394 amino acids.

The pdb id list of the training/validation set can be found in Table C.5 of Appendix C).

Also, only networks of contact prediction in stage 1 were trained, again, to speed up

the calculations. Each time, only one type of feature was removed from the total 752-

dimensional feature vector. For example, when the importance of coevolutionary coupling

calculated from QUIC was evaluated, this type of feature was removed from the feature

vector of DeepCDpred, and all of the remaining features were kept; four neural network

models representing four target range (i.e., 0 − 7.9Å, 0 − 8.0Å, 0 − 8.1Å and 0 − 8.2Å)

were trained based on the new features from the 524 protein chains. Similarly, 85% of the

inputs were randomly selected as the training set and the other 15% as the validation set.

All of the settings in the training process were the same as those of DeepCDpred.

In addition to the coevolutionary coupling calculated from QUIC, the contributions from

other features, i.e. the coevolutionary coupling calculated from CCMpred (plmDCA), the

coevolutionary coupling calculated from FreeContact (mfDCA), mutual information, sta-

tistical potential, secondary structure prediction, solvent accessibility, amino acid profile,

site entropy, the number of effective sequences, the number of sequences, the length of the

protein chain and sequence separation, were also evaluated in the same way. It is worth

noting that the indices of the inputs in the training set (85%) and the indices of the inputs

in the validation set (15%) were randomly chosen from all of the indices of the residue

pairs of the 524 protein chains; however, these two sets of indices were divided only once,

and for the networks in each feature removal, they were kept. In other words, for all the
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networks, the inputs in the training set (also the validation set) were from the same set

of residue pairs of the 524 protein chains, but with a different feature removed from the

feature vector of DeepCDpred. The contribution ranking of these features is shown in

Subsection 5.5.5 of Chapter 5.

4.2.8 Differences between DeepCDpred and MetaPSICOV

Although the development of DeepCDpred was inspired by MetaPSICOV and they do

share some things in common (the reader can find these by comparing the introduction

of MetaPSICOV in Subsection 2.6.10 and the introduction of DeepCDpred in the above

paragraphs and the previous chapter), they are different regarding the following aspects.

a. MetaPSICOV is only capable of predicting inter-residue contacts, while DeepCDpred

can make both inter-residue contact and distance predictions (four scores output from

the four groups of neural networks for each pair of residues in the target sequence,

which represent how likely the spatial distance of the residue pair is in the range of

0−8Å, 8−13Å, 13−18Å, and 18−23Å).

b. The architectures of the neural network models in DeepCDpred and MetaPSICOV are

different. The former uses two hidden layers with 120 and 50 neurons, respectively,

while the latter adopts only one hidden layer with 55 neurons. A new version of

DeepCDpred, as described above, has five hidden layers.
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c. Some features are different in the two algorithms. In MetaPSICOV, PSIPRED (McGuf-

fin et al. 2000) and SOLVPRED (Jones et al. 2015) were used for the secondary struc-

ture and the solvent accessibility prediction, respectively; while, DeepCDpred uses the

software of SPIDER2 for the preparation of both kinds of features. In Subsection 2.7.1,

it was shown that SPIDER2 is better than PSIPRED by citing the paper (Heffernan

et al. 2015). Another feature is that the correlated mutation scores were predicted

by QUIC in DeepCDpred; MetaPSICOV used the scores predicted by PSICOV. As

described in Subsection 2.6.8, the algorithm of QUIC has the same objective function

as PSICOV, but with a much faster speed of optimization. The result in Section 5.4

of the Result chapter (Chapter 5) has proved this point, and at the same time, QUIC

makes very similar inter-residue contact prediction accuracy. Therefore, PSICOV was

replaced by QUIC in DeepCDpred.

d. The strategy of arranging features is different in both algorithms. Unlike using a

square window of size 9 × 9 centred at the position pair (i, j) and including all the

contact scores predicted from CCMpred in this window, the feature vector of stage

1 in MetaPSICOV only includes the contact score of CCMpred at (i, j); this is the

main reason why feature vector size in MetaPSICOV is less than that in DeepCDpred in

stage 1. In stage 2, MetaPSICOV uses an 11×11 square window to include the contact

scores predicted from stage 1, while DeepCDpred still adopts the 9 × 9 window. In

this stage, the mid-point window of five was used in DeepCDpred, while MetaPSICOV

does not have this window.
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4.3 The Development of DeepCDpred_AbInitio

4.3.1 Introduction

The method of predicting protein structure based on constraints (including both contact

and distance prediction) predicted by DeepCDpred and Rosetta ab initio modelling is

called DeepCDpred_AbInitio.

In this thesis, in addition to the comparison of contact prediction accuracy of DeepCDpred

with other methods, it’s also worth comparing the structure prediction quality based on

the contact/distance predictions from DeepCDpred to other methods. As discussed in the

above Subsection 4.2.5 of ‘Contact and Distance Prediction Assessment’, two methods for

contact prediction selection were used in this study. Thus, there were two ways to compare

the quality of the structure predictions among different algorithms based on the selections:

one was selecting the same number of contact predictions from different methods and using

the same Rosetta ab initio protocol; the other was selecting the contact predictions that

have the same expected contact accuracy and using the same Rosetta ab initio protocol.

Besides the comparisons of the quality of the structure predictions based on the contact

predictions from different algorithms, comparisons were also made between the quality of

the structure predictions from DeepCDPred based on contact prediction only and that

based on both contact and distance predictions.
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To quantify the spatial similarity of a predicted structure and the corresponding experi-

mentally determined structure, a TM-score was reported. Details about TM-score have

already been introduced in Subsection 2.8.5 of Chapter 2.

In the next four subsections, how to select the contact and distance predictions to pre-

pare the geometry constraints for Rosetta ab initio modelling and the Rosetta ab initio

modelling protocol are introduced. The relations of the four subsections are indicated in

Figure 4.2, which shows that all of the protein structure prediction methods introduced

in Subsection 4.3.2, Subsection 4.3.3 and Subsection 4.3.4 use the same Rosetta modelling

protocol.

Rosetta ab initio Simulation Protocol 

Top 1.5L Contact Predictions 
from DeepCDpred

Rosetta
AbinitioRelax

Simulation

Score Cut-off Selected Contact 
Predictions from DeepCDpred

Contact Predictions & 
Distance Predictions from 

DeepCDpred

Rosetta
AbinitioRelax

Simulation

Rosetta
AbinitioRelax

Simulation

①

②

③

④

constraints

constraints

constraints

structure 
prediction

structure 
prediction

structure 
prediction

①: subsection 4.3.5

②: subsection 4.3.2

③: subsection 4.3.3

④: subsection 4.3.4

#

# AbinitioRelax is a 
program from the 
Rosetta suite

Figure 4.2. Diagram of the development of DeepCDpred_AbInitio.
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4.3.2 Rosetta Ab Initio Modelling with the Top 1.5L Contact

Predictions

This method of employing the predicted contacts for structure prediction is commonly

used in recent studies (Ovchinnikov et al. 2015, 2017a,b). In earlier studies, the top L

(Michel et al. 2014) contact predictions were used for structure predictions rather than

the top 1.5L predictions. In this thesis, the top 1.5L ranked contact predictions from

DeepCDpred and MetaPSICOV were selected for each protein chain in the test set.

The ‘BOUNDED’ score function ( https://www.rosettacommons.org/docs/latest/

rosetta_basics/file_types/constraint-file, last check: November 2018) was used

to construct constraint inputs for Rosetta ab initio modelling, with the upper bound and

lower bound set to 8 and 0, respectively.

In Section 5.10 of the Results chapter (Chapter 5), comparisons of the quality of structure

predictions are made between DeepCDpred and RaptorX by using the top 1.5L ranked

predicted contacts from each algorithm for eight proteins.

In order to make the comparisons fairly, for the different constraints from these algorithms,

all of the structure predictions used the same Rosetta ab initio modelling protocol, which

will be introduced later in this section.
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4.3.3 Rosetta Ab Initio Modelling with the Contact Predictions

Determined by Score Cut-off

As mentioned in Subsection 4.2.5, there are some good reasons to suppose that the method

of selecting contact predictions based on neural network scores is superior to that of simply

taking the top 1.L predictions, regarding to protein structure predictions. With this

method, contact predictions selected from DeepCDpred and MetaPSICOV were included

as constraints in Rosetta ab initio modelling by using the same ‘BOUNDED’ score function

as mentioned above. Since MetaPSICOV and DeepCDpred are two different algorithms,

one cannot choose the cut-offs with the same value. Instead, cut-offs of MetaPISCOV and

DeepCDpred were selected that gave equivalent expected accuracies of contact predictions,

as reported in the Results chapter (Chapter 5). All Rosetta protocols were the same, as

described in Subsection 4.3.5, except by which Cβ carbons were constrained.

4.3.4 Rosetta Ab Initio Modelling with Both Contact Predictions

and Distance Predictions from DeepCDpred

In addition to the comparisons of structure predictions above based on contact predictions

only, for DeepCDpred, the comparison of structure predictions was made between using

contact predictions only and using both contact predictions and distance predictions. The
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purpose of this comparison is to assess whether the distances predicted by DeepCDpred

are useful for improving structure predictions.

The two constraint selecting methods, i.e. by using a neural network score cut-off and

taking the top 1.5 L predictions, potentially allow four combinations to select contacts

and distances together for structure predictions. In this study, only two groups were made

using the predicted contacts and distances. In the first group, contact predictions from

DeepCDpred were selected as the top 1.5L ranked ones for each protein, and distance

predictions from DeepCDpred were selected by setting a score cut-off for each distance

bin for each protein; in the second group, both contact and distance predictions were

selected by the score cut-off standard.

It is worth noting that there are three groups of comparisons of structure predictions to

evaluate the effectiveness of the distance prediction from DeepCDpred (in this paragraph,

all the contact and distance predictions are from DeepCDpred): (a) the comparison of

structure predictions between using the top 1.5L contact predictions only and using the

1.5L contact predictions & the distance predictions selected by score cut-offs; (b) the

comparison of structure predictions between using contact predictions only, selected by a

score-cut-off, and using contact predictions selected by a score cut-off & distance predic-

tions selected by score cut-offs as well; (c) the comparison of structure predictions between

using the two methods for contact & distance prediction selections. The results of (a),

(b) and (c) are shown in Subsection 5.6.5, Subsection 5.6.6, and Subsection 5.6.7 of the

Results chapter (Chapter 5), respectively.
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In the calculations, the following two steps are used before the distance predictions are

added into the Rosetta ab initio modelling.

1. Redundancy Reduction in Inter-Residue Distance Prediction of DeepCD-

pred

Redundancy is a major problem when predicting distance. The sources of it include:

(a). the two amino acids are on the same alpha helix or beta strand; (b). the sequence

separation of the two amino acids is too small (i.e., the two positions are so close in

sequence that they inevitably appear in a spatial distance bin); (c). they are neighbors

of two contacting residues.

Two steps were taken to deal with this issue. Firstly, residue pairs predicted by SPI-

DER2 on the same alpha helix or beta strand were removed from the training and

the prediction processes. Secondly, a minimum cut-off of sequence separation was set

for each distance bin. The three cut-offs come from the analysis of Figure 4.3. In

this figure, the inter-residue distance distribution versus sequence separation of 435

experimental protein structures from the training/validation set was calculated (i.e.,

less than 25% sequence identity between any pair of proteins in the 435 structures).

All of the residue pairs appearing on the same predicted alpha helix or beta strand

had already been removed before the analysis. The pdb ids of the 435 proteins are

listed in Table C.6 of Appendix C.
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Figure 4.3. The distribution of inter-residue distance in terms of sequence
separation (measured in amino acid number, aa no.). The result comes from
the calculation of 435 experimental protein structures in the training/validation set and
is shown as mean ± std. Three blue highlighted sequence separations (8, 13 and 15)
were chosen as the cut-offs for the distance predictions in bins (8− 13Å], (13− 18Å] and
(18− 23Å] respectively.

The usefulness of a distance prediction is defined by whether it is out of the expected

range. To make it clearer, the distance bin (8 − 13Å] is taken as an example. If the

sequence separation of a position pair is five amino acids, without any prediction, it

is expected that their distance in space is likely to be in the range of (8− 13Å], from

Figure 4.3. When the sequence separation is eight (or even seven), the distance between

them is likely to be in the range of (13− 18Å] on average (see the left blue highlighted

bar in the figure). Therefore, if DeepCDpred predicts that it has a big chance (high

output value from the neural network) of being in (8−13Å], the prediction is significant
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(which means the prediction is out of expectation and thus nontrivial). When the

sequence separation is larger, the prediction of the two positions in this distance bin is

even more significant. From the figure, a sequence separation of seven amino acids can

also be used as the cut-off for the distance bin (8 − 13Å]. However, eight was chosen

(left blue highlighted bar) in this study as a trade-off between making the predictions

more significant and keeping as many predictions as possible. For the same reason,

thirteen (middle blue highlighted bar) was chosen as the minimum sequence separation

for predicting residue pairs in distance bin (13 − 18Å]. As for the bin (18 − 23Å],

the situation is different. Since from sequence separation of fifteen (right-most blue

highlighted bar) amino acids to twenty-five, the average inter-residue distance hardly

changes and always stays in this bin, redundancy cannot be avoided effectively in the

distance bin of (18 − 23Å] and was thus accepted. A sequence separation cut-off of

fifteen was set in this bin to keep as many predictions as possible.

2. Beta Strand Pairing

A beta sheet is characterized by two beta strands running in the same (paral-

lel)/opposite (anti-parallel) direction held together by hydrogen bonds. The length

of the hydrogen bond is generally around 3.0 Å. Therefore, it is more accurate to

constrain two residues than a simple contact in a protein structure. The idea in

the state-of-the-art beta strand pairing program, bCov (Savojardo et al. 2013), was

adopted, and a small program was developed to replace the PSICOV residue contact

scores used in bCov with the contact scores predicted from DeepCDpred.
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After the beta strand pairings were generated, all the contact and distance predictions

that have both positions on the two strands (e.g., AB and CD in Figure 4.4) were

removed, since the hydrogen bonding pattern could determine the topology of the

beta sheet, and the redundant constraints will be less precise than the hydrogen bond

constraints. Figure 4.4 is an example of anti-parallel beta sheet prediction.

Hydrogen bonding

Contact prediction

Distance prediction

A

B

C

D

Figure 4.4. Beta strand pairing in an anti-parallel sheet. After the hydrogen
bonding pattern has been inferred, all of the contact and distance predictions related to
this beta sheet are removed.

4.3.5 Rosetta Ab Initio Modelling Protocol

For the prediction of protein 3D structures, the ab initio simulation program, Abini-

tioRelax from the Rosetta software suite, was used together with the predicted contacts,

distances and beta sheets predicted as described above and the secondary structure predic-

tion obtained from SPIDER2. The first step was to use the fragment generating program

‘make_fragments.pl’ from the Rosetta suite to create the three-residue and nine-residue

fragments. Then, all of the above predictions together with the query protein sequence

were fed into AbinitioRelax by using the following parameters (Rosetta simulation proto-

col):
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-in:file:fasta PATH_TO_QUERY_SEQUENCE_FILE

-in:file:frag3 PATH_TO_THREE_RESIDUE_FRAGMENTS_FILE

-in:file:frag9 PATH_TO_NINE_RESIDUE_FRAGMENTS_FILE

-abinitio:relax

-nstruct 100

-out:pdb

-out:overwrite

-database PATH_TO_ROSETTA_DATABASE_DIRECTORY

-cst_fa_file PATH_TO_RESTRAINT_FILE

-use_filters true

-psipred_ss2 PATH_TO_SECONDARY_STRUCTURE_PREDICTION_FILE

-abinitio::increase_cycles 20

-abinitio::rg_reweight 0.5

-abinitio::rsd_wt_helix 0.5

-abinitio::rsd_wt_loop 0.5

-constraints:cst_weight 0.5

-constraints:cst_fa_weight 0.5

100 candidate structures for each target protein were generated and the one with the

lowest Rosetta energy score was picked out as the top 1 model.

4.4 The Development of the Method to Estimate the

Quality of Predicted Structures

Logistic sigmoid functions were used as the activation functions in both the hidden layer

and the output layer. L2 regularization was set to 0 and the mean squared error was used
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as the loss function. MATLAB’s default parameters were used for other parameters. All of

the training functions in the neural network toolbox of MATLAB were tested with other

parameters keeping the same. The best one was selected by comparing the prediction

accuracy on the validation set (the validation set was the same for the comparison; the

data of the comparison is not shown; finally, the function of ‘traincgf’was chosen). Before

fixing the number of neurons in the hidden layer to be five, other numbers, such as eight,

ten and fifteen were also tested.

v Secondary structure prediction 

v Sequence length

v Number of sequences

v Number of effective sequences

v Rosetta energy score

… Real TM-score

sigmoid

MSEoutput target

sigmoid

training

Predict TM-score

Features Calculated 

from MSA & Target 

Model

Input Assembled by 

Features

One-Hidden-Layer Network

Figure 4.5. Diagram of the development of the structure prediction quality
evaluation model.

The test set of this model is the same as the test set of DeepCDpred.

159



4.5 Comparisons of Contact and Structure Prediction

Between DeepCDpred, RaptorX and NeBcon

Both amino acid contact and structure predictions were compared among DeepCDpred

and the two newly published algorithms, RaptorX and NeBcon, which were introduced in

Subsection 2.6.10, on eight proteins. The results can be found in Section 5.10 (Chapter 5).
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Chapter 5

Results

5.1 Overview of This Chapter

This chapter presents results on the following:

1. the proportion of possible amino acid pairs that are in contact in 250 unrelated (‘unre-

lated’ is defined as any pair of sequences in the 250 proteins with no greater than 25%

sequence identity) real protein structures;

2. the analysis of the composition of the training/validation and test sets used by Deep-

CDpred;

3. comparisons of the speed and of the inter-residue contact prediction accuracy of PSI-

COV and QUIC;
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4. the accuracy of the contact predictions of DeepCDpred as compared with MetaPSICOV

as well as the accuracy of DeepCDpred’s distance predictions;

5. the analysis of the contribution of different features to the quality of DeepCDpred’s

contact prediction;

6. comparisons of structure predictions between using DeepCDpred contacts and using

MetaPSICOV contacts based on two methods of contact selection;

7. comparisons of the quality of structures as predicted by DeepCDpred between using

contact predictions only and using contact and distance predictions together;

8. a true blind test of the DeepCDpred_AbInitio structure prediction;

9. testing the ability to predict the TM-score of a structure model;

10. comparisons of the contact accuracy and the structure prediction between DeepCD-

pred and two other recently published algorithms, RaptorX and NeBcon;

11. improving contact/distance predictions of DeepCDpred by using metagenomics se-

quences;

12. improving contact predictions of DeepCDpred by using neural networks with five

hidden layers and ReLU activation functions;

13. the introduction of the online server developed in this work.

Other results can be found in Appendix B.
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5.2 Percentage of Amino Acid Contact in Real Proteins

The percentage of amino acid pairs that are in contact in 250 unrelated protein chains is

shown in Figure 5.1a with sequence separation of one amino acid (means that all the amino

acid pairs are included) and five amino acids (the minimum sequence separation of contact

prediction of DeepCDpred). The averages are 8.2% and 3.0%, respectively. The error

bars represent the standard deviation (4.6% and 1.6%, respectively). These proteins were

randomly selected from the 1,066 training/validation proteins of DeepCDpred. Figure 5.1b

shows the distribution of the number of amino acids per chain. The counts for the four

bins are 76, 150, 14 and 10, respectively. The full list of the pdb ids of the 250 protein

chains can be found in Table C.1 of Appendix C.
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Figure 5.1. The percentage of contacting amino acid pairs in 250 unrelated
protein chains in terms of one amino acid separation and five amino acid
separation (graph a); the distribution of the number of amino acids of these
chains (graph b).
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5.3 Characterisation of the Training/Validation Set

and the Test Set

The training/validation set and the test set are characterised by globular/membrane,

oligomeric state and classes of the proteins presented. Globular proteins dominate both

the training/validation set and the test set (Figure 5.2). Only eight membrane proteins

are present in the training/validation set, while one is included in the test set, representing

0.8% and 0.9% in percentage, respectively. The percentage of the membrane chains in

PISCES, the source database, is 1.3%. In addition, the number of chains from multimeric

proteins is about three times the ones from monomers in the training/validation set; on

the contrary, in the test set, the majority of chains are from monomers (80.6% versus

19.4%). As a comparison, the percentage of monomer chains in the 2,957 protein chains,

in which the 1,066 training/validation protein chains were chosen from (the explanation

about the 2,957 chains was mentioned in Subsection 3.4.1), is 44.3%. The result is shown

in Figure 5.3. In Section 6.3 of the Discussion chapter (Chapter 6), the impact of the big

difference of the monomer chain composition in the training/set and the test set on the

contact prediction accuracy is analysed.
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Figure 5.2. The distributions of globular and membrane proteins in the
training/validation set and the test set.
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dation set, the test set of DeepCDpred, as well as the 2,957 protein chains,
from which the training/validation data were chosen.
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The pdb id list of the membrane structures in PDB was downloaded from http://blanco.

biomol.uci.edu/mpstruc/listAll/pdbIdList (downloaded on November 14, 2017). It

was used to check how many chains in the training/validation set, the test set, and

PISCES, respectively, are membrane proteins. Meanwhile, the full pdb id list of the

monomer structures was obtained from the PDB website (https://www.rcsb.org/pdb/

home/home.do, November 14, 2017). After the monomers were identified, the rest in each

set were deemed to be multimers.

Although the 108 test proteins of DeepCDpred taken from MetaPSICOV were indicated by

the studies of Jones et al. (Jones et al. 2012, 2015) as monomers (the studies didn’t provide

supporting evidence to the claim that MetaPSICOV’s test proteins are all monomeric),

Figure 5.3, which summarises the relevant data from PDB, lists 19.4% of them as being

multimeric. There is thus a discrepancy.

Proteins can also be classified as α proteins, β proteins, α/β proteins, α+β proteins,

coiled-coil proteins (hereinafter referred to as coil proteins) and membrane proteins. The

definitions of the protein classes α+β, α/β, and coil that are used here are adopted from

SCOP (Lo Conte et al. 2000). The difference between α+β proteins and α/β proteins are

that β sheets in the former are mainly antiparallel, while in the latter, they are mainly

parallel. Coil proteins are dominated by coils. With the definitions, each protein in both

the training/validation set and the test set of DeepCDpred was checked on the SCOP web-

site (http://scop.mrc-lmb.cam.ac.uk/scop/index.html, last check: November 2018)

to determine the class type. Examples of these six classes are shown in Figure 5.4. The
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pdb ids of them are shown at the bottom of the figure. These proteins are all from the

test set. The class distributions of the proteins in both the training set and the test set

are shown in Figure 5.5. The numbers on the bars are the percentages of proteins in each

class. It clearly shows α+β proteins dominate both the training/validation set and the

test set. The main difference between Figure 5.5a and Figure 5.5b is the percentage of α

and β proteins – 25% and 9% versus 11% and 16%. The protein class for each individual

protein chain in both the two sets can be found in Table D.1 and Table D.2 of Appendix D.

𝜶 (1tqg) 𝜷 (1gmi) 𝜶/𝜷 (1im5) 𝜶 + 𝜷 (1vmb) 𝐦𝐞𝐦𝐛𝐫𝐚𝐧𝐞	# 𝐜𝐨𝐢𝐥 (1i71)	

#:	1qjp

Figure 5.4. Examples of the six protein classes. pdb ids are shown in the brackets.
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Figure 5.5. Protein class distributions of the 1,066 proteins chains in the
training/validation set (graph a), and of the 108 protein chains in the test
set (graph (b)). Numbers above the histograms are the percentages of the protein
chains in each class.

168



5.4 Comparisons of the Speed and of the Inter-residue

Contact Prediction Accuracy between PSICOV and

QUIC

To replace PSICOV, QUIC is expected to be faster than PSICOV on the same data set

and the same computing device, but maintains a similar amino acid contact prediction

accuracy. 221 protein chains from the training/validation set, with lengths ranging from

50 to 386 amino acids, were arbitrarily chosen for both comparisons. The pdb ids of these

proteins are listed in Table C.2 of Appendix C.

For the comparison of the accuracies of inter-residue contact predictions, the top 1.5L (L

is the chain length) contact predictions, ranked according to the predicted coupling score

from each chain, were selected for each method. The reason for choosing the number of

the top 1.5L is that it was chosen as the number of the top-ranked contact predictions for

the structure predictions (Subsection 5.6.2). The accuracies for both methods are shown

in Figure 5.6a, where the accuracies of contact predictions for each individual protein

chain from both methods are very close.
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Figure 5.6. Comparisons of contact prediction accuracy and speed between
PSICOV and QUIC. 221 proteins were chosen for the comparison, and the accuracies
of the top 1.5L amino acid contact predictions for both PSICOV and QUIC of each
protein are shown in the graph of (a). (b) the boxplot form of graph (a); no significant
difference (ns) is found between the accuracies of the two methods by a paired t-test
(p>0.05). In the boxplots, whiskers represent the maximum and minimum values and
the middle line in the box stands for median and cross for mean. (c) speed comparisons
between PSICOV and QUIC for the 221 proteins in each bin of protein length.

In Figure 5.6a, the two lines of y = x+7 and y = x−7 highlight the proteins that deviate

greatly from y = x, and thus which proteins are predicted better by one algorithm as

compared with the other are shown. Notably, 94% of the proteins are located between

the two lines, and 6% (13 in number) are outliers.

The protein class distributions of α, β, α/β, α+β and coil of the 221 chains are 14%, 14%,

27%, 43% and 2%, respectively. The classes of α, β, α/β and α+β proteins are among

the outliers whose amino acid contacts were predicted more accurately with PSICOV

than QUIC (percentages of α, β, α/β, α+β and coil are 18%, 18%, 18%, 46% and 0%,

respectively). As compared with the distribution of the five classes in the 221 proteins,

the percentages of α, β, and α+β proteins are (slightly) higher; but α/β protein is lower.

A χ2 test shows the two protein class distributions have no significant difference (p = 0.25
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> 0.05). For the outliers predicted more accurately by QUIC, there are only two proteins

from two classes (α/β and α+β). The set is too small to draw a conclusion. The protein

classes, together with stoichiometry and protein types, of these 13 proteins are listed in

Table 5.1. For the stoichiometry, 99.5% (220 in number) of the 221 protein chains are

monomers, and only 0.5% are polymers (only 1 in number). For the protein type, 99.5%

(220 in number) of the 221 protein chains are globular proteins, and 0.5% are membrane

proteins (only 1 in number). It is clear that the outliers do not have stoichiometry and

protein type specificity too.

A paired t-test showed that there is no significant difference between the accuracies of the

two methods (p>0.05), which is also evident in Figure 5.6b.

As for the comparison of running speed, QUIC is faster than PSICOV for all the bins

of chain lengths (Figure 5.6c). The largest difference of speed appears when the protein

chain length is greater than 300 amino acids, and QUIC just took less than 1/4 time

of PSICOV on average (24.4 minutes vs. 106.7 minutes). For all of the protein chains

used, QUIC took 6.9 minutes on average, while PSICOV took 17.9 minutes. This speed

comparison was performed on a Linux machine with an 8-core i7-3770 processor and a 32

GB of RAM.
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Table 5.1. The protein classes of the outliers in the comparison of contact
prediction accuracies between PSICOV and QUIC. Accuracy difference is defined
as the accuracy predicted with PSICOV subtracting the accuracy predicted with QUIC
for the same protein. Rows in the table are ranked by accuracy difference from the
highest to the lowest.

PDB ID

Accuracy

Difference
#

PSICOV

Top 1.5L

QUIC Top

1.5L

Protein

Class
Stoichiometry

Protein

Type

1zgk 16.6% 58.9% 42.3% β monomer globular

1yfq 11.9% 59.1% 47.2% β monomer globular

1hh8 10.1% 44.8% 34.7% α monomer globular

1cjw 9.2% 48.2% 39.0% α+β monomer globular

2j5y 8.8% 17.6% 8.8% α monomer globular

1gz2 8.7% 51.7% 43.0% α+β monomer globular

2hzc 8.5% 54.6% 46.2% α+β monomer globular

1h0p 8.1% 56.8% 48.7% α+β monomer globular

1aoe 7.6% 42.4% 34.7% α/β monomer globular

1jvw 7.5% 57.5% 50.0% α+β monomer globular

1r85 7.0% 41.9% 34.9% α/β monomer globular

2gke -8.0% 22.4% 30.4% α+β monomer globular

2h1v -9.1% 22.2% 31.3% α/β monomer globular

#: Accuracy difference is defined as the accuracy predicted with PSICOV subtracting the accuracy predicted

with QUIC for the same protein.
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5.5 Amino Acid Contact and Distance Predictions of

DeepCDpred

The following results are discussed in this section.

1. Optimizing the parameters of DeepCDpred.

2. Comparison of the contact prediction accuracies between a single network and the

average of four networks.

3. Comparisons of the contact prediction accuracies between DeepCDpred and other al-

gorithms, namely mfDCA, QUIC, plmDCA, and MetaPSICOV, based on the number

of top-ranked contact predictions (L/10, L/5, L/4, L/3, L/2, L, 1.5L).

4. The distance prediction accuracy of DeepCDpred.

5. Examples of comparisons of contact prediction accuracies between MetaPSICOV and

DeepCDpred.

6. Feature contribution ranking analysis for DeepCDpred.

7. Limitations of the method of contact prediction selection for choosing top-ranked pre-

dictions (e.g. top 1.5L).

8. The accuracies of contact and distance predictions of DeepCDpred based on the pre-

diction selection strategy of score cut-off.

173



5.5.1 Parameter Optimization of DeepCDpred

This subsection only displays the result of the comparisons of the amino acid contact

prediction accuracies between the optimized one-hidden-layer network and the optimized

two-hidden-layer network. Figure 5.7 shows the comparison result of stage 2 of Deep-

CDpred. For the top-ranked 1.5L predictions, the two-hidden-layer network can ensure

0.8% higher contact prediction accuracy for the 108 test proteins as compared with the

one-hidden-layer network. It is worth noting that both the two networks are individual

networks (see the next subsection); both were trained with the contact range defined as

0− 8Å.

This is the reason why DeepCDpred was chosen as a two-hidden-layer architecture.
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Figure 5.7. The comparison of amino acid contact prediction accuracies be-
tween the optimized one-hidden network and the optimized two-hidden-layer
network. The result of MetaPSICOV for the same proteins are used as a reference.
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Another result of choosing a different number of neurons in the two hidden layers is shown

in Figure B.2 of Appendix B.

The optimized values of other parameters have already been explicitly stated in the pre-

vious two chapters.

5.5.2 Comparison of Contact Prediction Accuracies Between a

Single Network and the Average of Four Networks

In the contact prediction part of DeepCDpred, four networks were used; the final contact

prediction score for each residue pair comes from the average of the outputs from the

four networks (each with a slightly different distance bin range, i.e. 0 − 7.9Å, 0 − 8.0Å,

0 − 8.1Å and 0 − 8.2Å). The contact prediction accuracy determined by the output of

each individual network contact range versus by the average output is shown in Figure 5.8

(left graph: stage 1; right graph: stage 2). For both stage 1 and stage 2, the accuracy of

the contact predictions generated by averaging the outputs of the four networks is ≈1.5%

higher than that achieved by using any individual network.
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Figure 5.8. Contact prediction accuracy calculated from averaging output
scores from four networks vs contact prediction accuracy calculated with
the output score from each individual network for both stage 1 and stage 2.
The contact predictions made by averaging of four networks is ≈1.5% higher than any
individual network for both stages in terms of accuracy.

5.5.3 Comparison of Contact Prediction Accuracies between

DeepCDpred and Other Algorithms and Distance Predic-

tion

Accuracy of DeepCDpred

The comparison of the amino acid contact prediction accuracies among mfDCA, QUIC,

plmDCA, MetaPSICOV and DeepCDpred for the 108 proteins in the test set are shown

in Figure 5.9a. It is clear that DeepCDpred’s predictions are the most accurate ones no

matter what number of top predictions is chosen (here, the number is one of L/10, L/5,

L/4, L/3, L/2, L, 1.5L). The FreeContact (Kajan et al. 2014) and CCMpred (Seemayer

et al. 2014) implementations of the mfDCA and plmDCA methods were used. A de-

tailed comparison between MetaPSICOV and DeepCDpred is shown in Table 5.2. Unlike
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MetaPSICOV and other algorithms in Figure 5.9a, DeepCDpred also predicts distant

amino acid couplings (distance predictions) in three bins, as shown in Figure 5.9b.
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Figure 5.9. Comparison of contact prediction accuracies between DeepCD-
pred and previous algorithms shown in a; b is the accuracy of DeepCDpred
distance predictions in three bins.

Table 5.2. Comparison of contact prediction accuracies between between
MetaPSICOV and DeepCDpred.

# L/10 L/5 L/4 L/3 L/2 L 1.5L

MetaPSICOV 93.9% 91.5% 90.1% 87.7% 84.0% 72.3% 62.8%

DeepCDpred 98.4% 96.6% 95.8% 94.0% 91.1% 81.2% 71.8%

5.5.4 Examples of Contact Prediction Comparisons Between

MetaPSICOV and DeepCDpred and Distance Prediction

of DeepCDpred

Figure 5.10 shows the amino acid contact predictions of three protein chains based on

MetaPSICOV (Figure 5.10A), and DeepCDpred (Figure 5.10B), respectively. The pdb
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ids of these proteins are 1tqg, 1t8k and 1iib. These proteins were selected arbitrarily from

the test set (108 protein chains) of DeepCDpred. For each protein chain, the top 1/3L

predictions from each algorithm were selected (more predictions drawn on the graph could

make them hard to distinguish). Comparing Figure 5.10A with Figure 5.10B, DeepCDpred

generates more true-positive and fewer false-positive predictions than MetaPSICOV does

in the top L/3 contact predictions.
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Figure 5.10. Comparison of the top 1/3 predictions between MetaPSICOV
and DeepCDpred for three example proteins. A: MetaPSIOV and B: DeepCD-
pred. The top L/3 predictions were selected for each protein and drawn on the plots. The
background structures are the experimental structures. Contact predictions of DeepCD-
pred have less false positives. C: A close up view of false positive example from each of
MetaPSICOV and DeepCDpred, a and b are as indicated on 1tqg in A and B.
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Figure 5.11 visualizes the distance predictions in the bin of 8-13 Å for the same proteins

as noted in Figure 5.10. All these predictions are from DeepCDpred. Again, the top 1/3L

predictions were selected for each protein chain.

True	positive

False	positive

pdbid:	1tqg pdbid:	1t8k pdbid:	1iib

Figure 5.11. Examples of distance bin 8-13 Å prediction from DeepCDpred.
The proteins shown here are the same as those in Figure 5.10. The background structures
are also the protein experimental structures. The colour scheme of true positives and
false positives is also the same as that in Figure 5.10.

5.5.5 Feature Contribution Ranking Analysis for DeepCDpred

The contribution ranking of the features of DeepCDpred was evaluated by comparing with

the ‘residual’ networks, i.e. a network with one feature was removed from the full stage

1 network with two hidden layers, as described in Subsection 4.2.7. All of the networks

were trained with the same training/validation set (group 1 in the training/validation set

of DeepCDpred).

180



There are 13 types of features in the networks of stage 1 of DeepCDpred, namely, amino

acid profile, secondary structure prediction, asa (accessible surface area) prediction, posi-

tional entropy, statistical potential, sequence separation, EVfold coevolutionary coupling,

QUIC coevolutionary coupling, CCMpred coevolutionary coupling, MI (mutual informa-

tion), sequence length (or chain length), the number of effective sequences, and the number

of sequences. Thus, there are 13 ‘residual’ networks. The contact prediction accuracies

of the test set from the 13 ‘residual’ networks and the ‘intact’ network are shown in

Figure 5.12 and Table 5.3.
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AA Profile Removed
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Position Entropy Removed
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Chain Length Removed

Seq Separation Removed

Secondary Structure Removed

CCMpred Removed

Figure 5.12. Accuracy of contact prediction changes with each type of feature
removed from the stage 1 networks of DeepCDpred. All of the networks were
trained with the same training/validation set. “Original” represents the network trained
with the same architecture and features of a standard stage 1 DeepCDpred network;
other “residual” networks only keep the architecture of stage 1 networks of DeepCDpred,
but with one type of feature removed, as implied by the labels in the legend. The
network listed in the legends are ranked by the contact prediction accuracy of the top
1.5L predictions. In the figure, “Seq” means “Sequence” and “AA” means “amino acid”.
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Table 5.3. How the removal of one feature changes the accuracy of the stage
1 network of DeepCDpred. The networks are ranked by the contact prediction
accuracy of the top-ranked 1.5 predictions.

Network L/10 L/5 L/4 L/3 L/2 L 1.5L

Original 95.4% 91.6% 90.8% 89.1% 84.7% 74.4% 64.4%

MI Removed 95.2% 92.2% 90.6% 88.4% 84.3% 73.5% 63.6%

Potential Removed 95.2% 92.1% 90.8% 88.7% 84.4% 73.6% 63.6%

QUIC Removed 94.0% 90.8% 89.3% 87.9% 84.1% 73.1% 63.3%

No. of Effective Seq Removed 95.7% 92.0% 90.8% 89.0% 84.4% 73.2% 63.2%

EVfold Removed 95.6% 91.7% 90.9% 88.0% 84.0% 73.2% 63.2%

AA Profile Removed 94.2% 91.1% 90.2% 88.3% 84.3% 73.3% 63.0%

ASA Removed 95.3% 91.7% 90.4% 88.0% 84.3% 73.1% 63.0%

Position Entropy Removed 95.3% 91.6% 90.3% 87.8% 84.3% 72.9% 63.0%

No. of Seq Removed 94.6% 91.7% 90.4% 88.1% 84.1% 72.9% 62.9%

Chain Length Removed 94.8% 91.5% 90.1% 87.6% 83.2% 72.0% 62.3%

Seq Separation Removed 94.5% 91.1% 89.4% 86.7% 82.7% 71.1% 61.4%

Secondary Structure Removed 93.1% 89.6% 88.2% 85.8% 81.0% 69.1% 59.2%

CCMpred Removed 93.8% 90.9% 89.1% 86.1% 80.7% 66.5% 55.9%

In the figure, in order to make the lines clearer, only the accuracies of the top-ranked L/2,

L and 1.5L predictions are shown. Table 5.3 also lists the contact prediction accuracies

for the top-ranked L/10, L/5, L/4 and L/3 contacts. The figure legend lists the networks
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in the order of the contact accuracy of the top 1.5L predictions from the highest to the

lowest; so do the rows in Table 5.3.

The results indicate that taking away any of the features could decrease the contact predic-

tion accuracy of DeepCDpred. The coupling calculated from CCMpred and the secondary

structure prediction are the top two features that most affect the contact prediction per-

formance of DeepCDpred.

In Section 6.6 of Chapter 6, how to improve the contact prediction accuracy (as well as

probably distance prediction) based on these results will be discussed.

5.5.6 Limitations of the Contact Prediction Selection Method of

“Top L Terminology”

The meaning of the ‘Top L Terminology’, just as shown in the above subsections, is to

select the predicted contacts (or distances) based on a fraction of the top-ranked L pre-

dictions. As analysed in the Model Development chapter (Subsection 4.2.7), this method

has the limitations of that it could miss out on true-positive predictions for some proteins

that have ‘good quality’ MSAs, and also wrongly include false-positive predictions for

some proteins that have ‘bad quality’ MSAs. Here, the ‘quality’ of an MSA is defined

by its Nf value: Nf = Meff/
√
L, where Meff is the number of effective sequences in the

MSA. This definition is adopted by Ovchinnikov et al. (Ovchinnikov et al. 2017b). In

their paper, the authors discovered an approximately linear relationship between the Nf

183



value and the protein structure prediction quality. When Nf > 64, the predicted structure

is likely to have the same fold as the native structure.

Four example proteins are shown here to illustrate the limitation. In Table 5.4, the Nf

values of proteins 1bdo and 1eaz (pdb id) are ≫ 64, while the Nf values of 1j3a and 1beh

<64. From Table 5.2, the average contact prediction accuracy of the top-ranked 1.5L

of the test set is 71.8%. For the first two proteins, the contact prediction accuracies of

the top 1.5L are 90.1% and 85.2%, respectively. Notably, both values are higher than

the average accuracy. When more top-ranked predictions are selected until the contact

prediction accuracies decrease to ≈71.8%, 214 and 234 predictions can be selected, which

are significantly more than the top 1.5L counts, 121 and 155, respectively. The minimum

network scores of these predictions decrease to 0.20 and 0.16, respectively (shown in the

brackets of the ‘Accuracy Above Cutoff’ column).

However, for the other two proteins in the table, 1j3a and 1beh, the accuracies of the top

1.5L contact predictions are lower than the average. If the contact predictions of the ones

with network scores ≥ 0.49 and 0.38 respectively, which increase the accuracy to ≈71.8%,

the number of selections are only 147 and 208, respectively (less than the top 1.5L contact

counts, 194 and 277, respectively, check the ‘Count of Top 1.5L’ column).
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Table 5.4. Four examples show the limitations of selecting the top-ranked
1.5L contact predictions. Count of Top 1.5L means the number of contacts in the
top 1.5L predictions. Top 1.5L Accuracy means the contact prediction accuracy of the
top 1.5L contacts; the numbers in the brackets are the minimum contact neural network
scores in the top 1.5L contacts. Count Above Cutoff means the number of contacts when
the top-ranked contact predictions are selected based on a neural network score cutoff
which makes the accuracy of the selected predictions approximating to the average top
1.5L contact prediction accuracy of the test set of DeepCDpred. The accuracies of the
selected contacts based on this method are shown in the column of “Accuracy Above
Cutoff”, which are very close to 71.8%; the numbers in the brackets are the minimum
contact neural network scores in the selected contacts for each protein. The last column
is the Nf values that indicate the MSA quality of each protein.

PDB ID Length
Count of

Top 1.5L

Top 1.5L

Accuracy

Count Above

Cutoff

Accuracy

Above Cutoff
Nf

1bdo 80 121 90.1%(0.48) 214 71.5%(0.20) 819

1eaz 103 155 85.2%(0.50) 234 71.8%(0.16) 482

1j3a 129 194 61.9%(0.38) 147 71.4%(0.49) 18

1beh 184 277 65.0%(0.27) 208 71.6%(0.38) 42

5.5.7 Accuracies of Contact and Distance Predictions of Deep-

CDpred Based on Score Cut-offs

There is another way to select all of the predictions with neural network output scores

above a cut-off for each protein chain. The results of contact and distance predictions

from DeepCDpred based on this strategy are shown in Figure 5.13.
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Figure 5.13. Results of contact (graph a) and distance (graph b) predictions
of DeepCDpred shown in the form of accuracy versus neural network output
score cut-off. The error bar in each plot is measured by MSE (mean squared error).
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5.6 Protein Structure Prediction

Based on the constraints of predicted inter-residue contact and distance and the Rosetta

ab initio modelling protocol introduced in the Model Development chapter (Chapter 4),

protein structure predictions of the test set are presented, including:

1. the variation between different ab initio structure predictions with Rosetta;

2. the comparison of structure predictions based on the top-ranked 1.5L contact predic-

tions of DeepCDpred and MetaPSICOV;

3. the comparison of structure predictions based on the predicted contacts of DeepCDpred

and MetaPSICOV that have the same average contact prediction accuracy;

4. the comparison of structure predictions between employing the top-ranked 1.5L contact

predictions of DeepCDpred and employing the top-ranked 1.5L contact predictions plus

distance predictions selected based on a score cut-off of DeepCDpred;

5. the comparison of structure predictions between employing the contact predictions of

DeepCDpred selected based on a score cut-off and employing the contact predictions

selected based on a score cut-off plus distance predictions of DeepCDpred selected

based on score cut-offs;

6. the relationship between the quality of the predicted structure and the Nf value;
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7. examples of structure predictions based on the contact and distance constraints of

DeepCDpred.

5.6.1 The Variation between Different ab initio Predictions by

Rosetta

Rosetta ab initio modelling uses the Monte Carlo simulation to find the native structure,

so the models generated from different modelling runs but with the same constraints and

modelling protocol might vary greatly. Thus, it is important to verify how large the

variation of the structure predictions is for a set of proteins before proceeding to assessing

the effects of different contact/distance prediction procedures on structure predictions.

The proteins were chosen as the test set of DeepCDpred and for each protein in the test

set, the contact predictions from DeepCDpred with contact score ≥ 0.4 were selected

and used as the constraints for Rosetta ab initio modelling. The modelling protocol was

introduced in the Model Development chapter (Subsection 4.3.5). For each protein, 100

candidate structures were generated, and the one with the lowest Rosetta energy score

was selected as the choice (the top 1 model). Then, a second run, which took all of the

settings (both the constraints and the modelling protocol) from the first run, was used to

generate another 100 structures, from which the one with the lowest energy was selected.

For each protein in the test set, the two lowest energy structures from the two runs, were

compared to the experimental structure to calculate the TM-score by using TM-align. The
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variation of the two TM-scores for each protein are shown in Figure 5.14. No significant

difference (ns) is found between the TM-scores from the two runs by using a paired t-test

(p>0.05). The TM-score averages of the two runs are 0.671 and 0.669, respectively –

the difference is only 0.002. This provides a baseline for any variance among runs with

different contact prediction protocols and allows to distinguish differences due to changes

in contact predictions from variations associated with the basic modelling protocol.
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Figure 5.14. Two independent sets of prediction calculations for the 108 pro-
tein test set give little variation on average. DeepCDpred protocol settings were
used in both cases with the contacts selected that were above the 0.4 contact neural
network score cut-off; (a) comparison of TM-score of individual proteins between in-
dependent runs. (b) comparison of the distribution of scores for independent runs. A
paired t-test indicates no significant difference (ns) (p>0.05) between the two respective
runs of the TM-scores of the lowest Rosetta energy structures with respect to the ex-
perimental structures. Whiskers indicate the minimum and maximum TM-score values
in each group; middle lines in the boxes are the median values and the crosses represent
the two means.
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5.6.2 Comparison of Structure Prediction Based on the Top-

ranked 1.5L Contact Predictions from DeepCDpred and

MetaPSICOV

The top-ranked 1.5L contact predictions of DeepCDpred and MetaPSICOV were chosen

and fed into the Rosetta ab initio modelling protocol introduced in Chapter 4, respectively.

For each protein chain in the test set, the top 1 models with the lowest Rosetta energy

scores (in the rest of this chapter, all of the terms ‘the top 1 model’ have the same meaning

as the one here) based on the two algorithms were selected. A comparison of the two sets

of predictions is given in Figure 5.15.

In Figure 5.15a, there is a strong bias of the TM-score distribution toward the side of

DeepCDpred. The boxplots in Figure 5.15b further support the above argument. The

TM-scores of the best structures predicted with the top-ranked 1.5L contact predictions

from DeepCDpred are significantly higher than those with the top-ranked 1.5L contact

predictions from MetaPSICOV through a paired t-test (p<0.001).

A question is raised here: are there proteins of a certain class predicted by DeepCDpred

contacts better than that by MetaPSICOV contacts or vice versa? In order to answer this

question, the TM-score distribution in Figure 5.15a is analysed. Two lines of y = x+ 0.1

and y = x − 0.1 are drawn on the graph. 85% of the proteins that are better-predicted

with contacts from MetaPSICOV appear in the area formed by y = x and y = x − 0.1,
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Figure 5.15. The accuracy of structure predictions with the top 1.5L con-
tacts predicted by MetaPSICOV, compared to those by DeepCDpred. The
selected models are those with the lowest Rosetta energy score. (a), scatter
plot of the comparison; each triangle represents one protein in the test set and the major-
ity of the proteins have a better-predicted structure by DeepCDpred constraints rather
than that by MetaPSICOV constraints. (b), boxplots of the comparison in (a); a signif-
icant difference (p<0.001) was found between the two groups of structure predictions.
Whiskers, middle lines and crosses have the same meanings as those in Figure 5.14b.

and 65% of the proteins that are better-predicted with contacts of DeepCDpred appear

between y = x and y = x+ 0.1. The proteins located outside the area of y = x+ 0.1 and

y = x − 0.1 are considered to be outliers. The proteins above y = x + 0.1 are the ones

whose top 1 models are significantly better-predicted with contacts from DeepCDpred,

while the proteins bellow y = x − 0.1 are the ones whose top 1 models are significantly

better-predicted with contacts from MetaPSICOV. Table 5.5 lists these outliers and the

classifications of them.

From the table, the percentages of the protein classes α, β, α/β, α+β, coil and membrane

of the proteins whose top 1 models are better-predicted with the top 1.5L contacts from
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Table 5.5. The classes of the proteins whose structures are better-predicted
with the top-ranked 1.5L contacts of DeepCDpred than with the top-ranked
1.5L contacts from MetaPSICOV, or vice versa. TM-score difference is defined
as the TM-score of the top 1 model predicted with the top-ranked 1.5L contacts of
DeepCDpred subtracting the TM-score of the top 1 model (lowest Rosetta energy model)
predicted with the top-ranked 1.5L contacts from MetaPSICOV for the same protein.
Rows in the table are ranked by TM-score difference from the highest to the lowest.

PDB ID
TM-score
Difference

TM-score of
DeepCDpred

TM-score of
MetaPSICOV

Protein Class

1k7j 0.38 0.70 0.32 α+β

1htw 0.34 0.77 0.43 α/β

1vmb 0.27 0.73 0.46 α+β

1g2r 0.25 0.77 0.52 α/β

1avs 0.25 0.80 0.55 α

1c44 0.24 0.80 0.56 α+β

1ctf 0.23 0.73 0.50 α+β

1vfy 0.17 0.62 0.45 coil

1mug 0.17 0.69 0.52 α/β

1dix 0.17 0.57 0.40 α+β

1jos 0.16 0.80 0.64 α+β

1bdo 0.16 0.82 0.66 β

1ku3 0.15 0.81 0.66 α

1d4o 0.15 0.63 0.48 α/β

1chd 0.15 0.79 0.64 α/β

1kq6 0.14 0.73 0.59 α+β

1vp6 0.14 0.86 0.72 α+β

1qjp 0.14 0.65 0.51 membrane#

1p90 0.13 0.77 0.64 α+β

1eaz 0.13 0.77 0.64 α+β

1fx2 0.12 0.68 0.56 α+β

1m8a 0.12 0.71 0.59 α+β

1aba 0.12 0.75 0.63 α+β

1jo0 0.11 0.74 0.63 α+β

1i1n 0.11 0.72 0.61 α/β

1ktg 0.11 0.75 0.64 α+β

1cxy 0.10 0.69 0.59 α+β

1gzc 0.10 0.56 0.46 β

1ej8 -0.11 0.41 0.52 β

1xff -0.11 0.55 0.66 α+β

1i71 -0.13 0.34 0.47 coil

2phy -0.22 0.44 0.66 α+β

#: 1qjp is a beta out membrane protein (https://www.rcsb.org/pdb/explore/explore.do?structureId=1qjp

(last check: November 2018)).
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DeepCDpred are 7%, 7%, 21%, 57%, 4% and 4%, respectively. By comparing these

findings with the protein class distributions in the training/validation set of DeepCDpred

(25%, 9%, 20%, 44%, 1% and 1% for the six classes in the training/validation set), it can

be seen that α protein is under represented; α+β is over represented. A χ2 test shows

the two protein class distributions are significantly different (p = 0.0078 < 0.05). As

for the proteins whose structures are better-predicted with the top 1.5L contacts from

MetaPSICOV (last four rows in the table), the set is too small to draw a conclusion.

It is shown in Table 5.5 that there are six proteins (1k7j, 1htw, 1vmb, 1vfy 1dix and 1d4o)

for which the correct folds were not predicted using MetaPSICOV contacts, but such were

predicted using the contacts from DeepCDpred. There were only two proteins (1ej8 and

2phy) whose folds were not correctly predicted using DeepCDpred contacts but such were

with MetaPSICOV.

To provide a direct view of the comparison of structure predictions based on DeepCDpred

and MetaPSICOV constraints, the top 1 models of the proteins in the first three rows

and the last row of Table 5.5 are shown in Figure 5.16, aligned with their respective

experimental structures. It is interesting to see the results of 1vmb; specifically, the

top 1 model predicted with DeepCDpred’s constraints cannot overlap the experimental

structure on the top α helix very well, but the top 1 model of this protein predicted with

MetaPSICOV’s constraints can, although the former is closer to the native structure.
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Experiment

DeepCDpred

MetaPSICOV

1k7j 1htw 1vmb 2phy

Figure 5.16. The top 1 models of four selected proteins in the test set are
aligned to their respective experimental structures. The models on the left side
of the dash line are better-predicted with DeepCDpred’s constraints, while, the model
on the right side of the dash line is better-predicted with MetaPSICOV’s constraints.
The proteins are selected according to Table 5.5.

After the outlier proteins in Figure 5.15a were removed from the test set of 108 proteins,

there was still a significant difference (p<0.001) between the TM-scores of the two groups

(Figure 5.17, raw data of the boxplots can be found in Table B.1 of Appendix B).
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Figure 5.17. The comparison of structure prediction accuracies between
MetaPSICOV and DeepCDpred after the outliers in Figure 5.15a were re-
moved. A significant difference (p<0.001) was found between the two groups of struc-
ture predictions by a paired t-test. Whiskers, middle lines and crosses have the same
meanings as those in Figure 5.15b.

5.6.3 Comparison of Structure Predictions Based on Predicted

Contacts That Have the Same Contact Prediction Accuracy

As mentioned in the Model Development chapter (Chapter 4) and Subsection 5.5.6 of this

chapter, in addition to selecting the top-ranked 1.5L contact predictions, another contact

selection strategy based on a neural network score cut-off was also tested. In this section,

the structure prediction results of both MetaPSICOV and DeepCDpred considering this

method are introduced.
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The relationship between the score cut-off and the contact prediction accuracy for both

MetaPSICOV and DeepCDpred can be seen in Figure 5.18. The 108 proteins from the

test set of DeepCDpred were used for the calculation. The step size of score cut-off was

0.02. As explained in Figure 5.18, two sets of equivalent-score cut-offs for DeepCDpred

and MetaPSICOV were obtained based on the top ranked 1.5L contact predictions of the

two algorithms, respectively: 0.40 for DeepCDpred and 0.56 for MetaPSICOV, and 0.26

for DeepCDpred and 0.40 for MetaPSICOV.

Based on the two pairs of score cut-offs, two sets of structure prediction comparisons

were performed for the 108 proteins. In set 1, contact predictions from DeepCDpred with

scores of greater than 0.40 were chosen, and contact predictions from MetaPSICOV with

scores of greater than 0.56 were chosen, respectively. Also, in set 2, contact predictions

from DeepCDpred with scores of greater than 0.26 were chosen, and contact predictions

from MetaPSICOV with scores of greater than 0.40 were chosen, respectively.
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Figure 5.18. Finding the equivalent minimum scores for DeepCDpred and
MetaPSICOV based on the same average accuracies of the top-ranked 1.5L
contact predictions (71.8%, predicted by DeepCDpred in graph a; 62.8%,
predicted by MetaPSICOV in graph b) of the 108 test proteins. To make
sure the two contact score cut-offs of MetaPSICOV and DeepCDpred are equivalent, a
horizontal line which represents a contact prediction accuracy (orange dashed lines in
graph a and b) is drawn; the crossover points between this line and contact prediction
accuracy curves of MetaPSICOV and DeepCDpred are determined. Two horizontal lines,
y = 71.8% and y = 62.8%, which represents the top-ranked 1.5L contact prediction
accuracy of DeepCDpred and MetaPSICOV respectively, are shown in graph a and b.
Thus, two pairs of equivalent score cut-offs are determined: 0.40 for DeepCDpred and
0.56 for MetaPSICOV having an expected accuracy of 71,8%, and 0.26 for DeepCDpred
and 0.40 for MetaPSICOV having an expected accuracy of 61.8%.

The results of the first set are shown in Figure 5.19. In Figure 5.19a, there is a strong bias

of the TM-score distribution toward the side of DeepCDpred. The boxplots in Figure 5.19b

further support the above argument. The TM-score of the structures predicted with the

top contact predictions from DeepCDpred are significantly higher than those with the top-

ranked contact predictions from MetaPSICOV; a paired t-test indicates p<0.001 (raw data

of the boxplots can be found in Table B.2 of Appendix B).
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Figure 5.19. The comparison of structure prediction accuracies between feed-
ing MetaPSICOV predicted contacts (score≥0.56) and feeding DeepCDpred
predicted contacts (score≥0.40) into the same Rosetta ab initio protocol. Best
predictions were picked out by the lowest Rosetta energy score. (a), scatter plot of the
comparison; each triangle represents one protein in the test set and the majority of the
proteins have better structure predictions when using DeepCDpred predicted contacts
(score≥0.40) as constraints. (b), boxplots of the comparison in (a); a significant differ-
ence (p<0.001) was found between the two groups of structure predictions. Whiskers,
middle lines and crosses have the same meanings as those in Figure 5.17.

Two lines of y = x+0.1 and y = x− 0.1 are drawn on Figure 5.19a. The proteins located

outside the area of y = x + 0.1 and y = x − 0.1 are considered to be outliers (81% of

proteins are between the two lines versus 29% of proteins are outside the two lines in

Figure 5.19a). Table 5.6 lists the outliers and the classifications of these proteins. Rows

in the table are ranked by the TM-score difference from the highest to the lowest.

From the table, the percentages of the classes α, β, α/β, α+β, coil and membrane of the

proteins whose top 1 models are better-predicted with the contacts (score ≥ 0.40) from

DeepCDpred are 5%, 22%, 0%, 68%, 5% and 0%, respectively. As compared with the
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Table 5.6. The protein classes of the proteins whose structures are better-
predicted with the contacts (score≥0.40) from DeepCDpred than with the
contacts (score≥0.56) from MetaPSICOV, or vice versa. TM-score difference is
defined as the TM-score of the top 1 model predicted with the contacts (score≥=0.40)
from DeepCDpred subtracting the TM-score of the top 1 model predicted with the
contacts (score≥0.56) from MetaPSICOV for the same protein. Rows in the table are
ranked by TM-score difference from the highest to the lowest.

PDB ID
TM-score

Difference

TM-score of

DeepCDpred

TM-score of

MetaPSICOV
Protein Class

1dix 0.26 0.55 0.29 α+β

1nps 0.25 0.76 0.51 β

1vfy 0.25 0.63 0.38 coil

1tif 0.24 0.65 0.41 α+β

1mk0 0.21 0.84 0.63 α+β

1aap 0.21 0.51 0.30 β

1dqg 0.21 0.54 0.33 β

1jl1 0.18 0.71 0.53 α+β

1bkr 0.17 0.78 0.61 α

1mug 0.17 0.69 0.52 α+β

1cjw 0.15 0.72 0.57 α+β

1atz 0.15 0.79 0.64 α+β

1c44 0.14 0.75 0.61 α+β

1c52 0.13 0.63 0.50 α+β

1w0h 0.12 0.77 0.65 α+β

1hfc 0.12 0.61 0.49 α+β

1m4j 0.12 0.56 0.44 α+β

1hxn 0.12 0.59 0.47 β

1p90 0.11 0.71 0.60 α+β

1beb 0.11 0.62 0.51 β

1j3a -0.11 0.40 0.51 α

protein class distributions in the training/validation set of DeepCDpred (25%, 9%, 20%,

44%, 1% and 1% for the six classes in the training/validation set), the percentages of α

and α/β proteins are found to be lower; however, β and α+β proteins are over represented.

A χ2 test shows the two protein class distributions are significantly different (p < 0.05).

As for the proteins whose structures are better-predicted with the contacts (score ≥ 0.56)

from MetaPSICOV (the last row in the table), the set is too small to draw a conclusion.
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There are eight proteins (1dix, 1vfy, 1tif, 1aap, 1dqg, 1hfc, 1m4j and 1hxn) for which the

correct fold cannot be predicted (TM-score<0.5) with the contacts from MetaPSICOV,

but can be predicted with the contacts from DeepCDpred; there is only one protein (1j3a)

for which the correct fold can be predicted with the contacts from MetaPSICOV, but not

with the contacts from DeepCDpred.

To give a direct view of the comparison of structure predictions based on DeepCDpred

and MetaPSICOV constraints, the top 1 models (again, the model with the lowest Rosetta

energy) of the proteins in the first three rows and the last row of Table 5.6 are shown in

Figure 5.20, aligned to their respective experimental structures.
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Experiment

DeepCDpred

MetaPSICOV

1dix 1nps 1vfy 1j3a

Figure 5.20. Superimpositions of the top 1 models from three proteins (left
side of the dash line) for which the folds are better-predicted with the con-
tacts (score≥0.40) from DeepCDpred than with the contacts (score≥0.56)
from MetaPSICOV, and the top 1 model from one protein (right side of the
dash line) that is more accurately predicted with the contacts (score≥0.56)
from MetaPSICOV than with the contacts (score≥0.40) from DeepCDpred,
with the respective experimental structures. The four proteins are selected ac-
cording to Table 5.6.

After the outlier proteins in Figure 5.19a were removed from the test set of 108 pro-

teins, there was still a significant difference (p<0.001) presented between the TM-scores

of the two groups (Figure 5.21, raw data of the boxplots can be found in Table B.3 of

Appendix B).
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Figure 5.21. The comparison of structure prediction accuracies between
MetaPSICOV and DeepCDpred after the outliers in Figure 5.19a were re-
moved. A significant difference (p<0.001) was found between the two groups of struc-
ture predictions by a paired t-test. Whiskers, middle lines and crosses have the same
meanings as those in Figure 5.19b.

The results of the second set of TM-score comparisons are shown in Figure 5.22. In

Figure 5.22a, there is a strong bias of the TM-score distribution toward the side of Deep-

CDpred. The boxplots in Figure 5.22b further support the above argument. Notably, the

TM-scores of the structures predicted with the top contact predictions from DeepCDpred

are significantly higher than those predicted with the top-ranked contact predictions from

MetaPSICOV, with a paired t-test indicating p<0.001.
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Figure 5.22. The comparison of structure prediction accuracies between
feeding MetaPSICOV predicted contacts (score≥0.40) and feeding DeepCD-
pred predicted contacts (score≥0.26) to the same Rosetta ab initio protocol.
Best predictions were picked out by the lowest Rosetta energy score. (a) scatter plot
of the comparison; each triangle represents one protein in the test set and majority
proteins have better structure prediction when using DeepCDpred predicted contacts
(score≥0.26) as constraints. (b) boxplots of the comparison in (a); a significant differ-
ence (p<0.001) was found between the two groups of structure predictions. Whiskers,
middle lines and crosses have the same meanings as those in Figure 5.21.

Two lines of y = x+0.1 and y = x− 0.1 are drawn on Figure 5.22a. The proteins located

outside the area of y = x + 0.1 and y = x − 0.1 are considered to be outliers (80% of

proteins are between the two lines versus 20% of proteins are outside the two lines in

Figure 5.22a). Table 5.7 lists the outliers and the classifications of these proteins.
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Table 5.7. The classes of the proteins whose structures are better-predicted
with the contacts (score≥0.26) from DeepCDpred than those with the con-
tacts (score≥0.40) from MetaPSICOV, or vice versa. TM-score difference is
defined as the TM-score of the top 1 model predicted with the contacts (score≥0.26)
from DeepCDpred subtracting the TM-score of the top 1 model predicted with the con-
tacts (score≥0.40) from MetaPSICOV for the same protein. Rows in the table are ranked
by TM-score difference from the highest to the lowest.

PDB ID
TM-score

Difference

TM-score of

DeepCDpred

TM-score of

MetaPSICOV
Protein Class

1gzc 0.24 0.53 0.29 α+β

1jyh 0.21 0.76 0.55 α+β

1g2r 0.17 0.78 0.61 α/β

1dqg 0.16 0.55 0.39 β

1gz2 0.16 0.69 0.53 α+β

1ktg 0.15 0.80 0.65 α+β

1m4j 0.15 0.58 0.43 α+β

1ne2 0.15 0.74 0.59 α/β

1dmg 0.14 0.75 0.61 α/β

1qjp 0.14 0.71 0.57 membrane#

1hfc 0.13 0.67 0.54 α/β

1jl1 0.13 0.68 0.55 α+β

1mk0 0.13 0.85 0.72 α+β

2phy 0.13 0.75 0.62 α+β

1kqr 0.12 0.40 0.28 β

1d1q 0.11 0.73 0.62 α/β

1fk5 0.11 0.70 0.59 α

1fvg 0.11 0.67 0.56 α+β

1lo7 0.11 0.66 0.55 α+β

1tif 0.11 0.68 0.57 α+β

1htw 0.10 0.71 0.61 α/β

1i71 0.10 0.38 0.28 coil

1roa 0.10 0.60 0.50 α+β

1vmb 0.10 0.74 0.64 α+β

1wjx -0.12 0.54 0.66 α+β

#: 1qjp is a β out-membrane protein (https://www.rcsb.org/pdb/explore/explore.do?structureId=1qjp,

last check: November 2018).

From the table, the percentages of the protein classes α, β, α/β, α+β, coil and membrane

of the proteins whose top 1 models are better-predicted with the contacts (score≥0.26)

204

https://www.rcsb.org/pdb/explore/explore.do?structureId=1qjp


from DeepCDpred are 4%, 8%, 25%, 55%, 4% and 4%, respectively. By comparing these

values with the protein class distributions in the training/validation set of DeepCDpred

(25%, 9%, 20%, 44%, 1% and 1% for the six classes in the training/validation set), it is

seen that the α protein is under-represented; both the α/β and α+β proteins are slightly

over-represented. A χ2 test shows the two protein class distributions are significantly

different (p = 0.0078 < 0.05). As for the proteins whose structures are better-predicted

with the contacts (score ≥ 0.40) from MetaPSICOV (the last row in the table), the set is

too small to draw a conclusion.

In this case, there are 3 proteins (1gzc, 1dqg and 1m4j) whose folds can not be predicted

correctly (TM-score<0.5) with MetaPSICOV contacts, but can be predicted with Deep-

CDpred contacts. Conversely, there are no proteins whose folds can be predicted correctly

with MetaPSICOV contacts, but cannot be with DeepCDpred contacts.

To attain a direct view of the comparison of structure predictions based on DeepCDpred

and MetaPSICOV constraints, the top 1 models of the proteins in the first three rows

and the last row of Table 5.7 are shown in Figure 5.23, aligned with their respective

experimental structures.
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Experiment

DeepCDpred

MetaPSICOV

1gzc 1jyh 1g2r 1wjx

Figure 5.23. Superimpositions of the top 1 models of three proteins (left
side of the dash line) which are more accurately predicted with the contacts
(score≥0.26) from DeepCDpred than with the contacts (score≥0.40) from
MetaPSICOV, and the top 1 model of one protein (right side from the dash
line) that is more accurately predicted with the contacts (score≥0.40) from
MetaPSICOV than with the contacts (score≥0.26) from DeepCDpred with
the respective experimental structures. The four proteins are selected according
to Table 5.7.

After the outlier proteins in Figure 5.22a were removed from the test set of 108 proteins,

it is clear that there was still a significant difference (p<0.001) between the TM-scores of

the two groups (Figure 5.24).
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Figure 5.24. The comparison of structure prediction accuracies between
MetaPSICOV and DeepCDpred after the outliers in Figure 5.22a were re-
moved. A significant difference (p<0.001) was found between the two groups of struc-
ture predictions by a paired t-test. Whiskers, middle lines and crosses have the same
meanings as those in Figure 5.22b.

5.6.4 Summary of Comparisons of Structure Predictions Based

on Contacts Predicted by MetaPSICOV and DeepCDpred

In the above two subsections, three groups of comparisons of structure predictions were

made between MetaPSICOV and DeepCDpred for the proteins in the test set based on

different selection strategies of contact predictions. For the contacts predicted by each

method (MetaPSICOV or DeepCDpred), it is also interesting to compare the three se-

lection ways to find out that which of them leads to the best structure predictions. It’s
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worth noting that the results shown here ( Figure 5.25) are taken from the above two

subsections.
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MetaPSICOV DeepCDpred

Figure 5.25. Comparisons of the quality of structure predictions based on the
three contact selection strategies for each of the the two algorithms compared.
(a) the comparisons based on the contact predictions from MetaPSICOV; three boxplots
represent the TM-score distributions of the top 1 models of the 108 proteins based on
the three contact selection strategies (two are score cut-offs based; the score cut-offs are
0.40 and 0.56, respectively, and the third is the top-ranked 1.5L). (b) the comparisons
among the contact predictions from DeepCDpred based on the three contact selection
strategies (two are score cut-offs based; the score cut-offs are 0.26 and 0.40, respectively,
and the third is the top-ranked 1.5L).

Figure 5.25a and Figure 5.25b show the comparison results of structure predictions based

on the contact predictions from MetaPSICOV and DeepCDpred, respectively. In Fig-

ure 5.25a, the average TM-scores of the three groups are 0.622, 0.619, and 0.634, respec-

tively; a one-way ANOVA test shows there is no significant difference (p>0.05) among

the three averages. In Figure 5.25b, the average TM-scores of the three groups are 0.669,
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0.670 and 0.688, respectively; again, a one-way ANOVA test indicates there is no signifi-

cant difference (p>0.05) among the three averages.

5.6.5 Comparisons of Structure Predictions Between Using the

Top-ranked 1.5L DeepCDpred Contacts and Using the

Combination of the Top-ranked 1.5L DeepCDpred Con-

tacts & Score Cut-off Selected DeepCDpred Distances

After comprehensive comparisons of the quality of protein structure predictions between

using contact predictions from DeepCDpred and from MetaPSICOV, it is also important

to compare the structure predictions based on the contact predictions only as well as

based on both contact and distance predictions from DeepCDpred. A unique feature of

DeepCDpred is the distance prediction; if the predicted distances make no contribution

to the structure prediction, the importance of this point will be greatly reduced.

As mentioned in Subsection 4.3.4 of the previous chapter, there are four ways to combine

the contact and distance predictions. However, the results of only two of them will be

introduced in this and the next two subsections. The two combinations of contact and

distance predictions are: (1) the top-ranked 1.5L contacts plus the score cut-off based

distances; (2) the score cut-off based contacts plus the score cut-off based distances. This
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subsection introduces the results of the structure predictions of the test proteins based

on the first combination, as compared with the structure predictions based on the top-

ranked 1.5L DeepCDpred contacts only, shown in Figure 5.26. Here, the contact/distance

predictions in each of the distance bins were accepted based on a minimum neural network

output score of 0.60. The structure prediction result based on the second combination

will be introduced in the next section.
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Figure 5.26. The comparison of the structure prediction accuracies between
feeding the top 1.5L DeepCDpred predicted contacts and feeding the com-
bination of the top 1.5L DeepCDpred predicted contacts & neural network
score selected distances to the same Rosetta ab initio protocol. The predictions
were picked out by the lowest Rosetta energy score. (a) scatter plot of the comparison;
each triangle represents one protein in the test set and the majority of proteins have
better structure prediction when using the top 1.5L DeepCDpred predicted contacts as
constraints. (b) boxplots of the comparison in (a); a significant difference (p<0.001)
was found between the two groups of structure predictions. Whiskers, middle lines and
crosses have the same meanings as those in Figure 5.25.

Figure 5.26a shows a bias of the TM-score distribution toward the y-axis side, which

means the quality of the best structure predictions based on both the top ranked 1.5L

contacts and score cut-off selected distances from DeepCDpred are generally better than
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those based on only the top ranked 1.5L contacts from DeepCDpred. The boxplots in

Figure 5.26b further support the above argument. The TM-scores of the top 1 models pre-

dicted with both the contact and distance predictions from DeepCDpred are significantly

higher than those with the contact predictions only from DeepCDpred, as indicated by a

paired t-test (p<0.001).

Again, the two lines of y = x + 0.1 and y = x − 0.1 are drawn on Figure 5.26a. The

proteins located outside the area of y = x + 0.1 and y = x − 0.1 are considered to be

outliers (95% of proteins are between the two lines versus 5% of proteins are outside the

two lines in Figure 5.26a). Table 5.8 lists the outliers and their classifications.

Table 5.8. The classes of the proteins whose structures are better-predicted
with the top-ranked 1.5L contacts plus distances from DeepCDpred than
with the top-ranked 1.5L contacts from DeepCDpred only, or vice versa.
TM-score difference is defined as the TM-score of the top 1 model predicted with the
top-ranked 1.5L contacts plus distances from DeepCDpred subtracting the TM-score of
the top 1 model predicted with the top-ranked 1.5L contacts from DeepCDpred only for
the same protein. Rows in the table are ranked by TM-score difference from the highest
to the lowest.

PDB ID
TM-score

Difference

TM-score of

DeepCDpred

with Contacts

& Distances

TM-score of

DeepCDpred

with Contacts

Protein Class

2phy 0.24 0.68 0.44 α+β

1tif 0.17 0.64 0.47 α+β

1fk5 0.15 0.68 0.53 α

1ej8 0.11 0.53 0.42 β

1c9o -0.13 0.61 0.74 β

From the table, the percentages of the protein classes α, β, α/β, α+β, coil and membrane

of the proteins whose structures are better-predicted with the contacts & distances from
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DeepCDpred are 25%, 25%, 0%, 50%, 0% and 0%, respectively. As compared with the

protein class distributions in the training/validation set of DeepCDpred (25%, 9%, 20%,

44%, 1% and 1% for the six classes in the training/validation set), α/β is lower again but

the set size is too small (only four proteins) to draw a conclusion. As for the proteins

whose structures are better-predicted with the contacts from DeepCDpred only (last row

in the table), the set is also too small to draw a conclusion.

There are 3 proteins (2phy, 1tif and 1ej8) for which the correct fold cannot be predicted

(TM-score<0.5) with the predicted contacts only from DeepCDpred, but can be pre-

dicted with both the contacts and distances from DeepCDpred. There is no protein for

which the correct fold can be predicted with DeepCDpred contacts only but cannot with

DeepCDpred contacts & distances.

To give a direct view of the comparison of structure predictions based on DeepCDpred

contact constraints and DeepCDpred contact & distance constraints, the top 1 models of

the proteins in the first three rows and the last row of Table 5.8 are shown in Figure 5.27,

aligned to their respective experimental structures.
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Experiment

DeepCDpred	Contact	&	Distance

DeepCDpred	Contact

2phy 1tif 1fk5 1c9o

Figure 5.27. Superimpositions of the top 1 models of three proteins (left
side of the dash line) which are more accurately predicted with the top-
ranked 1.5L contacts plus distances from DeepCDpred than with only the
top-ranked 1.5L contacts from DeepCDpred, and top 1 model (right side of
the dash line) of one protein that is more accurately predicted with only
the top-ranked 1.5L contacts than with the contacts plus distances, with the
respective experimental structures. pdb ids are selected according to Table 5.8.

After the outlier proteins in Figure 5.26a were removed from the test set of 108 pro-

teins, there was no significant difference (p = 0.16 > 0.05) between the TM-scores of the

two groups (Figure 5.28), which means the outliers contribute to the significance of the

statistical analysis in Figure 5.26.
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curacies between DeepCDpred
contacts only and DeepCD-
pred contacts & distances af-
ter the outliers in Figure 5.26a
were removed. No significant
difference (ns, p>0.05) was found
between the two groups of struc-
ture predictions by a paired t-test.
Whiskers, middle lines and crosses
have the same meanings as those in
Figure 5.26b.

5.6.6 Comparison of Structure Predictions between Using Deep-

CDpred Contacts Selected by Score Cut-off and Using Both

DeepCDpred Contacts & Distances Selected by Score Cut-

off

This section introduces the results of the structure prediction of the proteins in the test

set based on both the contact and distance predictions from DeepCDpred. The contacts

are selected based on a minimum neural network score of 0.40, and predictions in each

distance bin are accepted based on a minimum neural network score of 0.60. The reason

for choosing the minimum score of 0.40 instead of 0.26 for the contacts is that the former
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achieves slightly higher TM-scores of structure predictions on average (0.670 vs. 0.669),

though the difference is not significant, as shown in Figure 5.25.

Structure predictions of the proteins in the test set by using only DeepCDpred contact

predictions with a score cut-off of 0.40 have already been illustrated in Figure 5.19 and

Figure 5.25. They are compared to the structure predictions of the same proteins based on

the contacts and distances predicted by DeepCDpred, shown in Figure 5.29. Figure 5.29a

shows a strong bias of the TM-score distribution toward the contact & distance side.

The boxplots in Figure 5.29b further support the above argument. The TM-scores of the

structures predicted with the contact & distance predictions from DeepCDpred are signif-

icantly higher than those achieved with the contact predictions only from DeepCDpred,

as determined by a paired t-test (p<0.001).

The outliers of the TM-scores of the structure predictions of both with and without

distance constraints are analysed. The method is the same as the one used in the previous

subsections (Subsection 5.6.2 and Subsection 5.6.3). Two lines of y = x + 0.1 and y =

x − 0.1 are drawn on Figure 5.29a. The proteins located outside the area of y = x + 0.1

and y = x − 0.1 are considered to be outliers (94% of proteins are between the two

lines versus 6% of proteins are outside the two lines in Figure 5.29a). Proteins in the

upper-left area are significantly better-predicted with both the contacts and distances

from DeepCDpred; proteins in the bottom-right area are significantly better-predicted

with contacts only. Table 5.9 lists the outliers and the classifications of these proteins.
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Figure 5.29. The comparison of structure prediction accuracies between feed-
ing the contacts (score≥0.40) from DeepCDpred and feeding the contacts
(score≥0.40) & distances from DeepCDpred to the same Rosetta ab initio

protocol. The predictions were picked out by the lowest Rosetta energy score. (a)
scatter plot of the comparison; each triangle represents one protein in the test set and
the majority of the proteins have better structure prediction when using the contacts
(score≥0.40) & distances from DeepCDpred as constraints. (b) boxplots of the com-
parison in (a); a significant difference (p<0.001) was found between the two groups of
structure predictions via a paired t-test. Whiskers, middle lines and crosses have the
same meanings as those in Figure 5.28.

From the table, the percentages of the protein classes α, β, α/β, α+β, coil and membrane

of the proteins whose structures are better-predicted with the contacts & distances from

DeepCDpred are 17%, 33%, 0%, 50%, 0% and 0%, respectively. As compared with the

protein class distributions in the training/validation set of DeepCDpred (25%, 9%, 20%,

44%, 1% and 1% for the six classes in the training/validation set), both the percentages

of the α and α/β proteins are lower, especially in the case of the latter; conversely, that

of β protein is higher. However, since the set size is small, it is hard to draw a conclusion.

As for the proteins whose structures are better-predicted with only the contacts from

DeepCDpred (last row in the table), the set is also too small to draw a conclusion. There
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Table 5.9. The classes of the proteins whose structures are significantly
better-predicted with the contacts (score≥0.40) & distances from DeepCD-
pred than with the contacts (score≥0.40) from DeepCDpred, or vice versa.
TM-score difference is defined as the TM-score of the top 1 model predicted with the
contacts & distances from DeepCDpred subtracting the TM-score of the top 1 model
predicted with the contacts from DeepCDpred for the same protein. “significantly” here
means the absolute value of TM-score difference >=0.1 (outside the area formed between
y = x+ 0.1 and y = x− 0.1 in Figure 5.29a. Rows in the table are ranked by TM-score
difference from the highest to the lowest.

PDB ID
TM-score

Difference

TM-score of

DeepCDpred

with Contacts

& Distances

TM-score of

DeepCDpred

with Contacts

Protein Class

1kq6 0.23 0.76 0.53 α+β

1avs 0.23 0.82 0.59 α

1d4o 0.14 0.63 0.49 α/β

1jos 0.14 0.81 0.68 α+β

1vjk 0.12 0.81 0.69 α+β

1chd 0.10 0.77 0.67 α/β

1dqg -0.12 0.42 0.54 β

is one protein (1d4o) for which the correct fold can not be predicted (TM-score<0.5) with

the predicted contacts from DeepCDpred, but can be predicted with both the contacts

and distances from DeepCDpred. There is one protein (1dqg) for which the correct fold

can be predicted with the contacts from DeepCDpred, but can not be predicted with

both the contacts and distances from DeepCDpred. To explore the reason why additional

constraints make the structure prediction of 1dqg worse, the prediction accuracy of the

distance constraints used in the structure prediction are calculated. The result is shown

in Table 5.10. From the table, the accuracies of the distance constraint predictions of

the three distance bins are lower than the average accuracies of the 108 test proteins, as

well as lower than the accuracies of the three proteins appearing on the top three rows of
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Table 5.9.

Table 5.10. Comparison of the distance prediction accuracy between proteins
which appear in the top three rows and the last row of Table 5.9. In the last
row, the average means the average accuracy of distance predictions of the 108 test
proteins by DeepCDpred .

PDB ID 8-13Å 13-18Å 18-23Å

1avs 80.0% 79.6% 62.9%

1k6g 76.5% 73.9% 59.5%

1d4o 80.9% 77.5% 61.4%

1dqg 52.5% 58.7% 44.4%

Average 73.6% 65.5% 60.6%

To give a direct view of the comparison of structure predictions based on DeepCDpred

contact and DeepCDpred contact & distance constraints, the top 1 models of the proteins

in the first three rows and the last row of Table 5.9 are shown in Figure 5.30, aligned with

their respective experimental structures.
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Experiment

DeepCDpred	Contact	&	Distance

DeepCDpred	Contact

1kq6 1avs 1d4o 1dqg

Figure 5.30. Superimpositions of the top 1 model of three proteins (left side of
the dash line) which are more accurately predicted with contacts (score≥0.40)
plus distances from DeepCDpred than with contacts (score≥0.40) from Deep-
CDpred, and the top 1 model of one protein (right side of the dash line) that
is more accurately predicted with the contacts than with the contacts plus
distances, with the respective experimental structures. pdb ids are selected
according to Table 5.9.

Notably, after the outlier proteins in Figure 5.29a were removed from the test set of 108

proteins, there was still a significant difference (p<0.001) between the TM-scores of the

two groups (Figure 5.31).
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*** Figure 5.31. The compari-
son of structure prediction ac-
curacies between DeepCDpred
contacts only and DeepCD-
pred contacts & distances af-
ter the outliers in Figure 5.29a
were removed. A significant dif-
ference (p<0.001) was found be-
tween the two groups of struc-
ture predictions by a paired t-test.
Whiskers, middle lines and crosses
have the same meanings as those in
Figure 5.29b.

5.6.7 Summary of Structure Prediction Based on Contacts and

Distances from DeepCDpred

In this subsection, the structures predicted by using the combination of the top 1.5L

DeepCDpred contact constraints and score cut-off (score cut-off of ≥ 0.6) selected Deep-

CDpred distance constraints are compared to the ones predicted by using the same dis-

tance constraints but different DeepCDpred contact constraints selected with scores of

≥ 0.4. Meanwhile, the distributions of the TM-scores of the predicted structures for the

protein chains in the test set, as well as the relationships between the TM-score and the

corresponding Nf value, which measures the quality of the MSA of a target protein, based

on the two constraint selections methods, are introduced.
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The comparison of the TM-scores of the structure predictions with the contact and dis-

tance constraints predicted by DeepCDpred based on the two constraint selection methods

is shown in Figure 5.32. In fact, the two boxplots in the figure are just copied from the

right boxplot of Figure 5.26b and the right boxplot of Figure 5.29b. A paired t-test shows

there is no significant difference between the two groups of TM-scores (p>0.05). The

averages in the two boxplots are 0.697 and 0.694, respectively.
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Figure 5.32. Comparison of TM-
scores of the model (selected by
the lowest Rosetta energy score)
for each of the 108 test proteins
predicted based on the two combi-
nations of DeepCDpred contacts &
distances constraints. The first com-
bination is the top-ranked 1.5L contacts
plus distances (selected by a minimum
neural network score of 0.6 for all of the
three bins) (left box), and the second
combination is the contacts selected by
a minimum neural network score of 0.4
plus the same distances (right box). A
paired t-test shows there is no signifi-
cant difference between the two groups
of TM-scores. Whiskers, middle lines
and crosses have the same meanings as
those in Figure 5.31.

The histograms of the TM-scores of the two groups are shown in Figure 5.33a and Fig-

ure 5.33b. There are five proteins predicted by the first constraint selection method that

have incorrect folds with the experimental structures (Figure 5.33a), which are compared

to eight wrongly predicted ones by the second constraint selection method (Figure 5.33b).

The numbers displayed on the bars are the counts of proteins in each TM-score bin.
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Figure 5.33. Distribution of the TM-scores of the top 1 model (selected by
the lowest Rosetta energy score) predicted based on the two combinations
of DeepCDpred contact plus distance constraints. The numbers displayed above
the bars are the counts of proteins in each TM-score bin.

The relationship between the Nf value and the TM-score value of the top 1 model for

each protein against the experimental structure in the test set based on the two selection

methods are also investigated. It is worth noting that the TM-score here is the real TM-

score, not the predicted one (introduced in the next section). The result is shown in

Figure 5.34. In Figure 5.34a, 100% of the predictions of the proteins in the test set have

the correct fold when the Nf values of these proteins >64. When Nf≤64, 82.1% of the

predictions still have the same folds with the experimental ones. In Figure 5.34b, when

Nf>64, 97.5% of the models have the same folds with the experimentally solved ones. It is

also noteworthy that 78.5% of the top 1 models have the correct folds even when Nf≤64.
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Figure 5.34. Real TM-score of the top 1 model (selected by the lowest
Rosetta energy score) versus the Nf for each of 108 proteins in the test set.
As explained in Subsection 2.8.5 of Chapter 2, TM-score of 0.5 was chosen as the cut-off
to between correct folds and incorrect folds. Constraints of contacts/distances predicted
by DeepCDpred were fed into the Rosetta Abinitio protocol.
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5.7 TM-score Predictions

Taking the model with the lowest Rosetta energy score for each test protein yielded

108 structures to test the TM-score prediction network. The structure predictions used

DeepCDpred predicted contacts and distances based on score cut-offs of 0.4 and 0.6,

respectively. The real TM-scores of the top 1 models were already shown in Figure 5.32b.

The ‘real TM-score’ refers to the structure comparison between the predicted top 1 model

and the corresponding experimental structure.

Comparisons of the predicted TM-score and the real TM-score of the structure predictions

are shown in Figure 5.35a. It is observed that 63% of the predicted TM-scores are in the

range of the real TM-score ± 0.1. The correlation coefficient between the predicted TM-

score and real TM-score is adjusted-R2 = 0.46. Although there is a significant difference

between the averages of the predicted and the real TM-scores (by a paired t-test, p<0.001),

the difference of the two averages is only 0.07, which is less than 0.1 (Figure 5.35b).

Specifically, the averages of the predicted TM-scores and the real TM-scores are 0.63 and

0.70, respectively.
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Figure 5.35. Predicted TM-scores versus real TM-scores from the structure
predictions based on the contact and distance constraints from DeepCDpred
for the proteins in the test set of DeepCDpred. Constraints of contacts and dis-
tances fed into the Rosetta ab initio protocol were predicted by DeepCDpred. Whiskers,
middle lines and crosses have the same meanings as those in Figure 5.32.

The outliers of the proteins whose top 1 models’ TM-scores are poorly predicted with the

network model, are determined by the two lines of y = x± 0.1. The pdb ids of them are

listed in Table 5.11, together with the protein classes.

The percentages of the protein classes α, β, α/β, α+β, coil and membrane of the proteins

whose top 1 models’ TM-score predictions are under-estimated (triangles at the upper left

of y = x+ 0.1) are 12%, 8%, 16%, 60%, 4% and 0%, respectively. As compared with the

protein class distributions in the training/validation set of DeepCDpred (25%, 9%, 20%,

44%, 1% and 1% for the six classes in the training/validation set), the percentage of α

proteins is found to be lower; but that of α+β is higher. A χ2 test shows the two protein

class distributions have no significant difference (p = 0.07 > 0.05). As for the proteins
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Table 5.11. The classes of the proteins whose top 1 models’ TM-scores are
poorly predicted with the TM-score prediction network model. The top 1
models are predicted with the contacts and distances from DeepCDpred.
TM-score difference is defined as the real TM-score subtracting the predicted TM-score
for the same protein. The outliers of proteins located outside the two lines of y = x±0.1
in Figure 5.35a are listed in this table. Rows in the table are ranked by the TM-score
difference from the highest to the lowest.

PDB ID
TM-score

Difference

Predicted

TM-score
Real TM-score Protein Class

1tif 0.31 0.37 0.69 α+β

1fk5 0.28 0.36 0.64 α

1vfy 0.27 0.32 0.59 coil

1g2r 0.25 0.42 0.67 α/β

1m8a 0.24 0.47 0.71 α+β

1jo0 0.22 0.58 0.80 α+β

1kq6 0.20 0.57 0.76 α+β

1hxn 0.18 0.46 0.63 β

1k6k 0.17 0.68 0.85 α

1nps 0.17 0.59 0.76 β

1p90 0.17 0.56 0.74 α+β

1d1q 0.16 0.63 0.79 α/β

1fvg 0.16 0.51 0.67 α+β

1vjk 0.16 0.65 0.81 α+β

1bkr 0.15 0.64 0.80 α

1d0q 0.15 0.54 0.69 α+β

1i1n 0.15 0.62 0.78 α/β

1nb9 0.15 0.55 0.70 α+β

1chd 0.14 0.63 0.77 α+β

1r26 0.14 0.72 0.86 α/β

1cc8 0.13 0.75 0.88 α+β

1xff 0.13 0.61 0.74 α+β

1i4j 0.12 0.62 0.74 α+β

1jyh 0.12 0.68 0.80 α+β

1pch 0.12 0.74 0.86 α+β

1smx -0.11 0.66 0.55 β

1g9o -0.12 0.72 0.60 α+β

1dqg -0.15 0.56 0.42 β

1fx2 -0.15 0.74 0.60 α+β

whose top 1 models’ TM-score predictions are over-estimated (triangles at the lower-right

side of y = x+0.1, and the last four rows in the table), the size of the data set (only four
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proteins) is too small to draw a conclusion.

The protein class distribution for the protein chains whose predicted TM-scores versus

real-scores are between the lines of y = x± 0.1 are shown in Figure 5.36. Again, As com-

pared with the protein class distributions in the training/validation set of DeepCDpred,

the percentages of α and α/β proteins are lower; but that of β protein is higher. A χ2 test

shows the two the distributions of the two protein classes have no significant difference (p

= 0.17 > 0.05).
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Figure 5.36. Protein class distribution of the protein chains whose predicted
vs real TM-scores are between the lines of y = x±0.1 in Figure 5.35a. Numbers
above the bars are the counts of proteins in each class.

To test whether or not the TM-score prediction method can work with contact prediction

data from other methods, the TM-scores of the structure predictions based on the top-

ranked 1.5L contact predicted from MetaPSICOV were also used to check the performance

of the TM-score prediction network. The result is shown in Figure 5.37. Similarly, two
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lines of y = x ± 0.1 are drawn on the scatter (Figure 5.37a) and, notably, 68% of the

predicted TM-scores are in the range of the real TM-score ± 0.1. Additionally, the

correlation coefficient between the predicted TM-score and real TM-score is adjusted-R2 =

0.43. There is no significant difference between the averages of the predicted and the real

TM-scores (by a paired t-test, p > 0.05). The averages of the real and the predicted TM-

scores are 0.62 and 0.63, respectively, which means the difference is 0.01 (Figure 5.37).

a b

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Predicted TM-score

R
e

a
l 
T

M
-s

c
o

r
e

y=x

y=x+0.1

P
re

d
ic

te
d
 T

M
-s

c
o
re

R
e
a
l 
T
M

-s
c
o
re

0.0

0.2

0.4

0.6

0.8

1.0
T

M
-s

c
o

r
e

ns

!"#$%&'" () = +. -.

Figure 5.37. Predicted TM-scores versus real TM-scores from the structure
predictions based on the contact constraints from MetaPSICOV for the pro-
teins in the test set of DeepCDpred. Whiskers, middle lines and crosses have the
same meanings as those in Figure 5.35b.

The outliers of proteins whose top 1 models’ TM-scores are poorly predicted with the

network model, are determined by the two lines of y = x± 0.1, and listed in Table 5.12,

together with the protein classes.
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Table 5.12. The classes of the proteins whose top 1 models’ TM-scores are
poorly predicted by the TM-score prediction network model. The top 1
models are predicted with the top-ranked 1.5L contacts from MetaPSICOV.
TM-score difference is defined as the real TM-score subtracting the predicted TM-score
for the same protein. The outlier proteins located outside the two lines of y = x± 0.1 in
Figure 5.37a are listed in this table. Rows in the table are ranked by TM-score difference
from the highest to the lowest.

PDB ID
TM-score

Difference

Predicted

TM-score
Real TM-score Protein Class

1hh8 0.31 0.49 0.80 β

1k7j 0.27 0.32 0.59 coil

1avs 0.24 0.56 0.80 α+β

1htw 0.22 0.44 0.66 α+β

1fx2 0.18 0.56 0.74 β

1g9o 0.17 0.56 0.73 α/β

1vmb 0.14 0.46 0.61 coil

1atz 0.13 0.70 0.83 α

1cke 0.13 0.50 0.63 α+β

1mug 0.13 0.52 0.66 α+β

1aba 0.12 0.64 0.76 α/β

1bdo 0.12 0.66 0.78 α

1cjw 0.12 0.62 0.75 α/β

1kw4 -0.11 0.72 0.61 α+β

1g2r -0.11 0.53 0.42 β

1m8a -0.12 0.59 0.47 α+β

1r26 -0.12 0.84 0.72 α/β

1vfy -0.13 0.46 0.32 α/β

1k6k -0.13 0.80 0.67 α/β

1roa -0.13 0.65 0.52 α+β

1beh -0.14 0.53 0.39 α+β

1d1q -0.14 0.76 0.63 α+β

1fvg -0.16 0.66 0.50 α/β

1tif -0.19 0.56 0.37 α

1i71 -0.2 0.48 0.28 α+β

1c9o -0.22 0.73 0.51 α

From the table, the percentages of the protein classes α, β, α/β, α+β, coil and membrane

of the proteins whose top 1 models’ TM-score predictions are under-estimated (triangles

at the upper-left of y = x+ 0.1) are 15%, 15%, 23%, 31%, 15% and 0%, respectively. As
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compared with the protein class distributions in the training/validation set of DeepCDpred

(25%, 9%, 20%, 44%, 1% and 1% for the six classes in the training/validation set), the

percentages of the α and α/β proteins are seen to be lower, while those of the α+β and coil

proteins are higher. A χ2 test shows the two protein class distributions are significantly

different (p < 0.05). As for the proteins whose top 1 model’s TM-score predictions are

over-estimated (triangles at the bottom-right of y = x − 0.1), the percentages of the

protein classes α, β, α/β, α+β, coil and membrane of the proteins are 15%, 8%, 31%,

46%, 0% and 0%, respectively. Again, by comparing with the protein class distributions

in the training/validation set of DeepCDpred (25%, 9%, 20%, 44%, 1% and 1% for the six

classes in the training/validation set), the percentage of α protein is found to be lower,

and that for α/β protein is higher. A χ2 test shows the distributions of the two protein

classes have no significantly difference (p = 0.22 > 0.05).

The protein class distributions for the protein chains whose predicted TM-scores versus

real-scores are between the lines of y = x ± 0.1 are shown in Figure 5.38. As compared

with the protein class distributions in the training/validation set of DeepCDpred, it is

clear that the percentage of α protein is lower, and those of the β and α/β proteins are

higher. A χ2 test shows the distributions of the two protein classes have no significantly

difference (p = 0.10 > 0.05).
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Figure 5.38. Protein class distribution of the protein chains whose predicted
vs real TM-scores are between the lines of y = x±0.1 in Figure 5.37a. Numbers
above the bars are the counts of proteins in each class.
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5.8 Examples of Some of the Best Protein Structure

Predictions

This section introduces the structure prediction results of six proteins from the test set

to illustrate the performance of DeepCDpred_AbInitio. For the six selected proteins, the

relationship between the real TM-score of the predicted model and the Nf value is shown

in Figure 5.39. In the figure, the TM-score of the blind test protein Q9FLY6 (uniprot id)

and the Nf value are also included. The detailed result of the structure prediction of this

protein will be introduced in the next section. The blue triangles in the figure represent

other protein chains in the test set. The Nf cutoff value of 64 is also drawn in the figure;

it is stated in a previous research (Ovchinnikov et al. 2017b) that above this value, the

predicted structure is likely to have the same fold as the native structure.
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Figure 5.39. TM-score versus Nf for the six example proteins and the blindly
tested protein.
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The structure predictions of these six protein chains are shown in Figure 5.40 (left), over-

lapping with the corresponding experimental structures. They were made by using the

Rosetta ab initio modelling protocol described in the Model Development chapter (the

previous chapter), and by using the contact and distance constraints from DeepCDpred.

The constraints are selected by using the score cut-off based method (a minimum neu-

ral network score of 0.4 for contact and 0.6 for all of the three distance bins). As a

comparison, the top 1 models of these proteins predicted with the contact constraints

(a minimum neural network score of 0.56) from MetaPSICOV, overlapping with the ex-

perimental structures, are shown in Figure 5.40 (right). Clearly, the top 1 models of

the six proteins are better-predicted with DeepCDpred predicted constraints than with

MetaPSICOV predicted constraints (as indicated by the real TM-score values).

The six proteins shown here were chosen since they were predicted well, which cover a

range of Nf values and are from different protein classes, including α (1tqg, qt8k and

1avs), α/β (1iib) and α + β (1vp6 and 1jyh) proteins.
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pdbid: 1t8k

expected TM-score: 0.85

real TM-score: 0.87

rmsd: 1.31 Å
no. of aa: 77

pdbid: 1tqg

expected TM-score: 0.84

real TM-score: 0.93

rmsd: 1.07 Å
no. of aa: 105 

pdbid: 1avs

expected TM-score: 0.79

real TM-score: 0.82

rmsd: 1.94 Å
no. of aa: 81

pdbid: 1vp6

expected TM-score: 0.75

real TM-score: 0.82

rmsd: 2.50 Å
no. of aa: 133

experiment

prediction with DeepCDpred constraints

pdbid: 1iib

expected TM-score: 0.76

real TM-score: 0.84

rmsd: 1.91 Å
no. of aa: 103 

pdbid: 1jyh

expected TM-score: 0.68

real TM-score: 0.80

rmsd: 2.94 Å
no. of aa: 155

pdbid: 1avs

expected TM-score: 0.80

real TM-score: 0.56

rmsd: 4.85 Å
no. of aa: 81

pdbid: 1iib

expected TM-score: 0.76

real TM-score: 0.75

rmsd: 2.83 Å
no. of aa: 103 

pdbid: 1jyh

expected TM-score: 0.68

real TM-score: 0.73

rmsd: 3.48 Å
no. of aa: 155

pdbid: 1t8k

expected TM-score: 0.85

real TM-score: 0.85

rmsd: 1.89 Å
no. of aa: 77

pdbid: 1tqg

expected TM-score: 0.84

real TM-score: 0.81

rmsd: 2.12 Å
no. of aa: 105 

pdbid: 1vp6

expected TM-score: 0.75

real TM-score: 0.72

rmsd: 4.06 Å
no. of aa: 133

DeepCDpred MetaPSICOV

Figure 5.40. Comparisons of structure predictions of six proteins based on
DeepCDpred predicted constraints (left) and MetaPSICOV predicted con-
straints (right). Real TM-scores between the prediction and the experimental struc-
ture, predicted TM-scores and RMSD are also shown in the figure. In the figure, no. of
aa means the number of amino acids in the protein chain.
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5.9 A Blind Test

In addition to the tests with proteins of known structure, a blind test with a protein of

genuinely unknown structure can leave no possibility for unconscious bias to creep in. The

blind test was conducted by predicting a protein chain whose 3D structure was resolved re-

cently, yet to be released to the public. The protein does not have any homologues in PDB

(it was confirmed in two ways: (1) by using HHblits to search the PDB sequences with de-

fault settings and no hits found; (2) no structures listed in the Pfam family website for the

family which this protein belongs to (http://pfam.xfam.org/family/Self-incomp_S1,

last check: November 2018)). Therefore, comparative modelling is not a good option to

predict its 3D structure.

The uniprot accession code of the protein is Q9FLY6. It has 112 amino acids as listed

below.

>sp|Q9FLY6|21-132

CKEIEIVIKNTLGPSRILQYHCRSGNTNVGVQYLNFKGTRIIKFKDDGTERSRWNCLFRQ

GINMKFFTEVEAYRPDLKHPLCGKRYELSARMDAIYFKMDERPPQPLNKWRS.

After the steps of inter-residue contact and distance predictions and structure prediction

by using DeepCDpred_AbInitio, the top 1 model was selected by choosing the one with

the lowest Rosetta energy score. The contact and distance constraints fed into the Rosetta

ab initio modelling protocol were selected based on the score cut-off method: a minimum

score of 0.4 for contacts and minimum scores of 0.6 for all of the three-bin distances.
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Detailed information about this protein is shown in Table 5.13. The TM-score was also

predicted, as presented later.

Table 5.13. Information about the blind test protein.

UniProt Code
No. of

amino acids

No. of

Homologous

Sequences

No. of

Effective

Sequences

Nf

Experimental

Structure

Determination

Q9FLY6 112 1,049 488 46 NMR

In order to depict the quality of the prediction in more detail, the top 5 of the 100 candidate

models were sorted according to the Rosetta energy score. The last four models in the

top 5 were aligned to the top 1 by the coordinates of all Cα atoms. Then, the average

distance at each residue among the five models was calculated. The regions with large

distances are expected to be flexible and hard to predict accurately; the regions with small

distances are expected to be conserved and easy to predict precisely. Another calculation

based on the inter-amino-acid contact prediction was also made. Like the way to evaluate

the distances among the top 5 models, this is another way to evaluate which regions are

easy to predict and which regions are hard. The calculation was straightforward: for

all residue pairs including the residue of interest, the neural network scores output by

DeepCDpred that were above a threshold of 0.4 were summed. The value of the sum

is called the contact strength. Regions with higher contact strength are expected to be

predicted more precisely.
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The predicted amino acid residue contact map of the blind test protein is shown in Fig-

ure 5.41. The average distance among the top 5 predicted models and the contact strength

calculated from the contact map are shown in Figure 5.42.
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Figure 5.41. Amino acid contact map of Q9FLY6 predicted by DeepCDpred.
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Figure 5.42. The comparison of the average distance distribution from the
predicted top 5 models of Q9FLY6 and the contact strength from the contact
prediction of the same protein. The average distance= 2.0Å is arbitrarily selected
as the cut-off to separate the two regions. The residue indices at which the average
distance< 2.0Å are coloured as magenta on the y = 0 axis.
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The superimposition of the predicted top 1 model from DeepCDpred_AbInitio with the

experimental NMR structure (the NMR structure is usually an ensemble; the structure

shown here is the most representative in the ensemble) is shown in Figure 5.43. The

top 1 model was selected by the lowest Rosetta energy score from the 100 candidate

models. Low variation regions (or highly constrained residues) are indicated in red, and

high variation regions (or poorly constrained residues) are indicated in magenta. The

positions of both regions are inferred from the above figure by using a threshold of the

average distance, 2.0 Å (Figure 5.42). The TM-score between the top 1 model and the

NMR structure is 0.62, which means they have the same fold. The predicted TM-score,

which is 0.60, is very close to the real TM-score. The whole backbone Cα RMSD between

the two structures is 4.6Å.

 

Experiment 

Low Variation Region 
of Prediction

High Variation Region 
of Prediction

Figure 5.43. Overlaying the predicted top 1 model of Q9FLY6 to the exper-
imental structure (coloured as grey) with the low variation region residues
coloured in red and the high variation region residues coloured in magenta.
The low and high variation regions of the predicted structure are defined in Figure 5.42.
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The top 1 model covers all of the beta strands in the experimental structure; the connec-

tions of the nine beta strands are all correctly predicted. In order to depict the structure

in more detail, TM-score and RMSD (backbone Cα) between the top 1 model and the

experimental structure were calculated for the nine beta strands only with the resultant

values of 0.61 and 2.91Å, respectively. The amino acid positions of the nine beta strands

in the experimental structure are shown in Table A.2 (Appendix A). These results show

that TM-score calculation is barely affected by the flexible coils (from 0.62 to 0.61); how-

ever, after removing the coils (the residues are not in the beta strands), the RMSD value

is significantly improved (from 4.6Å to 2.9Å).

For the β proteins in the test set, together with Q9FLY6, the variation of the TM-score

(between the top 1 predicted model and the corresponding experimental model) against

the Nf value is summarised in Table 5.14. Comparing to 2uca, 1i1j, 1ej8, and 1gzc,

Q9FLY6 is demonstrated to have the smallest Nf, but the best top 1 model prediction;

however, comparing to 1hxn, Q9FLY6 has a larger Nf, but a slightly worse top 1 model

prediction. In Figure 5.39 of the previous section, the TM-score versus Nf of Q9FLY6 was

already shown along with all of the protein chains in the test set.
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Table 5.14. Comparisons between the top 1 model quality of Q9FLY6 and
the top 1 model quality of the β proteins in the test set of DeepCDpred
whose Nf values are similar to that of Q9FLY6. Rows are sorted by Nf column
from the largest to the lowest.

PDB ID/UniProt Code
TM-score With

Experiment Structure
Nf Protein Class

2cua 0.64 92 β

1i1j 0.56 92 β

1ej8 0.53 56 β

1gzc 0.53 53 β

Q9FLY6 0.62 46 β

1beh 0.49 42 β

1hxn 0.63 30 β

1fl0 0.52 19 β

As a comparison, the top 1 model predicted with MetaPSICOV’s top 1.5L contact con-

straints and the same Rosetta ab initio protocol is shown in Figure 5.44. The TM-score

between it and the experimental structure is 0.43, which means this model cannot recover

the correct fold of this blind test protein.

Experiment

Prediction With	MetaPSICOV	Constraints
Figure 5.44. Overlaying the pre-
dicted top 1 model (coloured as
blue) of Q9FLY6 to the experi-
mental structure (coloured as red).
The structure prediction was made by
MetaPSICOV’s top 1.5L contact con-
straints and the Rosetta ab initio mod-
elling protocol introduced in the Model
Development chapter (Chapter 4). The
TM-score between them is 0.43.
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5.10 Comparisons of Amino Acid Contact and Struc-

ture Predictions among DeepCDpred, RaptorX

and NeBcon

In Chapter 2, three recently published algorithms of amino acid contact predictions, plm-

Conv (Golkov et al. 2016), NeBcon (He et al. 2017) and RaptorX (Wang et al. 2017b) were

introduced. Since the paper of plmConv does not release the source code or web server,

it is impossible to compare the performance of DeepCDpred to plmConv. Fortunately,

the latter two (NeBcon and RaptorX) do provide online web servers. The results of con-

tact and structure predictions introduced in this subsection are based on the comparisons

among DeepCDpred and these two algorithms.

Since it is a time-consuming process from uploading protein sequences to the server of each

of the two methods to receiving the results of the contact predictions and/or structure

predictions, only eight protein chains were selected in the comparisons. Besides the protein

Q9FLY6, another seven protein chains were randomly picked out from the test set. It is

noteworthy to point out that RaptorX predicts both amino acid contacts and protein

structures; but NeBcon only predicts contacts.

In Figure 5.45, the boxplots show the prediction accuracies of the top-ranked 1.5L amino
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acid contacts from the three methods; among them, RaptorX has the best contact predic-

tion performance and NeBcon has the worst. In detail, prediction accuracies of the top

1.5L contacts predicted by RaptorX are significantly higher than those achieved by using

DeepCDpred for the 8 proteins (p<0.05); the accuracies of the latter are significantly

higher than those from NeBcon (p<0.001). The comparisons are made by paired t-tests.

The average accuracies of the three methods are 78.8%, 75.0% and 58.2%, respectively.

Thus, the difference in the results between RaptorX and DeepCDpred is small.
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Figure 5.45. Comparison of the contact prediction accuracies of RaptorX,
DeepCDpred and NeBcon for eight test proteins based on the top-ranked
1.5L contact predictions. *: p<0.05; ***: p<0.001, significances were calculated
with paired t-tests. The PDB ID of the seven of the eight proteins are 1aap, 1d1q,
1h2e, 1hdo, 1hh8, 1tqg and 1w0h; the UniProt accession code of the remaining one
protein is Q9FLY6, which has been solved by one of our co-workers of this study, but
not yet published. Whiskers, middle lines and crosses have the same meanings as those
in Figure 5.37.
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Since the contact prediction of NeBcon is very poor as compared with RaptorX and Deep-

CDpred, it is simply removed from the comparisons of structure predictions. Also, for

simplicity and fairness, the following method of constraint selection is used for the com-

parisons of structure predictions:

a. RaptorX: the top ranked 1.5L contact predictions;

b. DeepCDpred (contact only): the top ranked 1.5L contact predictions;

c. DeepCDpred: the top ranked 1.5L contact predictions and score cut-off selected dis-

tance (minimum score of 0.60 for each distance bin).

The Rosetta ab initio modelling protocols are the same for the three groups, besides

which, the structure predictions downloaded from the RaptorX server are also included in

the comparison. The structure predictions downloaded directly from the RaptorX server

are worse than the other two methods (Figure 5.46, p<0.05).
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Figure 5.46. Comparisons of qual-
ity of structure predictions be-
tween DeepCDpred and RaptorX
based on variant contact and dis-
tance constraints and structure
simulation protocols. The TM-scores
of the models predicted by the RaptorX
server for the eight proteins are shown in
the left-most boxplot. The other three
boxplots correspond to the structure
predictions by using the same structure
simulation protocol, but with different
constraints. Blue numbers are the TM-
score averages of the four groups, re-
spectively. Paired t-tests are used to
compare the TM-score difference among
the groups.

In Figure 5.46, when using the same Rosetta modelling protocol with the 1.5L contact

constraints from DeepCDpred or RaptorX, there is no significant difference in terms of the

quality of the models (p > 0.05). Adding DeepCDpred distance constraints alongside the

DeepCDpred contact constraints does not significantly improve the structural models as

compared with RaptorX contact constraints alone. As an example, the structure predicted

by the RaptorX server is shown in Figure 5.47 aligned with the experimental structure.

The TM-score between them is 0.43, which means that the predicted structure fails to

recover the correct fold of the protein. Errors can also be found in the figure. Again, the

top 1 model predicted by using Rosetta ab initio modelling protocol was selected by the

lowest Rosetta energy.
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Prediction

Experiment
Figure 5.47. Superimposition be-
tween the top 1 predicted model of
the blind test protein Q9FLY6 and
the experimental structure. The
model is predicted by the online Rap-
torX server.
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pdbid: 1t8k

real TM-score: 0.68

rmsd: 2.67 Å
no. of aa: 77

pdbid: 1tqg

real TM-score: 0.86

rmsd: 2.04 Å
no. of aa: 105 

pdbid: 1iib

real TM-score: 0.74

rmsd: 2.44 Å
no. of aa: 103 

pdbid: 1jyh

real TM-score: 0.74

rmsd: 3.50 Å
no. of aa: 155

pdbid: 1avs

real TM-score: 0.59

rmsd: 4.54 Å
no. of aa: 81

pdbid: 1vp6

real TM-score: 0.78

rmsd: 2.84 Å
no. of aa: 133

experiment

prediction with RaptorX

Figure 5.48. Six examples of structure predictions from RaptorX server. Real
TM-scores between the predictions and the experimental structures, predicted TM-scores
and RMSD are also shown in the figure. In the figure, no. of aa means the number of
amino acids in the protein chain.

With the predicted constraints, the RaptorX server uses the CNS program (Brunger

et al. 1998) to do structure modelling. The putatively best model for each protein chain
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as reported by RaptorX is selected according to the CNS build-in energy function. CNS

is suggested to be not as good as Rosetta ab initio for building ab initio protein models

(Wang et al. 2017b). More discussions about the results of this section can be found in

Section 6.8 of the Discussion chapter (Chapter 6).
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5.11 Improving the Accuracies of the Amino Acid Con-

tact and Distance Predictions of DeepCDpred by

Using Metagenomics Data

It has been shown that metagenomics data could be used to enrich sequence alignments

(Ovchinnikov et al. 2017b). This section investigates whether the metagenomics data is

useful for improving DeepCDpred. For simplicity, protein chains from the test set were

only used if a UniRefKB search with HHblits produced a sequence alignment with Nf less

than 64. Based on this selection criteria, there are 29 chains available. The pdb ids of

these proteins are listed in Table 5.15.

Table 5.15. PDB ID list of the 29 protein chains with Nf values less than 64.

PDB ID/CHAIN NAME

1aoeA 1bebA 1behA 1chdA 1ctfA 1d4oA 1dixA 1dmgA 1ej8A

1fk5A 1fl0A 1fvgA 1g2rA 1gzcA 1htwA 1hxnA 1i71A 1j3aA

1jo0A 1k7jA 1kqrA 1lm4A 1m4jA 1m8aA 1nb9A 1roaA 1tifA

1whiA 1wjxA

The results are shown in Figure 5.49. For the contact predictions, the accuracies at L/10

and L/5 become slightly worse after using extra sequences, but get better at L and 1.5L.

The total effect is that the contact prediction gets better, since the accuracies at L/10 and

L/5 are already very high ( 95%) and at L and 1.5L, much more predictions are included
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and thus the prediction improvement is more significant. It can be also obtained that

distance predictions (all of the three bins) become better after adding the metagenomics

sequences.

A B

C D

Figure 5.49. The comparison of the accuracies of amino acid contact and
distance predictions between adding metagenomics data to UniProtKB and
using UniProtKB only. A: contact (0-8Å); B: distance bin 8-13 Å; C: distance bin
13-18Å and D: distance bin 18-23Å.
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5.12 Improving the Accuracy of Amino Acid Contact

Predictions of DeepCDpred by Using Networks

with 5 Hidden Layers

As mentioned in previous chapters, a deeper network might be expected to produce more

accurate predictions of amino acid contact and distance. Two types of five-hidden-layer

networks were trained here, one using cross entropy as the loss function and the other

using MSE. The same with the previous version of DeepCDpred, each of them was trained

for four times, and each time there was a slightly different contact range (0−7.9Å, 0−8.0Å,

0− 8.1Å and 0− 8.2Å); the final contact prediction score was the average of the four net-

work output scores. The result of contact prediction accuracy comparison between them,

together with the previous two-hidden-layer version of DeepCDpred and MetaPSICOV

for the 108 test proteins is shown in Figure 5.50. Both the two new networks produce

≈1.5% higher contact prediction accuracy than the previous version of DeepCDpred for

both the top-ranked L and the 1.5L contact predictions.

Due to the time limit, the work of replacing the two-hidden-layer networks of the three-

bin distance predictions with the five-hidden-layer networks has not been done. This step

will be completed in the future work (refer to the Discussion chapter (Section 6.9) for

more information). The difference of the contact prediction accuracies between the two

250



versions of the five-hidden-layer DeepCDpred is less than 0.5% for all of the 7 top-ranked

predictions.
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Figure 5.50. Predictions from a two stage neural network trained by using
the same feature vector as the DeepCDpred network previously described,
but with five hidden layers. The network consists of 5 ReLU (hidden layers)and 1
sigmoid (output layer) activation functions for processing in addition to the input and
output layers. Two versions of the five-hidden-layer networks were trained, one with
cross-entropy as the loss function, and the other using MSE, which is the same as the
two-hidden-layer version of DeepCDpred.
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5.13 Online Server: PROTEINCOEVOLUTION.BHAM.AC.UK

This study programmed and released the online server of amino acid contact and distance

predictions to implement DeepCDpred. This server can also carry out protein structure

predictions based on the predicted geometry constraints. However, due to the computing

capacity of the laboratory conducting this research, ability to make such predictions is

currently limited. Only two jobs per user are allowed to be queued on the server at any

one time.

The homepage is shown in Figure 5.51. A user can make a query by pasting/uploading

a protein sequence in FASTA format. The job name option allows the user to have an

easy-to-recognise name, and the email address is required if the user wants a reminder

of the URL address of the result page of the job; otherwise, he/she has to remember

it. Other functions of this server include browsing processed jobs, and displaying the

results of the contact/distance predictions and structure predictions. An explanation for

DeepCDpred is provided on the ALGORITHM page of the website. A user can use the

contact information provided in the ABOUT&CONTACT US to contact the developer.

More details of this server can be easily found when a user logs in.
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Figure 5.51. The home page of the amino acid contact & distance prediction
and protein structure prediction server, proteincoevolution.bham.ac.uk.
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Chapter 6

Discussion

In the previous chapters, the inter-amino-acid contact/distance prediction algorithm,

DeepCDpred, was explained and evaluated both by using a subset of protein chains from

the test set of MetaPSICOV and by blindly using a protein solved by another research

group in the University of Birmingham that has yet to have its coordinates been released.

It is the second-best contact predictor at the moment and only slightly worse than the

algorithm of RaptorX published about one year ago. However, since DeepCDpred is

capable of predicting inter-residue distance, it produces more geometry constraints. Pro-

tein structure predictions based on the constraints from DeepCDpred and the Rosetta

ab initio protocol introduced in this thesis are significantly better than those from the

RaptorX server. The RaptorX server uses CNS to predict protein structures, and CNS

is thought to produce worse models than Rosetta ab initio does (Wang et al. 2017b).

Thus, in order to remove this bias, protein structures were also predicted by using the
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constraints from RaptorX and the Rosetta ab initio protocol; the result showed that

there is no difference between models produced by using DeepCDpred contact & distance

predictions as compared with the RaptorX contact predictions. Besides the structure

modelling protocol, another advantage of DeepCDpred is the much simpler architecture

than that of RaptorX in terms of contact prediction accuracy, which means that Deep-

CDpred may require less time for both training and predicting. The online server of

proteincoevolution.bham.ac.uk was programmed and released to the public; it is ex-

pected to be beneficial to the research community. In the previous chapter, it was also

shown that adding protein sequences from metagenomics data could slightly increase the

accuracy of the predictions of amino acid contacts and distances for those proteins with a

limited number of diverse sequences in their MSAs. Since the use of metagenomics data is

not the focus of this study, whether the extra improvements could lead to better structure

predictions or not has not been checked yet. The Python code that searches homologous

sequences from the combined protein sequence dataset (UniRefKB+Metagenome) was

contributed by Tugce Oruc, a first-year PhD student from the same research group that

the author of this thesis belongs to.

There has clearly been great progress made in inferring coevolutionary signals from aligned

sequences of proteins in the same family, especially in the past two decades. Using

inter-residue contact/distance predictions as geometry constraints in template-free pro-

tein structure prediction has become a standard technique (de Juan et al. 2013; Kosciolek

and Jones 2016). It is now possible to achieve accurate structure predictions for protein
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families that were impossible to obtain before (Ovchinnikov et al. 2017b). Nevertheless,

some of the most significant developments have only arisen in the past eight years or

so. Machine learning methods for amino acid contact/distance prediction have only been

developed in the last few years. As such, this field is relatively young. Therefore, current

methods, including DeepCDpred, proposed in this thesis, still have a number of limita-

tions that will require further exploration and technological refinement to address. The

following aspects are potential areas for the improvement of DeepCDpred in the future.

6.1 Sequence Alignment Methods

As coevolution-based approaches rely solely on an MSA to identify covariation between

amino acid positions, the quality of the MSA is important. It has been shown that

alignment errors can result in erroneous observations of correlated mutation (Dickson

et al. 2010). In this work, DeepCDpred requires HHblits to generate alignments, since it

can find more remote homologues than PSSM profiles-based algorithms (e.g., PSI-BLAST)

or profile HMMs (already mentioned in the Background chapter (Chapter 2)).

Nevertheless, even with the capability to detect very remote and divergent sequences,

it is hard to find a balance between increasing the number of sequences and being at

the risk of adding noisy sequences. Better ways for sequence selection and alignment

generation are likely to benefit contact/distance prediction in the future work. As for

this aspect, the recently published machine learning approaches, PconsC and PconsC2
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(Skwark et al. 2013, 2014), may provide some inspirations. Instead of building one single

accurate alignment, the researchers for these approaches used eight different MSAs (e.g.

from both HHblits and Jackhmmer with different E-values) for a query protein sequence

and joined the coevolutionary coupling predictions of PSICOV and plmDCA based on

these alignments by using a random forest classifier. Although PconsC and PconsC2

were found to be more effective at predicting amino acid contacts than earlier methods,

the calculations are time-consuming. Hopefully, faster approaches to detect homologous

sequences and build sequence alignments will come up soon.

6.2 Available Sequences

It was shown that the accuracy of the predictions of coevolution-based amino acid contact

and distance is correlated with the value of Nf (Ovchinnikov et al. 2017b), as well as the

accuracy of the predictions from machine learning based methods, such as DeepCDpred,

which use coevolutional couplings as input features (shown in this study). It is worth

noting that protein sequences from metagenomics projects are accumulating at a much

faster speed than those of traditional sequencing projects (Ovchinnikov et al. 2017b).

Recent efforts have also been made regarding sequencing the genomes of organisms in

high-temperature (Inskeep et al. 2010), the Arctic (Jeon et al. 2009), and deep seas (Sogin

et al. 2006) environments.
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Such metagenomics projects have greatly increased the availability of bacterial sequences.

However, sequences from higher organisms (e.g. eukaryotes) are less accessible, as they

suffer from much fewer sequenced genomes from different species as compared with the

sequences of bacterial proteins. The current release of the UniProt-TrEMBL database

(September 2017) is made up of about 66% bacterial sequences, compared to 28% from eu-

karyotes (http://www.ebi.ac.uk/uniprot/TrEMBLstats, last check: November 2018).

Too few available sequences likely lead to inter-residue contact/distance prediction accu-

racies becoming too low to be useful in 3D modelling. Besides increasing the availability

of non-redundant sequences for the current approaches, if there were a new algorithm

capable of calculating contact/distance maps from 100 homologous sequences that are as

accurate as those computed from 1000 sequences, it can then be expected that coevolution

based ab initio modelling would become even more useful. Unfortunately, there is a long

way to achieve this, in terms of the development trends in recent years, and it may be an

impossible task due to the systematic biases that arise from missing data (Martin et al.

2005).

6.3 Interpretation of Long-distance Couplings and Im-

provement to Distance Prediction

It is necessary to understand where the long-distance couplings come from. In the Method

Development chapter (Chapter 4), it was mentioned that some of them may arise from
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the two residues on each strand of a beta sheet. Some other explanations can be found in

the literature as introduced below.

1. Conformational change. If two or more experimentally solved protein structures have

identical or very similar sequences, but they cannot be superimposed, it can be said that

each of the structures represents a different functional conformation of the same protein.

When applying DeepCDpred (or another accurate contact prediction algorithm such

as MetaPSICOV) to make amino acid contact/distance prediction for this protein,

some residue pairs with a high contact score may have a long distance in space when

referring to one structure, but be close in another. Anishchenko et al. (Anishchenko

et al. 2017) found only a small fraction (0.5%) of strongly coupled residue pairs are

associated with conformational change. In their study, the coupling was measured

by the CCMpred output score (coevolution score), which is different from the neural

network score of DeepCDpred. However, conformational change may also be a reason

for the long-distance coupling captured by DeepCDpred, since it uses the coevolutional

couplings predicted from CCMpred as input features.

2. Structural variation within a protein family. From the same paper (Anishchenko et al.

2017), it was found that 91% of directly coevolving residue pairs in the 5 – 15 Å

range are in contact in at least one homologous structure, which means that structural

variation in the family could result in some degree of strong contact between coupled
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residue pairs that are not directly in contact in a reference structure. For the long-

distance couplings with a distance of greater than 15 Å, 19% of them arose from the

structural variation in the same family (Anishchenko et al. 2017).

3. Homo-oligomeric interaction. It was also found some long-distance couplings are as-

sociated with homo-oligomeric interactions (Anishchenko et al. 2017; dos Santos et al.

2015; Uguzzoni et al. 2017). The fact may be that these couplings are only caused by

the residues within the same chain, since in homo-dimers intra-protein couplings are

not distinguishable from those due to the inter-protein interaction.

It may be possible to find out different alternative conformations by analysing the contac-

t/distance predictions. If some residue pairs have both high scores of contact and distance

predictions, it is reasonable to suggest that this residue pair contributes to the confor-

mational change of the protein. In the future, such an analysis should be investigated.

The structure variation issue is difficult to be solved by analysing contact and distance

predictions. However, if more sophisticated structure simulation protocols are proposed

in the future, it is expected the predicted structures are closer to the native ones.

The results of the structure predictions from DeepCDpred_AbInitio have already shown

the extra constraints from distance prediction can improve the quality of the predicted

structures. Filtering out the false positives of distance predictions (e.g. contacting residue

pairs) could be an important step for more improvement of structure prediction that

should be solved in the future. Based on the above explanations, DeepCDpred could be
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modified in the following ways for improving amino acid distance prediction, which could

also result in better amino acid contact prediction.

In order to include more data, multimeric protein chains were not removed in both the

training set (including validation set) and the test set. In the Results chapter, it shows

that about 1/5 chains in the training set are from multimers, while this fraction changes

to more than 1/4 for the chains in the test set. The homo-oligomeric interactions may

introduce biases into the training of the neural networks in DeepCDpred, as well as the

predictions when applying DeepCDpred to the test set. Thus, DeepCDpred is unlikely to

be optimised for either the predictions of amino acid contacts and distances of monomeric

protein chains or the predictions of amino acid contacts and distances of multimeric protein

chains. A good way that can be implemented in the future is to separate these two types of

chains. That is, the version of DeepCDpred should be trained exclusively with monomeric

protein chains to make contact/distance predictions for monomeric protein chains, and it

is the same for multimeric chains.

Another possible way to improve distance predictions is to use a different statistical po-

tential. The statistical potential of amino acid contact proposed in the study by (Be-

tancourt and Thirumalai 1999) was used in the input feature vector of DeepCDpred for

both contact and distance (three bins) predictions. It is reasonable to believe that this

type of potential cannot efficiently capture long-range amino acid interactions. Instead,

a distance-dependent statistical potential seems to be more suitable for this task. Fortu-

nately, such a potential was proposed in the paper by (Zhao and Xu 2012) and is capable
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of measuring how favourable the interaction between two atoms is at a distance of up

to more than 14 Å. Although the results shown in Figure 5.12 and Table 5.3 prove that

statistical potential contributes only a little to the amino acid prediction in DeepCDpred,

it is worth replacing the fixed contact potential matrix with it to update DeepCDpred

in the future; maybe the new version would offer a greater contribution to the contact

prediction. Further discussions about the features of DeepCDpred can be found in Section

6.6.

6.4 The Test Set of DeepCDpred

As described in Chapter 3, 108 protein chains originally from the test set MetaPSICOV

(150 chains) were used as the test set of DeepCDpred. Not only DeepCDpred but also

RaptorX used the aforementioned 150 protein chains as the test set to compare the perfor-

mance of amino acid contact predictions to that of MetaPSICOV. These structures can be

easily downloaded from the MetaPSICOV online server (http://bioinf.cs.ucl.ac.uk/

software_downloads/ last check: November 2018). At the beginning of the development

of DeepCDpred, the author of this thesis did not have enough experience with collect-

ing structures from the CASP. In the future work, the contact prediction performance

between DeepCDpred and other algorithms (e.g. RaptorX) could be compared with the

CASP proteins. The author of this thesis participated in the CASP competition of 2018
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in the contact prediction category. The results of competition ranking were not released

at the time of writing this thesis.

6.5 Protein Model Selection

As mentioned many times in both Chapter 4 and Chapter 5, ranking predicted models

and selecting the presumably best one were completed with the lowest Rosetta energy

score in this thesis. It is worth noting that there are some protein structure quality

assessment programs, such as ModFold (Maghrabi and McGuffin 2017; McGuffin et al.

2013), Qprob (Cao and Cheng 2016), and ProQ2 (Uziela and Wallner 2016). Among them,

ModFOLD6 (the latest generation of ModFOLD) is a leading server of protein structure

quality estimation tested in CASP12 (Maghrabi and McGuffin 2017).

The programs of protein quality assessment can be divided into two categories: consensus-

model based and single-model based. Usually, the former is more accurate than the latter

(Cao and Cheng 2016). Consensus-model based methods require multiple models (also

called “decoys”, e.g. the 100 candidate structures generated from DeepCDpred_AbInitio

for each target protein) of the target protein; pairwise similarities of the decoys are calcu-

lated and the similarity score of each decoy as compared with the others is then inferred

(Konopka et al. 2012). The decoys are subsequently ranked according to their similarity

scores. This kind of method is generally works slower than single-model based approaches,
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which usually rank each decoy based on its features, such as the secondary structure pre-

diction, the atom-atom and/or residue-residue interaction, the sequence profile, and the

solvent accessibility prediction (Cao et al. 2017; Uziela and Wallner 2016). This type of

method does not require information from other decoys. Single-model based methods are

generally faster and may work better when a large proportion of the multiple models are

poorly predicted (Cao et al. 2015).

In the future work, some of the latest servers or programs for assessing the quality of pro-

tein models, no matter whether they are consensus-model based or single-model based,

should be tried in order to select the best model from the structure predictions of Deep-

CDpred_AbInitio.

Besides ranking the models and selecting the best one, another important task is to

provide a confidence score for the predicted model(s). The confidence score represents

how accurate the model is – that is, how close the model is to the native structure. The

method proposed in this thesis is a neural network model; it predicts the TM-score which

ranges from 0 to 1. The result shown in Section 5.7 (the Results chapter) indicates that

the predictions are well-correlated with the real values for both the structure predictions

based on the constraints from DeepCDpred and MetaPSICOV; the majority of differences

between the predictions and the real corresponding ones fall in a range of less than 0.1.

In addition, the model is simple and the prediction is fast. However, the result also

clearly shows that predicted TM-scores from the models are generally smaller than the

real corresponding ones for the models based on DeepCDpred constraints. Possible ways
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to improve the TM-score prediction include using more features in the network model,

such as the DOPE score calculated by MODELLER (Webb and Sali 2014), using a more

complicated network architecture, and adopting a larger training set. A network with

a more complicated architecture (e.g. more hidden layers) does not necessarily perform

better than a simple one, because of the problems of vanishing gradients and overfitting.

However, due to the use of ‘skip connections’, ResNet and its variants have indicated that

a deeper architecture could achieve a lower error rate in image classification (He et al.

2016; Huang et al. 2016). Thus, they are worth trying on TM-score predictions with a

deep architecture. More accurate methods for confidence score predictions should also

be studied (e.g. not restricted to predictions of TM-score). Some published paper may

provide clues regarding how to make improvements.

In the study by Roy et al. (Roy et al. 2011), all the decoys of the target protein are

clustered and the average distance (RMSD) of the decoys in the top cluster to the centroid

of this cluster is calculated; a confidence score for the top predicted model is predicted

based on this distance. In another paper (Xu and Zhang 2013), the confidence score is

calculated based on the normalized cluster size of the top decoy cluster and a so-called

‘f-score’, which measures the quality of the threading fragments (threading is used for

structure prediction in this paper).
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6.6 Feature Optimization

Analysis of the importance of different features in the DeepCDpred feature vector, shown

in Subsection 5.5.5 of Chapter 5, could provide clues about how to optimize the feature

selections to improve contact predictions. For example, The feature category of amino

acid profile, or frequency, does not affect the accuracy of contact predictions very much;

however, there are 483 elements in the 752-dimensional feature vector related to the

frequency (Subsection 3.5.2), which is a very large fraction. The feature category of the

coevolutionary couplings from CCMpred contribute the most to the contact prediction,

particularly compared to the coevolutionary couplings from EVFold and QUIC. It is not

only because the former is more accurate than the latter two, but probably also a 9 × 9

square window is used to include 81 couplings; instead, only one coupling is included for

both EVFold and QUIC for a residue pair in the feature vector. It is reasonable to remove

the feature category of amino acid profile, and to use two square windows to include more

couplings (neighbouring couplings) for EVFold and QUIC, respectively. This idea for

the contact prediction has also been tested. The feature vector in the stage 1 networks of

DeepCDpred was replaced with the new one. The result of this test is shown in Figure B.5

of Appendix B, and indicates improvement in accuracy of 3.5% for the top 1.5L contact

predictions.

From Figure 5.12 and Table 5.3 in the Results chapter, the secondary structure prediction

can also be said to play a critical role in the contact prediction of DeepCDpred. If a
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more accurate program of protein secondary structure predictions was used rather than

SPIDER2, the contact (probably also distance) prediction performance of DeepCDpred

could be improved. In fact, there is such a program available, called DeepCNF (Wang

et al. 2016c), which was already mentioned in Subsection 2.7.1 (the brief review of protein

secondary structure prediction). In the future work, this program should be used to

replace SPIDER2 to generate the secondary structure prediction for the feature selection

of DeepCDpred.

It is noteworthy that deep networks developed in the fields such as image classification and

natural language processing do not require the extraction of features. Instead, features

are automatically learned during the training process. This strategy of learning is known

as end-to-end learning (Glasmachers 2017). A comparable work by Golkov et al. (Golkov

et al. 2016), which was mentioned in the previous chapters, uses a quasi-end-to-end learn-

ing approach. Here, ‘quasi’ means that the input of the model is not the query sequence

or the MSA of the query sequence, but rather the pairwise covariance matrix inferred

from the MSA by plmDCA (Golkov et al. 2016). The matrix may not represent all of

the information in the MSA that is useful for contact prediction. Thus, incorporating the

features of amino acid frequency, secondary structure prediction, and solvent accessibility

prediction into the inputs may improve the accuracy of contact predictions. An idea of

using a real end-to-end learning to predict contact/distance can be found in Section 6.9.
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6.7 The Training Strategy of DeepCDpred

As introduced in Chapter 4, neural networks in the original version of DeepCDpred were

trained with the conjugate gradient descend function ’traincgb’ in the neural network

toolbox of MATLAB. This function uses the batch training strategy that the values of

all the parameters (weights and biases) in a neural network are updated only after all of

the inputs have passed the process of the loss function optimization in a training epoch.

Obviously, this strategy is memory consuming, especially when the training dataset is

very large. The training/validation set of DeepCDpred includes 1,066 protein chains,

which represents more than 10 million of inputs (residue pairs). The machine used for the

training procedure has 128GB of RAM, but this is still not large enough. That is why

the training/validation set was split into two groups.

The version of MATLAB used in this work was 2015b, which does not support the stochas-

tic gradient descent optimization or mini-batch for feedforward neural network training.

The reasons for choosing the MATLAB neural network toolbox, rather than any of the

libraries available in other languages (such as Keras in Python), are: (a) the author of

this thesis was more familiar with MATLAB than other languages when this project was

started, and (b) other libraries such as Keras were not as widely used as it is used today

(the first version of Tensorflow was released on November 9, 2015). As mentioned in

Chapter 4, the batch training with MATLAB’s neural network toolbox requires a large

RAM size. As an estimation, the 11,651,001 inputs, with 752 dimensions each, of the
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1,066 training proteins cost 11651001×752×8 bytes (double-precision floating-point for-

mat (MATLAB 2019)) = 65.3 gigabytes. Additionally, weights and biases of the network

also use some space of the RAM (in fact, these RAM costs are small, i.e. 0.7 megabytes and

0.8 megabytes for the two-hidden-layer and five-hidden-layer DeepCDpred, respectively).

Such memory limitations could be overcome via the use of mini-batches for training,

which are now routinely implemented in deep learning libraries (e.g. Keras, tensorflow

and pytorch).

ReLU activation function, available in Keras, alleviated the vanishing gradient problem

that neural networks with sigmoid activation functions usually encounter (Nair and Hin-

ton 2010). This problem is probably the reason why the three-hidden-layer networks

were also considered for contact and distance prediction but no improvements were found

and thus a switch was made to the two-hidden-layer architecture. ReLU was introduced

in MATLAB with the version of 2016a ( https://uk.mathworks.com/help/nnet/ref/

nnet.cnn.layer.relulayer.html, last check: November 2018). With ReLU as the acti-

vation function in the hidden-layer, more layers can be added in the neural network using

the Keras library. A small improvement was found for amino acid contact predictions

based on the same test set when comparing three-hidden-layer to two-hidden-layer, and

four-hidden-layer to three-hidden-layer networks, respectively. The five-hidden-layer ar-

chitecture was finally chosen for the amino acid contact predictions, and the results are

shown in Section 5.12. The accuracy is about 1.5% higher than that with the previous

version of DeepCDpred. In the future work, the distance prediction networks should also
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adopt this deeper architecture with ReLU (or its variants) as activation functions.

In the old version of DeepCDpred, the loss function was chosen as the MSE (mean squared

error). It was shown that the choice of cross-entropy could lead to a better result than

the use of MSE for pattern recognition (Golik et al. 2013). In the algorithm of plmConv

(Golkov et al. 2016), MSE was also used as the loss function in a convolutional network

to predict amino acid contacts. In the new version of DeepCDpred, both MSE and

cross-entropy were tried; the difference between the accuracies of the amino acid contact

predictions based on them is very small (less than 0.5%).

6.8 The Comparisons of Contact and Structure Predic-

tions Between DeepCDpred and Other Algorithms

The accuracies of amino acid contact predictions were compared between DeepCDpred

and two other algorithms, NeBcon and RaptorX, as shown in Chapter 5. There are several

aspects of the results worth discussing here.

Since both RaptorX and NeBcon require sending sequences to an online server, which is

time-consuming, only eight proteins are selected to participate in the comparisons. Among

the proteins, seven were randomly chosen from the test set of DeepCDpred and the other

one is the blind test protein (Q9FLY6). These proteins may not truly represent the overall

performance of RaptorX and DeepCDpred_AbInitio. Future work should include all of
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the proteins in the test set of DeepCDpred, or a large set of proteins that are independent

from the training/validation sets of DeepCDpred, RaptorX and NeBcon.

Another thing that should be clarified is that whether the seven proteins are in the training

set of RaptorX, and NeBcon or not could not be determined by the time of writing this

thesis, since the pdb id list of the training sets of the two algorithms could not be found.

The blind test protein is not in the training set, since it had not been released at the

time of writing, nor had its homologous proteins in PDB (later November 2017). If

some (or even all) of the seven proteins are in RaptorX’s, or NeBcon’s training set, it

could result in a bias toward RaptorX or NeBcon in both the contact and the structure

predictions as compared with DeepCDpred, which means the difference between them

might be smaller in the comparisons. The performance of DeepCDpred might be better

than that of RaptorX based on RaptorX’s own structure prediction protocol (RaptorX

server) and DeepCDpred_AbInitio’s ab initio protocol. Similarly, if some of these test

proteins are in NeBcon’s training set, the true contact prediction accuracy of NeBcon

could be even worse.

The contact prediction accuracy of NeBcon is discussed here. NeBcon claims to be able

to predict more accurate contacts than MetaPSICOV in the paper (He et al. 2017) pub-

lished based on the test set of MetaPSICOV, but the results obtained in this study show

that there is no significant difference between them based on a subset of the test set of

MetaPSICOV (Section 5.10).
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6.9 Other Machine Learning Algorithms and Best

Model Selection Strategies

One way to improve the contact/distance prediction is to combine different mathematical

models. The models should be as diverse as possible in order to capture different aspects

of the input data. In the contact prediction step of DeepCDpred, the final model is

obtained by averaging the outputs from several individual neural network models. This

strategy can improve the accuracy of contact predictions in comparison by with using

any individual network model as shown in Subsection 5.5.2. In the future, other types of

model combinations are worth trying. For example, each prediction model can be created

through the use of different machine learning algorithms or by training with different

subsets of the input data. There are also other ways to join all of the individual models

into a final model, rather than by simply averaging. One example is that the predictions

from each individual model become the input features of a new machine learner. The

advantage of this method would be that additional information can be used to aid the

learning process.

Another way is to use more advanced deep network models. The vanishing gradient prob-

lem is a major barrier that impeded the development of deep neural networks in the past

(Hochreiter 1998). Traditionally, networks are trained by the method of gradient descent

based backpropagation, and often sigmoid or hyperbolic tangent activation functions are
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used. The parameters (weights and biases) in previous layers are updated by multiplying

the derivatives of activation functions of all the succeeding layers. Since all of the deriva-

tives are small values (especially at the two sides of a sigmoid function), if the network

is very deep, the weights and biases of the first several layers receive extremely small up-

dates such that they can hardly be updated. New activation functions proposed in recent

years, such as ReLU (Nair and Hinton 2010), ELU (Djork-Arne Clevert 2015), and SeLU

(Klambauer et al. 2017) are able to alleviate the vanishing gradient problem. In Section

5.12 of the Results chapter, some primary results shows the adoption of ReLU activation

functions might improve the contact prediction accuracy. However, the improvement of

accuracy may also attribute to the use of more hidden layers. These results are limited

to the amino acid contact predictions. In the future work, which of them contributes

more and the amino acid distance prediction based on the same architecture should be

explored.

The problem of vanishing gradient was further overcome by the introduction of the concept

of the residual network (ResNet) (He et al. 2016). A ResNet is stacked by multiple building

blocks. Each block uses a so-called skip connection that directly merges the input (the

output of the previous block) to the output. Two types of building blocks were used

in the study by (He et al. 2016), whose detailed architectures are shown in Figure 6.1.

Before ResNet was proposed, networks included at most ≈10 hidden layers (He et al.

2016); conversely, ResNet can employ even more than 1,000 hidden layers (Zhang et al.

2017). With the ability to learn extreme abstract representations of objects, ResNet won
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the first place of the image classification task in the 2015 ILSVRC (ImageNet Large Scale

Visual Recognition Competition) (He et al. 2016). In 2016 and 2017, some variants of

ResNet network models (e.g. DenseNet (Huang et al. 2016), ResNeXt (Xie et al. 2016)

and Wide-ResNet (Zagoruyko and Komodakis 2016)) were proposed, and they were shown

to be more accurate for image classification.
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Figure 6.1. Two building block types of ResNet. Conv means a convolutional
layer; 3×3 and 1×1 are the sizes (width, height) of the corresponding convolutional
layers; BN means the batch normalization (Ioffe and Szegedy 2015) operation; ReLU is
the ReLu activation function; ‘+’ means the add operation. This figure is reproduced
from Figure 5 in (He et al. 2016).

Using the ResNet or its variants for contact/distance prediction should also be tested

based on a modified feature vector. RaptorX has already used the ResNet. However, each
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network in the ResNet is a 2D convolutional network, which is widely used in 2D image

processing. For the features of the coupling matrices which are calculated from EVFold,

QUIC and CCMpred, it is probably suitable to use a 2D convolutional network. However,

other features, such as the secondary structure prediction and solvent accessibility, are

essentially 1D arrays and so careful considerations about how to feed them into a 2D

convolutional network are necessary. One idea is introduced below.

RaptorX uses a combination of 1D ResNet (i.e. the convolution filter is 1D) and 2D

ResNet to predict amino acid contacts. The 1D ResNet is fed with sequential features,

such as the sequence profile and secondary structure predictions. The output is trans-

formed into a multi-channel 2D feature matrix, merged with other 2D features (e.g. the

coupling predictions from CCMpred), and is then fed into the 2D ResNet. The trans-

formation is performed in a way similar to the outer product (a detailed description can

be found elsewhere (Wang et al. 2017b)). Some ideas could be tested to improve the

accuracies of amino acid contact and distance predictions based on the network model

used in RaptorX. Since the variants of ResNet, such as ResNeXt (Xie et al. 2016) and

Wide-ResNet (Sergey Zagoruyko 2016) could achieve a lower error rate on image clas-

sification, they might also make better contact/distance predictions than RaptorX. The

1D branch of RaptorX could additionally be replaced with a multi-layered bi-directional

LSTM (long short term memory) recurrent network, which might capture longer couplings

on the sequential signals.

For the above ResNet and its variants, different channels in the same convolutional layer
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have the same weight. A new network block, termed SENet (Squeeze-and-Excitation

Network) (Hu et al. 2017), could be embedded into ResNet and ResNeXt. It learns the

different contributions of the convolutional features of the channels. By incorporating

SENet in ResNet or ResNeXt, lower error rates are achieved on image classification (Hu

et al. 2017). Thus, SENet based ResNet or ResNeXt could also be tested for contact and

distance predictions.

By the time of writing this thesis, all of the published machine learning based methods

of amino acid contact and distance predictions, including DeepCDpred, require some

features used as inputs. These features are generally calculated from the MSA of the

target protein sequence. An idea of the end-to-end learning should be tried to use the

target sequence itself or the MSA of the sequence as the only input. Just like what the

network models in the NLP (natural language processing) field do, an embedding layer

that captures the biological, or more precisely, the evolutional relations among different

amino acid types (e.g. use the BLOSUM62 matrix as the weights of the embedding layer)

are placed right after the input layer. The embedding layer is followed by multi-layered

bidirectional LSTM, or 1D convolutional networks. The 1D output from the networks

is then transformed into a 2D array either by following RaptorX’s method, or just by

repeating it along with a new dimension until the new dimension has the same size as the

length of the sequence. The 2D array can be further fed into ResNet, ResNeXt, or SENet

based ResNet or ResNeXt. The target is the contact or distance matrix.

The use of ROC (Receiver operating characteristic) curves may be useful to select the
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best machine learning model. Take the number of neurons in the first hidden layer in

DeepCDpred as an example: it is necessary to draw an ROC curve based on the true

positives versus the false positives of contact and distance predictions for multiple values

(e.g. 50, 80, 100, 120, 130). The best model is then chosen in conjunction with the number

which produces the true-positive point versus the false-positive point that is closest to the

top-left corner of the ROC plot. The problem with this method is that it requires changing

the value of each parameter for multiple times. Since the time cost of training the neural

networks in DeepCDpred is expensive, it could be helpful to select the best values for

several parameters, but this is not feasible for all of the parameters on a CPU machine.

However, training DeepCDpred on a multi-GPU platform may make it possible, since it is

generally much faster to train a network model, especially a convolutional network, with a

GPU than with a CPU. Multi-GPU could provide support to train the model in parallel,

which makes the training process even faster.

6.10 The Online Server: PROTEINCOEVOLUTION.BHAM.AC.

UK

The website of proteincoevolution.bham.ac.uk was designed to provide an easy access to

DeepCDpred contact/distance and structure predictions. It employs two Linux machines

from the Centre for Computational Biology at the University of Birmingham in Birming-

ham, UK for the calculations. Since students in the centre are also using the machines
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for their projects, the website has to limit the access to the users who want to predict

protein structures – notably, structure predictions require more computing resources than

contact and distance predictions by DeepCDpred. An idea to solve this problem is to

use cloud-based servers, such as the EC2 of AWS (Amazon Web Services). Again, since

protein structure predictions require many CPU powers, the price of this service is beyond

the budget of the laboratory at this time.
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Chapter 7

Conclusion

This thesis introduces the work of amino acid contact/distance prediction based on the

method proposed in this thesis, DeepCDpred, and how it was used as the geometry con-

straint for the long-standing computational biology problem of protein structure predic-

tion. The feature contribution analysis shows that at least for the amino acid contact pre-

diction, coevolutional couplings calculated from CCMpred play the most important role

in the neural network model of DeepCDpred. In addition, in order to estimate the quality

of the structure prediction, a TM-score prediction method was proposed. Compared with

other algorithms, the accuracy of the amino acid contact prediction of DeepCDpred is just

slightly worse than a newly published method, RaptorX, but exceeds all others mentioned

in this thesis.

For fairness, the structure predictions based on the predicted constraints from DeepCD-

pred and those based on the predicted constraints from MetaPSICOV, were compared
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using two constraint selection methods. The result showed that the conventional method

of selecting the top-ranked 1.5L contacts has no difference with that of selecting the con-

tacts based on a score cut-off for protein structure prediction. The additional distance

prediction from DeepCDpred improved structure prediction compared with that based

only on the contact prediction from DeepCDpred. A blind test also proved constraints

predicted by DeepCDpred were more effective than MetaPSICOV for structure prediction.

The adoption of strategies of mini-batch, stochastic gradient descent and ReLU activation

functions even made the amino acid contact prediction of DeepCDpred more accurate. The

feature contribution analysis revealed that couplings calculated from CCMpred and the

secondary structure prediction from SPIDER2 are the top 2 features for the performance

of amino acid contact prediction of DeepCDpred. future work that improves the quality

of them may thus improve the contact prediction accuracy of DeepCDpred.

Based on the analysis in the Discussion chapter (Chapter 6), some future work which

uses the metagenome sequence data and more advanced deep learning models, might

improve the accuracy of amino acid contact/distance prediction of DeepCDpred and may

thus result in better protein structure prediction. In addition, model quality assessment

methods, such as ModFold6, should be tested to select the best-predicted structure, rather

than just choose the one with the lowest Rosetta energy score used in this thesis. Also,

methods introduced by Roy et al. and Xu et al. (Roy et al. 2011; Xu and Zhang 2013)

should be tried to predict a more accurate confidence score for structure prediction.
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An online server, http://proteincoevolution.bham.ac.uk, was programmed and re-

leased to make the algorithms of amino acid contact and distance predictions, structure

prediction, and TM-score prediction accessible to average users, which may be beneficial

to the research community.

281

http://proteincoevolution.bham.ac.uk


Publications

Ji, S., Oruc, T., Mead, L., Rehman, M. F., Thomas, C. M., Butterworth, S., and Winn,

P. J. (2019). Deep CDpred: Inter-residue distance and contact prediction for improved

prediction of protein structure. PLoS ONE, 14(1):e0205214.

Rajasekar, K. V., Ji, S., Coulthard, R. J., Ride, J. P., Reynolds, G. L., Winn, P. J.,

Wheeler, M. J., Hyde, E. I., Smith, L. J., Coulthard-Graf, R., and Heidelberg, E. (2019).

Structure of SPH (Self-Incompatibility Protein Homologue) proteins, a widespread family

of small, highly stable, secreted proteins. Biochemical Journal, 476(5):809-826.

282



Appendices

283



Appendix A

Supplementary Materials

Table A.1. Mappings of converting amino acids to numbers.

Amino Acid Number

A 0

R 1

N 2

D 3

C 4

Q 5

E 6

G 7

H 8

I 9

L 10

K 11

M 12

F 13

P 14

S 15

T 16

W 17

Y 18

V 19

- # 20

#: gap.
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Table A.2. The positions of the nine beta strands in the experimental struc-
ture of Q9FLY6. The positions are determined by observing the experimental struc-
ture with PyMol (DeLano 2002).

Strand Index Residue Index

1 4 5 6 7 8 9 10 11

2 17 18 19 20 21 22 23

3 32 33 34 35

4 40 41 42 43 44

5 55 56 57 58 59 60

6 66 67 68 69 70 71

7 86 87 88 89 90 91

8 95 96 97 98

9 106 107 108
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Appendix B

Supplementary Results

B.I Sequence Identity Distribution Between the Test

Protein Chains & the Training/Validation Protein

Chains

Figure B.1 shows distributions of the pairwise sequence identities of the 108 test protein

chains and the 1066 training/validation protein chains of DeepCDpred. The mean and

standard deviation of the pairwise sequence identities is 12.4%, and 3.6%, respectively.
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Figure B.1. Distribution of pairwise sequence identity between the 108 test
protein chains and the 1066 training/validation protein chains of DeepCD-
pred.

B.II Parameter Optimization of DeepCDpred

This section shows the result of the amino acid contact prediction accuracy comparison

between the optimized two-hidden-layer network of DeepCDpred with 120 and 50 neurons

in the hidden layers and a two-hidden-layer network with 100 and 30 neurons in the hidden

layers. Figure B.2 shows the stage 2 results of the comparisons. For the top ranked 1.5L

predictions, the choosing of 120 and 50 neurons makes 0.7% higher contact prediction

accuracy than with 100 and 30 neurons for the 108 test proteins. It is worth noting that
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both the two networks were trained with the contact range defined as 0−8Å and the 1066

proteins in the training/validation set.
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Figure B.2. Amino acid contact prediction accuracy comparison between the
optimized two-hidden network with 120 and 50 neurons of DeepCDpred and
the two-hidden-layer network with the numbers of neurons replaced with 100
and 30. The result of MetaPSICOV for the same proteins are used a reference.
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B.III Comparisons of Contact Prediction Accuracy,

Model File Size and Average Contact Prediction

Speed between DeepCDpred, SVM and Random

Forest

DeepCDpred, an SVM and a random forest model were trained with the same inputs from

the same set of proteins (435 proteins, PDB IDs are listed in Table C.5). The inputs were

introduced in Chapter 3. The SVM model and the random forest model were trained with

the functions, “fitcsvm” and “TreeBagger”, respectively, from the machine learning toolbox

of MATLAB. Parameter settings for the SVM training include kernel, rbf; kfold, 2 (2-fold

cross-validation). Other parameters were chosen as the default. Parameter settings for

the training of the random forest model include the number of decision trees, 10; kfold, 2

(2-fold cross-validation). Other parameters were also chosen as the default.

The results of comparisons of the amino acid contact prediction accuracy, the model file

size and the average prediction speed between DeepCDpred, the SVM and the random

forest model are shown in Figure B.3.

From the figure, DeepCDpred makes significantly better amino acid contact predictions,

but uses much less disk space than both the SVM model and the random forest model.

The process of making predictions of DeepCDpred is also faster. Although the parameters
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of the SVM and the random forest model are not optimized through adjusting, the obvious

advantages of DeepCDpred pushed the author of this work to choose DeepCDpred as the

algorithm for amino acid contact/distance prediction.
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Figure B.3. Comparisons of amino acid contact prediction accuracy, model
file size and average prediction speed between DeepCDpred, an SVM and
a random forest model. A, amino acid contact prediction accuracy comparisons for
the top L/10, L/5, L/4, L/3, L/2, L and 1.5L predictions between the three algorithms;
B, the accuracy of the top 1.5L amino acid contacts predicted by DeepCDpred is sig-
nificantly higher than both that predicted by the SVM and the random forest model;
C, the file size of a neural network model of DeepCDpred is only about 1/1000 of the
SVM, or the random forest model (here, M means megabytes; G means gigabytes); D,
when making predictions, DeepCDpred only takes 1/60 time comparing to the SVM on
average for the 108 test proteins, and almost the same time comparing to the random
forest model on average based on the same test proteins.
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B.IV Structure Selected by Lowest Rosetta Energy VS.

True Best Structure

In Figure B.4a, the TM-score of the structure selected by the lowest Rosetta energy is

compared with the TM-score of the predicted structure with the highest TM score for

each protein chain in the test set of DeepCDpred (true best structure). The scatter plot

in graph a shows that the latter TM-score is always no smaller than the former. Graph b

is the box plot of graph a. In Figure B.4b, whiskers indicate the minimum and maximum

TM-score values in each group; middle lines in the boxes are the median values and the

crosses represent the two means. The means, medians, and standard deviation of the two

groups are 0.69, 0.12 and 0.71, 0.72, 0.11 and 0.74, respectively.
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Figure B.4. The difference between the best structure selected by the lowest
Rosetta energy score and the true best structure among the 100 candidates
which is picked out by comparing with the experimental structure. (a), scatter
plot of the comparison; each triangle represents one protein in the test set and majority
proteins have better structure prediction when using top 1.5L DeepCDpred predicted
contacts as constraints. (b), boxplots of the comparison in (a); whiskers indicate the
minimum and maximum TM-score values in each group; middle lines in the boxes are
the median values and the crosses represent the two means.
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B.V Accuracy of Amino Acid Contact Prediction After

Adopting A New Feature Vector

A modification of the feature vector of DeepCDpred was tried. The new feature vector was

constructed based on the feature contribution analysis of the original feature vector, which

was already introduced in section 5.5.5 (Chapter 5). In detail, the amino acid profiles were

removed from the original feature vector; for both the coevolutional couplings calculated

from EVfold and QUIC, like CCMpred, a square window of size 9×9 was used for each

to include all the neighbouring couplings in the window. Finally, the new feature vector

has 429-dimension.

The stage 1 neural networks for contact prediction in DeepCDpred were trained with the

same parameter settings and architecture as introduced in section 5.12 (Chapter 5). The

result is shown in Figure B.5. The accuracy of the top ranked 1.5L contact predictions

from the new networks is 3.6% higher than the original ones (68.6% versus 72.2%).
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Figure B.5. Contact prediction accuracy comparison between the five-
hidden-layer neural networks of DeepCDpred and the modified five-hidden-
layer neural networks with new feature vector.

B.VI Raw Data of Figure 5.17, Figure 5.19 and

Figure 5.21

Table B.1. Raw TM-scores of the boxplots shown in Figure 5.17. Each row
corresponds to the same protein; different rows represent different proteins.

TM-score of MetaPSICOV TM-score of DeepCDpred

0.46055 0.56607

0.66830 0.76727

0.70738 0.80632

0.70196 0.79862

0.70137 0.79583

0.43286 0.52488

0.63399 0.72525

0.71984 0.80990
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0.70558 0.79221

0.48756 0.57128

0.62266 0.70447

0.62818 0.70728

0.57244 0.65109

0.65748 0.73576

0.63519 0.70865

0.45888 0.53201

0.71414 0.78226

0.74741 0.81354

0.68015 0.74466

0.75445 0.81658

0.59881 0.66072

0.53171 0.58903

0.62128 0.67824

0.64982 0.70600

0.60980 0.66530

0.64879 0.69893

0.41924 0.46774

0.80294 0.85084

0.58630 0.62854

0.58444 0.62629

0.77632 0.81622

0.81154 0.85049

0.66391 0.69942

0.84098 0.87524

0.68448 0.71738

0.73532 0.76251

0.70592 0.73238

0.76634 0.79279

0.70100 0.72299

0.72770 0.74794

0.48628 0.50579

0.68577 0.70449

0.72714 0.74476

0.81246 0.82864

0.57873 0.59351

0.77281 0.78526

0.73007 0.74176

0.73452 0.74430

0.55755 0.56599

0.73119 0.73589

0.76427 0.76711

0.79192 0.79437

0.65727 0.65844

0.57229 0.57285

0.69152 0.68420

0.77108 0.76197

0.70741 0.69153

0.76190 0.74513

0.56188 0.54339

0.62619 0.60522

0.60755 0.57721
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0.68655 0.65555

0.84550 0.80861

0.57500 0.53770

0.54546 0.50721

0.76932 0.73057

0.54125 0.50033

0.66958 0.62796

0.45717 0.41076

0.77391 0.72194

0.76639 0.71180

0.72005 0.66436

0.69474 0.62871

0.53001 0.45918

0.68331 0.60992

0.58272 0.50103

0.55923 0.46555

Table B.2. Raw TM-scores of the boxplots shown in Figure 5.19. Each row
corresponds to the same protein; different rows represent different proteins.

TM-score of MetaPSICOV TM-score of DeepCDpred

0.64608 0.71686

0.30478 0.51435

0.66640 0.64066

0.63931 0.58448

0.53604 0.51316

0.64105 0.78702

0.56911 0.58696

0.78895 0.77715

0.50825 0.61806

0.45478 0.44142

0.61283 0.78301

0.61398 0.74975

0.50015 0.62583

0.61859 0.57368

0.74702 0.84330

0.73033 0.66833

0.56777 0.71713

0.65097 0.66560

0.57887 0.65848

0.63665 0.66275

0.69442 0.66943

0.65066 0.72063

0.43069 0.48893

0.29097 0.55430

0.69970 0.76561

0.33301 0.53817

0.59962 0.65628

0.59130 0.67080

0.52923 0.47052

0.55952 0.59391

0.59133 0.59258
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0.49065 0.51589

0.56292 0.63045

0.60671 0.66008

0.59271 0.67021

0.51614 0.58612

0.42564 0.51485

0.75657 0.82521

0.75177 0.73690

0.49060 0.61019

0.70375 0.72412

0.74286 0.79312

0.46986 0.58532

0.35762 0.41916

0.66371 0.70114

0.61844 0.68788

0.59845 0.67016

0.30313 0.34556

0.73119 0.77622

0.69330 0.79319

0.53768 0.52887

0.67809 0.74766

0.52694 0.71416

0.68876 0.75976

0.78725 0.71625

0.67494 0.67776

0.73035 0.77161

0.75804 0.72649

0.80089 0.81480

0.64888 0.64096

0.57984 0.53304

0.64202 0.71987

0.80959 0.81252

0.73439 0.66205

0.65363 0.73008

0.43980 0.55673

0.67661 0.76355

0.62871 0.84068

0.52264 0.68670

0.59910 0.64535

0.50516 0.76377

0.63637 0.65905

0.70156 0.79188

0.60232 0.71224

0.75836 0.85832

0.63228 0.64843

0.85859 0.84238

0.53871 0.60878

0.75553 0.73378

0.58961 0.52434

0.82806 0.87707

0.40824 0.65442

0.91935 0.91494

0.68174 0.74374
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0.37870 0.62999

0.75335 0.69005

0.52639 0.60780

0.72911 0.79646

0.64958 0.77354

0.46522 0.46744

0.65107 0.65904

0.57608 0.61912

0.68546 0.61571

0.67263 0.73058

0.66638 0.75466

0.63636 0.68040

0.79872 0.84365

0.56524 0.62361

0.78769 0.85909

0.50669 0.39514

0.51905 0.47359

0.71065 0.71647

0.62581 0.60646

0.65714 0.70721

0.77816 0.85550

0.57152 0.57250

0.73229 0.69851

0.59606 0.55114

Table B.3. Raw TM-scores of the boxplots shown in Figure 5.21. Each row
corresponds to the same protein; different rows represent different proteins.

TM-score of MetaPSICOV TM-score of DeepCDpred

0.75836 0.85832

0.69330 0.79319

0.74702 0.84330

0.70156 0.79188

0.42564 0.51485

0.66638 0.75466

0.67661 0.76355

0.52639 0.60780

0.57887 0.65848

0.59130 0.67080

0.64202 0.71987

0.59271 0.67021

0.77816 0.85550

0.65363 0.73008

0.59845 0.67016

0.78769 0.85909

0.68876 0.75976

0.64608 0.71686

0.53871 0.60878

0.51614 0.58612

0.65066 0.72063

0.67809 0.74766

0.61844 0.68788
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0.75657 0.82521

0.56292 0.63045

0.72911 0.79646

0.69970 0.76561

0.68174 0.74374

0.35762 0.41916

0.56524 0.62361

0.43069 0.48893

0.67263 0.73058

0.59962 0.65628

0.60671 0.66008

0.74286 0.79312

0.65714 0.70721

0.82806 0.87707

0.59910 0.64535

0.73119 0.77622

0.79872 0.84365

0.63636 0.68040

0.57608 0.61912

0.30313 0.34556

0.73035 0.77161

0.66371 0.70114

0.55952 0.59391

0.63665 0.66275

0.49065 0.51589

0.63637 0.65905

0.70375 0.72412

0.56911 0.58696

0.63228 0.64843

0.65097 0.66560

0.80089 0.81480

0.65107 0.65904

0.71065 0.71647

0.80959 0.81252

0.67494 0.67776

0.46522 0.46744

0.59133 0.59258

0.57152 0.57250

0.91935 0.91494

0.64888 0.64096

0.53768 0.52887

0.78895 0.77715

0.45478 0.44142

0.75177 0.73690

0.85859 0.84238

0.62581 0.60646

0.75553 0.73378

0.53604 0.51316

0.69442 0.66943

0.66640 0.64066

0.75804 0.72649

0.73229 0.69851

0.61859 0.57368
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0.59606 0.55114

0.51905 0.47359

0.57984 0.53304

0.63931 0.58448

0.52923 0.47052

0.73033 0.66833

0.75335 0.69005

0.58961 0.52434

0.68546 0.61571

0.78725 0.71625

0.73439 0.66205
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Appendix C

Training/Validation, And Test Set

In this chapter, all PDB ID and chain names of the proteins used in the amino acid

contact percentage calculation, in the training/validation set and the test set used for

DeepCDpred, and the TM-score prediction neural network model are listed. For all the

three following tables, the entries of PDB ID and chain name are separated by commas;

the four characters represent the PDB ID, and the fifth character is the chain name.
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Table C.1. PDB ID list of the 250 protein chains in the amino acid contact
percentage calculation.

PDB ID/CHAIN NAME

4wzxE,4axyA,4w8pB,4reyB,4wndB,4zgmB,4lkuA,1n0wB,

4wolA,4ub8R,3wwqC,4txrC,1htrP,1nh2B,4rkhC,4zceB,

1i7wB,4od8D,4x86B,3h6pA,1isuA,4r2yA,2yh9A,1gu4A,

1xiwB,1eayC,1whzA,4qxbB,1tafA,4cvoA,4rgdA,1tafB,

1egwA,4uafE,1uv7A,3e19A,1hq1A,1dp7P,1oeyA,1n7sC,

4nc7A,3w61A,1d3bB,4zeyA,4tpsB,1r6jA,4m1gA,1w53A,

1wlzA,3n5bB,4cayA,1wv9A,1t0pB,3mhsE,4lwsB,3kojA,

4csrA,1o5uA,1nkpA,1q8bA,4xalA,1xiwA,1b9wA,1uw4A,

4ku0A,1bteA,3dwgC,4zv0B,4u7iA,1q08A,1dfuP,3dluA,

4z8tB,3glaA,4gneA,3lwcA,4qkwA,3f8bA,1lxjA,4zhbA,

4czxB,3kmaA,1nlqA,1xlqA,4hlyA,1hxrA,4nn5A,1p57A,

1r75A,3u2aA,1n13B,3ju3A,4otmA,3kdfD,4kqdA,2zqmA,

4ue0A,4rleA,1vkeA,3lyxA,1sd4A,3h7hA,2a0bA,1u5fA,

4qblA,1t1jA,1fc3A,2xdpA,1gy7A,4mypA,3bedA,4tshA,

4bhuA,1lr0A,4h87A,1ez3A,4ounA,1y7rA,2yqyA,3f8xA,

1ixlA,1s5uA,3hsrA,1ogdA,1od3A,3dlqI,1wvhA,4zdsA,

1vsrA,4htuA,1n12A,3do8A,3oopA,1z1sA,1ccwA,4mtmA,

4p5eA,1jmvA,3ht1A,1fm0E,1r0uA,4mtuA,1f2tB,1h6hA,

1kxgA,4rptA,1yocA,3v4gA,4un1A,1f2tA,4pp8C,1idpA,

1dzkA,4zeqA,3eytA,4u5rA,1v4pA,4gqzA,3vygB,3l2hA,

4v3iA,1t9iA,1lb6A,1guiA,1g5tA,1rylA,4lzkA,3anoA,

1np6A,1y9iA,1sz7A,4okeA,4kt6B,4bi3A,1u7pA,4lyyA,

3nl9A,3ktaB,1gheA,1ynbA,1g12A,4yp6A,4mi4A,1gu9A,

4qm6A,1fpoA,1cczA,3v6gA,4w4kB,1xg0C,1g3kA,1rttA,

4yz6A,3q3jB,4x2hB,4hiaA,4aciA,1wubA,4tq2A,3wisA,

4p82A,4jj0A,1jh6A,4bjaA,4bu0A,3shoA,2zfdA,1h6fA,

3rnqB,3vp5A,4yepA,3fxaA,1qqp1,3u3zA,1n9pA,4lviA,

1pp0A,1v2xA,2vzyA,1ui0A,4xbaB,1nxmA,2xblA,3r5gA,

3l8dA,4nn5B,3rnrA,4g6iA,2w7zA,2xbuA,1jm1A,1l6rA,

1lfpA,1kzqA,1n57A,1m6yB,1kpgA,1inlA,1mnnA,1lc0A,

1k8wA,1ntyA,1jl0A,1n7zA,1l7aA,1ixhA,1j4aA,1juhA,

1kq3A,1mtyB
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Table C.2. PDB ID list of the 221 protein chains in the speed and contact
prediction accuracy comparisons between PSICOV and QUIC.

PDB ID/CHAIN NAME

1a6mA,1a70A,1abaA,1ag6A,1aoeA,1atzA,1avsA,1bebA,

1behA,1bkrA,1brfA,1bsgA,1c44A,1c52A,1cc8A,1chdA,

1cjwA,1ckeA,1cxyA,1cznA,1d1qA,1d4oA,1dbxA,1dixA,

1dlwA,1dmgA,1dqgA,1e5kA,1eaqA,1eazA,1eb6A,1ej0A,

1ej8A,1fcyA,1fk5A,1fl0A,1fnaA,1fvgA,1g2rA,1g61A,

1g9oA,1gbsA,1gmiA,1gmxA,1gqvA,1gu2A,1guuA,1gz2A,

1h0pA,1h12A,1h2eA,1h4gA,1h4xA,1h98A,1hfcA,1hh8A,

1htwA,1hxnA,1i1jA,1i1nA,1i27A,1i5gA,1i71A,1ihzA,

1iibA,1im5A,1iwdA,1j3aA,1jbeA,1jbkA,1jfuA,1jfxA,

1jl1A,1jo0A,1jo8A,1josA,1jvwA,1jwqA,1jyhA,1k5cA,

1k6kA,1k7cA,1k7jA,1ka1A,1kidA,1kmtA,1kq6A,1kqrA,

1ktgA,1ku3A,1kw4A,1l9lA,1lm4A,1lniA,1lpyA,1lwbA,

1lyvA,1m1qA,1m4jA,1m55A,1m8aA,1mk0A,1mn8A,1mugA,

1muwA,1n8vA,1nb9A,1npsA,1nuyA,1ny1A,1nz0A,1o1zA,

1o2dA,1o4yA,1o7qA,1odmA,1oh4A,1p90A,1pbjA,1pchA,

1pkoA,1qf9A,1qtwA,1r26A,1r85A,1roaA,1rw1A,1rybA,

1sauA,1svyA,1t8kA,1tifA,1tqgA,1tqhA,1tt8A,1tzvA,

1ucsA,1vfyA,1vhuA,1vjkA,1vlyA,1vmbA,1vykA,1w0hA,

1w0nA,1w1hA,1w66A,1wc2A,1wcwA,1wdpA,1wjxA,1wkcA,

1xbiA,1xdnA,1xdzA,1xkrA,1xmkA,1xmtA,1xqoA,1yfqA,

1yiiA,1z0nA,1zgkA,1zzkA,2b3hA,2b97A,2bkxA,2c4bA,

2c60A,2cb8A,2cg7A,2ciwA,2ckkA,2cs7A,2cuaA,2endA,

2erfA,2fb6A,2fbaA,2fcjA,2fmaA,2fsqA,2gkeA,2gkpA,

2gqtA,2gsoA,2h1vA,2hbaA,2hzcA,2i5vA,2ia7A,2iayA,

2ic6A,2j5yA,2j8bA,2jekA,2jliA,2lisA,2mhrA,2nr7A,

2nszA,2ofzA,2ovjA,2p0nA,2p51A,2phyA,2pneA,2q52A,

2qfeA,2qjzA,2qngA,2qvkA,2r16A,2r31A,2r75A,2rctA,

2rdqA,2rffA,2tpsA,2v9vA,2ve8A
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Table C.3. PDB ID list of the test set of DeepCDpred.

PDB ID/CHAIN NAME

1a3aA,1cc8A,1dsxA,1gzcA,1im5A,1ku3A,1p90A,1vjkA,

1aapA,1chdA,1eazA,1h2eA,1j3aA,1kw4A,1pchA,1vmbA,

1abaA,1cjwA,1ej8A,1h4xA,1jfuA,1lm4A,1qf9A,1vp6A,

1ag6A,1ckeA,1f6bA,1hdoA,1jl1A,1lo7A,1qjpA,1w0hA,

1aoeA,1ctfA,1fcyA,1hfcA,1jo0A,1m4jA,1r26A,1whiA,

1atzA,1cxyA,1fk5A,1hh8A,1jo8A,1m8aA,1roaA,1wjxA,

1avsA,1cznA,1fl0A,1htwA,1josA,1mk0A,1rw1A,1wkcA,

1bdoA,1d0qA,1fvgA,1hxnA,1jwqA,1mugA,1smxA,1xffA,

1bebA,1d1qA,1fx2A,1i1jA,1jyhA,1nb9A,1svyA,2cuaA,

1behA,1d4oA,1g2rA,1i1nA,1k6kA,1ne2A,1t8kA,2phyA,

1bkrA,1dixA,1g9oA,1i4jA,1k7jA,1npsA,1tifA,1c44A,

1dlwA,1gmiA,1i58A,1kq6A,1nrvA,1tqgA,1c52A,1dmgA,

1gmxA,1i71A,1kqrA,1ny1A,1tqhA,1c9oA,1dqgA,1gz2A,

1iibA,1ktgA,1o1zA,1vfyA

Table C.4. PDB ID list of the training/validation set of DeepCDpred.

PDB ID/CHAIN NAME

1a62A,1cukA,1dvoA,1f3uB,1gprA,1hxiA,1ixlA,1juvA,

1lf7A,1mvlA,1nnxA,1oi0A,1pocA,1qkrA,1rssA,1sgwA,

1tc5A,1u2hA,1uujA,1vi6A,1wmhA,1x2iA,1y63A,1ae9A,

1cv8A,1dwkA,1f46A,1gs9A,1hxrA,1izmA,1jyaA,1lkiA,

1my7A,1np6A,1on2A,1pp0A,1qqp1,1rttA,1sh8A,1tfeA,

1u2wA,1uuyA,1vimA,1wmhB,1x3kA,1y7rA,1alyA,1cxqA,

1dxgA,1f60B,1gu4A,1hztA,1j0pA,1jyoA,1lkkA,1mzwB,

1nqzA,1oo0B,1pqhA,1qv1A,1rutX,1sj1A,1th7A,1u5fA,

1uv7A,1vjlA,1wmxA,1x6oA,1y88A,1ayoA,1cy5A,1dzkA,

1fc3A,1gu9A,1i07A,1j24A,1k3sA,1lqvA,1n0wB,1nrjB,
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1oqjA,1psrA,1qw2A,1rxdA,1sqwA,1tigA,1u7kA,1uw4A,

1vkeA,1wocA,1x91A,1y9iA,1b4fA,1d2oA,1e0bA,1fltX,

1guiA,1i12A,1j27A,1k4nA,1lr0A,1n12A,1ntvA,1orsC,

1pt6A,1qwdA,1rxqA,1ss4A,1tiqA,1u7pA,1uxoA,1vkiA,

1wolA,1xauA,1y9wA,1b9wA,1d2sA,1e30A,1fm0E,1gutA,

1i2tA,1j3wA,1k8kE,1lr5A,1n13B,1nu0A,1oruA,1pvmA,

1qzgA,1rylA,1sviA,1tjlA,1u84A,1v0aA,1vkkA,1wouA,

1xe1A,1yd9A,1bgcA,1d2zB,1eayC,1fpoA,1gxuA,1i4uA,

1j77A,1k8kG,1lshB,1n1fA,1nxmA,1ou8A,1pyoB,1qzmA,

1ryqA,1sz7A,1tp6A,1u9kA,1v2xA,1vl7A,1wpaA,1xe7A,

1ynbA,1bm8A,1d3bA,1ef1C,1fpzA,1gy7A,1i7wB,1j7dA,

1kgdA,1lu4A,1n62A,1nznA,1ow1A,1pzwA,1r0dA,1rz3A,

1t07A,1ts9A,1u9lA,1v4pA,1vmgA,1wpbA,1xfsA,1yocA,

1bm9A,1d3bB,1egwA,1g12A,1h2sB,1i8aA,1j8bA,1khyA,

1luzA,1n71A,1o13A,1ow4A,1q08A,1r0uA,1s12A,1t0pB,

1tu1A,1uebA,1v5iB,1vqsA,1wrdA,1xg0C,1z1sA,1bteA,

1d4tA,1elkA,1g3kA,1h4aX,1id0A,1je5A,1klxA,1lxjA,

1n7sC,1o4wA,1oz9A,1q0pA,1r6jA,1s29A,1t1jA,1tu9A,

1ui0A,1v6pA,1vsrA,1ws8A,1xhdA,1zavA,1btkA,1ddwA,

1elwA,1g5tA,1h6fA,1idpA,1jf3A,1koeA,1ly1A,1n9pA,

1o50A,1p57A,1q1fA,1r75A,1s3cA,1t3yA,1tuaA,1ujcA,

1v74B,1w2wB,1wu9A,1xhnA,1ze3H,1bxyA,1dfuP,1epfA,

1g6gA,1h6hA,1ifrA,1jh6A,1kptA,1m0dA,1ng2A,1o5uA,

1p6oA,1q40B,1r77A,1s4kA,1t4aA,1tuhA,1ukkA,1v96A,

1w4sA,1wubA,1xiwA,1zpvA,1byfA,1dg6A,1ew4A,1g8eA,

1h8pA,1igqA,1jhgA,1kt6A,1m1fA,1ng6A,1o6dA,1p9gA,

1q42A,1r7jA,1s5uA,1t6sA,1tuvA,1unnC,1v9yA,1w53A,
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1wurA,1xiwB,1zuoA,1byrA,1dj8A,1ez3A,1g8qA,1h97A,

1io0A,1jhjA,1kxgA,1m4iA,1nh2B,1o7iA,1p9hA,1q8bA,

1r9wA,1s7iA,1t6t1,1tuwA,1uptB,1vbwA,1wdcB,1wv9A,

1xlqA,2a0bA,1c1yB,1dk8A,1f1mA,1gheA,1hfeS,1iq4A,

1jhsA,1kxoA,1m70A,1nh2C,1oa8A,1pbwA,1q8dA,1rg8A,

1s9uA,1t82A,1tvgA,1urqA,1vcaA,1wdjA,1wvhA,1xo5A,

2a5dB,1c7kA,1dm9A,1f2tA,1gmuA,1hq1A,1iqzA,1jidA,

1kzfA,1maiA,1nh2D,1ocyA,1pcfA,1q9uA,1rh6A,1sd4A,

1t92A,1twuA,1uscA,1vctA,1wehA,1wwcA,1xteA,2aalA,

1ccwA,1dowA,1f2tB,1go3E,1hruA,1irqA,1jiwI,1l3kA,

1mjnA,1nkiA,1od3A,1pdoA,1qcsA,1rliA,1seiA,1t9iA,

1txlA,1usmA,1vgjA,1whzA,1wwzA,1y02A,2anrA,1cczA,

1dp7P,1f39A,1go3F,1htrP,1isuA,1jkeA,1l6pA,1mk4A,

1nkpA,1oeyA,1pkhA,1qf8A,1rocA,1sfpA,1tafA,1u0sA,

1ut7A,1vh5A,1wljA,1wy3A,1y0hA,1ci4A,1dunA,1f3uA,

1gp0A,1huwA,1it2A,1jmvA,1lb6A,1mvfD,1nlqA,1ogdA,

1pmhX,1qftA,1rowA,1sgmA,1tafB,1u14A,1utgA,1vi0A,

1wlzA,1wz3A,1y1xA,1n7kA,1nijA,1nnfA,1nuuA,1n2zA,

1i24A,1ii5A,1ixhA,1j5wA,1jdwA,1jovA,1juhA,1jykA,

1k3yA,1k8wA,1ko7A,1kwfA,1l7aA,1ls1A,1lzlA,1mixA,

1mtpA,1n3lA,1n7zA,1njrA,1nnwA,1i60A,1in4A,1izcA,

1j7xA,1jl0A,1jr2A,1jw9B,1jztA,1k77A,1kcmA,1kpgA,

1kzqA,1lbuA,1luaA,1m0kA,1mnnA,1mtyB,1n57A,1n93X,

1nlfA,1nszA,1i88A,1inlA,1j1tA,1jayA,1jm1A,1jr7A,

1jx6A,1k0iA,1k8kC,1khxA,1kq3A,1l3lA,1lc0A,1lucA,

1m6sA,1mpgA,1mtzA,1n62C,1nfpA,1nlsA,1ntyA,1i9zA,

1iuqA,1j4aA,1jb7B,1jmkC,1jtvA,1jyeA,1k3xA,1k8kD,
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1kjqA,1kqfC,1l6rA,1lfpA,1lv7A,1m6yB,1mrzA,4zgmB

2vv6A,2zxyA,3cjeA,3es1A,3fttA,3ht1A,3l2hA,3n79A,

3rs1A,3witA,4bg7A,4ejrA,4hlyA,4ktwA,4m5dB,4ndsA,

4ouhA,4q2uA,4r7kA,4tpvA,4uuuA,4wzxA,4ynhA,4zkyA,

2vzyA,3ajvA,3ck1A,3eusA,3fxaA,3hv2A,3l51A,3n9uC,

3s9dA,3wmiA,4bhuA,4errA,4hs2A,4ku0A,4m62S,4ne3A,

4ounA,4q4w4,4r8hA,4tq1B,4uyiA,4wzxE,4ynxA,4zldA,

2w5eA,3anoA,3cnuA,3eytA,3fynA,3i96A,3l8dA,3nklA,

3s9dB,3wmiB,4bi3A,4eskA,4htuA,4ku0D,4m8aA,4nf1A,

4owtB,4q5eA,4rbrA,4tq2A,4v3iA,4x2hA,4yp6A,4zqaA,

2w7zA,3anpC,3cqbA,3f13A,3g13A,3ia1A,3l9fA,3nl9A,

3shoA,3wmvA,4bjaA,4eunA,4hvyA,4kv2B,4m91A,4nl9A,

4owtC,4qamB,4rcjA,4tsdB,4w4kA,4x2hB,4ytdA,4zv0A,

2wtgA,3b09A,3cu3A,3f14A,3g14A,3ihtA,3laeA,3nznA,

3sxmA,3wn7B,4bu0A,4evxA,4im6A,4l1jA,4macA,4nn5A,

4p1mA,4qasA,4reyB,4tshA,4w4kB,4x33A,4ytwA,4zv0B,

2wvbA,3b7hA,3d0wA,3f2iA,3g8zA,3ilxA,3lazA,3oa4A,

3t9yA,3wqbB,4bvxB,4evyA,4j39A,4l5eA,4makA,4nn5B,

4p3aA,4qblA,4rfuA,4tx4B,4w78A,4x3iA,4ytwB,4zvcA,

2x78A,3b8lA,3ddtA,3f42A,3ghjA,3imoA,3lluA,3oopA,

3tboA,3wvaA,4bwcA,4f7uB,4jdeB,4l8pA,4mi4A,4nutB,

4p3fA,4qboA,4rgdA,4tx5A,4w78B,4x86A,4yv4A,4zylA,

2xblA,3bb9A,3dewA,3f4aA,3glaA,3ju3A,3llvA,3op9A,

3tj8A,3wvzA,4c5eE,4ffuA,4jemA,4l9nA,4mlmA,4nv4A,

4p3vA,4qbsA,4rguA,4txrA,4w8pB,4x86B,4ywkA,5a0rA,

2xbuA,3bbyA,3df8A,3f5oA,3glvA,3jygA,3lqnA,3p1xA,

3u28C,3wwqC,4c6sA,4fvdA,4jf3A,4l9uA,4mn5A,4o1rA,
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4p5eA,4qdnA,4rhsA,4txrC,4wh5A,4x9zA,4yx1A,5a3dA,

2xcjA,3bd1A,3dlqI,3f6gB,3grdA,3k12A,3lw3A,3pluA,

3u2aA,3wwtB,4ca1A,4g6iA,4jj0A,4lflA,4mnnA,4o3vB,

4p5nB,4qe0A,4rkhC,4u1eG,4wjtA,4xalA,4yz6A,5a6wA,

2xdpA,3bedA,3dluA,3f8bA,3grzA,3k6gA,3lwcA,3q3jB,

3u3zA,3wydA,4cayA,4g6xA,4jj9A,4ljiA,4mqvB,4o4oA,

4p82A,4qftA,4rleA,4u3sB,4wksA,4xb6A,4z04A,5ajjA,

2yh9A,3bguA,3dmcA,3f8xA,3gwnA,3kbqA,3lx3A,3q87A,

3v4gA,3x38A,4cayC,4gdoA,4jo7A,4lkuA,4mt8A,4o66A,

4p9iA,4qkdA,4ro3A,4u5hA,4wndB,4xbaB,4z3xE,2yilA,

3bhqA,3do8A,3fanA,3gwyA,3kdfD,3lypA,3qbmA,3v6gA,

3zhoA,4cbuG,4gn5A,4js0B,4lloA,4mtmA,4o7jB,4pasA,

4qkwA,4rp3A,4u5rA,4wolA,4xhtA,4z8tB,2yleA,3blnA,

3dwgC,3fauA,3gy9A,3kg0A,3lyxA,3qdlA,3vbjA,3zieA,

4cngA,4gneA,4jw0B,4looB,4mtuA,4o8yB,4pdcE,4qlpA,

4rptA,4u7iA,4wp9A,4xinA,4zbhA,2yqyA,3blzA,3e05A,

3ff2A,3gydA,3kgzA,3m9lA,3qv1G,3vcxA,3zihA,4cryB,

4gqmA,4jzuA,4lowA,4mxtA,4od8D,4peoA,4qlpB,4rs7R,

4uafE,4wpyA,4xo1A,4zc4A,2yskA,3bm7A,3e19A,3fh1A,

3h2bA,3kmaA,3md1A,3qvaA,3vfzA,3zqsA,4csrA,4gqzA,

4k02A,4lviA,4mypA,4oi3A,4phjA,4qm6A,4rt1A,4ub8R,

4wsfA,4xrmA,4zceB,2yveA,3bn7A,3e57A,3fjsA,3h6pA,

3kojA,3mgdA,3r0nA,3vp5A,4a1kA,4csrB,4h2wC,4k12A,

4lwsA,4mzgB,4oieA,4pibA,4qndA,4rt4E,4ue0A,4wv4A,

4xu6A,4zcnA,2yvqA,3bwvA,3ec6A,3flhA,3h7hA,3kopA,

3mhsE,3r3cA,3vrdA,4a6hA,4cvoA,4h3kB,4k12B,4lwsB,

4n0hF,4ojuA,4pp8C,4qttB,4s1aA,4ue8B,4wvrD,4xzfA,
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4zdsA,2yzjA,3c3pA,3ej9A,3fn2A,3ha2A,3kosA,3mnmA,

3r5gA,3vygB,4aciA,4cxfB,4h3uA,4k9zA,4lyyA,4n6qA,

4okeA,4pz1A,4qu6A,4s2xA,4un1A,4ww7B,4yepA,4zeqA,

2z3jA,3c57A,3ejvA,3fpnA,3ha9A,3ktaA,3mqqA,3rfiA,

3w0tA,4aikA,4cybA,4h87A,4kqdA,4lzkA,4n7cA,4okvE,

4pzjA,4qusA,4s3oC,4un1B,4wy4A,4yh8A,4zeyA,2zejA,

3c7xA,3ek3A,3frqA,3hf5A,3ktaB,3mtqA,3rnqB,3w61A,

4axyA,4czxB,4hfsA,4krdB,4lzxB,4nb5A,4otmA,4q0yA,

4qxbB,4tkcA,4un2B,4wy4B,4yh8B

Table C.5. PDB ID list of the training/validation set of Feature Contribution
Analysis.

PDB ID/CHAIN NAME

1a62A,1cukA,1dvoA,1f3uB,1gprA,1hxiA,1ixlA,1juvA,

1lf7A,1mvlA,1nnxA,1oi0A,1pocA,1qkrA,1rssA,1sgwA,

1tc5A,1u2hA,1uujA,1vi6A,1wmhA,1x2iA,1y63A,1ae9A,

1cv8A,1dwkA,1f46A,1gs9A,1hxrA,1izmA,1jyaA,1lkiA,

1my7A,1np6A,1on2A,1pp0A,1qqp1,1rttA,1sh8A,1tfeA,

1u2wA,1uuyA,1vimA,1wmhB,1x3kA,1y7rA,1alyA,1cxqA,

1dxgA,1f60B,1gu4A,1hztA,1j0pA,1jyoA,1lkkA,1mzwB,

1nqzA,1oo0B,1pqhA,1qv1A,1rutX,1sj1A,1th7A,1u5fA,

1uv7A,1vjlA,1wmxA,1x6oA,1y88A,1ayoA,1cy5A,1dzkA,

1fc3A,1gu9A,1i07A,1j24A,1k3sA,1lqvA,1n0wB,1nrjB,

1oqjA,1psrA,1qw2A,1rxdA,1sqwA,1tigA,1u7kA,1uw4A,

1vkeA,1wocA,1x91A,1y9iA,1b4fA,1d2oA,1e0bA,1fltX,

1guiA,1i12A,1j27A,1k4nA,1lr0A,1n12A,1ntvA,1orsC,

1pt6A,1qwdA,1rxqA,1ss4A,1tiqA,1u7pA,1uxoA,1vkiA,
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1wolA,1xauA,1y9wA,1b9wA,1d2sA,1e30A,1fm0E,1gutA,

1i2tA,1j3wA,1k8kE,1lr5A,1n13B,1nu0A,1oruA,1pvmA,

1qzgA,1rylA,1sviA,1tjlA,1u84A,1v0aA,1vkkA,1wouA,

1xe1A,1yd9A,1bgcA,1d2zB,1eayC,1fpoA,1gxuA,1i4uA,

1j77A,1k8kG,1lshB,1n1fA,1nxmA,1ou8A,1pyoB,1qzmA,

1ryqA,1sz7A,1tp6A,1u9kA,1v2xA,1vl7A,1wpaA,1xe7A,

1ynbA,1bm8A,1d3bA,1ef1C,1fpzA,1gy7A,1i7wB,1j7dA,

1kgdA,1lu4A,1n62A,1nznA,1ow1A,1pzwA,1r0dA,1rz3A,

1t07A,1ts9A,1u9lA,1v4pA,1vmgA,1wpbA,1xfsA,1yocA,

1bm9A,1d3bB,1egwA,1g12A,1h2sB,1i8aA,1j8bA,1khyA,

1luzA,1n71A,1o13A,1ow4A,1q08A,1r0uA,1s12A,1t0pB,

1tu1A,1uebA,1v5iB,1vqsA,1wrdA,1xg0C,1z1sA,1bteA,

1d4tA,1elkA,1g3kA,1h4aX,1id0A,1je5A,1klxA,1lxjA,

1n7sC,1o4wA,1oz9A,1q0pA,1r6jA,1s29A,1t1jA,1tu9A,

1ui0A,1v6pA,1vsrA,1ws8A,1xhdA,1zavA,1btkA,1ddwA,

1elwA,1g5tA,1h6fA,1idpA,1jf3A,1koeA,1ly1A,1n9pA,

1o50A,1p57A,1q1fA,1r75A,1s3cA,1t3yA,1tuaA,1ujcA,

1v74B,1w2wB,1wu9A,1xhnA,1ze3H,1bxyA,1dfuP,1epfA,

1g6gA,1h6hA,1ifrA,1jh6A,1kptA,1m0dA,1ng2A,1o5uA,

1p6oA,1q40B,1r77A,1s4kA,1t4aA,1tuhA,1ukkA,1v96A,

1w4sA,1wubA,1xiwA,1zpvA,1byfA,1dg6A,1ew4A,1g8eA,

1h8pA,1igqA,1jhgA,1kt6A,1m1fA,1ng6A,1o6dA,1p9gA,

1q42A,1r7jA,1s5uA,1t6sA,1tuvA,1unnC,1v9yA,1w53A,

1wurA,1xiwB,1zuoA,1byrA,1dj8A,1ez3A,1g8qA,1h97A,

1io0A,1jhjA,1kxgA,1m4iA,1nh2B,1o7iA,1p9hA,1q8bA,

1r9wA,1s7iA,1t6t1,1tuwA,1uptB,1vbwA,1wdcB,1wv9A,

1xlqA,2a0bA,1c1yB,1dk8A,1f1mA,1gheA,1hfeS,1iq4A,
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1jhsA,1kxoA,1m70A,1nh2C,1oa8A,1pbwA,1q8dA,1rg8A,

1s9uA,1t82A,1tvgA,1urqA,1vcaA,1wdjA,1wvhA,1xo5A,

2a5dB,1c7kA,1dm9A,1f2tA,1gmuA,1hq1A,1iqzA,1jidA,

1kzfA,1maiA,1nh2D,1ocyA,1pcfA,1q9uA,1rh6A,1sd4A,

1t92A,1twuA,1uscA,1vctA,1wehA,1wwcA,1xteA,2aalA,

1ccwA,1dowA,1f2tB,1go3E,1hruA,1irqA,1jiwI,1l3kA,

1mjnA,1nkiA,1od3A,1pdoA,1qcsA,1rliA,1seiA,1t9iA,

1txlA,1usmA,1vgjA,1whzA,1wwzA,1y02A,2anrA,1cczA,

1dp7P,1f39A,1go3F,1htrP,1isuA,1jkeA,1l6pA,1mk4A,

1nkpA,1oeyA,1pkhA,1qf8A,1rocA,1sfpA,1tafA,1u0sA,

1ut7A,1vh5A,1wljA,1wy3A,1y0hA,1ci4A,1dunA,1f3uA,

1gp0A,1huwA,1it2A,1jmvA,1lb6A,1mvfD,1nlqA,1ogdA,

1pmhX,1qftA,1rowA,1sgmA,1tafB,1u14A,1utgA,1vi0A,

1wlzA,1wz3A,1y1xA,1i24A,1ii5A,1ixhA,1j5wA,1jdwA,

1jovA,1juhA,1jykA,1k3yA,1k8wA,1ko7A,1kwfA,1l7aA,

1ls1A,1lzlA,1mixA,1mtpA,1n3lA,1n7zA,1njrA,1nnwA,

1i60A,1in4A,1izcA,1j7xA,1jl0A,1jr2A,1jw9B,1jztA,

1k77A,1kcmA,1kpgA,1kzqA,1lbuA,1luaA,1m0kA,1mnnA,

1mtyB,1n57A,1n93X,1nlfA,1nszA,1i88A,1inlA,1j1tA,

1jayA,1jm1A,1jr7A,1jx6A,1k0iA,1k8kC,1khxA,1kq3A,

1l3lA,1lc0A,1lucA,1m6sA,1mpgA,1mtzA,1n62C,1nfpA,

1nlsA,1ntyA,1i9zA,1iuqA,1j4aA,1jb7B,1jmkC,1jtvA,

1jyeA,1k3xA,1k8kD,1kjqA,1kqfC,1l6rA,1lfpA,1lv7A,

1m6yB,1mrzA,1n2zA,1n7kA,1nijA,1nnfA,1nuuA
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Table C.6. PDB ID list of the training/validation set of Feature Contribution
Analysis.

PDB ID/CHAIN NAME

1a62A,1cukA,1dvoA,1f3uB,1gprA,1hxiA,1ixlA,1juvA,

1lf7A,1mvlA,1nnxA,1oi0A,1pocA,1qkrA,1rssA,1sgwA,

1tc5A,1u2hA,1uujA,1vi6A,1wmhA,1x2iA,1y63A,1ae9A,

1cv8A,1dwkA,1f46A,1gs9A,1hxrA,1izmA,1jyaA,1lkiA,

1my7A,1np6A,1on2A,1pp0A,1qqp1,1rttA,1sh8A,1tfeA,

1u2wA,1uuyA,1vimA,1wmhB,1x3kA,1y7rA,1alyA,1cxqA,

1dxgA,1f60B,1gu4A,1hztA,1j0pA,1jyoA,1lkkA,1mzwB,

1nqzA,1oo0B,1pqhA,1qv1A,1rutX,1sj1A,1th7A,1u5fA,

1uv7A,1vjlA,1wmxA,1x6oA,1y88A,1ayoA,1cy5A,1dzkA,

1fc3A,1gu9A,1i07A,1j24A,1k3sA,1lqvA,1n0wB,1nrjB,

1oqjA,1psrA,1qw2A,1rxdA,1sqwA,1tigA,1u7kA,1uw4A,

1vkeA,1wocA,1x91A,1y9iA,1b4fA,1d2oA,1e0bA,1fltX,

1guiA,1i12A,1j27A,1k4nA,1lr0A,1n12A,1ntvA,1orsC,

1pt6A,1qwdA,1rxqA,1ss4A,1tiqA,1u7pA,1uxoA,1vkiA,

1wolA,1xauA,1y9wA,1b9wA,1d2sA,1e30A,1fm0E,1gutA,

1i2tA,1j3wA,1k8kE,1lr5A,1n13B,1nu0A,1oruA,1pvmA,

1qzgA,1rylA,1sviA,1tjlA,1u84A,1v0aA,1vkkA,1wouA,

1xe1A,1yd9A,1bgcA,1d2zB,1eayC,1fpoA,1gxuA,1i4uA,

1j77A,1k8kG,1lshB,1n1fA,1nxmA,1ou8A,1pyoB,1qzmA,

1ryqA,1sz7A,1tp6A,1u9kA,1v2xA,1vl7A,1wpaA,1xe7A,

1ynbA,1bm8A,1d3bA,1ef1C,1fpzA,1gy7A,1i7wB,1j7dA,

1kgdA,1lu4A,1n62A,1nznA,1ow1A,1pzwA,1r0dA,1rz3A,

1t07A,1ts9A,1u9lA,1v4pA,1vmgA,1wpbA,1xfsA,1yocA,

1bm9A,1d3bB,1egwA,1g12A,1h2sB,1i8aA,1j8bA,1khyA,
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1luzA,1n71A,1o13A,1ow4A,1q08A,1r0uA,1s12A,1t0pB,

1tu1A,1uebA,1v5iB,1vqsA,1wrdA,1xg0C,1z1sA,1bteA,

1d4tA,1elkA,1g3kA,1h4aX,1id0A,1je5A,1klxA,1lxjA,

1n7sC,1o4wA,1oz9A,1q0pA,1r6jA,1s29A,1t1jA,1tu9A,

1ui0A,1v6pA,1vsrA,1ws8A,1xhdA,1zavA,1btkA,1ddwA,

1elwA,1g5tA,1h6fA,1idpA,1jf3A,1koeA,1ly1A,1n9pA,

1o50A,1p57A,1q1fA,1r75A,1s3cA,1t3yA,1tuaA,1ujcA,

1v74B,1w2wB,1wu9A,1xhnA,1ze3H,1bxyA,1dfuP,1epfA,

1g6gA,1h6hA,1ifrA,1jh6A,1kptA,1m0dA,1ng2A,1o5uA,

1p6oA,1q40B,1r77A,1s4kA,1t4aA,1tuhA,1ukkA,1v96A,

1w4sA,1wubA,1xiwA,1zpvA,1byfA,1dg6A,1ew4A,1g8eA,

1h8pA,1igqA,1jhgA,1kt6A,1m1fA,1ng6A,1o6dA,1p9gA,

1q42A,1r7jA,1s5uA,1t6sA,1tuvA,1unnC,1v9yA,1w53A,

1wurA,1xiwB,1zuoA,1byrA,1dj8A,1ez3A,1g8qA,1h97A,

1io0A,1jhjA,1kxgA,1m4iA,1nh2B,1o7iA,1p9hA,1q8bA,

1r9wA,1s7iA,1t6t1,1tuwA,1uptB,1vbwA,1wdcB,1wv9A,

1xlqA,2a0bA,1c1yB,1dk8A,1f1mA,1gheA,1hfeS,1iq4A,

1jhsA,1kxoA,1m70A,1nh2C,1oa8A,1pbwA,1q8dA,1rg8A,

1s9uA,1t82A,1tvgA,1urqA,1vcaA,1wdjA,1wvhA,1xo5A,

2a5dB,1c7kA,1dm9A,1f2tA,1gmuA,1hq1A,1iqzA,1jidA,

1kzfA,1maiA,1nh2D,1ocyA,1pcfA,1q9uA,1rh6A,1sd4A,

1t92A,1twuA,1uscA,1vctA,1wehA,1wwcA,1xteA,2aalA,

1ccwA,1dowA,1f2tB,1go3E,1hruA,1irqA,1jiwI,1l3kA,

1mjnA,1nkiA,1od3A,1pdoA,1qcsA,1rliA,1seiA,1t9iA,

1txlA,1usmA,1vgjA,1whzA,1wwzA,1y02A,2anrA,1cczA,

1dp7P,1f39A,1go3F,1htrP,1isuA,1jkeA,1l6pA,1mk4A,

1nkpA,1oeyA,1pkhA,1qf8A,1rocA,1sfpA,1tafA,1u0sA,
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1ut7A,1vh5A,1wljA,1wy3A,1y0hA,1ci4A,1dunA,1f3uA,

1gp0A,1huwA,1it2A,1jmvA,1lb6A,1mvfD,1nlqA,1ogdA,

1pmhX,1qftA,1rowA,1sgmA,1tafB,1u14A,1utgA,1vi0A,

1wlzA,1wz3A,1y1xA

Table C.7. PDB ID list of training/validation set of the TM-score prediction
network.

PDB ID/CHAIN NAME

1a62A,1bm8A,1c1yB,1cxqA,1d4tA,1dowA,1e0bA,1egwA,

1es5A,1f1mA,1hq1A,1i07A,1dp7P,1e30A,1guiA,1gy7A,

1f5vA,1fpoA,1g3kA,1g8eA,1go3F,1gu9A,1gxyA,1h6hA,

1id0A,1io0A,1izcA,1ae9A,1bm9A,1c7kA,1cy5A,1ddwA,

1ekqA,1es9A,1f2tA,1f60B,1fpzA,1g5tA,1g8qA,1gp0A,

1h72C,1hruA,1i12A,1idpA,1iq4A,1izmA,1alyA,1bteA,

1ccwA,1d2oA,1g60A,1ga8A,1j0pA,1ayoA,1f39A,1fiuA,

1dfuP,1dunA,1eayC,1elkA,1euvA,1f2tB,1fc3A,1ft5A,

1gppA,1gutA,1h0hB,1h8pA,1htrP,1i2tA,1ifrA,1iqzA,

1btkA,1cczA,1d2sA,1dg6A,1dvoA,1eejA,1elwA,1ew4A,

1ftrA,1g66A,1gheA,1gprA,1gv9A,1h2sB,1h97A,1huwA,

1i4uA,1igqA,1eerB,1eokA,1h32A,1h99A,1d3bA,1dk8A,

1irqA,1j24A,1b4fA,1bxyA,1ci4A,1d2zB,1dj8A,1dwkA,

1ez3A,1f3uA,1fjhA,1fviA,1g6gA,1gl4A,1gs5A,1gvfA,

1hxiA,1i60A,1ii5A,1isuA,1j27A,1b9wA,1byfA,1cukA,

1dxgA,1ef1C,1epfA,1eziA,1f3uB,1fltX,1fyeA,1g6hA,

1gmuA,1gs9A,1bgcA,1byrA,1fm0E,1g12A,1inlA,1ixlA,

1gvnB,1h4aX,1hfeS,1hxrA,1i7wB,1in4A,1it2A,1j3wA,

1cv8A,1d3bB,1dm9A,1dzkA,1efdN,1eq2A,1f00I,1f46A,

1g8aA,1go3E,1gu4A,1gxuA,1h6fA,1hq0A,1hztA,1i8aA,

1j77A
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Appendix D

Protein Classification

Table D.1. PDB ID list of the training/validation set of DeepCDpred.

PDB ID Protein Class PDB ID Protein Class PDB ID Protein Class

1b4fA α 1sgwA α/β 1y9wA α+β

1bgcA α 1sviA α/β 1yocA α+β

1ci4A α 1t1jA α/β 1z1sA α+β

1cy5A α 1t3yA α/β 1zavA α+β

1d2zB α 1t6t1 α/β 1zpvA α+β

1dj8A α 1tigA α/β 1zuoA α+β

1dk8A α 1u7pA α/β 2a5dB α+β

1dowA α 1ui0A α/β 2anrA α+β

1ef1C α 1ujcA α/β 2vv6A α+β

1elkA α 1usmA α/β 2vzyA α+β

1elwA α 1uuyA α/β 2w5eA α+β

1ez3A α 1uxoA α/β 2wvbA α+β

1f1mA α 1v2xA α/β 2yh9A α+β

1fc3A α 1v96A α/β 2yilA α+β

1fpoA α 1vbwA α/β 2yleA α+β

1g12A α 1vi6A α/β 2yzjA α+β

Continued on next page
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Table D.1 – continued from previous page

PDB ID Protein Class PDB ID Protein Class PDB ID Protein Class

1g8eA α 1vimA α/β 2z3jA α+β

1g8qA α 1vkiA α/β 3anoA α+β

1go3F α 1vsrA α/β 3b8lA α+β

1gs9A α 1w2wB α/β 3bb9A α+β

1gu4A α 1wehA α/β 3bguA α+β

1gu9A α 1wljA α/β 3blnA α+β

1h97A α 1wouA α/β 3blzA α+β

1hfeS α 1wv9A α/β 3bm7A α+β

1hq1A α 1xhdA α/β 3bn7A α+β

1htrP α 1y63A α/β 3c7xA α+β

1huwA α 1y88A α/β 3cjeA α+β

1hxiA α 1yd9A α/β 3ck1A α+β

1i2tA α 2aalA α/β 3cnuA α+β

1i7wB α 2vliA α/β 3cu3A α+β

1irqA α 2x78A α/β 3ddtA α+β

1it2A α 2xblA α/β 3df8A α+β

1izmA α 2xbuA α/β 3dluA α+β

1j0pA α 2yvqA α/β 3dmcA α+β

1j77A α 2zejA α/β 3dwgC α+β

1jf3A α 3ajvA α/β 3e19A α+β

1jhgA α 3bbyA α/β 3e57A α+β

1k8kE α 3bedA α/β 3ek3A α+β

1k8kG α 3bwvA α/β 3elsA α+β

1khyA α 3c3pA α/β 3en8A α+β

1klxA α 3c85A α/β 3eytA α+β

1kwfA α 3c97A α/β 3f14A α+β

1lkiA α 3cqbA α/β 3f42A α+β

1m70A α 3do8A α/β 3f5oA α+β

1mtyB α 3e05A α/β 3f6gB α+β

1mzwB α 3ec6A α/β 3f8bA α+β

1n0wB α 3ej9A α/β 3f8xA α+β

1n1fA α 3ejvA α/β 3fanA α+β

1n7sC α 3f13A α/β 3fauA α+β

Continued on next page
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Table D.1 – continued from previous page

PDB ID Protein Class PDB ID Protein Class PDB ID Protein Class

1n93X α 3f2iA α/β 3ff2A α+β

1ng6A α 3f4aA α/β 3fh1A α+β

1nh2B α 3flhA α/β 3fn2A α+β

1nkpA α 3fttA α/β 3fpnA α+β

1nznA α 3fxaA α/β 3fryA α+β

1on2A α 3fynA α/β 3g14A α+β

1ow4A α 3g13A α/β 3g8zA α+β

1pbwA α 3glvA α/β 3ghjA α+β

1psrA α 3grzA α/β 3grdA α+β

1q08A α 3h2bA α/β 3gwyA α+β

1q1fA α 3ha2A α/β 3gy9A α+β

1q8dA α 3hv2A α/β 3gydA α+β

1qkrA α 3ia1A α/β 3h7hA α+β

1qv1A α 3ihtA α/β 3ha9A α+β

1r0dA α 3ilxA α/β 3hf5A α+β

1r7jA α 3ju3A α/β 3hmzA α+β

1rxqA α 3kbqA α/β 3ht1A α+β

1s29A α 3kdfD α/β 3i96A α+β

1s9uA α 3kgzA α/β 3imoA α+β

1sd4A α 3kosA α/β 3jygA α+β

1sgmA α 3l8dA α/β 3k12A α+β

1t07A α 3lluA α/β 3kg0A α+β

1tafA α 3llvA α/β 3kojA α+β

1tafB α 3lypA α/β 3kopA α+β

1tjlA α 3m9lA α/β 3ktaA α+β

1tu9A α 3mtqA α/β 3ktaB α+β

1u2wA α 3nklA α/β 3l2hA α+β

1u7kA α 3q3jB α/β 3l51A α+β

1u84A α 3rpeA α/β 3laeA α+β

1u9lA α 3shoA α/β 3lqnA α+β

1uptB α 3u3zA α/β 3lw3A α+β

1urqA α 3vbjA α/β 3lx3A α+β

1utgA α 3w61A α/β 3lyxA α+β

Continued on next page
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Table D.1 – continued from previous page

PDB ID Protein Class PDB ID Protein Class PDB ID Protein Class

1uujA α 3wisA α/β 3md1A α+β

1v74B α 3wydA α/β 3mgdA α+β

1vi0A α 3zhoA α/β 3mqqA α+β

1vkeA α 3zieA α/β 3n5bB α+β

1vmgA α 3zihA α/β 3n72A α+β

1w53A α 4bfcA α/β 3n79A α+β

1wdcB α 4bu0A α/β 3n9uC α+β

1wlzA α 4c6sA α/β 3nznA α+β

1wolA α 4cbuG α/β 3oa4A α+β

1wpaA α 4cngA α/β 3p1xA α+β

1wpbA α 4eunA α/β 3pluA α+β

1wrdA α 4fvdA α/β 3q87A α+β

1wu9A α 4h3kB α/β 3qdlA α+β

1wy3A α 4htuA α/β 3qvaA α+β

1x2iA α 4im6A α/β 3r3cA α+β

1x3kA α 4jemA α/β 3r5gA α+β

1x91A α 4jj9A α/β 3rnrA α+β

1xg0C α 4ktwA α/β 3rs1A α+β

1xo5A α 4lflA α/β 3s9dB α+β

1y1xA α 4m1aA α/β 3t9yA α+β

1y9iA α 4m1gA α/β 3tboA α+β

1ynbA α 4m62S α/β 3tj8A α+β

2a0bA α 4mnnA α/β 3u2aA α+β

2vklA α 4p5eA α/β 3v4gA α+β

2wtgA α 4p82A α/β 3vcxA α+β

2xcjA α 4qasA α/β 3w0tA α+β

2yqyA α 4qblA α/β 3wqbB α+β

2yskA α 4qm6A α/β 3wvaA α+β

2yveA α 4qttB α/β 3wvzA α+β

2zfdA α 4qu6A α/β 3zqsA α+β

2zqmA α 4rcjA α/β 4a1kA α+β

2zxyA α 4rfuA α/β 4a6hA α+β

3anpC α 4s1aA α/β 4bg7A α+β

Continued on next page
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Table D.1 – continued from previous page

PDB ID Protein Class PDB ID Protein Class PDB ID Protein Class

3b09A α 4tpsB α/β 4bi3A α+β

3b7hA α 4u5rA α/β 4bvxB α+β

3bd1A α 4wsfA α/β 4bwcA α+β

3bhqA α 4yp6A α/β 4ca1A α+β

3c57A α 4ywkA α/β 4cryB α+β

3d0wA α 4zylA α/β 4ejrA α+β

3dewA α 1a62A α+β 4evyA α+β

3dlqI α 1ae9A α+β 4f7uB α+β

3eusA α 1bm8A α+β 4ffuA α+β

3frqA α 1bm9A α+β 4g6iA α+β

3ft7A α 1btkA α+β 4g6xA α+β

3gwnA α 1bxyA α+β 4gn5A α+β

3h6pA α 1byfA α+β 4gqzA α+β

3hsrA α 1byrA α+β 4h3uA α+β

3k6gA α 1c1yB α+β 4hfsA α+β

3kz3A α 1cv8A α+β 4hhvA α+β

3l1nA α 1d3bA α+β 4hiaA α+β

3l9fA α 1d4tA α+β 4hlyA α+β

3mhsE α 1ddwA α+β 4hvyA α+β

3nl9A α 1dm9A α+β 4j39A α+β

3oopA α 1dp7P α+β 4jj0A α+β

3op9A α 1dunA α+β 4jzuA α+β

3qbmA α 1dvoA α+β 4k02A α+β

3qv1G α 1dwkA α+β 4k9zA α+β

3rfiA α 1dzkA α+β 4kqdA α+β

3s9dA α 1e0bA α+β 4ktbA α+β

3sxmA α 1e30A α+β 4kv2B α+β

3v6gA α 1eayC α+β 4l8pA α+β

3vfzA α 1egwA α+β 4lloA α+β

3vp5A α 1ew4A α+β 4lowA α+β

3vrdA α 1f2tA α+β 4lviA α+β

3vygB α 1f2tB α+β 4lyyA α+β

3whjA α 1f3uA α+β 4lzkA α+β

Continued on next page

319



Table D.1 – continued from previous page

PDB ID Protein Class PDB ID Protein Class PDB ID Protein Class

3wmiA α 1f46A α+β 4m5dB α+β

3wmiB α 1f60B α+β 4m8aA α+β

3wn7B α 1f9vA α+β 4m91A α+β

3wwqC α 1fm0E α+β 4macA α+β

3wwtB α 1g3kA α+β 4makA α+β

3x38A α 1g5hA α+β 4mi4A α+β

4aciA α 1g6gA α+β 4mn5A α+β

4aikA α 1gheA α+β 4mtmA α+β

4b4sA α 1go3E α+β 4mtuA α+β

4bjaA α 1gprA α+β 4mxtA α+β

4cayA α 1gutA α+β 4mzgB α+β

4csrA α 1gxmA α+β 4n6qA α+β

4csrB α 1gxuA α+β 4n7cA α+β

4cvoA α 1gy7A α+β 4ndhA α+β

4cxfB α 1h6fA α+β 4ndsA α+β

4cybA α 1h6hA α+β 4nf1A α+β

4czxB α 1h8pA α+β 4nv4A α+β

4d2hA α 1hruA α+β 4o3vB α+β

4errA α 1hztA α+β 4o4oA α+β

4evxA α 1i4uA α+β 4o66A α+β

4gdoA α 1i88A α+β 4o7jB α+β

4gqmA α 1i9zA α+β 4o8yB α+β

4h2wC α 1id0A α+β 4oi3A α+β

4hs2A α 1idpA α+β 4okeA α+β

4jf3A α 1inlA α+β 4otmA α+β

4jo7A α 1iq4A α+β 4otnA α+β

4k12B α 1iqzA α+β 4ou6A α+β

4krdB α 1ixlA α+β 4ouhA α+β

4kt6B α 1j1tA α+β 4owtB α+β

4l1jA α 1j27A α+β 4p1mA α+β

4l5eA α 1j3wA α+β 4p3vA α+β

4l9nA α 1j5wA α+β 4p5nB α+β

4l9uA α 1j7dA α+β 4pdcE α+β
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4ljiA α 1j7xA α+β 4peoA α+β

4lkuA α 1j8bA α+β 4pibA α+β

4lwsA α 1jdwA α+β 4pp8C α+β

4lwsB α 1jh6A α+β 4q0yA α+β

4lzxB α 1jhjA α+β 4q29A α+β

4mlmA α 1jhsA α+β 4q2lA α+β

4mqvB α 1jidA α+β 4q5eA α+β

4mt8A α 1jiwI α+β 4qamB α+β

4n0hF α 1jl0A α+β 4qboA α+β

4nb5A α 1jm1A α+β 4qbsA α+β

4nc7A α 1jr7A α+β 4qe0A α+β

4ne3A α 1juhA α+β 4qftA α+β

4nl9A α 1jyaA α+β 4qkdA α+β

4nn5A α 1jyoA α+β 4qlpA α+β

4nutB α 1k3xA α+β 4qlpB α+β

4od8D α 1k3yA α+β 4qusA α+β

4okvE α 1k4nA α+β 4r2yA α+β

4ounA α 1k8kC α+β 4r7kA α+β

4owtC α 1k8kD α+β 4r8hA α+β

4p3aA α 1k8wA α+β 4rhsA α+β

4p3fA α 1kcmA α+β 4rleA α+β

4pasA α 1khxA α+β 4ro3A α+β

4phjA α 1kjqA α+β 4rptA α+β

4pz1A α 1ko7A α+β 4rt1A α+β

4pzjA α 1koeA α+β 4s2xA α+β

4q2uA α 1kt6A α+β 4s3oC α+β

4qdnA α 1kxoA α+β 4tpsA α+β

4qkwA α 1kzfA α+β 4tpvA α+β

4qxbB α 1l3kA α+β 4tq2A α+β

4r3qA α 1l3lA α+β 4tsdB α+β

4rbrA α 1l6pA α+β 4tx4B α+β

4rgdA α 1lb6A α+β 4u1eG α+β

4rguA α 1lbuA α+β 4u3sB α+β
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4rkhC α 1lf7A α+β 4uafE α+β

4rp3A α 1lfpA α+β 4ue0A α+β

4rs7R α 1lkkA α+β 4un1A α+β

4rt4E α 1lqvA α+β 4un1B α+β

4tq1B α 1lr0A α+β 4uuuA α+β

4tshA α 1lr5A α+β 4uyiA α+β

4tx5A α 1lshB α+β 4w78A α+β

4txrA α 1lu4A α+β 4w78B α+β

4txrC α 1luzA α+β 4wh5A α+β

4u5hA α 1lxjA α+β 4wjtA α+β

4u7iA α 1m1fA α+β 4wp9A α+β

4ue8B α 1maiA α+β 4wpyA α+β

4un2B α 1mixA α+β 4ww7B α+β

4v3iA α 1mk4A α+β 4x2hA α+β

4w4kA α 1mnnA α+β 4x2hB α+β

4w4kB α 1mpgA α+β 4xb6A α+β

4w8pB α 1mtpA α+β 4xbaB α+β

4wksA α 1mvfD α+β 4xo1A α+β

4wv4A α 1n13B α+β 4xzfA α+β

4wy4A α 1n62A α+β 4yepA α+β

4wy4B α 1n62C α+β 4yh8A α+β

4wy4C α 1n71A α+β 4ynxA α+β

4wy4D α 1n7zA α+β 4ytwB α+β

4wzxA α 1n9pA α+β 4yx1A α+β

4wzxE α 1ng2A α+β 4yz6A α+β

4x3iA α 1nh2D α+β 4z04A α+β

4x86A α 1nijA α+β 4z3xE α+β

4x86B α 1nkiA α+β 4zkyA α+β

4xalA α 1nnwA α+β 4zv0A α+β

4xhtA α 1nnxA α+β 5a6wA α+β

4xrmA α 1nszA α+β 1alyA β

4yh8B α 1ntvA α+β 1ayoA β

4yiiA α 1ntyA α+β 1b9wA β
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4ynhA α 1nxmA α+β 1bteA β

4ytdA α 1o50A α+β 1cczA β

4ytwA α 1o5uA α+β 1d2oA β

4yv4A α 1oa8A α+β 1d2sA β

4z8tB α 1ocyA α+β 1d3bB β

4zc4A α 1oeyA α+β 1dg6A β

4zdsA α 1oo0B α+β 1dxgA β

4zeqA α 1oqjA α+β 1epfA β

4zeyA α 1oruA α+β 1f39A β

4zgmB α 1ou8A α+β 1f3uB β

4zhbA α 1ow1A α+β 1fltX β

4zieA α 1p57A α+β 1gp0A β

4zldA α 1p9gA α+β 1guiA β

4zqaA α 1pcfA α+β 1h4aX β

4zv0B α 1pkhA α+β 1hxrA β

4zvcA α 1pmhX α+β 1i07A β

5a0rA α 1pocA α+β 1i8aA β

5a3dA α 1pp0A α+β 1ifrA β

5ajjA α 1pvmA α+β 1igqA β

1c7kA α/β 1pyoB α+β 1jovA β

1ccwA α/β 1pzwA α+β 1kxgA β

1cukA α/β 1q40B α+β 1kzqA β

1cxqA α/β 1q42A α+β 1my7A β

1dfuP α/β 1q8bA α+β 1n12A β

1fp2A α/β 1q9uA α+β 1nh2C β

1fpzA α/β 1qcsA α+β 1nlqA β

1g5tA α/β 1qf8A α+β 1nlsA β

1gmuA α/β 1qftA α+β 1o7iA β

1gpjA α/β 1qqp1 α+β 1od3A β

1i12A α/β 1qw2A α+β 1p9hA β

1i24A α/β 1qwdA α+β 1r0uA β

1i60A α/β 1qzgA α+β 1r75A β

1ii5A α/β 1r6jA α+β 1r77A β
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1in4A α/β 1r9wA α+β 1rg8A β

1io0A α/β 1rh6A α+β 1sfpA β

1iuqA α/β 1rocA α+β 1t0pB β

1ixhA α/β 1rowA α+β 1tvgA β

1izcA α/β 1rssA α+β 1u2hA β

1j24A α/β 1rutX α+β 1uebA β

1j4aA α/β 1rylA α+β 1v0aA β

1jayA α/β 1ryqA α+β 1v6pA β

1jb7B α/β 1s12A α+β 1vcaA β

1je5A α/β 1s5uA α+β 1wmxA β

1jkeA α/β 1s7iA α+β 1wocA β

1jmkC α/β 1seiA α+β 1wwcA β

1jmvA α/β 1sh8A α+β 1xauA β

1jr2A α/β 1sj1A α+β 1xe1A β

1jtvA α/β 1sqwA α+β 1xiwB β

1juvA α/β 1ss4A α+β 1ze3H β

1jw9B α/β 1sz7A α+β 2w7zA β

1jx6A α/β 1t4aA α+β 2xdpA β

1jyeA α/β 1t6sA α+β 3es1A β

1jykA α/β 1t82A α+β 3fjsA β

1jztA α/β 1t92A α+β 3glaA β

1k0iA α/β 1t9iA α+β 3kmaA β

1k3sA α/β 1tc5A α+β 3lazA β

1k77A α/β 1tfeA α+β 3lwcA β

1kgdA α/β 1th7A α+β 3mnmA β

1kpgA α/β 1tiqA α+β 3r0nA β

1kptA α/β 1tp6A α+β 3rnqB β

1kq3A α/β 1ts9A α+β 3u28C β

1l6rA α/β 1tu1A α+β 3witA β

1l7aA α/β 1tuaA α+β 3wmvA β

1lc0A α/β 1tuhA α+β 4bhuA β

1ls1A α/β 1tuvA α+β 4c5eE β

1luaA α/β 1tuwA α+β 4db5A β
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1lucA α/β 1twuA α+β 4eskA β

1lv7A α/β 1txlA α+β 4gneA β

1ly1A α/β 1u0sA α+β 4h87A β

1lzlA α/β 1u14A α+β 4jdeB β

1m0dA α/β 1u5fA α+β 4jw0B β

1m4iA α/β 1u9kA α+β 4k12A β

1m6sA α/β 1ukkA α+β 4ku0A β

1m6yB α/β 1unnC α+β 4ku0D β

1mjnA α/β 1uscA α+β 4mypA β

1mrzA α/β 1ut7A α+β 4nn5B β

1mtzA α/β 1uv7A α+β 4o1rA β

1mvlA α/β 1uw4A α+β 4oieA β

1n2zA α/β 1v4pA α+β 4ojuA β

1n3lA α/β 1v5iB α+β 4p9iA β

1n57A α/β 1v9yA α+β 4reyB β

1n7kA α/β 1vctA α+β 4tkcA β

1nfpA α/β 1vgjA α+β 4usoA β

1njrA α/β 1vh5A α+β 4wvrD β

1nlfA α/β 1vjlA α+β 4x33A β

1nnfA α/β 1vkkA α+β 4x9zA β

1np6A α/β 1vl7A α+β 4xinA β

1nqzA α/β 1vqsA α+β 4yl8B β

1nrjB α/β 1w4sA α+β 4zbhA β

1nu0A α/β 1wdjA α+β 4zceB β

1nuuA α/β 1whzA α+β 4zcnA β

1o13A α/β 1wmhA α+β 1isuA coil

1o4wA α/β 1wmhB α+β 4axyA coil

1o6dA α/β 1ws8A α+β 4cayC coil

1ogdA α/β 1wubA α+β 4js0B coil

1oi0A α/β 1wurA α+β 4looB coil

1oz9A α/β 1wvhA α+β 4q4w4 coil

1p6oA α/β 1wwzA α+β 4uqzB coil

1pdoA α/β 1wz3A α+β 4wndB coil
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1pqhA α/β 1x6oA α+β 1h2sB membrane

1pt6A α/β 1xe7A α+β 1kqfC membrane

1q0pA α/β 1xfsA α+β 1m0kA membrane

1qzmA α/β 1xhnA α+β 1orsC membrane

1rliA α/β 1xiwA α+β 4qndA membrane

1rttA α/β 1xlqA α+β 4ub8R membrane

1rxdA α/β 1xteA α+β 4wolA membrane

1rz3A α/β 1y02A α+β 4xu6A membrane

1s3cA α/β 1y0hA α+β 1y7rA α+β

1s4kA α/β
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Table D.2. Protein classes of the 108 protein chains in the test set of Deep-
CDpred.

PDB ID Protein Class PDB ID Protein Class PDB ID Protein Class

1a3a α+β 1fx2 α+β 1lm4 α+β

1aap β 1g2r α/β 1lo7 α+β

1aba α+β 1g9o α+β 1m4j α+β

1ag6 β 1gmi β 1m8a α+β

1aoe α/β 1gmx α/β 1mk0 α+β

1atz α/β 1gz2 α+β 1mug α/β

1avs α 1gzc β 1nb9 α+β

1bdo β 1h2e α+β 1ne2 α/β

1beb α+β 1h4x α/β 1nps β

1beh β 1hdo α/β 1nrv α+β

1bkr α 1hfc α/β 1ny1 α/β

1c44 α+β 1hh8 α 1o1z α/β

1c52 α+β 1htw α/β 1p90 α+β

1c9o β 1hxn β 1pch α+β

1cc8 α+β 1i1j β 1qf9 α/β

1chd α/β 1i1n α/β 1qjp membrane

1cjw α+β 1i4j α+β 1r26 α/β

1cke α/β 1i58 α+β 1roa α+β

1ctf α+β 1i71 coil 1rw1 α+β

1cxy α+β 1iib α/β 1smx β

1czn α/β 1im5 α/β 1svy α+β

1d0q α+β 1j3a α 1t8k α

1d1q α/β 1jfu α+β 1tif α+β

1d4o α/β 1jl1 α+β 1tqg α

1dix α+β 1jo0 α+β 1tqh α/β

1dlw α 1jo8 β 1vfy coil

1dmg α/β 1jos α+β 1vjk α+β

1dqg β 1jwq a/b 1vmb α+β

1dsx α+β 1jyh α+β 1vp6 α+β

1eaz α+β 1k6k α 1w0h α+β

1ej8 β 1k7j α+β 1whi α+β

1f6b α+β 1kq6 α+β 1wjx α+β

1fcy α 1kqr β 1wkc α/β

1fk5 α 1ktg α+β 1xff α+β

1fl0 β 1ku3 α 2cua β

1fvg α+β 1kw4 α 2phy α+β
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